Sample records for specific power operation

  1. Performance analysis of radiation cooled dc transmission lines for high power space systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1985-01-01

    As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.

  2. 49 CFR 238.447 - Train operator's controls and power car cab layout.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Train operator's controls and power car cab layout... Specific Requirements for Tier II Passenger Equipment § 238.447 Train operator's controls and power car cab layout. (a) Train operator controls in the power car cab shall be arranged so as to minimize the chance...

  3. 49 CFR 238.447 - Train operator's controls and power car cab layout.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Train operator's controls and power car cab layout... Specific Requirements for Tier II Passenger Equipment § 238.447 Train operator's controls and power car cab layout. (a) Train operator controls in the power car cab shall be arranged so as to minimize the chance...

  4. Factors influencing specific fuel use in Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, D.P.; Von Bargen, K.

    1981-01-01

    Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased withmore » increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.« less

  5. Concentrating Solar Power Projects by Status | Concentrating Solar Power |

    Science.gov Websites

    currently non-operational. You can then select a specific project and review a profile covering project agreement. Currently Non-Operational-projects that were operational but are now defunct or that were

  6. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 5: PEP environmental specification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This specification establishes the natural and induced environments to which the power extension package may be exposed during ground operations and space operations with the shuttle system. Space induced environments are applicable at the Orbiter attach point interface location. All probable environments are systematically listed according to each ground and mission phase.

  7. 78 FR 25310 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    .../diminished. There are no design changes associated with this TS amendment. The DC power system/batteries will... changes restructure the Technical Specifications (TS) for the direct current (DC) electrical power system... battery and battery charger operability requirements. The DC electrical power system, including associated...

  8. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  9. Tool for a configurable integrated circuit that uses determination of dynamic power consumption

    NASA Technical Reports Server (NTRS)

    Davoodi, Azadeh (Inventor); French, Matthew C. (Inventor); Agarwal, Deepak (Inventor); Wang, Li (Inventor)

    2011-01-01

    A configurable logic tool that allows minimization of dynamic power within an FPGA design without changing user-entered specifications. The minimization of power may use minimized clock nets as a first order operation, and a second order operation that minimizes other factors, such as area of placement, area of clocks and/or slack.

  10. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  11. Low power arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arc jet operation at low power. A standard, 1 kW, constricted arc jet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power engine. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope, The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  12. Low power arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arcjet operation at low power. A standard, 1 kW, constricted arcjet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power regime. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope. The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  13. PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 2

    NASA Technical Reports Server (NTRS)

    Barker, F. C.

    1978-01-01

    The data handling subsystem, command subsystem, communications subsystem, power subsystem, and mission operations of the Pioneer Venus multiprobe are presented. The multiprobe spacecraft performance in normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission is described.

  14. Enhancing Trust in the Smart Grid by Applying a Modified Exponentially Weighted Averages Algorithm

    DTIC Science & Technology

    2012-06-01

    2.1 Power Production and Distribution System . . . . . . . . . . . . . . . . . . . . 14 2.2 Steam Turbine Partial or Full Load Operating Limitations... turbines used for power production are designed to operate at specific frequencies and incur stress related damage when operating at higher or lower...2.2 illustrates the operational limits of a representative steam turbine with the following characteristics as measured in Hertz (Hz) [8]: • The

  15. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  16. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  17. Parametric Cost Study of AC-DC Wayside Power Systems

    DOT National Transportation Integrated Search

    1975-09-01

    The wayside power system provides all the power requirements of an electric vehicle operating on a fixed guideway. For a given set of specifications there are numerous wayside power supply configurations which will be satisfactory from a technical st...

  18. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz sub-band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... windows with the lowest power level below a monitoring threshold of 50 dB above the thermal noise power... of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability...

  19. Radar System Characterization Extended to Hardware-in-the-Loop Simulation for the Lab-Volt (Trademark) Training System

    DTIC Science & Technology

    2007-09-01

    devices such as klystrons , magnetrons, and traveling wave tubes. These microwave devices produce high power levels but may have limited bandwidths [20...diagram. The specific arrangement of components within a RADAR transmitter varies with operational specifications. Two options exist to produce high power ...cascading to generate sufficient power [20]. The second option to generate high power levels is to replace RF oscillators and amplifiers with microwave

  20. 75 FR 34181 - Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Specification (TS) Surveillance Requirement 3.1.6.1 to verify the operability of the concrete cask heat removal... Specification (TS) Surveillance Requirement 3.1.6.1 to verify the operability of the concrete cask heat removal...

  1. Power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.

    1974-01-01

    A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.

  2. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  3. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  4. Using Powerpoint Animations to Teach Operations Management Techniques and Concepts

    ERIC Educational Resources Information Center

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2014-01-01

    This article examines the value of using complex animated PowerPoint presentations to teach operations management techniques and concepts. To provide context, literature covering the use of PowerPoint animations in business education is briefly reviewed. The specific animations employed in this study are identified and their expected benefits to…

  5. 47 CFR 74.796 - Modification of digital transmission systems and analog transmission systems for digital operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... translator transmission systems and the modification of existing analog transmission systems for digital... specifically refitted or replaced to operate at a higher power. (3) Analog heterodyne translators, when...

  6. Performance of 10-kW class xenon ion thrusters

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1988-01-01

    Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.

  7. Extended operating range of the 30-cm ion thruster with simplified power processor requirements

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1981-01-01

    A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.

  8. Low-Power Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1999-01-01

    An effort is on-going to examine scaling relationships and design criteria for ion propulsion systems, and to address the need for a light weight, low power, high specific impulse propulsion option for small spacecraft. An element of this activity is the development of a low-power (sub-0.5 kW) ion thruster. This development effort has led to the fabrication and preliminary performance assessment of an 8 cm prototype xenon ion thruster operating over an input power envelope of 0.1-0.3 kW. Efficiencies for the thruster vary from 0.31 at 1750 seconds specific impulse at 0.1 kW, to about 0.48 at 2700 seconds specific impulse and 0.3 kW input power. Discharge losses for the thruster over this power range varied from about 320-380 W/A down to about 220-250 W/A. Ion optics performance compare favorably to that obtained with 30 cm ion optics, when scaled for the difference in beam area. The neutralizer, fabricated using 3 mm hollow cathode technology, operated at keeper currents of about 0.2-0.3 A, at a xenon flow rate of about 0.06 mg/s, over the 0.1-0.3 kW thruster input power envelope.

  9. Performance of a Miniaturized Arcjet

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Jacobson, David T.

    1995-01-01

    Performance measurements were obtained and life-limiting mechanisms were identified on a laboratory-model arcjet thruster designed to operate at a nominal power level of 300 W. The design employed a supersonic-arc-attachment concept and was operated from 200 to 400 W on hydrogen/nitrogen mixtures in ratios simulating fully decomposed hydrazine and ammonia. Power was provided by breadboard power processor. Performance was found to be a strong function of propellant flow rate. Anode losses were essentially constant for the range of mass flow rates tested. It is believed that the performance is dominated by viscous effects. Significantly improved performance was noted with simulated ammonia operation. At 300 W the specific impulse on simulated ammonia was 410 s with an efficiency of 0.34, while simulated hydrazine provided 370 s specific impulse at an efficiency of 0.27.

  10. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 2: Program plans

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.

  11. Computer program for design and performance analysis of navigation-aid power systems. Program documentation. Volume 1: Software requirements document

    NASA Technical Reports Server (NTRS)

    Goltz, G.; Kaiser, L. M.; Weiner, H.

    1977-01-01

    A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document establishes the software requirements for the DSPA computer program, discusses the processing that occurs within the program, and defines the necessary interfaces for operation.

  12. System-state and operating condition sensitive control method and apparatus for electric power delivery systems

    NASA Technical Reports Server (NTRS)

    Burns, III, William Wesley (Inventor); Wilson, Thomas George (Inventor)

    1978-01-01

    This invention provides a method and apparatus for determining a precise switching sequence for the power switching elements of electric power delivery systems of the on-off switching type and which enables extremely fast transient response, precise regulation and highly stable operation. The control utilizes the values of the power delivery system power handling network components, a desired output characteristic, a system timing parameter, and the externally imposed operating conditions to determine where steady state operations should be in order to yield desired output characteristics for the given system specifications. The actual state of the power delivery system is continuously monitored and compared to a state-space boundary which is derived from the desired equilibrium condition, and from the information obtained from this comparison, the system is moved to the desired equilibrium condition in one cycle of switching control. Since the controller continuously monitors the power delivery system's externally imposed operating conditions, a change in the conditions is immediately sensed and a new equilibrium condition is determined and achieved, again in a single cycle of switching control.

  13. Ultralow-power electronics for biomedical applications.

    PubMed

    Chandrakasan, Anantha P; Verma, Naveen; Daly, Denis C

    2008-01-01

    The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.

  14. Multi-megawatt power system trade study

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Schnitzler, Bruce G.; Parks, Benjamin T.

    2002-01-01

    A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of reaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass and volume efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. The gas-Brayton system showed a specific mass advantage (3.17 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used and eliminated the need to deal with two-phase working fluid flows in the microgravity environment of space. .

  15. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  16. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  17. The PIT MkV pulsed inductive thruster

    NASA Technical Reports Server (NTRS)

    Dailey, C. Lee; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.

  18. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  19. Operational and environmental performance in China's thermal power industry: Taking an effectiveness measure as complement to an efficiency measure.

    PubMed

    Wang, Ke; Zhang, Jieming; Wei, Yi-Ming

    2017-05-01

    The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system's capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system's capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational, environmental, and joint adjustments to each electricity production system. The operational and environmental performance changes over time were also captured through an effectiveness measure based on the global Malmquist productivity index. Our empirical results indicated that the performance of China's thermal power industry experienced significant progress during the study period and that policies regarding the development and regulation of the thermal power industry yielded the expected effects. However, the emissions reduction targets assigned to China's thermal power industry are loose and conservative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  1. Initial guidelines and estimates for a power system with inertial (flywheel) energy storage

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1980-01-01

    The starting point for the assessment of a spacecraft power system utilizing inertial (flywheel) energy storage. Both general and specific guidelines are defined for the assessment of a modular flywheel system, operationally similar to but with significantly greater capability than the multimission modular spacecraft (MMS) power system. Goals for the flywheel system are defined in terms of efficiently train estimates and mass estimates for the system components. The inertial storage power system uses a 5 kw-hr flywheel storage component at 50 percent depth of discharge (DOD). It is capable of supporting an average load of 3 kw, including a peak load of 7.5 kw for 10 percent of the duty cycle, in low earth orbit operation. The specific power goal for the system is 10 w/kg, consisting of a 56w/kg (end of life) solar array, a 21.7 w-hr/kg (at 50 percent DOD) flywheel, and 43 w/kg power processing (conditioning, control and distribution).

  2. Design and installation package for a solar powered pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  3. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  4. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  5. 46 CFR 197.420 - Operations manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...

  6. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensivemore » experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.« less

  7. Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2007-01-01

    Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.

  8. Multi-Kilowatt Power Module for High-Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.

    2005-01-01

    Future NASA missions will require high-performance electric propulsion systems. Hall thrusters are being developed at NASA Glenn for high-power, high-specific impulse operation. These thrusters operate at power levels up to 50 kW of power and discharge voltages in excess of 600 V. A parallel effort is being conducted to develop power electronics for these thrusters that push the technology beyond the 5kW state-of-the-art power level. A 10 kW power module was designed to produce an output of 500 V and 20 A from a nominal 100 V input. Resistive load tests revealed efficiencies in excess of 96 percent. Load current share and phase synchronization circuits were designed and tested that will allow connecting multiple modules in parallel to process higher power.

  9. Multi-Megawatt Power System Trade Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but domore » not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.« less

  10. Graphical analysis of power systems for mobile robotics

    NASA Astrophysics Data System (ADS)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with lithium polymer batteries. In summary, this dissertation describes the development and application of two graphical analysis tools for the intuitive design of mobile robotic power systems. Several design examples are discussed involving human exoskeleton power systems.

  11. Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode

    NASA Astrophysics Data System (ADS)

    Lv, Zhenhua; Shi, Mingming; Fei, Juntao

    2018-02-01

    The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.

  12. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a turbo... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  13. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a turbo... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  14. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    NASA Astrophysics Data System (ADS)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  15. 78 FR 70588 - STP Nuclear Operating Company; South Texas Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... efficiency; (8) wind power; (9) solar power; (10) hydroelectric power; (11) ocean wave and current energy... generic environmental impact statement for license renewal of nuclear plants; issuance. SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) has published the final, plant-specific...

  16. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; hide

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.

  17. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  18. A High Temperature Silicon Carbide mosfet Power Module With Integrated Silicon-On-Insulator-Based Gate Drive

    DOE PAGES

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...

    2014-04-30

    Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less

  19. Hydrogen arcjet technology

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.

    1991-01-01

    During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.

  20. Diesel fuel to dc power: Navy & Marine Corps Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have beenmore » tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.« less

  1. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  2. Technology development and demonstration of a low thrust resistojet thruster

    NASA Technical Reports Server (NTRS)

    Pfeifer, G. R.

    1972-01-01

    Three thrusters were fabricated to definitized thruster drawings using new rhenium vapor deposition technology. Two of the thrusters were operated using ammonia as propellant and one was operated using hydrogen propellant for performance determination. All demonstrated consistent operational specific impulse performance while demonstrating thermal performance better than the development units from which they evolved. Two of the thrusters were subjected to environmental structural testing including vibration, acceleration and shock loading to specifications. Both of the thrusters subjected to the environmental tests passed all required tests. The third, spare, thruster was introduced into the life test portion of the program. Two thrusters were then subjected to a life cycling test program under typical spacecraft operating power levels. During the life test sequence, the hydrogen thruster accrued 720 operating life test cycles, more than 370 on-off cycles and 365 hours of powered up time. The ammonia accrued approximately 380 on-off cycles and 392.2 on time hours of operation during the 720 cycling hour test. Both thrusters completed the scheduled operational life test in reasonably good condition, structurally integral and capable of indefinite further operation.

  3. The Efficiency and the Scalability of an Explicit Operator on an IBM POWER4 System

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present an evaluation of the efficiency and the scalability of an explicit CFD operator on an IBM POWER4 system. The POWER4 architecture exhibits a common trend in HPC architectures: boosting CPU processing power by increasing the number of functional units, while hiding the latency of memory access by increasing the depth of the memory hierarchy. The overall machine performance depends on the ability of the caches-buses-fabric-memory to feed the functional units with the data to be processed. In this study we evaluate the efficiency and scalability of one explicit CFD operator on an IBM POWER4. This operator performs computations at the points of a Cartesian grid and involves a few dozen floating point numbers and on the order of 100 floating point operations per grid point. The computations in all grid points are independent. Specifically, we estimate the efficiency of the RHS operator (SP of NPB) on a single processor as the observed/peak performance ratio. Then we estimate the scalability of the operator on a single chip (2 CPUs), a single MCM (8 CPUs), 16 CPUs, and the whole machine (32 CPUs). Then we perform the same measurements for a chache-optimized version of the RHS operator. For our measurements we use the HPM (Hardware Performance Monitor) counters available on the POWER4. These counters allow us to analyze the obtained performance results.

  4. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  5. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  6. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  7. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  8. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. Retrofitting Cogeneration Power Stations under Conditions of Reduction or Abandonment of Steam Delivery for Process Needs

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Zubov, A. P.; Koshelev, S. A.

    2018-06-01

    Presently, when the structure of energy consumption by industrial enterprises is being changed, many type PT turbine units operate with limitations imposed on their operating conditions, while type R backpressure turbines are often shut down for a long time or even removed from operation. Thus, the problem of using steam previously intended for process needs combined with the loading of the main equipment and additional generation of power and heat becomes urgent for many power stations. Three main ways for solving this problem are examined in this paper. Potential alternatives for retrofitting of cogeneration power stations (TETS) with types PT and R turbines are discussed. Each alternative solves a specific problem brought about by the actual operating conditions of a turbine at a specific TETs. The results of retrofitting of PT-80-130 turbines with an increase in the throughput capacity of the intermediate pressure cylinder (IPC) and R-50-130 turbines with installation of an additional low-pressure cylinder (LPC) are presented. The experience in operation of the retrofitted R-50-130 turbine with an unconventional arrangement where an additional LPC is installed upstream the high-pressure cylinder (HPC) rather than between the generator and HPC is also described. The experience in the upgrading of TETs with installation of bottom steam turbines driven by steam from a process steam extraction that is not demanded for is presented. Depending on the conditions at a specific TETs, a bottom steam turbine can be installed on a new foundation or in the compartment of a dismounted turbine with the use of serviceable auxiliary and heat-exchange equipment.

  10. Performance of a low-power subsonic-arc-attachment arcjet thruster

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Berns, Darren H.

    1993-01-01

    A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.

  11. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.

  12. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  13. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  14. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  15. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  16. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  17. Solving Power Tool Problems in the School Shop

    ERIC Educational Resources Information Center

    Irvin, Daniel W.

    1976-01-01

    The school shop instructor is largely responsible for the preventive maintenance of power tools. These preventive measures primarily involve proper alignment, good lubrication, a reasonable maintenance program, and good operating procedures. Suggestions for maintenance of specific equipment is provided. (Author/BP)

  18. A strategy for high specific power pyroelectric energy harvesting from a fluid source

    NASA Astrophysics Data System (ADS)

    Maheux, E.; Hrebtov, M. Yu.; Sukhorukov, G.; Kozyulin, N. N.; Bobrov, M. S.; Dobroselsky, K. G.; Chikishev, L. M.; Dulin, V. M.; Yudin, P. V.

    2017-12-01

    Conversion of waste heat into usable electricity is now one of the important strategies for saving natural resources and minimizing impact on the environment. In contrast to Seebeck devices, utilizing a temperature gradient, pyroelectric scavengers use temporal temperature oscillations. Here, optimal strategies for pyroelectric energy harvesting are theoretically investigated from the point of view of non-stationary heat exchange for the application-relevant case of harvesting with a pyroelectric lamella from a fluid heat source. It is shown that for a fixed lamella thickness by choosing appropriate phase shift between the temperature oscillations and the voltage on the pyroelectric lamella, one can effectively operate at high frequencies and achieve a two to three-fold increase in specific power with respect to the classical Olsen cycle. A further increase in specific power is achieved by thinning down the lamella. For devices with a thickness down to a few hundreds of nanometers, specific power linearly increases with the inverse thickness. Further scaling down of the device is hampered with the heat exchange in the boundary layer. Our simulations for a representative pyroelectric Pb(Zr0,5Ti0,5)O3 predict harvestable powers of the order of kW/kg for a device with a thickness in the range from 100 nm to 1 μm, operating at hundreds of Hz.

  19. Radiation Specifications for Fission Power Conversion Component Materials

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Shin, E. Eugene; Mireles, Omar R.; Radel, Ross F.; Qualls, A. Louis

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the moon, Mars, or an asteroid. One power-generation system that is independent of sunlight or power-storage limitations is a fission-based power plant. There is a wealth of terrestrial system heritage that can be transferred to the design and fabrication of a fission power system for space missions, but there are certain design aspects that require qualification. The radiation tolerance of the power conversion system requires scrutiny because the compact nature of a space power plant restricts the dose reduction methodologies compared to those used in terrestrial systems. An integrated research program has been conducted to establish the radiation tolerance of power conversion system-component materials. The radiation limit specifications proposed for a Fission Power System power convertor is 10 Mrad ionizing dose and 5 x 10(exp 14) neutron per square centimeter fluence for a convertor operating at 150 C. Specific component materials and their radiation tolerances are discussed. This assessment is for the power convertor hardware; electronic components are not covered here.

  20. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  1. Constructing probabilistic scenarios for wide-area solar power generation

    DOE PAGES

    Woodruff, David L.; Deride, Julio; Staid, Andrea; ...

    2017-12-22

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  2. Constructing probabilistic scenarios for wide-area solar power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, David L.; Deride, Julio; Staid, Andrea

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  3. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  4. Real options and asset valuation in competitive energy markets

    NASA Astrophysics Data System (ADS)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.

  5. Megawatt solar power systems for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Adams, B.; Alhadeff, S.; Beard, S.; Carlile, D.; Cook, D.; Douglas, C.; Garcia, D.; Gillespie, D.; Golingo, R.; Gonzalez, D.

    1990-01-01

    The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes.

  6. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Safety Appliance Standards and Power Brake Standards; (3) The knowledge of railroad operating procedures... part 229), Safety Appliance Standards (49 CFR part 231) and Power Brake Standards (49 CFR part 232), to... specific qualifications: (1) A comprehensive knowledge of construction, testing, inspecting and repair of...

  7. Performance Evaluation of a 50kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.

    1999-01-01

    An experimental investigation was conducted on a laboratory model Hall thruster designed to operate at power levels up to 50 kW. During this investigation the engine's performance was characterized over a range of discharge currents from 10 to 36 A and a range of discharge voltages from 200 to 800 V Operating on the Russian cathode a maximum thrust of 966 mN was measured at 35.6 A and 713.0 V. This corresponded to a specific impulse of 3325 s and an efficiency of 62%. The maximum power the engine was operated at was 25 kW. Additional testing was conducted using a NASA cathode designed for higher current operation. During this testing, thrust over 1 N was measured at 40.2 A and 548.9 V. Several issues related to operation of Hall thrusters at these high powers were encountered.

  8. Application of the Enabler to nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Pierce, Bill L.

    This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10-MWe space power system is formed by coupling an Enabler reactor with a simple non-recuperated closed Brayton cycle. The Enabler reactor is a gas-cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle, which uses a helium-xenon mixture at 1920 K at the turbine inlet, is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10-MWe system is also shown.

  9. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  10. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  11. 10 CFR 54.15 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 54.15 Section 54.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.15 Specific exemptions. Exemptions from the requirements of this part may be...

  12. Development and Operation of Dual-Mode Analyzers for Wireless Power Consortium/Power Matters Alliance Wireless Power Systems.

    PubMed

    Um, Keehong

    2016-05-01

    We have designed a protocol analyzer to be used in wireless power systems and analyzed the operation of wireless chargers defined by standards of Qi of Wireless Power Consortium (WPC) and Power Matters Alliance (PMA) protocols. The integrated circuit (IC, or microchip) developed so far for wireless power transmission is not easily adopted by chargers for specific purposes. A device for measuring the performance of test equipment currently available is required to transform and expand the types of protocol. Since a protocol analyzer with these functions is required, we have developed a device that can analyze the two protocols of WPC and PMA at the same time. As a result of our research, we present a dual-mode system that can analyze the protocols of both WPC and PMA.

  13. Energy consumption of agitators in activated sludge tanks - actual state and optimization potential.

    PubMed

    Füreder, K; Svardal, K; Frey, W; Kroiss, H; Krampe, J

    2018-02-01

    Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE 120 -1 a -1 ; PE 120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m -3 ) and volume-specific energy consumption (Wh m -3 d -1 ) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m -3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m -3 d -1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

  14. 77 FR 40647 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... operation of the shared unit's diesel generator (emergency power) and to assure long term operation of the... actuation system limiting safety system settings, and emergency diesel generator surveillance start voltage... specification for the Vogtle Electric Generating Plant, Units 1 and 2, associated with the ``Steam Generator (SG...

  15. High-power and 2.5 kW advanced-technology ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1977-01-01

    Investigations for improving ion thruster components in the 30 cm engineering model thruster (EMT) resulted in the demonstration of useful techniques for grid short removal and discharge chamber erosion monitoring, establishment of relationships between double ion production and thruster operating parameters, verification of satisfactory specifications on porous tungsten vaporizer material and barium impregnated porous tungsten inserts, demonstration of a new hollow cathode configuration, and specification of magnetic circuit requirements for reproducing desired magnetic mappings. The capacity of a 30 cm EMT to operate at higher beam voltages and currents (higher power) was determined. Operation at 2 A beam current and higher beam voltage is shown to be essentially equivalent to operation at 1.1 kV with regard to efficiency, lifetime and operating conditions. The only additional requirement is an improvement in high voltage insulation and propellant isolator capacity. Operation at minimum voltage and higher beam currents is shown to increase thruster discharge chamber erosion in proportion to beam current. Studies to find alternatives to molybdenum for manufacturing ion optics grids are also reported.

  16. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  17. SNPSAM - Space Nuclear Power System Analysis Model

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Seo, Jong T.

    The current version of SNPSAM is described, and the results of the integrated thermoeletric SP-100 system performance studies using SNPSAM are reported. The electric power output, conversion efficiency, coolant temperatures, and specific pumping power of the system are calculated as functions of the reactor thermal power and the liquid metal coolant type (Li or NaK-78) during steady state operation. The transient behavior of the system is also discussed.

  18. High-quality recording of bioelectric events. Part 2. Low-noise, low-power multichannel amplifier design.

    PubMed

    Metting van Rijn, A C; Peper, A; Grimbergen, C A

    1991-07-01

    A multichannel instrumentation amplifier, developed to be used in a miniature universal eight-channel amplifier module, is described. After discussing the specific properties of a bioelectric recording, the difficulties of meeting the demanded specifications with a design based on operational amplifiers are reviewed. Because it proved impossible to achieve the demanded combination of low noise and low power consumption using commercially available operational amplifiers, an amplifier equipped with an input stage with discrete transistors was developed. A new design concept was used to expand the design to a multichannel version with an equivalent input noise voltage of 0.35 microV RMS in a bandwidth of 0.1-100 Hz and a power consumption of 0.6 mW per channel. The results of this study are applied to miniature, universal, eight-channel amplifier modules, manufactured with thick-film production techniques. The modules can be coupled to satisfy the demand for a multiple of eight channels. The low power consumption enables the modules to be used in all kinds of portable and telemetry measurement systems and simplifies the power supply in stationary measurement systems.

  19. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  20. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  1. Three Dimensional Integration and On-Wafer Packaging for Heterogeneous Wafer-Scale Circuit Architectures

    DTIC Science & Technology

    2006-11-01

    Chip Level CMOS Chip High resistivity Si Metal Interconnect 25μm 24GHz fully integrated receiver CMOS transimpedance Amplifier (13GHz BW, 52dBΩ...power of a high-resistivity SiGe power amplifier chip with the wide operating frequency range and compactness of a CMOS mixed signal chip operating...With good RF channel selectivity, system specifications such as the linearity of the low noise amplifier (LNA), the phase noise of the voltage

  2. Applied-field MPD thruster geometry effects

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.

  3. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  4. Driver development of IFE power plant in Japan Collaborative process with industry and industrial applications

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.

    2006-06-01

    The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.

  5. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  6. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  7. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.

  8. Conceptual development of a ground-based radio-beacon navigation system for use on the surface of the moon

    NASA Technical Reports Server (NTRS)

    Beggins, Andrew J.; Canney, Lora M.; Dolezal, Anna Belle

    1988-01-01

    A spread-spectrum radio-beacon navigation system for use on the lunar surface is described. The subjects discussed are principle of operation and specifications to include power requirements, operating frequencies, weight, size, and range.

  9. Advanced secondary batteries: Their applications, technological status, market and opportunity

    NASA Astrophysics Data System (ADS)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  10. Direct drive options for electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1995-01-01

    Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.

  11. Validity, Reliability, and Performance Determinants of a New Job-Specific Anaerobic Work Capacity Test for the Norwegian Navy Special Operations Command.

    PubMed

    Angeltveit, Andreas; Paulsen, Gøran; Solberg, Paul A; Raastad, Truls

    2016-02-01

    Operators in Special Operation Forces (SOF) have a particularly demanding profession where physical and psychological capacities can be challenged to the extremes. The diversity of physical capacities needed depend on the mission. Consequently, tests used to monitor SOF operators' physical fitness should cover a broad range of physical capacities. Whereas tests for strength and aerobic endurance are established, there is no test for specific anaerobic work capacity described in the literature. The purpose of this study was therefore to evaluate the reliability, validity, and to identify performance determinants of a new test developed for testing specific anaerobic work capacity in SOF operators. Nineteen active young students were included in the concurrent validity part of the study. The students performed the evacuation (EVAC) test 3 times and the results were compared for reliability and with performance in the Wingate cycle test, 300-m sprint, and a maximal accumulated oxygen deficit (MAOD) test. In part II of the study, 21 Norwegian Navy Special Operations Command operators conducted the EVAC test, anthropometric measurements, a dual x-ray absorptiometry scan, leg press, isokinetic knee extensions, maximal oxygen uptake test, and countermovement jump (CMJ) test. The EVAC test showed good reliability after 1 familiarization trial (intraclass correlation = 0.89; coefficient of variance = 3.7%). The EVAC test correlated well with the Wingate test (r = -0.68), 300-m sprint time (r = 0.51), and 300-m mean power (W) (r = -0.67). No significant correlation was found with the MAOD test. In part II of the study, height, body mass, lean body mass, isokinetic knee extension torque, maximal oxygen uptake, and maximal power in a CMJ was significantly correlated with performance in the EVAC test. The EVAC test is a reliable and valid test for anaerobic work capacity for SOF operators, and muscle mass, leg strength, and leg power seem to be the most important determinants of performance.

  12. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  13. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  14. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  15. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  16. Wafer-scale pixelated detector system

    DOEpatents

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  17. Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.

  18. Optimal Wind Power Uncertainty Intervals for Electricity Market Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Zhou, Zhi; Botterud, Audun

    It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixedmore » integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.« less

  19. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices E (Sections E.1--E.8). Volume 2, Part 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.« less

  20. Development of pre pre-driver amplifier stage for generator of SST-1 ICRH system

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Sinh Makwana, Azad; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    The Ion Cyclotron Resonance Heating (ICRH) system for SST1 consists mainly of the cwrf power generator to deliver 1.5MW for 1000sec duration at the frequencies 22.8, 24.3 and 45.6±1MHz, the transmission line and the antenna. This is planned to develop a independent and dedicated cwrf generator that consists of a oscillator, buffer, rf switch, modulator, rf attenuator, directional coupler, three stage solid state low power amplifier and four stage triode & tetrode based high power amplifier with specific performance at 45.6±1MHz including frequencies 22.8 and 24.3±1MHz. The pre pre-driver high power amplifier stage is fabricated about triode 3CX3000A7. The tube has sufficient margin in terms of plate dissipation and grid dissipation that makes it suitable to withstand momentarily load mismatch and to upgrade the source in terms of output power later. This indigenously developed amplifier is integrated inside a radiation resistant rack with all required biasing power supplies, cooling blower, controls, monitors and interlocks for manual or remote control operation. This grounded grid mode amplifier will be operated at plate with 3.8KV/ 800mA in class AB for 1.8KW cwrf output power rating. The input circuit is broadband and the output circuit is tunable with slide variable inductor and a vacuum variable capacitor in the frequency range of 22.8 to 45.6MHz. It is designed for a gain of about 12dB, fabrication completed and undergoing cwrf power testing. This paper presents specifications, design criteria, circuit used, operating parameters, tests conducted and the results obtained.

  1. Preliminary performance and life evaluations of a 2-kW arcjet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Curran, Francis M.

    1991-01-01

    The first results of a program to expand the operational envelope of low-power arcjets to higher specific impulse and power levels are presented. The performance of a kW-class laboratory model arcjet thruster was characterized at three mass flow rates of a 2:1 mixture of hydrogen and nitrogen at power levels ranging from 1.0 to 2.0 kW. This same thruster was then operated for a total of 300 h at a specific impulse and power level of 550 s and 2.0 kW, respectively, in three continuous 100-h sessions. Thruster operation during the three test segments was stable, and no measurable performance degradation was observed during the test series. Substantial cathode erosion was observed during an inspection following the second 100-h test segment. Most notable was the migration of material from the center of the cathode tip to a ring around a large crater. The anode sustained no significant damage during the endurance test segments. Some difficulty was encountered during start-up after disassembly and inspection following the second 100-h test segment, which caused constrictor erosion. This resulted in a reduced flow restriction and arc chamber pressure, which in turn caused a reduction in the arc impedance.

  2. Analysis of Stationary, Photovoltaic-based Surface Power System Designs at the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.

    2009-01-01

    Combinations of solar arrays and either batteries or regenerative fuel cells are analyzed for a surface power system module at the lunar south pole. The systems are required to produce 5 kW of net electrical power in sunlight and 2 kW of net electrical power during lunar night periods for a 10-year period between 2020 and 2030. Systems-level models for energy conservation, performance, degradation, and mass are used to compare to various systems. The sensitivities of important and/or uncertain variables including battery specific energy, fuel cell operating voltage, and DC-DC converter efficiency are compared to better understand the system. Switching unit efficiency, battery specific energy, and fuel cell operating voltage appear to be important system-level variables for this system. With reasonably sized solar arrays, the regenerative fuel cell system has significantly lower mass than the battery system based on the requirements and assumptions made herein. The total operational time is estimated at about 10,000 hours in battery discharge/fuel cell mode and about 4,000 and 8,000 hours for the battery charge and electrolyzer modes, respectively. The estimated number of significant depth-of-discharge cycles for either energy storage system is less than 100 for the 10-year period.

  3. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less

  4. The ac power line protection for an IEEE 587 Class B environment

    NASA Technical Reports Server (NTRS)

    Roehr, W. D.; Clark, O. M.

    1984-01-01

    The 587B series of protectors are unique, low clamping voltage transient suppressors to protect ac-powered equipment from the 6000V peak open-circuit voltage and 3000A short circuit current as defined in IEEE standard 587 for Category B transients. The devices, which incorporate multiple-stage solid-state protector components, were specifically designed to operate under multiple exposures to maximum threat levels in this severe environment. The output voltage peaks are limited to 350V under maximum threat conditions for a 120V ac power line, thus providing adequate protection to vulnerable electronic equipment. The principle of operation and test performance data is discussed.

  5. 47 CFR 32.6121 - Land and building expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operate the telecommunications network shall be charged to Account 6531, Power Expense, and the cost of separately metered electricity used for operating specific types of equipment, such as computers, shall be... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6121 Land and...

  6. 47 CFR 32.6121 - Land and building expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operate the telecommunications network shall be charged to Account 6531, Power Expense, and the cost of separately metered electricity used for operating specific types of equipment, such as computers, shall be... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6121 Land and...

  7. 47 CFR 32.6121 - Land and building expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operate the telecommunications network shall be charged to Account 6531, Power Expense, and the cost of separately metered electricity used for operating specific types of equipment, such as computers, shall be... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6121 Land and...

  8. 47 CFR 32.6121 - Land and building expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operate the telecommunications network shall be charged to Account 6531, Power Expense, and the cost of separately metered electricity used for operating specific types of equipment, such as computers, shall be... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6121 Land and...

  9. 47 CFR 32.6121 - Land and building expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operate the telecommunications network shall be charged to Account 6531, Power Expense, and the cost of separately metered electricity used for operating specific types of equipment, such as computers, shall be... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6121 Land and...

  10. 78 FR 56980 - Muscle Shoals Reservation Redevelopment, Colbert County, Alabama

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... protect the integrated operation of TVA reservoir and power systems, to provide for appropriate public use and enjoyment of the reservoir system, and to provide for continuing economic growth in the Tennessee... specific use agreements, such as easements. Because of environmental and reservoir operations constraints...

  11. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  12. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    NASA Technical Reports Server (NTRS)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  13. Power Electronics Development for the SPT-100 Thruster

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  14. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  15. On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power

    NASA Astrophysics Data System (ADS)

    Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.

    1994-02-01

    Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.

  16. Utilization of operating experience to prevent piping failures at steam plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.S.; Dietrich, E.B.

    1999-11-01

    The key to preventing flow-accelerated corrosion (FAC) induced piping failures in steam plants is the development and implementation of a methodical program for assessing plant susceptibility to FAC and managing the effects of FAC. One of the key elements of an effective FAC program is the accurate and comprehensive utilization of plant-specific and industry-wide operating experience. Operating experience should be used to develop the program to identify specific areas for inspection or replacement, and to maintain an effective program. This paper discusses the utilization of operating experience in FAC programs at nuclear power plants, fossil plants and other steam plants.

  17. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  18. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.

    PubMed

    Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo

    2017-07-28

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  19. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications

    PubMed Central

    del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Costanzo, Alessandra

    2017-01-01

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received. PMID:28788084

  20. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  1. Comprehensive Evaluation of Power Supplies at Cryogenic Temperatures for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Gerber, Scott; Hammoud, Ahmad; Elbuluk, Malik E.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    The operation of power electronic systems at cryogenic temperatures is anticipated in many future space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environments, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. DC/DC converters are widely used in space power systems in the areas of power management, conditioning, and control. As part of the on-going Low Temperature Electronics Program at NASA, several commercial-off-the-shelf (COTS) DC/DC converters, with specifications that might fit the requirements of specific future space missions have been selected for investigation at cryogenic temperatures. The converters have been characterized in terms of their performance as a function of temperature in the range of 20 C to - 180 C. These converters ranged in electrical power from 8 W to 13 W, input voltage from 9 V to 72 V and an output voltage of 3.3 V. The experimental set-up and procedures along with the results obtained on the converters' steady state and dynamic characteristics are presented and discussed.

  2. 47 CFR 76.943 - Fines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TELEVISION SERVICE Cable Rate Regulation § 76.943 Fines. (a) A franchising authority may impose fines or... specifically at the cable operator, provided the franchising authority has such power under state or local laws. (b) If a cable operator willfully fails to comply with the terms of any franchising authority's order...

  3. Photovoltaic system criteria documents. Volume 5: Safety criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Methodology is described for determining potential safety hazards involved in the construction and operation of photovoltaic power systems and provides guidelines for the implementation of safety considerations in the specification, design and operation of photovoltaic systems. Safety verification procedures for use in solar photovoltaic systems are established.

  4. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  5. 18 CFR 4.106 - Standard terms and conditions of case-specific exemption from licensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT... subject to the following standard terms and conditions: (a) Article 1. The Commission reserves the right... Federal Power Act. (b) Article 2. The construction, operation, and maintenance of the exempt project must...

  6. 18 CFR 4.106 - Standard terms and conditions of case-specific exemption from licensing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT... subject to the following standard terms and conditions: (a) Article 1. The Commission reserves the right... Federal Power Act. (b) Article 2. The construction, operation, and maintenance of the exempt project must...

  7. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Commission's 1996 findings on the environmental impacts of renewing the operating license of a nuclear power.... Specifically, the final rule amends Table B-1 by redefining the number and scope of the environmental impact... is publishing Revision 1 to NUREG-1437, ``Generic Environmental Impact Statement for License Renewal...

  8. Effect of steam addition on cycle performance of simple and recuperated gas turbines

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1979-01-01

    Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.

  9. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

  10. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT VII, AUTOMATIC TRANSMISSIONS--ALLISON, TORQUMATIC SERIES 5960 AND 6060 (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF SPECIFIC MODELS OF AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL SPECIFICATION DATA, (2) OPTIONS FOR VARIOUS APPLICATIONS, (3) ROAD TEST INSTRUCTIONS, (4) IDENTIFICATION AND SPECIFICATION DATA, (5) ALLISON…

  11. Utilization of Virtual Server Technology in Mission Operations

    NASA Technical Reports Server (NTRS)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  12. Virtualization in the Operations Environments

    NASA Technical Reports Server (NTRS)

    Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  13. Operation of the J-series thruster using inert gas

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1982-01-01

    Electron bombardment ion thrusters using inert gases are candidates for large space systems. The J-Series 30 cm diameter thruster, designed for operation up to 3 k-W with mercury, is at a state of technology readiness. The characteristics of operation with xenon, krypton, and argon propellants in a J-Series thruster with that obtained with mercury are compared. The performance of the discharge chamber, ion optics, and neutralizer and the overall efficiency as functions of input power and specific impulse and thruster lifetime were evaluated. As expected, the discharge chamber performance with inert gases decreased with decreasing atomic mass. Aspects of the J-Series thruster design which would require modification to provide operation at high power with insert gases were identified.

  14. Coping with coal quality impacts on power plant operation and maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, R.

    1998-12-31

    The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash depositsmore » and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.« less

  15. High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.

    2013-01-01

    This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.

  16. Partially Turboelectric Aircraft Drive Key Performance Parameters

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.

    2017-01-01

    The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.

  17. The effect of leader communication style on safety-conscious work environments at domestic nuclear power plants

    NASA Astrophysics Data System (ADS)

    Goldberg, Edward Michael

    Public risk from unsafe nuclear power plant operations increases when plant workers are reluctant to raise issues and concerns. The effect of leader communication style on the safety-conscious work environment (SCWE) at domestic nuclear power plants was evaluated using a descriptive quantitative research study. A sample of 379 plant employees was surveyed to determine leader communication style elements that foster SCWE. The results reveal that leader communication style significantly affects a safety-conscious work environment. Specific attributes such as wit, articulation, self-disclosure, and social composure, confirmation, and experience, were proven to directly affect worker's likelihood to raise issues and concerns. The direct effect of leader, communication style on safe plant operations and the communication actions leaders can take to improve the safety of those operations is discussed.

  18. An Ultralow-Power Sleep Spindle Detection System on Chip.

    PubMed

    Iranmanesh, Saam; Rodriguez-Villegas, Esther

    2017-08-01

    This paper describes a full system-on-chip to automatically detect sleep spindle events from scalp EEG signals. These events, which are known to play an important role on memory consolidation during sleep, are also characteristic of a number of neurological diseases. The operation of the system is based on a previously reported algorithm, which used the Teager energy operator, together with the Spectral Edge Frequency (SEF50) achieving more than 70% sensitivity and 98% specificity. The algorithm is now converted into a hardware analog based customized implementation in order to achieve extremely low levels of power. Experimental results prove that the system, which is fabricated in a 0.18 μm CMOS technology, is able to operate from a 1.25 V power supply consuming only 515 nW, with an accuracy that is comparable to its software counterpart.

  19. Energy Keepers Incorporated, U.S. Department of Energy Tribal Energy Program Award #DE-EE0005040 Final Report December 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillin, Charmel; Lipscomb, Brian

    This project aimed at supporting one key component of a major multi-step undertaking on the part of the CSKT: the acquisition of the Kerr Hydroelectric project and its subsequent operation as a wholesale power generation facility. This project provided support to kick-start the development of the organizational structure to acquire and operate the facility by acquiring critical expertise necessary for the acquisition by funding in part two key personnel for the first two years of the four-year organizational development process. These individuals provided the Tribes with expert knowledge in the highly specialized areas of resource balancing, power marketing, and hydro-engineering;more » essential prerequisites to the Tribes' ability to build an organization for the operation of the Kerr Project and to securing financial backing for the acquisition. Goals achieved:   • Establishing an efficient and economic conveyance process, and transition plans • Establishing an efficient and effective Tribal wholesale power generation corporation to manage the plant, balance the resources, and market the power from the Kerr Project. The success of this project, which is essential to the Tribes' acquisition of the Kerr Hydroelectric facility, helps to address poverty and unemployment among Tribal members by generating a number of highly skilled and specialized, high-paying Tribal member jobs and providing a stream of income from power sales that will be used for Tribal economic development. Objectives achieved: The project supported the position of Power Plant Operations and Maintenance engineer and power marketing coordinator positions. These are key, in part, to the Tribes' successful acquisition and operation of the facility because they will enable to the Tribes to gain the very specialized expertise required to operate a large wholesale power generation facility. Specific objectives include: Objective 1: Hire a power marketing coordinator to develop and coordinate the appropriate power marketing strategy for the sale of power generated by the operation of Kerr Dam. Objective 2: Hire a staff engineer.« less

  20. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less

  1. A Battery Powered, 200-KW Rapid Capacitor Charger for a Portable Railgun in Burst Mode Operation At 3 RPS

    DTIC Science & Technology

    2007-06-01

    A BATTERY POWERED, 200-KW RAPID CAPACITOR CHARGER FOR A PORTABLE RAILGUN IN BURST MODE OPERATION AT 3 RPS ∗ Raymond Allen and Jesse Neri Plasma... capacitor bank of a low velocity railgun system for countermeasure deployment from aircraft and watercraft. The goal is charge a 15-mF capacitor bank to...In order for this railgun to fire in a burst mode at 3 RPS, a rapid capacitor charger is required. The initial specifications required the rapid

  2. Laboratory for Computer Science Progress Report 19, 1 July 1981-30 June 1982.

    DTIC Science & Technology

    1984-05-01

    Multiprocessor Architectures 202 4. TRIX Operating System 209 5. VLSI Tools 212 ’SYSTEMATIC PROGRAM DEVELOPMENT, 221 1. Introduction 222 2. Specification...exploring distributed operating systems and the architecture of single-user powerful computers that are interconnected by communication networks. The...to now. In particular, we expect to experiment with languages, operating systems , and applications that establish the feasibility of distributed

  3. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflectsmore » the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.« less

  4. Some results regarding stability of photovoltaic maximum-power-point tracking dc-dc converters

    NASA Astrophysics Data System (ADS)

    Schaefer, John F.

    An analytical investigation of a class of photovoltaic (PV) maximum-power-point tracking dc-dc converters has yielded basic results relative to the stability of such devices. Necessary and sufficient conditions for stable operation are derived, and design tools are given. Specific results have been obtained for arbitrary PV arrays driving converters powering resistive loads and batteries. The analytical techniques are applicable to inverters, also. Portions of the theoretical results have been verified in operational devices: a 1500 watt unit has driven a 1-horsepower, 90-volt dc motor powering a water pump jack for over one year. Prior to modification shortly after initial installation, the unit exhibited instability at low levels of irradiance, as predicted by the theory. Two examples are provided.

  5. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 1: Project summary

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (1 of 4) gives a summary of the original AMPS software system configuration, points out some of the problem areas in the original software design that this project is to address, and in the appendix collects all the bimonthly status reports. The purpose of AMPS is to provide a self reliant system to control the generation and distribution of power in the space station. The software in the AMPS breadboard can be divided into three levels: the operating environment software, the protocol software, and the station specific software. This project deals only with the operating environment software and the protocol software. The present station specific software will not change except as necessary to conform to new data formats.

  6. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-01

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.

  7. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  8. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  9. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  10. Specific SPS construction studies: Operations and maintenance

    NASA Technical Reports Server (NTRS)

    Miller, K. H.

    1980-01-01

    Surface as well as in-space operations of the solar power satellite program are addressed. The primary end products of SPS industrial enterprise are shown SPS and its ground receiving antenna every six months; and (3) construction of electric cargo orbital transfer vehicles. The production of photovoltaic cells and solar blankets is also considered.

  11. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-08-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  12. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-01-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  13. Recent Stirling Conversion Technology Developments and Operational Measurements

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Schifer, Nicholas

    2009-01-01

    Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.

  14. 76 FR 11823 - Dominion Energy Kewaunee, Inc.; Kewaunee Power Station; Notice of Issuance of Renewed Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Additional 20-Year Period; Record of Decision Notice is hereby given that the U.S. Nuclear Regulatory... technical specifications. The notice also serves as the record of decision for the renewal of facility..., efficiency, wood-fired generation, and wind power; and non-renewal of the operating license. The factors...

  15. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less

  16. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  17. Metal Matrix Superconductor Composites for SMES-Driven, Ultra High Power BEP Applications: Part 2

    NASA Astrophysics Data System (ADS)

    Gross, Dan A.; Myrabo, Leik N.

    2006-05-01

    A 2.5 TJ superconducting magnetic energy storage (SMES) design presentation is continued from the preceding paper (Part 1) with electromagnetic and associated stress analysis. The application of interest is a rechargeable power-beaming infrastructure for manned microwave Lightcraft operations. It is demonstrated that while operational performance is within manageable parameter bounds, quench (loss of superconducting state) imposes enormous electrical stresses. Therefore, alternative multiple toroid modular configurations are identified, alleviating simultaneously all excessive stress conditions, operational and quench, in the structural, thermal and electromagnetic sense — at some reduction in specific energy, but presenting programmatic advantages for a lengthy technology development, demonstration and operation schedule. To this end several natural units, based on material properties and operating parameters are developed, in order to identify functional relationships and optimization paths more effectively.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, Raymond Charles; Beaver, Justin M; Buckner, Mark A

    Power system disturbances are inherently complex and can be attributed to a wide range of sources, including both natural and man-made events. Currently, the power system operators are heavily relied on to make decisions regarding the causes of experienced disturbances and the appropriate course of action as a response. In the case of cyber-attacks against a power system, human judgment is less certain since there is an overt attempt to disguise the attack and deceive the operators as to the true state of the system. To enable the human decision maker, we explore the viability of machine learning as amore » means for discriminating types of power system disturbances, and focus specifically on detecting cyber-attacks where deception is a core tenet of the event. We evaluate various machine learning methods as disturbance discriminators and discuss the practical implications for deploying machine learning systems as an enhancement to existing power system architectures.« less

  19. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply.more » This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.« less

  20. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  1. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  2. Design and integration of a solar AMTEC power system with an advanced global positioning satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.; Hunt, M.E.; Determan, W.R.

    1996-12-31

    A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included (1) packaging within the Delta 2 launch vehicle envelope, (2) deployment and start-up operations for the SAMTEC, (3) SAMTEC operation during all mission phases, (4) satellite field of view restrictions with satellite operations, and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight,more » size, and operations. Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle. The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. The preliminary assessment indicates that the solar generator design is scalable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m{sup 2} are anticipated for a mission duration of 10 to 12 yr in orbits with high natural radiation backgrounds.« less

  3. Fuel Cells: Power System Option for Space Research

    NASA Astrophysics Data System (ADS)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power requiring missions is well established, as exemplified in Apollo and Space Shuttles, use in low power missions for science probes/rovers form a relatively newer area. Low power small fuel cells of this class are expected to bring in lot of operational convenience and freedom on onboard / extra terrestrial environment. Technological improvisations in the area, especially with regard to miniaturisation, and extra capabilities that the system offers, make it a strong candidate. The paper outlines features of fuel cells power systems, different types and their potential application scenarios, in the present context. It elucidates the extra capabilities and advantages, due to fuel cells, for different missions. Specific case analyses are also included.

  4. Upgrading the fuel-handling machine of the Novovoronezh nuclear power plant unit no. 5

    NASA Astrophysics Data System (ADS)

    Terekhov, D. V.; Dunaev, V. I.

    2014-02-01

    The calculation of safety parameters was carried out in the process of upgrading the fuel-handling machine (FHM) of the Novovoronezh nuclear power plant (NPP) unit no. 5 based on the results of quantitative safety analysis of nuclear fuel transfer operations using a dynamic logical-and-probabilistic model of the processing procedure. Specific engineering and design concepts that made it possible to reduce the probability of damaging the fuel assemblies (FAs) when performing various technological operations by an order of magnitude and introduce more flexible algorithms into the modernized FHM control system were developed. The results of pilot operation during two refueling campaigns prove that the total reactor shutdown time is lowered.

  5. Research and Development of Silicon Carbide (SiC) Junction Recovery Diodes for Picosecond Range, High Power Opening Switches

    NASA Astrophysics Data System (ADS)

    Grekhov, Igor V.

    2002-07-01

    This report results from a contract tasking Ioffe Institute as follows: The purpose of the proposed project is to develop, fabricate, test, and characterize silicon carbide power semiconductor opening switches operating in the picosecond range of switch time. Special SiC diode structures will be fabricated and investigated, including Junction Recovery Diodes (JRD). The operation of such diodes is founded on the superfast recovery of the junction's blocking ability after switching the device from forward to reverse bias conditions. Our estimations show that the parameters of JRD devices can be substantially improved in case of SiC devices, compared to both Si and GaAs capabilities. We expect i) to increase the speed of switch operation, the specific commutated power, and the operation frequency repetition; ii) to reduce the weight and size of pulse devices; and iii) to achieve better reliability of the devices due to the unique thermal conductivity and radiation hardness of SiC.

  6. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  7. Performance Test Results of the NASA-457M v2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  8. Advanced ceramic coating development for industrial/utility gas turbine applications

    NASA Technical Reports Server (NTRS)

    Andersson, C. A.; Lau, S. K.; Bratton, R. J.; Lee, S. Y.; Rieke, K. L.; Allen, J.; Munson, K. E.

    1982-01-01

    The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankamo, T.; Kim, I.S.; Yang, Ji Wu

    Failures in the auxiliary feedwater (AFW) system of pressurized water reactors (PWRs) are considered to involve substantial risk whether a decision is made to either continue power operation while repair is being done, or to shut down the plant to undertake repairs. Technical specification action requirements usually require immediate plant shutdown in the case of multiple failures in the system (in some cases, immediate repair of one train is required when all AFW trains fail). This paper presents a probabilistic risk assessment-based method to quantitatively evaluate and compare both the risks of continued power operation and of shutting the plantmore » down, given known failures in the system. The method is applied to the AFW system for four different PWRs. Results show that the risk of continued power operation and plant shutdown both are substantial, but the latter is larger than the former over the usual repair time. This was proven for four plants with different designs: two operating Westinghouse plants, one operating Asea-Brown Boveri Combustion Engineering Plant, and one of evolutionary design. The method can be used to analyze individual plant design and to improve AFW action requirements using risk-informed evaluations.« less

  10. Mass modeling for electrically powered space-based Yb:YAG lasers

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.

    2000-05-01

    An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.

  11. Early commercial demonstration of space solar power using ultra-lightweight arrays

    NASA Astrophysics Data System (ADS)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  12. H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Hawk, Clark W.

    1998-01-01

    A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.

  13. An overview of flywheel technology for space applications

    NASA Astrophysics Data System (ADS)

    Decker, D. Kent; Spector, Victor A.; Pieronek, Thomas J.

    1997-01-01

    Recent developments in advanced composite flywheels using magnetic bearings has produced specific energies greater than 30 Whr/lb. These specific energy levels provide an opportunity for significant spacecraft weight savings compared to using nickel-hydrogen battery technology. Additional weight savings are possible if the flywheels are also used for momentum control. This paper explores the new challenges presented by application of flywheel technology to space power and attitude control subsystems. Issues with respect to mission application, safety and containment, launch environment, and combined power and attitude control operation are discussed.

  14. Laboratory Model 50 kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jankovsky, Robert; Hofer, Richard

    2002-01-01

    A 0.46 meter diameter Hall thruster was fabricated and performance tested at powers up to 72 kilowatts. Thrusts up to 2.9 Newtons were measured. Discharge specific impulses ranged from 1750 to 3250 seconds with discharge efficiencies between 46 and 65 percent. Overall specific impulses ranged from 1550 to 3050 seconds with overall efficiencies between 40 and 57 percent. Performance data indicated significant fraction of multiple-charged ions during operation at elevated power levels. Cathode mass flow rate was shown to be a significant parameter with regard to thruster efficiency.

  15. Variable Generation Power Forecasting as a Big Data Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko

    To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less

  16. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  17. Variable Generation Power Forecasting as a Big Data Problem

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko

    2016-10-10

    To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less

  18. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.; DiBiasio, A.; Gunther, W.

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failuremore » modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.« less

  19. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  20. Thermophotovoltaic Energy Conversion for Space Applications

    NASA Astrophysics Data System (ADS)

    Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.

    2006-01-01

    Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.

  1. The NASA Next Generation Stirling Technology Program Overview

    NASA Astrophysics Data System (ADS)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  2. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  3. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  4. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  5. Requirements specification for nickel cadmium battery expert system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The requirements for performance, design, test, and qualification of a computer program identified as NICBES, Nickel Cadmium Battery Expert System, is established. The specific spacecraft power system configuration selected was the Hubble Space Telescope (HST) Electrical Power System (EPS) Testbed. Power for the HST comes from a system of 13 Solar Panel Arrays (SPAs) linked to 6 Nickel Cadmium Batteries which are connected to 3 Busses. An expert system, NICBES, will be developed at Martin Marietta Aerospace to recognize a testbed anomaly, identify the malfunctioning component and recommend a course of action. Besides fault diagnosis, NICBES will be able to evaluate battery status, give advice on battery status and provide decision support for the operator. These requirements are detailed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goltz, G.; Weiner, H.

    A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U. S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides all the information necessary tomore » access the DSPA programs, to input required data and to generate appropriate Design Synthesis or Performance Analysis Output.« less

  7. 76 FR 52734 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...This notice announces the planned revocation of all Technical Standard Order authorizations (TSOA) issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), with a minimum performance standard (MPS) that will increase the minimum operating life of Underwater Locating Devices from 30 days to 90 days.

  8. 77 FR 13174 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ...This is a confirmation notice for the planned revocation of all Technical Standard Order authorizations issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), minimum performance standard (MPS) will increase the minimum operating life of Underwater Locating Devices from 30 days to 90 days.

  9. A study of the selection of microcomputer architectures to automate planetary spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Nauda, A.

    1982-01-01

    Performance and reliability models of alternate microcomputer architectures as a methodology for optimizing system design were examined. A methodology for selecting an optimum microcomputer architecture for autonomous operation of planetary spacecraft power systems was developed. Various microcomputer system architectures are analyzed to determine their application to spacecraft power systems. It is suggested that no standardization formula or common set of guidelines exists which provides an optimum configuration for a given set of specifications.

  10. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  11. Department of Defense Operational Energy Strategy: A Content Analysis of Energy Literature from 1973-2014

    DTIC Science & Technology

    2014-03-27

    Globalization has resulted in increased demand for energy, specifically, crude oil as the primary means to power economic development. As countries continue...represent technologies that produce energy from wind, solar, biomass, hydropower, nuclear power , natural gas, and clean coal (The White House, 2011). On...dollars whereby the largest partition of that money ($11B) was appropriated for development of an electric “smart grid” to digitize power distribution and

  12. Dynamic System Simulation of the KRUSTY Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Steven Karl; Kimpland, Robert Herbert

    2016-05-09

    The proposed KRUSTY experiment is a demonstration of a reactor operating at power. The planned experimental configuration includes a highly enriched uranium (HEU) reflected core, cooled by multiple heat pipes leading to Stirling engines for primary heat rejection. Operating power is expected to be approximately four (4) to five (5) kilowatts with a core temperature above 1,000 K. No data is available on any historical reactor employing HEU metal that operated over the temperature range required for the KRUSTY experiment. Further, no reactor has operated with heat pipes as the primary cooling mechanism. Historic power reactors have employed either naturalmore » or forced convection so data on their operation is not directly applicable to the KRUSTY experiment. The primary purpose of the system model once developed and refined by data from these component experiments, will be used to plan the KRUSTY experiment. This planning will include expected behavior of the reactor from start-up, through various transient conditions where cooling begins to become present and effective, and finally establishment of steady-state. In addition, the model can provide indicators of anticipated off-normal events and appropriate operator response to those conditions. This information can be used to develop specific experiment operating procedures and aids to guide the operators in conduct of the experiment.« less

  13. Power Distribution Analysis For Electrical Usage In Province Area Using Olap (Online Analytical Processing)

    NASA Astrophysics Data System (ADS)

    Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi

    2018-02-01

    The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.

  14. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  15. Combustion-based power source for Venus surface missions

    NASA Astrophysics Data System (ADS)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  16. Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan H.; Mills, Andrew; Seel, Joachim

    We synthesize available literature, data, and analysis on the degree to which growth in variable renewable energy (VRE) has impacted to date or might in the future impact bulk power system assets, pricing, and costs. We do not analyze impacts on specific power plants, instead focusing on national and regional system-level trends. The issues addressed are highly context dependent—affected by the underlying generation mix of the system, the amount of wind and solar penetration, and the design and structure of the bulk power system in each region. Moreover, analyzing the impacts of VRE on the bulk power system is amore » complex area of research and there is much more to be done to increase understanding of how VRE impacts the dynamics of current and future electricity markets. While more analysis is warranted, including additional location-specific assessments, several high-level findings emerge from this synthesis: -VRE Is Already Impacting the Bulk Power Market -VRE Impacts on Average Wholesale Prices Have Been Modest -VRE Impacts on Power Plant Retirements Have So Far Been Limited -VRE Impacts on the Bulk Power Market will Grow with Penetration -The ’System Value’ of VRE will Decline with Penetration -Power System Flexibility Can Reduce the Rate of VRE Value Decline All generation types are unique in some respect—bringing benefits and challenges to the power system—and wholesale markets, industry investments, and operational procedures have evolved over time to manage the characteristics of a changing generation fleet. With increased VRE penetrations, power system planners, operators, regulators, and policymakers will continue to be challenged to develop methods to smoothly and cost-effectively manage the reliable integration of these new and growing sources of electricity supply.« less

  17. Small high cooling power space cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, T. V.; Raab, J.; Durand, D.

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the adventmore » of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.« less

  18. Description of A 2.3 kW power transformer for space applications

    NASA Technical Reports Server (NTRS)

    Hansen, I.

    1979-01-01

    The paper describes the principal features and special testing of a high-frequency high-power low-specific-weight (0.57 kg/kW) 2.3-kW electronic power transformer developed for space applications. The transformer is operated in a series resonant inverter supplying beam power to a 30-cm mercury ion thruster. High efficiency (above 98.5%) is obtained through careful detailed design. A number of unique heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.

  19. 50 KW Class Krypton Hall Thruster Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  20. Proactive monitoring of a wind turbine array with lidar measurements, SCADA data and a data-driven RANS solver

    NASA Astrophysics Data System (ADS)

    Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.

    2016-12-01

    Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction of power production and wake velocity field associated with the turbine array.

  1. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  2. Integration, Testing, and Validation of a Small Hybrid-Electric Remotely-Piloted Aircraft

    DTIC Science & Technology

    2012-03-22

    in the electronic speed controller during low speed operation, due to actual power losses as well as switching losses in the generation of the ...more general description and simply indicates a RPA that uses two (or more) forms of power to drive the propulsion system . In essentially all... The last switch was implemented specifically due to the nature of

  3. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David

    2016-01-01

    Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.

  4. Advanced Stirling Convertor Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  5. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  6. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  7. A Low-Erosion Starting Technique for High-Performance Arcjets

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Curran, Francis M.

    1994-01-01

    The NASA arcjet program is currently sponsoring development of high specific impulse thrusters for next generation geosynchronous communications satellites (2 kW-class) and low-power arcjets for power limited spacecraft (approx. 0.5 kW-class). Performance goals in both of these efforts will require up to 1000 starts at propellant mass flow rates significantly below those used in state-of-the-art arcjet thruster systems (i.e., high specific power levels). Reductions in mass flow rate can lead to damaging modes of operation, particularly at thruster ignition. During the starting sequence, the gas dynamic force due to low propellant flow is often insufficient to rapidly push the arc anode attachment to its steady-state position in the diverging section of the nozzle. This paper describes the development and demonstration of a technique which provides for non-damaging starts at low steady-state flow rates. The technique employs a brief propellant pressure pulse at ignition to increase gas dynamic forces during the critical ignition/transition phase of operation. Starting characteristics obtained using both pressure-pulsed and conventional starting techniques were compared across a wide range of propellant flow rates. The pressure-pulsed starting technique provided reliable starts at mass flow rates down to 21 mg/s, typically required for 700 s specific impulse level operation of 2 kW thrusters. Following the comparison, a 600 start test was performed across a wide flow rate range. Post-test inspection showed minimal erosion of critical arcjet anode/nozzle surfaces.

  8. Technical evaluation of RETS-required reports for Browns Ferry Nuclear Power Station, Units 1, 2, and 3, for 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, T.E.; Magleby, E.H.

    1985-09-06

    A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably completemore » and consistent with the review guidelines.« less

  9. A north-south stationkeeping ion thruster system for ATS-F.

    NASA Technical Reports Server (NTRS)

    Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.

    1972-01-01

    An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.

  10. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  11. Cost of enlarged operating zone for an existing Francis runner

    NASA Astrophysics Data System (ADS)

    Monette, Christine; Marmont, Hugues; Chamberland-Lauzon, Joël; Skagerstrand, Anders; Coutu, André; Carlevi, Jens

    2016-11-01

    Traditionally, hydro power plants have been operated close to best efficiency point, the more stable operating condition for which they have been designed. However, because of changes in the electricity market, many hydro power plants operators wish to operate their machines differently to fulfil those new market needs. New operating conditions can include whole range operation, many start/stops, extensive low load operation, synchronous condenser mode and power/frequency regulation. Many of these new operating conditions may impose more severe fatigue damage than the traditional base load operation close to best efficiency point. Under these conditions, the fatigue life of the runner may be significantly reduced and reparation or replacement cost might occur sooner than expected. In order to design reliable Francis runners for those new challenging operating scenarios, Andritz Hydro has developed various proprietary tools and design rules. These are used within Andritz Hydro to design mechanically robust Francis runners for the operating scenarios fulfilling customer's specifications. To estimate residual life under different operating scenarios of an existing runner designed years ago for best efficiency base load operation, Andritz Hydro's design rules and tools would necessarily lead to conservative results. While the geometry of a new runner can be modified to fulfil all conservative mechanical design rules, the predicted fatigue life of an existing runner under off-design operating conditions may appear rather short because of the conservative safety factor included in the calculations. The most precise and reliable way to calculate residual life of an existing runner under different operating scenarios is to perform a strain gauge measurement campaign on the runner. This paper presents the runner strain gage measurement campaign of a mid-head Francis turbine over all the operating conditions available during the test, the analysis of the measurement signals and the runner residual life assessment under different operating scenarios. With these results, the maintenance cost of the change in operating mode can then be calculated and foreseen by the power plant owner.

  12. Smart Inverter Control and Operation for Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Tazay, Ahmad F.

    The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.

  13. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  14. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph

    2000-01-01

    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.

  15. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  16. Operating manual for the R200 downhole recorder with husky hunter retriever

    USGS Publications Warehouse

    Johnson, Roy A.; Rorabaugh, James I.

    1988-01-01

    The R200 Downhole Recorder is a battery-powered device that, when placed in a well casing, monitors water levels for a period of up to 1 year. This instrument measures a 1- to 70-foot range of water levels. These water-level data can be retrieved through use of a commercially available portable microcomputer. The R200 Downhole Recorder was developed at the U.S. Geological Survey 's Hydrologic Instrumentation Facility, Stennis Space Center, Mississippi. This operating manual describes the R200 Downhole Recorder, provides initial set-up instructions, and gives directions for on-site operation. Design specifications and routine maintenance steps are included. The R200 data-retriever program is a user-friendly, menu-driven program. The manual guides the user through the procedures required to perform specific operations. Numerous screens are reproduced in the text with a discussion of user input for desired responses. Help is provided for specific problems. (USGS)

  17. Operating manual for the R200 downhole recorder with Tandy 102 retriever

    USGS Publications Warehouse

    Johnson, Roy A.; Rorabaugh, James I.

    1988-01-01

    The R200 Downhole Recorder is a battery-powered device that, when placed in a well casing, monitors water levels for a period of up to 1 year. This instrument measures a 1- to 70-ft range of water levels. These water level data can be retrieved through use of a commercially available portable microcomputer. The R200 Downhole Recorder was developed at the U. S. Geological Survey 's Hydrologic Instrumentation Facility, Stennis Space Center, Mississippi. This operating manual describes the R200 Downhole Recorder, provides initial set-up instructions, and gives directions for on-site operation. Design specifications and routine maintenance steps are included. The R200 data-retriever program is a user-friendly, menu-driven program. The manual guides the user through the procedures required to perform specific operations. Numerous screens are reproduced in the text with a discussion of user input for desired responses. Help is provided for specific problems. (USGS)

  18. Health responses to a new high-voltage power line route: design of a quasi-experimental prospective field study in the Netherlands

    PubMed Central

    2014-01-01

    Background New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. Methods/Design The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n = 2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n = 2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. Discussion This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines. PMID:24606914

  19. Health responses to a new high-voltage power line route: design of a quasi-experimental prospective field study in the Netherlands.

    PubMed

    Porsius, Jarry T; Claassen, Liesbeth; Smid, Tjabe; Woudenberg, Fred; Timmermans, Danielle R M

    2014-03-07

    New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n=2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n=2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines.

  20. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  1. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    NASA Astrophysics Data System (ADS)

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these serve to improve the resiliency of the future smart grid. It is demonstrated both theoretically and practically that the techniques proposed in this thesis are highly scalable and robust with superior convergence characteristics. These distributed and decentralized algorithms allow individual actuating nodes to execute self-healing and adaptive actions when exposed to changes in the grid so that the optimal operating state in the grid is maintained consistently.

  2. MW-assisted synthesis of LiFePO 4 for high power applications

    NASA Astrophysics Data System (ADS)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina

    LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.

  3. Fast, Low-Power, Hysteretic Level-Detector Circuit

    NASA Technical Reports Server (NTRS)

    Arditti, Mordechai

    1993-01-01

    Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.

  4. TAL Performance and Mission Analysis in a CDL Capacitor Powered Direct-Drive Configuration

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; Rose, M. Frank; Oleson, Steve R.; Jenkins, Rhonald M.

    1999-01-01

    The goals of this research are (1) to prove the concept feasibility of a direct-drive electric propulsion system, and (2) to evaluate the performance and characteristics of a Russian TAL (Thruster with Anode Layer) operating in a long-pulse mode, powered by a capacitor-based power source developed at Space Power Institute. The TAL, designated D-55, is characterized by an external acceleration zone and is powered by a unique chemical double layer (CDL) capacitor bank with a capacitance of 4 F at a charge voltage of 400 V. Performance testing of this power supply on the TAL was conducted at NASA Lewis Research Center in Cleveland, OH. Direct thrust measurements of the TAL were obtained at CDL power levels ranging from 450 to 1750 W. The specific impulse encompassed a range from 1150 s to 2200 s, yielding thruster system efficiencies between 50 and 60%. Preliminary mission analysis of the CDL direct-drive concept and other electric propulsion options was performed for the ORACLE spacecraft in 6am/6pm and 12am/12pm, 300 km sun-synchronous orbits. The direct-drive option was competitive with the other systems by increasing available net mass between 5 and 42% and reducing two-year system wet mass between 18 and 63%. Overall, the electric propulsion power requirements for the satellite solar array were reduced between 57 and 91% depending oil the orbit evaluated The direct-drive, CDL capacitor-based concept in electric propulsion thus promises to be a highly-efficient, viable alternative for satellite operations in specific near-Earth missions.

  5. Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2

    NASA Astrophysics Data System (ADS)

    Kusuma, Yuriadi; Permana, Dadang S.

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.

  6. Ten Year Operating Test Results and Post-Test Analysis of a 1/10 Segment Stirling Sodium Heat Pipe, Phase III

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John, H; Minnerly, Kenneth, G; Dyson, Christopher, M.

    2012-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 yr) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described.

  7. Analysis of the Effects of a Flexible Ramping Ancillary Service Product on Power System Operations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krad, Ibrahim; Ibanez, Eduardo; Ela, Erik

    2015-10-19

    The recent increased interest in utilizing variable generation (VG) resources such as wind and solar in power systems has motivated investigations into new operating procedures. Although these resources provide desirable value to a system (e.g., no fuel costs or emissions), interconnecting them provides unique challenges. Their variable, non-controllable nature in particular requires significant attention, because it directly results in increased power system variability and uncertainty. One way to handle this is via new operating reserve schemes. Operating reserves provide upward and downward generation and ramping capacity to counteract uncertainty and variability prior to their realization. For instance, uncertainty and variabilitymore » in real-time dispatch can be accounted for in the hour-ahead unit commitment. New operating reserve methodologies that specifically account for the increased variability and uncertainty caused by VG are currently being investigated and developed by academia and industry. This paper examines one method inspired by the new operating reserve product being proposed by the California Independent System Operator. The method is based on examining the potential ramping requirements at any given time and enforcing those requirements via a reserve demand curve in the market-clearing optimization as an additional ancillary service product.« less

  8. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    NASA Technical Reports Server (NTRS)

    Galecki, Diane L.; Patterson, Michael J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  9. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational datamore » available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.« less

  10. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a singlemore » operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.« less

  11. Real options valuation and optimization of energy assets

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew

    In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.

  12. Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  13. Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Perry, A.; Bechtold, A.; Berkovits, D.; Kaizer, B.; Luner, Y.; Niewieczerzal, P.; Rodnizki, J.; Silverman, I.; Shor, A.; Nusbaum, D.

    2018-05-01

    The original SARAF 3.8 m long 4-rod Radio Frequency Quadrupole (RFQ) has been successful in acceleration of 4 mA Continuous Wave (CW) proton beam and pulsed deuteron beam to 1.5 MeV/u. However, conditions for running CW deuteron beam have not been achieved in the original design. A new 4-rod structure has been designed and implemented, with the goal of reducing the RF power required for CW deuteron operation while slightly compromising the RFQ exit energy to 1.27 MeV/u. The new 4-rod structure was manufactured, and installed in place of the old rod electrodes. Superior field homogeneity was achieved. The RFQ was successfully conditioned to the RF power 200 kW required for CW deuteron operation, with sufficient power margin. The commissioning with proton and deuteron beams showed that most of beam parameters are close to the designed specifications. The first operation with CW RF power of 5 mA deuteron beam was demonstrated. In addition, a 1.1 mA CW deuteron beam was transported through the superconducting module. The future scope of RFQ improvements is discussed.

  14. Transient Approximation of SAFE-100 Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Reid, Robert S.

    2005-01-01

    Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.

  15. A microRNA-initiated DNAzyme motor operating in living cells

    NASA Astrophysics Data System (ADS)

    Peng, Hanyong; Li, Xing-Fang; Zhang, Hongquan; Le, X. Chris

    2017-03-01

    Synthetic DNA motors have great potential to mimic natural protein motors in cells but the operation of synthetic DNA motors in living cells remains challenging and has not been demonstrated. Here we report a DNAzyme motor that operates in living cells in response to a specific intracellular target. The whole motor system is constructed on a 20 nm gold nanoparticle (AuNP) decorated with hundreds of substrate strands serving as DNA tracks and dozens of DNAzyme molecules each silenced by a locking strand. Intracellular interaction of a target molecule with the motor system initiates the autonomous walking of the motor on the AuNP. An example DNAzyme motor responsive to a specific microRNA enables amplified detection of the specific microRNA in individual cancer cells. Activated by specific intracellular targets, these self-powered DNAzyme motors will have diverse applications in the control and modulation of biological functions.

  16. Microbial fuel cells as power supply of a low-power temperature sensor

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  17. Radioisotope thermal photovoltaic application of the GaSb solar cell

    NASA Technical Reports Server (NTRS)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  18. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides,more » and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.« less

  19. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz band.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993...

  20. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993...

  1. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993...

  2. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.

    PubMed

    Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John

    2012-05-07

    A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices.

  3. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  4. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  5. EPS analysis of nominal STS-1 flight

    NASA Technical Reports Server (NTRS)

    Wolfgram, D. F.; Pipher, M. D.

    1980-01-01

    The results of electrical power system (EPS) analysis of the planned Shuttle Transportation System Flight 1 mission are presented. The capability of the orbiter EPS to support the planned flight and to provide program tape information and supplementary data specifically requested by the flight operations directorate was assessed. The analysis was accomplished using the orbiter version of the spacecraft electrical power simulator program, operating from a modified version of orbiter electrical equipment utilization baseline revision four. The results indicate that the nominal flight, as analyzed, is within the capabilities of the orbiter power generation system, but that a brief, and minimal, current overload may exist between main distributor 1 and mid power controlled 1, and that inverter 9 may the overloaded for extended periods of time. A comparison of results with launch commit criteria also indicated that some of the presently existing launch redlines may be violated during the terminal countdown.

  6. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  7. Protecting Against Faults in JPL Spacecraft

    NASA Technical Reports Server (NTRS)

    Morgan, Paula

    2007-01-01

    A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

  8. Nurses in OR are more assertive than radiographers.

    PubMed

    Johnson, L

    1993-01-01

    This study investigated two hypotheses: that there is a positive correlation between assertiveness and self-esteem, and that nurses rate lower than non-nurses on the constructs. A self-report survey incorporating scales for general assertiveness, situationally-specific assertiveness, global self-esteem and differentiated self-esteem was utilised. For the sample of 83 operating room nurses and 81 radiographers, correlations significant at the p < .001 level between the respective scales supported the first hypothesis. Analysis of variance yielded no significant differences between the two groups on either self-esteem measures or general assertiveness, with the nurses scoring significantly higher than radiographers on the situationally-specific assertiveness scale. Findings challenge the stereotype of the 'shrinking violet' nurse. Additional analysis revealed that the power component of differentiated self-esteem had a higher correlation with global self-esteem and with both assertiveness measures than any other component. Further, the operating room nurses were significantly more power-oriented than radiographers. The pre-eminence of power in the findings suggests that assertiveness and self-esteem are issues relating to the empowerment of nurses.

  9. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy

    NASA Astrophysics Data System (ADS)

    Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe

    2008-05-01

    Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long term (persistent) operation of durable low-power marine instruments (up to 100 mW average power consumption) far longer than practical by batteries.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goltz, G.; Weiner, H.

    A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides a detailed description of the DSPAmore » Computer Program system and its subprograms. This manual will assist the programmer in revising or updating the several subprograms.« less

  11. Powering an in-space 3D printer using solar light energy

    NASA Astrophysics Data System (ADS)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper describes how a solar power source can enable in-space 3D printing without requiring conversion to electric power and back. A design for an in-space 3D printer is presented, with a particular focus on the power generation system. Then, key benefits are presented and evaluated. Specifically, the approach facilitates the design of a spacecraft that can be built, launched, and operated at very low cost levels. The proposed approach also facilitates easy configuration of the amount of energy that is supplied. Finally, it facilitates easier disposal by removing the heavy metals and radioactive materials required for a nuclear-power solution.

  12. Novel pulsed switched power supply for a fast field cycling NMR spectrometer.

    PubMed

    Sousa, D M; Fernandes, P A L; Marques, G D; Ribeiro, A C; Sebastião, P J

    2004-01-01

    In this paper, we outline the operating principles of a pulsed switched power supply for a fast field-cycling nuclear magnetic resonance spectrometer. The power supply uses a variant of a four-quadrant chopper with a duty cycle that defines the average output current. With this topology only two semiconductors are necessary to drive hundreds of amperes with an output power of several kilowatts. The output current ripple has a well-defined shape that can be reduced to acceptable values by a careful design of the semiconductors' controlling circuits and drivers. A power supply prototype was tested with a home build air-core magnet operating with fields between 0 and 0.21 T. The system is computer controlled using pulse generator and data acquisition PC cards, and specific user-friendly home-developed software. A comparative proton relaxometry study in two well-known liquid crystal compounds 5CB and MBBA was performed to check the reproducibility of the T1 measurements.

  13. Primary and secondary electrical space power based on advanced PEM systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.

    1993-01-01

    For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.

  14. Graphite fiber/copper matrix composites for space power heat pipe fin applications

    NASA Astrophysics Data System (ADS)

    McDanels, David L.; Baker, Karl W.; Ellis, David L.

    1991-01-01

    High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.

  15. Modular "plug-and-play" capsules for multi-capsule environment in the gastrointestinal tract.

    PubMed

    Phee, S J; Ting, E K; Lin, L; Huynh, V A; Kencana, A P; Wong, K J; Tan, S L

    2009-01-01

    The invention of wireless capsule endoscopy has opened new ways of diagnosing and treating diseases in the gastrointestinal tract. Current wireless capsules can perform simple operations such as imaging and data collection (like temperature, pressure, and pH) in the gastrointestinal tract. Researchers are now focusing on adding more sophisticated functions such as drug delivery, surgical clips/tags deployment, and tissue samples collection. The finite on-board power on these capsules is one of the factors that limits the functionalities of these wireless capsules. Thus multiple application-specific capsules would be needed to complete an endoscopic operation. This would give rise to a multi-capsule environment. Having a modular "plug-and-play" capsule design would facilitate doctors in configuring multiple application-specific capsules, e.g. tagging capsule, for use in the gastrointestinal tract. This multi-capsule environment also has the advantage of reducing power consumption through asymmetric multi-hop communication.

  16. Real-Time Load-Side Control of Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Changhong

    Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

  17. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  18. Status of the NEXT Ion Thruster Long Duration Test

    NASA Technical Reports Server (NTRS)

    Frandina, Michael M.; Arrington, Lynn A.; Soulas, George C.; Hickman, Tyler A.; Patterson, Michael J.

    2005-01-01

    The status of NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT) is presented. The test will be conducted with a 36 cm diameter engineering model ion thruster, designated EM3, to validate and qualify the NEXT thruster propellant throughput capability of 450 kg xenon. The ion thruster will be operated at various input powers from the NEXT throttle table. Pretest performance assessments demonstrated that EM3 satisfies all thruster performance requirements. As of June 26, 2005, the ion thruster has accumulated 493 hours of operation and processed 10.2 kg of xenon at a thruster input power of 6.9 kW. Overall ion thruster performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with very little variation in performance parameters.

  19. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  20. Playing patient, playing doctor: Munchausen syndrome, clinical S/M, and ruptures of medical power.

    PubMed

    Fisher, Jill A

    2006-01-01

    This article deploys sadomasochism as a framework for understanding medical practice on an institutional level. By examining the case of the factitious illness Munchausen syndrome, this article analyzes the operations of power in the doctor-patient relationship through the trope of role-playing. Because Munchausen syndrome causes a disruption to the dyadic relationship between physicians and patients, a lens of sadomasochism highlights dynamics of power in medical practice that are often obscured in everyday practice. Specifically, this article illustrates how classification and diagnosis are concrete manifestations of the mobilization of medical power.

  1. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    PubMed

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  2. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  3. A low power MICS band phase-locked loop for high resolution retinal prosthesis.

    PubMed

    Yang, Jiawei; Skafidas, Efstratios

    2013-08-01

    Ultra low power dissipation is essential in retinal prosthesis and many other biomedical implants. Extensive research has been undertaken in designing low power biomedical transceivers, however to date, most effort has been focused on low frequency inductive links. For higher frequency, more robust and more complex applications, such as Medical Implant Communication Service (MICS) band multichannel transceivers, power consumption remains high. This paper explores the design of micro-power data links at 400 MHz for a high resolution retinal prosthesis. By taking advantage of advanced small geometry CMOS technology and precise transistor-level modeling, we successfully utilized subthreshold FET operation, which has been historically limited to low frequency circuits due to the inadequate transistor operating speed in and near weak inversion; we have implemented a low power MICS transceiver. Particularly, a low power, MICS band multichannel phase-locked loop (PLL) that employs a subthreshold voltage controlled oscillator (VCO) and digital synchronous dividers has been implemented on a 65-nm CMOS. A design methodology is presented in detail with the demonstration of EKV model parameters extraction. This PLL provides 600- mVpp quadrature oscillations and exhibits a phase noise of -102 dBc/Hz at 200-kHz offset, while only consuming 430- μW from a 1-V supply. The VCO has a gain (KVCO) of 12 MHz/V and is designed to operate in the near-weak inversion region and consumes 220- μA DC current. The designed PLL has a core area of 0.54 mm(2). It satisfies all specifications of MICS band operation with the advantage of significant reduction in power which is crucial for high resolution retinal prosthesis.

  4. Recent Trends in Fusion Gyrotron Development at KIT

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Avramidis, K.; Franck, J.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kalaria, P.; Pagonakis, I. Gr.; Ruess, S.; Rzesnicki, T.; Thumm, M.; Wu, C.

    2017-10-01

    ECRH&CD is one of the favorite heating system for magnetically confined nuclear fusion plasmas. KIT is strongly involved in the development of high power gyrotrons for use in ECRH systems for nuclear fusion. KIT is upgrading the sub-components of the existing 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron to support long-pulse operation up to 1 s, all components will be equipped with a specific active cooling system. Two important developments for future high power, highly efficient gyrotrons will be discussed: design of gyrotrons with high operating frequency (˜ 240 GHz) and efficiency enhancement by using advanced collector designs with multi-staged voltage depression.

  5. Modular Integrated Stackable Layers (MISL) 1.1 Design Specification. Design Guideline Document

    NASA Technical Reports Server (NTRS)

    Yim, Hester J.

    2012-01-01

    This document establishes the design guideline of the Modular Instrumentation Data Acquisition (MI-DAQ) system in utilization of several designs available in EV. The MI- DAQ provides the options to the customers depending on their system requirements i.e. a 28V interface power supply, a low power battery operated system, a low power microcontroller, a higher performance microcontroller, a USB interface, a Ethernet interface, a wireless communication, various sensor interfaces, etc. Depending on customer's requirements, the each functional board can be stacked up from a bottom level of power supply to a higher level of stack to provide user interfaces. The stack up of boards are accomplished by a predefined and standardized power bus and data bus connections which are included in this document along with other physical and electrical guidelines. This guideline also provides information for a new design options. This specification is the product of a collaboration between NASA/JSC/EV and Texas A&M University. The goal of the collaboration is to open source the specification and allow outside entities to design, build, and market modules that are compatible with the specification. NASA has designed and is using numerous modules that are compatible to this specification. A limited number of these modules will also be released as open source designs to support the collaboration. The released designs are listed in the Applicable Documents.

  6. Post-Test Analysis of a 10-Year Sodium Heat Pipe Life Test

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Locci, Ivan E.; Sanzi, James L.; Hull, David R.; Geng, Steven M.

    2011-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 years) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described. Lessons learned and future life test plans are also discussed.

  7. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  8. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, James H.; Cox, Philip; Harrington, William J

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less

  9. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular for materials selection which will have a large impact on waste disposal and recycling and in the real limits of radiation releases if indexed to the real impact on individuals and the environment given the differences in the types of radiation emitted by tritium when compared with the fission products. Round table sessions resulted in some common recommendations. The discussions also created the awareness of the need for a larger involvement of the IAEA in support of fusion safety standards development.

  10. Arcjet nozzle design impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  11. Arcjet Nozzle Design Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  12. Con Edison power failure of July 13 and 14, 1977. Final staff report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-06-01

    On July 13, 1977 the entire electric load of the Con Edison system was lost, plunging New York City and Westchester County into darkness. The collapse resulted from a combination of natural events, equipment malfunctions, questionable system-design features, and operating errors. An attempt is made in this report to answer the following: what were the specific causes of the failure; if equipment malfunctions and operator errors contributed, could they have been prevented; to what extent was Con Edison prepared to handle such an emergency; and did Con Edison plan prudently reserve generation, for reserve transmission capability, for automatic equipment tomore » protect its system, and for proper operator response to a critical situation. Following the introductory and summary section, additional sections include: the Consolidated Edison system; prevention of bulk power-supply interruptions; the sequence of failure and restoration; analysis of the July 1977 power failure; restoration sequence and equipment damage assessment; and other investigations of the blackout. (MCW)« less

  13. Disordered Nd:LuYSiO5 crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofeng; Zhou, Zhiyong; Huang, Xiaoxu; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Xu, Jun

    2017-11-01

    We report on diode-pumped disordered Nd:LuYSiO5 (Nd:LYSO) crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I 13/2 transitions. Simultaneous laser operation at 1074 and 1078 nm is achieved with maximum output power of 4.46 W and slope efficiency of 39.6%. Single wavelength laser at 1358 nm with maximum output power of 1.15 W and slope efficiency of 11.8% is also obtained. Moreover, four single-wavelength lasers at 1058, 1107, 1330 and 1386 nm with relatively low gains are achieved with maximum output powers of 2.72, 1.22, 0.52 and 0.42 W, respectively, for the first time to our knowledge. Lasing at non-traditional emission lines was obtained by using output couplers with dielectric coatings for specific wavelength ranges.

  14. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  15. Parametric study of two planar high power flexible solar array concepts

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.

    1978-01-01

    The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.

  16. A simulation investigation of the effects of engine-and thrust-response characteristics on helicopter handling qualities

    NASA Technical Reports Server (NTRS)

    Corless, L. D.; Blanken, C. L.

    1983-01-01

    A multi-phase program is being conducted to study, in a generic sense and through ground simulation, the effects of engine response, rotor inertia, rpm control, excess power, and vertical damping on specific maneuvers included in nap-of-the-Earth (NOE) operations. The helicopter configuration with an rpm-governed gas-turbine engine are considered. Handling-qualities-criteria data are considered in light of aspects peculiar to rotary-wing and NOE operations. The results of three moving-based piloted simulation studies are summarized and the frequency, characteristics of the helicopter thrust response which set it apart from other VTOL types are explained. Power-system response is affected by both the engine-governor response and the level of rotor inertia. However, results indicate that with unlimited power, variations in engine response can have a significant effect on pilot rating, whereas changes in rotor inertia, in general, do not. The results also show that any pilot interaction required to maintain proper control can significantly degrade handling qualities. Data for variations in vertical damping and collective sensitivity are compared with existing handling-qualities specifications, MIL-F-83300 and AGARD 577, and show a need for higher minimums for both damping and sensitivity for the bob-up task. Results for cases of limited power are also shown.

  17. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  18. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    DOE PAGES

    Cirigliano, V.; Dekens, W.; de Vries, J.; ...

    2017-12-15

    Here, we analyze neutrinoless double beta decay (0νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We then develop a power-counting scheme and derive the two-nucleon 0νββ currents up to leading order in the power counting for each lepton-number-violating operator. We arguemore » that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We also calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0νββ in terms of the effective Majorana mass m ββ .« less

  19. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirigliano, V.; Dekens, W.; de Vries, J.

    Here, we analyze neutrinoless double beta decay (0νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We then develop a power-counting scheme and derive the two-nucleon 0νββ currents up to leading order in the power counting for each lepton-number-violating operator. We arguemore » that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We also calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0νββ in terms of the effective Majorana mass m ββ .« less

  20. Controlled Waveform Magnets

    NASA Astrophysics Data System (ADS)

    Campbell, L. J.; Schlllig, J. B.

    Issues for the design and operation of high field controlled waveform magnets and their power supplies are discussed. The basic technical elements are reviewed and applied to problems specific to this class of magnets. Examples are given along with a guide to the literature.

  1. DISE Summary Report (1992)

    DTIC Science & Technology

    1994-03-01

    Specification and Network Time Protocol(NTP) over the Implementation. RFC-o 119, Network OSI Remote Operations Service. RFC- Working Group, September...approximately ISIS implements a powerful model of 94% of the total computation time. distributed computation known as modelo Timing results are

  2. Lower power dc arcjet operations with hydrogen hydrogen/nitrogen propellant mixtures

    NASA Technical Reports Server (NTRS)

    Curran, F. M.; Nakanishi, S.

    1986-01-01

    The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hydrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 460 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests.

  3. Identification of Dynamic Simulation Models for Variable Speed Pumped Storage Power Plants

    NASA Astrophysics Data System (ADS)

    Moreira, C.; Fulgêncio, N.; Silva, B.; Nicolet, C.; Béguin, A.

    2017-04-01

    This paper addresses the identification of reduced order models for variable speed pump-turbine plants, including the representation of the dynamic behaviour of the main components: hydraulic system, turbine governors, electromechanical equipment and power converters. A methodology for the identification of appropriated reduced order models both for turbine and pump operating modes is presented and discussed. The methodological approach consists of three main steps: 1) detailed pumped-storage power plant modelling in SIMSEN; 2) reduced order models identification and 3) specification of test conditions for performance evaluation.

  4. Test Results of a 200 W Class Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David; Jankovsky, Robert S.

    1999-01-01

    The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.

  5. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.

  6. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    NASA Astrophysics Data System (ADS)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  7. Fitness characteristics of a suburban special weapons and tactics team.

    PubMed

    Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J

    2012-03-01

    Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.

  8. Shams 1 - Design and operational experiences of the 100MW - 540°C CSP plant in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Alobaidli, Abdulaziz; Sanz, Borja; Behnke, Klaus; Witt, Thomas; Viereck, Detlef; Schwarz, Mark André

    2017-06-01

    SHAMS 1 ("Shams" means "Sun" in Arabic) Concentrated Solar Power plant is a very successful example of a modern plant, which combines the known configuration of a parabolic trough technology with the well-established power generation technologies operated at 540°C live steam temperature while respecting the specific requirement of the daily starts and shutdowns. In addition to the high live steam temperature challenge and being located in the middle of the desert approx. 120 km south west of the city of Abu Dhabi, the plant has to face, the plant has to fact several atmospheric challenges like the high dust concentration, wind storms, and high ambient temperature. This paper, written jointly by Shams Power Company - the project and operating company and MAN Diesel & Turbo - the steam turbine original manufacturer, describes the challenges in optimizing the design of the steam turbine to fulfill the requirement of fast start up while operating the plant on daily transient pattern for minimum 30 years. It also addresses the several atmospheric challenges and how the project and operating company has overcame them. Finally, the paper gives a snap shot on the operational experience and record of the plant showing that despite the very challenging environment, the budgeted target has been exceeded in the first two years of operation.

  9. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  10. Real-time identification of residential appliance events based on power monitoring

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Zhu, Zhicheng; Wei, Zhiqiang; Yin, Bo; Wang, Xiuwei

    2018-03-01

    Energy monitoring for specific home appliances has been regarded as the pre-requisite for reducing residential energy consumption. To enhance the accuracy of identifying operation status of household appliances and to keep pace with the development of smart power grid, this paper puts forward the integration of electric current and power data on the basis of existing algorithm. If average power difference of several adjacent cycles varies from the baseline and goes beyond the pre-assigned threshold value, the event will be flagged. Based on MATLAB platform and domestic appliances simulations, the results of tested data and verified algorithm indicate that the power method has accomplished desired results of appliance identification.

  11. An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Beam, Benjamin H.

    1960-01-01

    A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.

  12. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  13. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  14. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Seiber, Larry Eugene; White, Cliff P

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehiclemore » side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.« less

  15. Power processing units for high power solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Frisbee, Robert H.; Das, Radhe S.; Krauthamer, Stanley

    An evaluation of high-power processing units (PPUs) for multimegawatt solar electric propulsion (SEP) vehicles using advanced ion thrusters is presented. Significant savings of scale are possible for PPUs used to supply power to ion thrusters operating at 0.1 to 1.5 MWe per thruster. The PPU specific mass is found to be strongly sensitive to variations in the ion thruster's power per thruster and moderately sensitive to variations in the thruster's screen voltage due to varying the I(sp) of the thruster. Each PPU consists of a dc-to-dc converter to increase the voltage from the 500 V dc of the photovoltaic power system to the 5 to 13 kV dc required by the ion thrusters.

  16. Voltage Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.

  17. 10 CFR 52.110 - Termination of license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS... final legally effective order to permanently cease operations has come into effect, the 10 CFR part 52... reasons for concluding that the environmental impacts associated with site-specific decommissioning...

  18. 46 CFR 182.410 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.410 General requirements. (a) Starting motors.... Electrical equipment in spaces, compartments, or enclosures that contain machinery powered by, or fuel tanks... gauges must be readily visible at the operating station. (c) An enclosed space containing machinery...

  19. 46 CFR 182.410 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.410 General requirements. (a) Starting motors.... Electrical equipment in spaces, compartments, or enclosures that contain machinery powered by, or fuel tanks... gauges must be readily visible at the operating station. (c) An enclosed space containing machinery...

  20. 46 CFR 182.410 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.410 General requirements. (a) Starting motors.... Electrical equipment in spaces, compartments, or enclosures that contain machinery powered by, or fuel tanks... gauges must be readily visible at the operating station. (c) An enclosed space containing machinery...

  1. 46 CFR 182.410 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.410 General requirements. (a) Starting motors.... Electrical equipment in spaces, compartments, or enclosures that contain machinery powered by, or fuel tanks... gauges must be readily visible at the operating station. (c) An enclosed space containing machinery...

  2. 46 CFR 182.410 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.410 General requirements. (a) Starting motors.... Electrical equipment in spaces, compartments, or enclosures that contain machinery powered by, or fuel tanks... gauges must be readily visible at the operating station. (c) An enclosed space containing machinery...

  3. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, B; Barkley, A; Cole, Z

    2014-05-01

    This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and themore » system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.« less

  4. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: A super junction SiGe low-loss fast switching power diode

    NASA Astrophysics Data System (ADS)

    Ma, Li; Gao, Yong

    2009-01-01

    This paper proposes a novel super junction (SJ) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66 V whereas that of the SJ SiGe diode is only 0.52 V at operating current density of 10 A/cm2. The breakdown voltages are 203 V for the former and 235 V for the latter. Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.

  5. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy

    NASA Astrophysics Data System (ADS)

    Kempton, Willett; Tomić, Jasna

    Vehicle-to-grid power (V2G) uses electric-drive vehicles (battery, fuel cell, or hybrid) to provide power for specific electric markets. This article examines the systems and processes needed to tap energy in vehicles and implement V2G. It quantitatively compares today's light vehicle fleet with the electric power system. The vehicle fleet has 20 times the power capacity, less than one-tenth the utilization, and one-tenth the capital cost per prime mover kW. Conversely, utility generators have 10-50 times longer operating life and lower operating costs per kWh. To tap V2G is to synergistically use these complementary strengths and to reconcile the complementary needs of the driver and grid manager. This article suggests strategies and business models for doing so, and the steps necessary for the implementation of V2G. After the initial high-value, V2G markets saturate and production costs drop, V2G can provide storage for renewable energy generation. Our calculations suggest that V2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet dedicated to regulation for wind, plus 8-38% of the fleet providing operating reserves or storage for wind. Jurisdictions more likely to take the lead in adopting V2G are identified.

  6. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study

    PubMed Central

    2010-01-01

    Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840

  7. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  8. Optimized dispatch in a first-principles concentrating solar power production model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less

  9. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters.

    PubMed

    Dubelaar, G B; Gerritzen, P L; Beeker, A E; Jonker, R R; Tangen, K

    1999-12-01

    The high costs of microscopical determination and counting of phytoplankton often limit sampling frequencies below an acceptable level for the monitoring of dynamic ecosystems. Although having a limited discrimination power, flow cytometry allows the analysis of large numbers of samples to a level that is sufficient for many basic monitoring jobs. For this purpose, flow cytometers should not be restricted to research laboratories. We report here on the development of an in situ flow cytometer for autonomous operation inside a small moored buoy or on other platforms. Operational specifications served a wide range of applications in the aquatic field. Specific conditions had to be met with respect to the operation platform and autonomy. A small, battery-operated flow cytometer resulted, requiring no external sheath fluid supply. Because it was designed to operate in a buoy, we call it CytoBuoy. Sampling, analysis, and radio transmission of the data proceed automatically at user-defined intervals. A powerful feature is the acquisition and radio transmission of full detector pulse shapes of each particle. This provides valuable morphological information for particles larger than the 5-microm laser focus. CytoBuoy allows on-line in situ particle analysis, estimation of phytoplankton biomass, and discrimination between different phytoplankton groups. This will increase the applicability of flow cytometry in the field of environmental monitoring. Copyright 1999 Wiley-Liss, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, W.; Dybel, M.; West, R.

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less

  11. Development Status of the NASA 30-cm Ion Thruster and Power Processor

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.

    1994-01-01

    Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.

  12. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  13. Integration of SPS with utility system networks

    NASA Technical Reports Server (NTRS)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  14. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system.

    PubMed

    Schäfer, A I; Broeckmann, A; Richards, B S

    2007-02-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.

  15. Preliminary evaluation of a space AMTEC power conversion system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Sievers, Robert K.

    1991-01-01

    As original evaluation of a space solar energy source coupled with Alkali Metal Thermoelectric Conversion (AMTEC) is presented here. This study indicates that an AMTEC system would have 30 percent of the mass of a photovoltaic system and 70 percent of the mass of a Stirling cycle system at the 35-kWe level of power generation modules typical of the baseline for the U.S. Space Station. The operating temperatures and sodium heat pipe components for solar receiver/TES hardware (currently being developed by NASA) integrate well with AMTEC power conversion. AMTEC is therefore an attractive alternative specifically for space solar power generation.

  16. Manufacturing of 57cm carbon-carbon composite ion optics for the NEXIS ion engine

    NASA Technical Reports Server (NTRS)

    Beatty, John S.; Snyder, John Steven; Shih, Wei

    2005-01-01

    Exploration of the outer planets can be taxing on the ion optics of ion propulsion systems because of the higher power and propellant throughout than the present state-of-the art. Carbon-carbon composite ion optics are an enabling technology extending the life of ion optics operated at high specific impulse, power, and propellant throughout because of their low erosion rates compared to molybdenum ion optics.

  17. Operational Artillery in the Korean War

    DTIC Science & Technology

    2013-05-23

    employ artillery in a war of annihilation requires adherence to specific principles to maximize the effectiveness of combat power at the right time and...Policy (Bloomington: Indiana University Press, 1977), xxii. 24 “The Korean War rescued NSC-68 from oblivion and made it the foundation of American...multiple firing units at the right time and place with the purpose of supporting the decisive operations of maneuver. Fire planning in the Korean War

  18. Path planning and energy management of solar-powered unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Kaplan, Adam

    Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.

  19. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Warren, A.; Roberts, J. O.

    This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of windmore » resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.« less

  20. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  1. Low-Power Architecture for an Optical Life Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey; Vakhtin, Andrei

    2012-01-01

    Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.

  2. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    NASA Astrophysics Data System (ADS)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  3. A Bearingless Switched-Reluctance Motor for High Specific Power Applications

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Siebert, Mark

    2006-01-01

    A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.

  4. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  5. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  6. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  7. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  8. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  9. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  10. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  11. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  12. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  13. Modular design of electrical power subsystem for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kosari, Ehsan; Ghazanfarinia, Sajjad; Hosseingholi, Mahboobeh; Haghshenas, Javad

    2017-09-01

    Power Supply is one of the most important subjects in Remote Sensing satellite. Having an appropriate and adequate power resources, A Remote Sensing satellite may utilize more complex Payloads and also make them more operable in orbit and mission timeline. This paper is deals with a design of electrical power supply subsystem (EPS) of a hypothetical satellite with remote sensing mission in Low Earth Orbits, without any restriction on the type and number of Payloads and only assuming a constraint on the total power consumption of them. EPS design is in a way that can supply the platform consumption to support Mission and Payload(s) requirements beside the power consumption of the payload(s). The design is also modular, as it can be used not only for the hypothetical system, but also for the other systems with similar architecture and even more needs on power and differences in some specifications. Therefore, a modularity scope is assumed in design of this subsystem, in order to support the satellite in the circular orbits with altitude of 500 to 700 km and inclination of 98 degrees, a sun-synchronous orbit, where one can say the design is applicable to a large range of remote sensing satellites. Design process will be started by high level and system requirements analysis, continued by choosing the best approach for design and implementation based on system specification and mission. After EPS sizing, the specifications of elements are defined to get the performance needed during operation phases; the blocks and sub-blocks are introduced and details of their design and performance analysis are presented; and the modularity is verified using calculations for the confined area based on design parameters and evaluated by STK software analysis results. All of the process is coded in MATLAB software and comprehensive graphs are generated to demonstrate the capabilities and performance. The code and graphs are developed in such a way to completely review the design procedure and system efficiency in worst case of power consumption scenario at the beginning and end of satellite life

  14. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  15. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  16. Safety and Liability Aspects of Solar Power Satellites

    NASA Astrophysics Data System (ADS)

    Jakhu, Ram S.; Howard, Diane

    2010-09-01

    It is an undisputed fact that the global need for energy will grow exponentially in the future and the search for alternative energy sources will intensify. One alternative source will be space based solar power(SSP), to be collected in space and transmitted to Earth by solar power satellites(SPS). As the appropriate technology becomes proven, the economic and operational viability for the launch of SPS system(s) will, to a large extent, depend upon favorable political and legal determinants. One of such determinants relates to safety risks and possible liability of the operator(s) of SPS system(s). This paper identifies safety risks of, and analyses liability for, damage caused by SPS. Issues, specifically analyzed mainly under international law, include damage caused(in outer space, in the air and on the Earth) by electronic transmission, and mechanisms to manage liability including inter alia insurance coverage, waivers of liability, and dispute settlement mechanisms. The paper contains recommendations for the concerned governments(and their respective private entities) to take regulatory precautions in order to avoid the risks of possible liability and thereby enhances the chances for launch and operation of SPS system(s).

  17. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.

    2009-01-01

    The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.

  18. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  19. Relation of Fuel-Air Ratio to Engine Performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.

  20. 20--500 watt AMTEC auxiliary electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Numerous design studies have been completed on Alkali Metal Thermal to Electric Converter (AMTEC) power systems for space applications demonstrating their substantial increase in performance. Recently design studies have been initiated to couple AMTEC power conversion with fossil fueled combustion systems. This paper describes the results of a Phase 1 SBIR effort to design an innovative, efficient, reliable, long life AMTEC Auxiliary Electric Power System (AEPS) for remote site applications (20--500 watts). The concept uses high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated with a combustor and recuperator. These multi-tube AMTEC cells are low cost,more » reliable, long life static converters. AMTEC technology is ideal for auxiliary electric power supplies that must operate reliably over a broad range of temperatures, fuel sources, power levels, and operational specifications. The simplicity, efficiency (20% systems) and modularity of this technology allow it to fill applications as varied as light-weight backpacks, remote site power supplies, and military base power. Phase 1 demonstrated the feasibility of a 20% system design, and showed that the development needs to focus on identifying long life AMTEC cell components, determining the AMTEC cell and system reliability, and demonstrating that a 20 watt AMTEC system is 3--5 times more efficient than existing systems for the same application.« less

  1. Removal of simulated biofilm: a preclinical ergonomic comparison of instruments and operators.

    PubMed

    Graetz, Christian; Plaumann, Anna; Rauschenbach, Sebastian; Bielfeldt, Jule; Dörfer, Christof E; Schwendicke, Falk

    2016-07-01

    Periodontal scaling might cause musculoskeletal disorders, and scaling instruments might not only have different effectiveness and efficiency but also differ in their ergonomic properties. The present study assessed ergonomic working patterns of experienced (EO) and less experienced operators (LO) when using hand and powered devices for periodontal scaling and root planning. In an experimental study using periodontally affected manikins, sonic (AIR), ultrasonic (TIG) and hand instruments (GRA) were used by 11 operators (7 EO/4 LO) during simulated supportive periodontal therapy. Using an electronic motion monitoring system, we objectively assessed the working frequency and positioning of hand, neck and head. Operators' subjective evaluation of the instruments was recorded using a questionnaire. Hand instruments were used with the lowest frequency (2.57 ± 1.08 s(-1)) but greatest wrist deviation (59.57 ± 53.94°). EO used instruments more specifically than LO, and generally worked more ergonomically, with less inclination of head and neck in both the frontal and sagittal planes, especially when using hand instruments. All groups found hand instruments more tiring and difficult to use than powered instruments. Regardless of operators' experience, powered instruments were used more ergonomically and were subjectively preferred compared to hand instruments. The use of hand instruments has potential ergonomic disadvantages. However, with increasing experience, operators are able to recognise and mitigate possible risks.

  2. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  3. Ion propulsion

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Keefer, Dennis; Ruyten, Wilhelmus; Peng, Xiaohang

    1995-01-01

    An ion engine is a plasma thruster which produces thrust by extracting ions from the plasma and accelerating them to high velocity with an electrostatic field. The ions are then neutralized and leave the engine as high velocity neutral particles. The advantages of ion engines are high specific impulse and efficiency and their ability to operate over a wide range of input powers. In comparison with other electric thrusters, the ion engine has higher efficiency and specific impulse than thermal electric devices such as the arcjet, microwave, radiofrequency and laser heated thrusters and can operate at much lower current levels than the MPD thruster. However, the thrust level for an ion engine may be lower than a thermal electric thruster of the same operating power, consistent with its higher specific impulse, and therefore ion engines are best suited for missions which can tolerate longer duration propulsive phases. The critical issue for the ion engine is lifetime, since the prospective missions may require operation for several thousands of hours. The critical components of the ion engine, with respect to engine lifetime, are the screen and accelerating grid structures. Typically, these are large metal screens that must support a large voltage difference and maintain a small gap between them. Metallic whisker growth, distortion and vibration can lead to arcing, and over a long period of time ion sputtering will erode the grid structures and change their geometry. In order to study the effects of long time operation of the grid structure, we are developing computer codes based on the Particle-In-Cell (PIC) technique and Laser Induced Fluorescence (LIF) diagnostic techniques to study the physical processes which control the performance and lifetime of the grid structures.

  4. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  5. Thermal analyses of power subsystem components

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1990-01-01

    The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.

  6. Aerospace Power Systems Design and Analysis (APSDA) Tool

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  7. Low-Radiation Cellular Inductive Powering of Rodent Wireless Brain Interfaces: Methodology and Design Guide.

    PubMed

    Soltani, Nima; Aliroteh, Miaad S; Salam, M Tariqus; Perez Velazquez, Jose Luis; Genov, Roman

    2016-08-01

    This paper presents a general methodology of inductive power delivery in wireless chronic rodent electrophysiology applications. The focus is on such systems design considerations under the following key constraints: maximum power delivery under the allowable specific absorption rate (SAR), low cost and spatial scalability. The methodology includes inductive coil design considerations within a low-frequency ferrite-core-free power transfer link which includes a scalable coil-array power transmitter floor and a single-coil implanted or worn power receiver. A specific design example is presented that includes the concept of low-SAR cellular single-transmitter-coil powering through dynamic tracking of a magnet-less receiver spatial location. The transmitter coil instantaneous supply current is monitored using a small number of low-cost electronic components. A drop in its value indicates the proximity of the receiver due to the reflected impedance of the latter. Only the transmitter coil nearest to the receiver is activated. Operating at the low frequency of 1.5 MHz, the inductive powering floor delivers a maximum of 15.9 W below the IEEE C95 SAR limit, which is over three times greater than that in other recently reported designs. The power transfer efficiency of 39% and 13% at the nominal and maximum distances of 8 cm and 11 cm, respectively, is maintained.

  8. OASIS General Introduction.

    ERIC Educational Resources Information Center

    Stanford Univ., CA.

    Recognizing the need to balance generality and economy in system costs, the Project INFO team at Stanford University developing OASIS has sought to provide generalized and powerful computer support within the normal range of operating and analytical requirements associated with university administration. The specific design objectives of the OASIS…

  9. Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    DTIC Science & Technology

    2013-09-01

    phenomenon of compromising power and EM emissions has been known and exploited for decades. Declassified TEMPEST documents reveal vulnerabilities of...Components. One technique to detect potentially compromising emissions is to use a wide-band receiver tuned to a specific frequency. High-end TEMPEST

  10. Modular space station phase B extension preliminary performance specification. Volume 1: Initial station systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The general, operational, design/construction, and subsystem design requirements are presented for a solar powered modular space station system. While these requirements apply only to the initial station system, the system is readily adaptable to a growth configuration.

  11. Laser-Powered Thrusters for High Efficiency Variable Specific Impulse Missions (Preprint)

    DTIC Science & Technology

    2007-04-10

    technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power can...in a single device using low-mass diode-pumped glass fiber laser amplifiers to operate in either long- or short-pulse regimes at will. Adequate fiber...pulsewidth glass fiber oscillator-amplifiers, rather than the diodes used in the µ LPT, to achieve Table 2. Demonstrated technology basis Ablation Fuel Gold

  12. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Nuclear electric power for multimegawatt orbit transfer vehicles

    NASA Astrophysics Data System (ADS)

    Casagrande, R. D.

    Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.

  14. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less

  15. Research on Risk Management and Power Supplying Enterprise Control

    NASA Astrophysics Data System (ADS)

    Shen, Jianfei; Wang, Yige

    2017-09-01

    This paper derived from the background that electric power enterprises strengthen their risk management under requirements of the government. For the power industry, we explained the risk management theory, analysed current macro environment as well as basic situation, then classified and interpreted the main risks. In a case study on a power bureau, we established a risk management system based on deep understanding about the characteristics of its organization system and risk management function. Then, we focused on risks in operation as well as incorrupt government construction to give a more effective framework of the risk management system. Finally, we came up with the problems and specific countermeasures in risk management, which provided a reference for other electric power enterprises.

  16. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  17. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  18. vWorld Capability Development Support: Literature Survey

    DTIC Science & Technology

    2014-06-24

    support of system development for: Navy operations, Navy training, other military operations and training, real-time defence and security (e.g...vWorlds. The conclusions of this work are: a. Several vWorld platforms are available that could be and are being applied to military domains (at...that vWorlds endure (as- is) when powered off and on again without the need for a user to explicitly save the vWorld state. For specific military

  19. Multiplex Superconducting Transmission Line for green power consolidation on a Smart Grid

    NASA Astrophysics Data System (ADS)

    McIntyre, P.; Gerity, J.; Kellams, J.; Sattarov, A.

    2017-12-01

    A multiplex superconducting transmission line (MSTL) is being developed for applications requiring interconnection of multi-MW electric power generation among a number of locations. MSTL consists of a cluster of many 2- or 3-conductor transmission lines within a coaxial cryostat envelope. Each line operates autonomously, so that the interconnection of multiple power loads can be done in a failure-tolerant network. Specifics of the electrical, mechanical, and cryogenic design are presented. The consolidation of transformation and conditioning and the failure-tolerant interconnects have the potential to offer important benefit for the green energy components of a Smart Grid.

  20. Research on the Cascading Tripping Risk of Wind Turbine Generators Caused by Transient Overvoltage and Its Countermeasures

    NASA Astrophysics Data System (ADS)

    Yu, Haiyang; Zhang, Meilun; Zu, Guangxin

    2017-12-01

    At present, China’s electricity utility develops rapidly, however, the wind power consumption ability has been unable to meet the actual demand of consumption. Therefore, it is necessary to send wind power across the region. The commutation failure in the operation will lead to the cascading tripping of wind turbines. In order to solve the above problems, this paper will analyze the causes of such problems, analyze the basic principles of wind power cascading trips and analyze the specific solutions, hoping to give some reference for relevant people.

  1. Greening the Grid: Solar and Wind Grid Integration Study for the Luzon-Visayas System of the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, Clayton P.; Katz, Jessica R.; Cochran, Jaquelin M.

    The Republic of the Philippines is home to abundant solar, wind, and other renewable energy (RE) resources that contribute to the national government's vision to ensure sustainable, secure, sufficient, accessible, and affordable energy. Because solar and wind resources are variable and uncertain, significant generation from these resources necessitates an evolution in power system planning and operation. To support Philippine power sector planners in evaluating the impacts and opportunities associated with achieving high levels of variable RE penetration, the Department of Energy of the Philippines (DOE) and the United States Agency for International Development (USAID) have spearheaded this study along withmore » a group of modeling representatives from across the Philippine electricity industry, which seeks to characterize the operational impacts of reaching high solar and wind targets in the Philippine power system, with a specific focus on the integrated Luzon-Visayas grids.« less

  2. High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grijalva, R. L.; Sanemitsu, S. K.

    1978-11-01

    Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less

  3. 4 Gbps Scalable Low-Voltage Signaling (SLVS) transceiver for pixel radiation detectors

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Lukasz A.; Kmon, Piotr

    2017-08-01

    We report on the design of 4 Gbps Scalable Low-Voltage Signaling (SLVS) transceiver in 40nm CMOS technology for application-specific integrated circuits (ASICs) dedicated to pixel radiation detectors. Serial data are transmitted with +/-200mV differential swing around 200mV nominal common-mode level. The common-mode interference minimization is crucial in such a design, due to EMC requirements. For multi-gigabit-per-second speeds, the influence of power supply path becomes one of the most challenging design issues. Accurate modeling of supply pads at each step of the design is necessary. Our analysis shows that the utilization of multiple bond wires as well as separate power supply pads for bulk terminals connection of the transistors is essential to ensure proper operation of the transceiver. The design is a result of various trade-offs between speed, required operating conditions, common-mode interference as well as power and area consumption.

  4. Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units

    NASA Astrophysics Data System (ADS)

    Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail

    A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.

  5. Automations influence on nuclear power plants: a look at three accidents and how automation played a role.

    PubMed

    Schmitt, Kara

    2012-01-01

    Nuclear power is one of the ways that we can design an efficient sustainable future. Automation is the primary system used to assist operators in the task of monitoring and controlling nuclear power plants (NPP). Automation performs tasks such as assessing the status of the plant's operations as well as making real time life critical situational specific decisions. While the advantages and disadvantages of automation are well studied in variety of domains, accidents remind us that there is still vulnerability to unknown variables. This paper will look at the effects of automation within three NPP accidents and incidents and will consider why automation failed in preventing these accidents from occurring. It will also review the accidents at the Three Mile Island, Chernobyl, and Fukushima Daiichi NPP's in order to determine where better use of automation could have resulted in a more desirable outcome.

  6. The Application of Architecture Frameworks to Modelling Exploration Operations Costs

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    Developments in architectural frameworks and system-of-systems thinking have provided useful constructs for systems engineering. DoDAF concepts, language, and formalisms, in particular, provide a natural way of conceptualizing an operations cost model applicable to NASA's space exploration vision. Not all DoDAF products have meaning or apply to a DoDAF inspired operations cost model, but this paper describes how such DoDAF concepts as nodes, systems, and operational activities relate to the development of a model to estimate exploration operations costs. The paper discusses the specific implementation to the Mission Operations Directorate (MOD) operational functions/activities currently being developed and presents an overview of how this powerful representation can apply to robotic space missions as well.

  7. An easy-to-operate portable pulse-height analysis system for area monitoring with TEPC in radiation protection

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Pihet, P.; Arend, E.; Menzel, H. G.

    1990-12-01

    A portable area monitor for the measurement of dose-equivalent quantities in practical radiation-protection work has been developed. The detector applied is a low-pressure proportional counter (TEPC) used in microdosimetry. The complex analysis system required has been optimized with regard to low power consumption and small size to achieve a real operational survey meter. The newly designed electronic includes complete analog, digital and microprocessor boards. It presents the characteristic of fast pulse-height processing over a large (5 decades) dynamic range. Three original circuits have been specifically developed, consisting of: (1) a miniaturized adjustable high-voltage power supply with low ripple and high stability; (2) a double spectroscopy amplifier with constant gain ratio and common pole-zero stage; and (3) an analog-to-digital converter with quasi-logarithmic characteristics based on a flash converter using fast comparators associated in parallel. With the incorporated single-board computer, the maximal total power consumption is 5 W, enabling 40 hours operation time with batteries. With minor adaptations the equipment is proposed as a low-cost solution for various measuring problems in environmental studies.

  8. Decentralized State Estimation and Remedial Control Action for Minimum Wind Curtailment Using Distributed Computing Platform

    DOE PAGES

    Liu, Ren; Srivastava, Anurag K.; Bakken, David E.; ...

    2017-08-17

    Intermittency of wind energy poses a great challenge for power system operation and control. Wind curtailment might be necessary at the certain operating condition to keep the line flow within the limit. Remedial Action Scheme (RAS) offers quick control action mechanism to keep reliability and security of the power system operation with high wind energy integration. In this paper, a new RAS is developed to maximize the wind energy integration without compromising the security and reliability of the power system based on specific utility requirements. A new Distributed Linear State Estimation (DLSE) is also developed to provide the fast andmore » accurate input data for the proposed RAS. A distributed computational architecture is designed to guarantee the robustness of the cyber system to support RAS and DLSE implementation. The proposed RAS and DLSE is validated using the modified IEEE-118 Bus system. Simulation results demonstrate the satisfactory performance of the DLSE and the effectiveness of RAS. Real-time cyber-physical testbed has been utilized to validate the cyber-resiliency of the developed RAS against computational node failure.« less

  9. High current density sheet-like electron beam generator

    NASA Astrophysics Data System (ADS)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  10. Decentralized State Estimation and Remedial Control Action for Minimum Wind Curtailment Using Distributed Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Srivastava, Anurag K.; Bakken, David E.

    Intermittency of wind energy poses a great challenge for power system operation and control. Wind curtailment might be necessary at the certain operating condition to keep the line flow within the limit. Remedial Action Scheme (RAS) offers quick control action mechanism to keep reliability and security of the power system operation with high wind energy integration. In this paper, a new RAS is developed to maximize the wind energy integration without compromising the security and reliability of the power system based on specific utility requirements. A new Distributed Linear State Estimation (DLSE) is also developed to provide the fast andmore » accurate input data for the proposed RAS. A distributed computational architecture is designed to guarantee the robustness of the cyber system to support RAS and DLSE implementation. The proposed RAS and DLSE is validated using the modified IEEE-118 Bus system. Simulation results demonstrate the satisfactory performance of the DLSE and the effectiveness of RAS. Real-time cyber-physical testbed has been utilized to validate the cyber-resiliency of the developed RAS against computational node failure.« less

  11. Non-Nuclear Validation Test Results of a Closed Brayton Cycle Test-Loop

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, or for next generation nuclear power plants on earth. Although open Brayton cycles are in use for many applications (combined cycle power plants, aircraft engines), only a few closed Brayton cycles have been tested. Experience with closed Brayton cycles coupled to nuclear reactors is even more limited and current projections of Brayton cycle performance are based on analytic models. This report describes and compares experimental results with model predictions from a series of non-nuclear tests using a small scale closed loop Brayton cycle available at Sandia National Laboratories. A substantial amount of testing has been performed, and the information is being used to help validate models. In this report we summarize the results from three kinds of tests. These tests include: 1) test results that are useful for validating the characteristic flow curves of the turbomachinery for various gases ranging from ideal gases (Ar or Ar/He) to non-ideal gases such as CO2, 2) test results that represent shut down transients and decay heat removal capability of Brayton loops after reactor shut down, and 3) tests that map a range of operating power versus shaft speed curve and turbine inlet temperature that are useful for predicting stable operating conditions during both normal and off-normal operating behavior. These tests reveal significant interactions between the reactor and balance of plant. Specifically these results predict limited speed up behavior of the turbomachinery caused by loss of load, the conditions for stable operation, and for direct cooled reactors, the tests reveal that the coast down behavior during loss of power events can extend for hours provided the ultimate heat sink remains available.

  12. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  13. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  14. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  15. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.

    2010-08-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  16. Medium power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bullock, S. Ray; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difiicult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  17. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions.

    PubMed

    Martins, Vitor L; Rennie, Anthony J R; Sanchez-Ramirez, Nedher; Torresi, Roberto M; Hall, Peter J

    2018-02-01

    Supercapacitors are energy storage devices designed to operate at higher power densities than conventional batteries, but their energy density is still too low for many applications. Efforts are made to design new electrolytes with wider electrochemical windows than aqueous or conventional organic electrolytes in order to increase energy density. Ionic liquids (ILs) with wide electrochemical stability windows are excellent candidates to be employed as supercapacitor electrolytes. ILs containing tetracyanoborate anions [B(CN) 4 ] offer wider electrochemical stability than conventional electrolytes and maintain a high ionic conductivity (6.9 mS cm -1 ). Herein, we report the use of ILs containing the [B(CN) 4 ] anion for such an application. They presented a high maximum operating voltage of 3.7 V, and two-electrode devices demonstrate high specific capacitances even when operating at relatively high rates (ca. 20 F g -1 @ 15 A g -1 ). This supercapacitor stored more energy and operated at a higher power at all rates studied when compared with cells using a commonly studied ILs.

  18. Medium power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  19. A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics

    PubMed Central

    Yuan, Kai; Liu, Jian; Liu, Kaipei; Tan, Tianyuan

    2015-01-01

    Background Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. Methods This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors – device, structure, load and special operation – a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Conclusion Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. PMID:25789859

  20. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  1. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  2. System Statement of Tasks of Calculating and Providing the Reliability of Heating Cogeneration Plants in Power Systems

    NASA Astrophysics Data System (ADS)

    Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.

    2018-01-01

    A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.

  3. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  4. System design in an evolving system-of-systems architecture and concept of operations

    NASA Astrophysics Data System (ADS)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  5. Phasor Measurement Unit and Its Application in Modern Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang

    2010-06-01

    The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less

  6. Progress in high-power continuous-wave quantum cascade lasers [Invited].

    PubMed

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy

    2017-11-01

    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  7. Multi-purpose tool mitten

    NASA Technical Reports Server (NTRS)

    Wilcomb, E. F.

    1969-01-01

    Tool mitten provides a low reaction torque source of power for wrench, screwdriver, or drill activities. The technique employed prevents the attachments from drifting away from the operator. While the tools are specifically designed for space environments, they can be used on steel scaffolding, in high building maintenance, or underwater environments.

  8. O'Hare ASDE-2 radome performance in rain : analysis and improvement.

    DOT National Transportation Integrated Search

    1973-03-01

    The operational performance of the ASDE-2 radar at O'Hare Airport is severely limited during periods of moderate to heavy rainfall. Using the system performance specifications, an estimate has been made of the ASDE-2's tolerance to power loss and deg...

  9. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  10. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the addition of extra energy storage elements to the HF link are described. The importance of the source voltage level to achieve a better current regulation for the source side PDMC is also briefly discussed. The power levels achieved in the motoring mode of operation show that the proposed power levels achieved in the generating mode of operation can also be easily achieved provided that no mechanical speed limitation were present to drive the induction machine at the proposed power level.

  11. Higher Efficiency HVAC Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Charles Joseph

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less

  12. Dispatchable Solar Power Plant Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Henry

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant canmore » provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines to DSP plants. These results estimate that the cost of the DSP plant is about 10% higher than a similarly-sized and operated frame combustion turbine and slightly cheaper than an aero derivative combustion turbine when APS reference fuel and emissions costs are included. The DSP plant cost is based on a single, first-of-a-kind plant, and it is likely that subsequent plants would be less expensive.« less

  13. Lightweight fuel cell powerplant components program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1980-01-01

    A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.

  14. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    NASA Astrophysics Data System (ADS)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.

  15. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  16. Preliminary results on performance testing of a turbocharged rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.

    1982-01-01

    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  17. Assessment of MCRM Boost Assist from Orbit for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides results of analysis for the beamed energy driven MHD Chemical Rocket Motor (MCRM) for application to boost from orbit to escape for deep space and interplanetary missions. Parametric analyses were performed in the mission to determine operating regime for which the MCRM provides significant propulsion performance enhancement. Analysis of the MHD accelerator was performed numerical computational methods to determine design and operational features necessary to achieve Isp on the order of 2,000 to 3,000 seconds. Algorithms were developed to scale weights for the accelerator and power supply. Significant improvement in propulsion system performance can be achieved with the beamed energy driven MCRM. The limiting factor on achievable vehicle acceleration is the specific power of the rectenna.

  18. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com; Academy of Scientific and Innovative Research

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gunmore » has been carried out in CST and TRAK codes.« less

  19. Small hydroelectric power plant for Aztec, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, E.W.

    1982-05-01

    Preliminary engineering results and the outcome of other specific studies associated with the establishment of a hydroelectric power plant at Aztec, New Mexico, are presented, with particular emphasis on estimated costs of construction and long-term operation. Four alternative levels of effort were evaluated. Recommendations, based primarily on cost effectiveness, are presented along with material useful as a basis for a possible follow-on Phase II study. At least three levels of effort appear economically attractive alternatives for the city to pursue.

  20. High voltage characteristics of the electrodynamic tether and the generation of power and propulsion

    NASA Technical Reports Server (NTRS)

    Williamson, P. R.

    1986-01-01

    The Tethered Satellite System (TSS) will deploy and retrieve a satellite from the Space Shuttle orbiter with a tether of up to 100 km in length attached between the satellite and the orbiter. The characteristics of the TSS which are related to high voltages, electrical currents, energy storage, power, and the generation of plasma waves are described. A number of specific features of the tether system of importance in assessing the operational characteristics of the electrodynamic TSS are identified.

  1. An evaluation of helicopter noise and vibration ride qualities criteria

    NASA Technical Reports Server (NTRS)

    Hammond, C. E.; Hollenbaugh, D. D.; Clevenson, S. A.; Leatherwood, J. D.

    1981-01-01

    Two methods of quantifying helicopter ride quality; absorbed power for vibration only and the NASA ride comfort model for both noise and vibration are discussed. Noise and vibration measurements were obtained on five operational US Army helicopters. The data were converted to both absorbed power and DISC's (discomfort units used in the NASA model) for specific helicopter flight conditions. Both models indicate considerable variation in ride quality between the five helicopters and between flight conditions within each helicopter.

  2. A helicopter handling-qualities study of the effects of engine response characteristics, height-control dynamics, and excess power on nap-of-the-Earth operations

    NASA Technical Reports Server (NTRS)

    Corliss, L. D.

    1982-01-01

    The helicopter configuration with an rpm-governed gas-turbine engine was examined. A wide range of engine response time, vehicle damping and sensitivity, and excess power levels was studied. The data are compared with the existing handling-qualities specifications, MIL-F-83300 and AGARD 577, and in general show a need for higher minimums when performing such NOE maneuvers as a dolphin and bob-up task.

  3. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  4. Dual-mode, high energy utilization system concept for mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  5. WTG Energy Systems' Rotor: Steel at 80 Feet

    NASA Technical Reports Server (NTRS)

    Barrows, R. E.

    1979-01-01

    The design, specifications, and performance of the 80 foot diameter fixed pitch rotor operating on the MP1-200 wind turbine generator installed as part of the Island of Cuttyhunk's electric power utility grid system are described. This synchronous generating system rated 200 kilowatts at 28 mph wind velocity, and produces constant 60 Hz, 480 VAC current at +/- 1 percent accuracy throughout the machine's operating range. Future R & D requirements and suggestions are included with cost data.

  6. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster (Preprint)

    DTIC Science & Technology

    2011-08-10

    plume data from electrostatic probes. This paper presents the results of performance measurements made using an inverted pendulum thrust stand. Krypton...inverted pendulum thrust stand. Krypton operating conditions were tested over a large range of operating powers from 800 W to 3.9 kW. Analysis of how...advantages for missions where high thrust at reduced specific impulse is advantageous, primarily for orbit raising missions. Bismuth’s main drawback is

  7. Patch Network for Power Allocation and Distribution in Smart Materials

    NASA Technical Reports Server (NTRS)

    Golembiewski, Walter T.

    2000-01-01

    The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

  8. A Stainless-Steel, Uranium-Dioxide, Potassium-Heatpipe-Cooled Surface Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Benjamin W.; Nuclear and Radiological Engineering Department, University of Florida, Gainesville, FL 32611; Sims, Bryan T.

    2006-01-20

    One of the primary goals in designing a fission power system is to ensure that the system can be developed at a low cost and on an acceptable schedule without compromising reliability. The Heatpipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The Heatpipe Operated Moon Exploration Reactor (HOMER-25) is a HPS designed to produce 25-kWe on the lunar surface for 5 full-power years. The HOMER-25 core is made up of 93% enriched UO2 fuel pins and stainless-steel (SS)/potassium (K) heatpipes in a SS monolith. The heatpipes transport heat generated in the core throughmore » the water shield to a potassium boiler, which drives six Stirling engines. The operating heatpipe temperature is 880 K and the peak fast fluence is 1.6e21 n/cm2, which is well within an established database for the selected materials. The HOMER-25 is designed to be buried in 1.5 m of lunar regolith during operation. By using technology and materials which do not require extensive technology development programs, the HOMER-25 could be developed at a relatively low cost. This paper describes the attributes, specifications, and performance of the HOMER-25 reactor system.« less

  9. Common solutions for power, communication and robustness in operations of large measurement networks within Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Beranzoli, Laura; Fiebig, Markus; Gilbert, Olivier; Laj, Paolo; Mazzola, Mauro; Paris, Jean-Daniel; Pedersen, Helle; Stocker, Markus; Vitale, Vito; Waldmann, Christoph

    2017-04-01

    European Environmental Research Infrastructures (RI) frequently comprise in situ observatories from large-scale networks of platforms or sites to local networks of various sensors. Network operation is usually a cumbersome aspect of these RIs facing specific technological problems related to operations in remote areas, maintenance of the network, transmission of observation values, etc.. Robust inter-connection within and across these networks is still at infancy level and the burden increases with remoteness of the station, harshness of environmental conditions, and unavailability of classic communication systems, which is a common feature here. Despite existing RIs having developed ad-hoc solutions to overcome specific problems and innovative technologies becoming available, no common approach yet exists. Within the European project ENVRIplus, a dedicated work package aims to stimulate common network operation technologies and approaches in terms of power supply and storage, robustness, and data transmission. Major objectives of this task are to review existing technologies and RI requirements, propose innovative solutions and evaluate the standardization potential prior to wider deployment across networks. Focus areas within these efforts are: improving energy production and storage units, testing robustness of RI equipment towards extreme conditions as well as methodologies for robust data transmission. We will introduce current project activities which are coordinated at various levels including the engineering as well as the data management perspective, and explain how environmental RIs can benefit from the developments.

  10. Achieving Better Buying Power for Mobile Open Architecture Software Systems Through Diverse Acquisition Scenarios

    DTIC Science & Technology

    2016-04-30

    software (OSS) and proprietary (CSS) software elements or remote services (Scacchi, 2002, 2010), eventually including recent efforts to support Web ...specific platforms, including those operating on secured Web /mobile devices.  Common Development Technology provides AC development tools and common...transition to OA systems and OSS software elements, specifically for Web and Mobile devices within the realm of C3CB. OA, Open APIs, OSS, and CSS OA

  11. Power in Operation: A Case Study Focussing on How Subject-Based Knowledge Is Constrained by the Methods of Assessment in GCE A Level Dance

    ERIC Educational Resources Information Center

    Sanders, Lorna

    2008-01-01

    The General Certificate of Education (GCE) A Level Dance specification, offered by the Assessment and Qualifications Alliance (AQA), is the only GCE course of study in the UK that focuses solely on dance. Acquisition of subject specific knowledge is a feature of its aims, while assessment, as constructed by its objectives, is assumed to be a…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahidehpour, Mohammad

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practicesmore » can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.« less

  13. Why Linking Budgets to Plans Has Proven Difficult in Higher Education.

    ERIC Educational Resources Information Center

    Schmidtlein, Frank A.

    1990-01-01

    Conclusions from two studies (including a three-year nationwide study of higher education institutional planning) concern types of planning (strategic, program, facility, operational, budget, and issue-specific), and limitations (the limited powers of prediction and the political character of planning and budgeting). Types of budgeting processes…

  14. 76 FR 77565 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... assure that the emergency diesel generator's diesel driven cooling water pumps perform their required... generators will provide required electrical power as assumed in the accident analyses and the cooling water... Technical Specifications to require an adequate emergency diesel generator and diesel driven cooling water...

  15. 29 CFR 102.56 - Answer to compliance specification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or by a duly authorized agent with appropriate power of attorney affixed, and shall contain the... knowledge, in which case the respondent shall so state, such statement operating as a denial. Denials shall... only the remainder. As to all matters within the knowledge of the respondent, including but not limited...

  16. 78 FR 28284 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Railway (CP) has petitioned the Federal Railroad Administration (FRA) for a waiver of compliance from... assigned the petition Docket Number FRA-2013-0040. Specifically, CP requests relief from 49 CFR 232.205(c... brake tests--1,000-mile inspection for trains operating in distributive power (DP) mode. CP requests...

  17. 40 CFR 89.401 - Scope; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart B of this part. (b) Exhaust gases, either raw or dilute, are sampled while the test engine is operated using the appropriate test cycle on an engine dynamometer. The exhaust gases receive specific... the power output during each mode. Emissions are reported as grams per kilowatt hour (g/kW-hr). (c...

  18. 40 CFR 89.301 - Scope; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart B of part 89. (b) Exhaust gases, either raw or dilute, are sampled while the test engine is operated using an 8-mode test cycle on an engine dynamometer. The exhaust gases receive specific component analysis determining concentration of pollutant, exhaust volume, the fuel flow, and the power output during...

  19. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  20. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    PubMed

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  1. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  2. Design of a photovoltaic system for a southwest all-electric residence

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.

    1980-04-01

    The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.

  3. Cognitive consequences of clumsy automation on high workload, high consequence human performance

    NASA Technical Reports Server (NTRS)

    Cook, Richard I.; Woods, David D.; Mccolligan, Elizabeth; Howie, Michael B.

    1991-01-01

    The growth of computational power has fueled attempts to automate more of the human role in complex problem solving domains, especially those where system faults have high consequences and where periods of high workload may saturate the performance capacity of human operators. Examples of these domains include flightdecks, space stations, air traffic control, nuclear power operation, ground satellite control rooms, and surgical operating rooms. Automation efforts may have unanticipated effects on human performance, particularly if they increase the workload at peak workload times or change the practitioners' strategies for coping with workload. Smooth and effective changes in automation requires detailed understanding of the congnitive tasks confronting the user: it has been called user centered automation. The introduction of a new computerized technology in a group of hospital operating rooms used for heart surgery was observed. The study revealed how automation, especially 'clumsy automation', effects practitioner work patterns and suggest that clumsy automation constrains users in specific and significant ways. Users tailor both the new system and their tasks in order to accommodate the needs of process and production. The study of this tailoring may prove a powerful tool for exposing previously hidden patterns of user data processing, integration, and decision making which may, in turn, be useful in the design of more effective human-machine systems.

  4. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.

  5. Electric plant cost and power production expenses 1989. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-29

    This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less

  6. Thermal Management of a Nitrogen Cryogenic Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, Ph.; Yan, T.

    2010-04-01

    Efficient thermal links are needed to ease the distribution of the cold power in satellites. Loop heat pipes are widely used at room temperature as passive thermal links based on a two-phase flow generated by capillary forces. Transportation of the cold power at cryogenic temperatures requires a specific design. In addition to the main loop, the cryogenic loop heat pipe (CLHP) features a hot reservoir and a secondary loop with a cold reservoir and a secondary evaporator which allows the cool down and the thermal management of the thermal link in normal cold operation. We have studied the influence of a heated cold reservoir and investigated the effect of parasitic heat loads on the performance of a nitrogen CLHP at around 80 K. It is shown that heating of the cold reservoir with a small amount of power (0.1 W) allows controlling the system temperature difference, which can be kept constant at a very low level (1 K) regardless of the transferred cold power (0-10 W). Parasitic heat loads have a significant effect on the thermal resistance, and the power applied on the secondary evaporator has to be increased up to 4 W to get stable operation.

  7. Development of a compact cryocooler system for high temperature superconductor filter application

    NASA Astrophysics Data System (ADS)

    Pang, Xiaomin; Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Hu, Jianying; Dai, Wei; Li, Haibing; Luo, Ercang

    2016-12-01

    Seeking a higher specific power of the pulse tube cryocooler is an important trend in recent studies. High frequency operation (100 Hz and higher), combined with co-axial configuration, serve as a good option to meet this requirement. This paper introduces a high efficiency co-axial pulse tube cryocooler operating at around 100 Hz. The whole system weighs 4.3 kg (not including the radiator) with a nominal input power of 320 W, namely, power density of the system is around 74 W/kg. The envelop dimensions of the cold finger itself is about 84 mm in length and 23 mm in outer diameter. Firstly, numerical model for designing the system and some simulation results are briefly introduced. Distributions of pressure wave, the phase difference between the pressure wave and the volume flow rate and different energy flow are presented for a better understanding of the system. After this, some of the characterizing experimental results are presented. At an optimum working point, the cooling power at 80 K reaches 16 W with an input electric power of 300 W, which leads to an efficiency of 15.5% of Carnot.

  8. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of themore » scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.« less

  9. A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2005-01-01

    Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.

  10. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer chemistry.

  11. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  12. Update on Development of SiC Multi-Chip Power Modules

    NASA Technical Reports Server (NTRS)

    Lostetter, Alexander; Cilio, Edgar; Mitchell, Gavin; Schupbach, Roberto

    2008-01-01

    Progress has been made in a continuing effort to develop multi-chip power modules (SiC MCPMs). This effort at an earlier stage was reported in 'SiC Multi-Chip Power Modules as Power-System Building Blocks' (LEW-18008-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 28. The following recapitulation of information from the cited prior article is prerequisite to a meaningful summary of the progress made since then: 1) SiC MCPMs are, more specifically, electronic power-supply modules containing multiple silicon carbide power integrated-circuit chips and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking; 2) The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules; and, 3) In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications. Because identical SiC MCPM building blocks could be utilized in such a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. This concludes the information from the cited prior article. The main activity since the previously reported stage of development was the design, fabrication, and testing a 120- VDC-to-28-VDC modular power-converter system composed of eight SiC MCPMs in a 4 (parallel)-by-2 (series) matrix configuration, with normally-off controllable power switches. The SiC MCPM power modules include closed-loop control subsystems and are capable of operating at high power density or high temperature. The system was tested under various configurations, load conditions, load-transient conditions, and failure-recovery conditions. Planned future work includes refinement of the demonstrated modular system concept and development of a new converter hardware topology that would enable sharing of currents without the need for communication among modules. Toward these ends, it is also planned to develop a new converter control algorithm that would provide for improved sharing of current and power under all conditions, and to implement advanced packaging concepts that would enable operation at higher power density.

  13. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  14. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    PubMed

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  15. Derated ion thruster design issues

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1991-01-01

    Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.

  16. Modeling and Optimization of Coordinative Operation of Hydro-wind-photovoltaic Considering Power Generation and Output Fluctuation

    NASA Astrophysics Data System (ADS)

    Wang, Xianxun; Mei, Yadong

    2017-04-01

    Coordinative operation of hydro-wind-photovoltaic is the solution of mitigating the conflict of power generation and output fluctuation of new energy and conquering the bottleneck of new energy development. Due to the deficiencies of characterizing output fluctuation, depicting grid construction and disposal of power abandon, the research of coordinative mechanism is influenced. In this paper, the multi-object and multi-hierarchy model of coordinative operation of hydro-wind-photovoltaic is built with the aim of maximizing power generation and minimizing output fluctuation and the constraints of topotaxy of power grid and balanced disposal of power abandon. In the case study, the comparison of uncoordinative and coordinative operation is carried out with the perspectives of power generation, power abandon and output fluctuation. By comparison from power generation, power abandon and output fluctuation between separate operation and coordinative operation of multi-power, the coordinative mechanism is studied. Compared with running solely, coordinative operation of hydro-wind-photovoltaic can gain the compensation benefits. Peak-alternation operation reduces the power abandon significantly and maximizes resource utilization effectively by compensating regulation of hydropower. The Pareto frontier of power generation and output fluctuation is obtained through multiple-objective optimization. It clarifies the relationship of mutual influence between these two objects. When coordinative operation is taken, output fluctuation can be markedly reduced at the cost of a slight decline of power generation. The power abandon also drops sharply compared with operating separately. Applying multi-objective optimization method to optimize the coordinate operation, Pareto optimal solution set of power generation and output fluctuation is achieved.

  17. Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction

    NASA Astrophysics Data System (ADS)

    Tung, David C.

    Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.

  18. Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.

    2016-01-01

    For missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical propulsion systems and propellants that may constitute more than 50 percent of the spacecraft mass. This impact can be substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher specific impulse. Studies performed for NASA's Human Exploration and Operations Mission Directorate and Science Mission Directorate have demonstrated that a 50kW-class SEP capability can be enabling for both near term and future architectures and science missions. A high-power SEP element is integral to the Evolvable Mars Campaign, which presents an approach to establish an affordable evolutionary human exploration architecture. To enable SEP missions at the power levels required for these applications, an in-space demonstration of an operational 50kW-class SEP spacecraft has been proposed as a SEP Technology Demonstration Mission (TDM). In 2010 NASA's Space Technology Mission Directorate (STMD) began developing high-power electric propulsion technologies. The maturation of these critical technologies has made mission concepts utilizing high-power SEP viable.

  19. Applications of nuclear power to lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Cole, Kevin

    1988-01-01

    The initial elements of an ambitious program for human exploration beyond Earth have been developed and presented to NASA management for its consideration. The Outpost on the Moon and Humans to Mars are two key U.S. programs (Ride 1987). A major space goal of this magnitude can only be implemented by a series of program phases evolving from precursor robotic missions, to initial development of temporary surface stations and buildup of operational experience, through the eventual establishment of permanent and sustained surface bases. Each phase of the separate (or linked) lunar and Mars scenarios will require distinctly different levels and types of power sources to support both transportation and on-surface operations, i.e., the nuclear power reactor. Discussed are the respective types and specific amounts of power required for all major systems in a phased program of lunar and Mars exploration over the period 1990 to 2040. A comparative assessment of technology tradeoffs and special design problems is made to ascertain the most appropriate application for the different phases, as well as to identify synergistic developments across the programs.

  20. Benefits of production extension and shifting with thermal storage for a 1MW CSP-ORC plant in Morocco

    NASA Astrophysics Data System (ADS)

    Bennouna, El Ghali; Mimet, Abdelaziz; Frej, Hicham

    2016-05-01

    The importance of thermal storage for commercial CSP (concentrated Solar Power) plants has now become obvious, this regardless of the solar technology used and the power cycle. The availability of a storage system to a plant operator brings a lot of possibilities for production management, cash flow optimization and grid stabilizing. In particular, and depending on plant location and local grid strategy, thermal storage can contribute, when wisely used, to control production and adapt it to the demand and / or power unbalances and varying prices. Storage systems design, sizing and configuration are proper to each power plant, hence systems that are now widely installed within large commercial solar plants are not necessarily suited for small scale decentralized production, and will not have the same effects. In this paper the benefits of thermal storage are studied for a 1MWe CSP plant with an ORC (Organic Rankine Cycle), this plant has many specific features which call for a detail analysis about the appropriate storage design and optimum operating strategies for decentralized solutions.

  1. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  2. Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability-A Review

    NASA Astrophysics Data System (ADS)

    Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.

    2010-10-01

    Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  5. Computational design of an experimental laser-powered thruster

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ronald; Keefer, Dennis

    1988-01-01

    An extensive numerical experiment, using the developed computer code, was conducted to design an optimized laser-sustained hydrogen plasma thruster. The plasma was sustained using a 30 kW CO2 laser beam operated at 10.6 micrometers focused inside the thruster. The adopted physical model considers two-dimensional compressible Navier-Stokes equations coupled with the laser power absorption process, geometric ray tracing for the laser beam, and the thermodynamically equilibrium (LTE) assumption for the plasma thermophysical and optical properties. A pressure based Navier-Stokes solver using body-fitted coordinate was used to calculate the laser-supported rocket flow which consists of both recirculating and transonic flow regions. The computer code was used to study the behavior of laser-sustained plasmas within a pipe over a wide range of forced convection and optical arrangements before it was applied to the thruster design, and these theoretical calculations agree well with existing experimental results. Several different throat size thrusters operated at 150 and 300 kPa chamber pressure were evaluated in the numerical experiment. It is found that the thruster performance (vacuum specific impulse) is highly dependent on the operating conditions, and that an adequately designed laser-supported thruster can have a specific impulse around 1500 sec. The heat loading on the wall of the calculated thrusters were also estimated, and it is comparable to heat loading on the conventional chemical rocket. It was also found that the specific impulse of the calculated thrusters can be reduced by 200 secs due to the finite chemical reaction rate.

  6. The knowledge-based framework for a nuclear power plant operator advisor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.W.; Hajek, B.K.

    1989-01-01

    An important facet in the design, development, and evaluation of aids for complex systems is the identification of the tasks performed by the operator. Operator aids utilizing artificial intelligence, or more specifically knowledge-based systems, require identification of these tasks in the context of a knowledge-based framework. In this context, the operator responses to the plant behavior are to monitor and comprehend the state of the plant, identify normal and abnormal plant conditions, diagnose abnormal plant conditions, predict plant response to specific control actions, and select the best available control action, implement a feasible control action, monitor system response to themore » control action, and correct for any inappropriate responses. These tasks have been identified to formulate a knowledge-based framework for an operator advisor under development at Ohio State University that utilizes the generic task methodology proposed by Chandrasekaran. The paper lays the foundation to identify the responses as a knowledge-based set of tasks in accordance with the expected human operator responses during an event. Initial evaluation of the expert system indicates the potential for an operator aid that will improve the operator's ability to respond to both anticipated and unanticipated events.« less

  7. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  8. Energy-harvesting at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew; Sothmann, Björn; Sánchez, Rafael; Büttiker, Markus

    2013-03-01

    Energy harvesting is the process by which energy is taken from the environment and transformed to provide power for electronics. Specifically, the conversion of thermal energy into electrical power, or thermoelectrics, can play a crucial role in future developments of alternative sources of energy. Unfortunately, present thermoelectrics have low efficiency. Therefore, an important task in condensed matter physics is to find new ways to harvest ambient thermal energy, particularly at the smallest length scales where electronics operate. To achieve this goal, there is on one hand the miniaturizing of electrical devices, and on the other, the maximization of either efficiency or power the devices produce. We will present the theory of nano heat engines able to efficiently convert heat into electrical power. We propose a resonant tunneling quantum dot engine that can be operated either in the Carnot efficient mode, or maximal power mode. The ability to scale the power by putting many such engines in a ``Swiss cheese sandwich'' geometry gives a paradigmatic system for harvesting thermal energy at the nanoscale. This work was supported by the US NSF Grant No. DMR-0844899, the Swiss NSF, the NCCR MaNEP and QSIT, the European STREP project Nanopower, the CSIC and FSE JAE-Doc program, the Spanish MAT2011-24331 and the ITN Grant 234970 (EU)

  9. In-Containment Signal Conditioning and Transmission via Power Lines within High Dose Rate Areas of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Steffen; Weigel, Robert; Koelpin, Alexander

    2015-07-01

    Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installationmore » of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)« less

  10. Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David

    2006-01-01

    Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.

  11. A compact 10 kW solid-state RF power amplifier at 352 MHz

    NASA Astrophysics Data System (ADS)

    Dancila, Dragos; Hoang Duc, Long; Jobs, Magnus; Holmberg, Måns; Hjort, Adam; Rydberg, Anders; Ruber, Roger

    2017-07-01

    A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a singleended architecture. During the final tests, a total output peak power of 10.5 kW was measured.

  12. Conditional quantum entropy power inequality for d-level quantum systems

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok

    2018-04-01

    We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.

  13. An economic analysis of a commercial approach to the design and fabrication of a space power system

    NASA Technical Reports Server (NTRS)

    Putney, Z.; Been, J. F.

    1979-01-01

    A commercial approach to the design and fabrication of an economical space power system is presented. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that is used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance cost estimates are detailed.

  14. Operational health physics.

    PubMed

    Miller, Kenneth L

    2005-06-01

    A review of the operational health physics papers published in Health Physics and Operational Radiation Safety over the past fifteen years indicated seventeen general categories or areas into which the topics could be readily separated. These areas include academic research programs, use of computers in operational health physics, decontamination and decommissioning, dosimetry, emergency response, environmental health physics, industrial operations, medical health physics, new procedure development, non-ionizing radiation, radiation measurements, radioactive waste disposal, radon measurement and control, risk communication, shielding evaluation and specification, staffing levels for health physics programs, and unwanted or orphan sources. That is not to say that there are no operational papers dealing with specific areas of health physics, such as power reactor health physics, accelerator health physics, or governmental health physics. On the contrary, there have been a number of excellent operational papers from individuals in these specialty areas and they are included in the broader topics listed above. A listing and review of all the operational papers that have been published is beyond the scope of this discussion. However, a sampling of the excellent operational papers that have appeared in Health Physics and Operational Radiation Safety is presented to give the reader the flavor of the wide variety of concerns to the operational health physicist and the current areas of interest where procedures are being refined and solutions to problems are being developed.

  15. Operational health physics.

    PubMed

    Miller, Kenneth L

    2005-01-01

    A review of the operational health physics papers published in Health Physics and Operational Radiation Safety over the past fifteen years indicated seventeen general categories or areas into which the topics could be readily separated. These areas include academic research programs, use of computers in operational health physics, decontamination and decommissioning, dosimetry, emergency response, environmental health physics, industrial operations, medical health physics, new procedure development, non-ionizing radiation, radiation measurements, radioactive waste disposal, radon measurement and control, risk communication, shielding evaluation and specification, staffing levels for health physics programs, and unwanted or orphan sources. That is not to say that there are no operational papers dealing with specific areas of health physics, such as power reactor health physics, accelerator health physics, or governmental health physics. On the contrary, there have been a number of excellent operational papers from individuals in these specialty areas and they are included in the broader topics listed above. A listing and review of all the operational papers that have been published is beyond the scope of this discussion. However, a sampling of the excellent operational papers that have appeared in Health Physics and Operational Radiation Safety is presented to give the reader the flavor of the wide variety of concerns to the operational health physicist and the current areas of interest where procedures are being refined and solutions to problems are being developed.

  16. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  17. Low voltage 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The construction of an ion thruster module (including thruster, power conditioning, and control system) capable of operating for 10,000 hours over a five to one range at an effective specific impulse of approximately 2800 seconds is discussed. The several interrelated tasks involved in the construction of the engine are described. Performance tests of the engine and the effects of various modifications are reported. It was demonstrated that thruster performance and stability were not materially affected by reasonable changes from the nominal operating point.

  18. Collecting various sustainability metrics of observatory operations on Maunakea

    NASA Astrophysics Data System (ADS)

    Kuo Tiong, Blaise C.; Bauman, Steven E.; Benedict, Romilly; Draughn, John Wesley; Probasco, Quinn

    2016-07-01

    By collecting metrics in fleet operations, data center usage, employee air travel and facilities consumption at the Canada France Hawaii Telescope, the collective impact of CFHT and other observatories on the Maunakea Astronomy Precinct can be estimated. An audit of carbon emissions in these aspects as well as specific efficiency metrics such as data center Power Use Efficiency gives a general scale of environmental and social alterations. Applications of the audit would be for such things as crafting sustainability strategies.

  19. Selection of Batteries and Fuel Cells for Yucca Mountain Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, R S

    2003-12-08

    The Performance Confirmation program of the Yucca Mountain Repository Development Project needs to employ remotely operated robots to work inside the emplacement drifts which will have an environment unsuitable for humans (radiation environment of up to 200 rad/hour (mostly gamma rays, some neutrons)) and maximum temperatures of 180 C. The robots will be required to operate inside the drifts for up to 8 hours per mission. Based on available functional requirements, we have developed the following specifications for the power needed by the robots:

  20. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.

    PubMed

    Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman

    2015-12-20

    In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.

  1. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia.

    PubMed

    Andreu, Irene; Natividad, Eva

    2013-12-01

    In magnetic hyperthermia, characterising the specific functionality of magnetic nanoparticle arrangements is essential to plan the therapies by simulating maximum achievable temperatures. This functionality, i.e. the heat power released upon application of an alternating magnetic field, is quantified by means of the specific absorption rate (SAR), also referred to as specific loss power (SLP). Many research groups are currently involved in the SAR/SLP determination of newly synthesised materials by several methods, either magnetic or calorimetric, some of which are affected by important and unquantifiable uncertainties that may turn measurements into rough estimates. This paper reviews all these methods, discussing in particular sources of uncertainties, as well as their possible minimisation. In general, magnetic methods, although accurate, do not operate in the conditions of magnetic hyperthermia. Calorimetric methods do, but the easiest to implement, the initial-slope method in isoperibol conditions, derives inaccuracies coming from the lack of matching between thermal models, experimental set-ups and measuring conditions, while the most accurate, the pulse-heating method in adiabatic conditions, requires more complex set-ups.

  2. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  3. An overview of the Nuclear Electric Xenon Ion System (NEXIS) program

    NASA Technical Reports Server (NTRS)

    Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.; hide

    2003-01-01

    NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.

  4. A computer-based specification methodology

    NASA Technical Reports Server (NTRS)

    Munck, Robert G.

    1986-01-01

    Standard practices for creating and using system specifications are inadequate for large, advanced-technology systems. A need exists to break away from paper documents in favor of documents that are stored in computers and which are read and otherwise used with the help of computers. An SADT-based system, running on the proposed Space Station data management network, could be a powerful tool for doing much of the required technical work of the Station, including creating and operating the network itself.

  5. INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREENE,G.A.; GUPPY,J.G.

    1998-09-01

    This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install andmore » make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.« less

  6. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical interactions between as many as 3 radioisotope power generators, associated control strategies, and typical electric system loads. The first phase of testing included a DASCS which was developed by Johns Hopkins UniversityApplied Physics Laboratory and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. Testing included the following spacecraft electrical energy storage configurations: capacitive, battery, and supercapacitor. Testing of the DASCS and ACU in each energy storage configuration included simulation of a typical mission profile, and transient voltage and current data during load turn-on/turn-off. Testing for these devices also included the initiation of several system faults such as short circuits, electrical bus over-voltage, under-voltage and a dead bus recovery to restore normal power operations. The goal of this testing was to verify operation of the ACU(s) when connected to a spacecraft electrical bus.

  7. Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission

    PubMed Central

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190

  8. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    PubMed

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  9. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  10. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    NASA Astrophysics Data System (ADS)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  11. The LSLE echocardiograph - Commercial hardware aboard Spacelab. [Life Sciences Laboratory Equipment

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1983-01-01

    The Life Sciences Laboratory Equipment Echocardiograph, a commercial 77020AC Ultrasound Imaging System modified to meet NASA's spacecraft standards, is described. The assembly consists of four models: display and control, scanner, scan converter, and physioamplifiers. Four separate processors communicate over an IEE-488 bus, and the system has more than 6000 individual components on 35 printed circuit cards. Three levels of self test are provided: a short test during power up, a basic test initiated by a front panel switch, and interactive tests for specific routines. Default mode operation further enhances reliability. Modifications of the original system include the replacement of ac power supplies with dc to dc converters, a slide-out keyboard (to prevent accidental operation), Teflon insulated wire, and additional shielding for the ultrasound transducer cable.

  12. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the rated power whereas conventional boost efficiency barely achieves 91.5% in the same operating conditions.

  13. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    NASA Astrophysics Data System (ADS)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  14. Predictive Value of Morphological Features in Patients with Autism versus Normal Controls

    ERIC Educational Resources Information Center

    Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.

    2013-01-01

    We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…

  15. 77 FR 23250 - HIT Standards Committee; Schedule for the Assessment of HIT Policy Committee Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... quality, clinical operations, implementation, and privacy and security. Other groups are convened to address specific issues as needed, such as the Nationwide Health Information Network Power Team, the... appropriate workgroup or other special group to develop a report for the HIT Standards Committee, to the...

  16. Recent advances in Reltron and Super-Reltron HPM source development

    NASA Astrophysics Data System (ADS)

    Miller, Robert B.; Muehlenweg, Carl A.; Habiger, Kerry W.; Smith, John R.; Shiffler, Donald A.

    1994-05-01

    Reltron and super-reltron microwave tubes use post acceleration of a well-modulated beam and multiple output cavity extraction sections to generate high power microwave pulses with excellent efficiency. We have continued our development of these tubes with emphasis being given to four specific topics: (1) Recent experiments with our 1-GHz super-reltron tube have demonstrated operation at a peak power level of 600 MW. With pulse durations of several hundred nanoseconds, the microwave energy per pulse is about 250 J. (2) We have extracted significant power (several tens of megawatts) at the third multiple (3 GHz) of our 1-GHz super-reltron tube using output cavities designed for operation in S-band. (3) We have fielded a small S-band super-reltron tube on our 260 kV modulator. We have obtained lifetime data for this tube under repetitive (20 Hz), long pulse (2 microsecond(s) ec) operating conditions. (4) We have initiated feasibility experiments of the reltron concept by post accelerating the bunched beam produced by a SLAC XK-5 klystron. In this paper we report our experimental results and discuss relevant theoretical considerations related to each of these four topics.

  17. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  18. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  19. SPS pilot signal design and power transponder analysis, volume 2, phase 3

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Scholtz, R. A.; Chie, C. M.

    1980-01-01

    The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled.

  20. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    PubMed

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

Top