Sample records for specific proteins including

  1. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    PubMed Central

    2009-01-01

    Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996

  2. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades.

    PubMed

    Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas

    2009-10-12

    Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.

  3. Generation and purification of highly-specific antibodies for detecting post-translationally modified proteins in vivo

    PubMed Central

    Arur, Swathi; Schedl, Tim

    2014-01-01

    Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immuno-cytochemistry and immuno-precipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often non-specific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot and western blots assays are employed to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein specific antibody preparation. One full round of antibody purification and specificity testing takes 6 days of discontinuous time. PMID:24457330

  4. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks

    PubMed Central

    Alonso-López, Diego; Gutiérrez, Miguel A.; Lopes, Katia P.; Prieto, Carlos; Santamaría, Rodrigo; De Las Rivas, Javier

    2016-01-01

    APID (Agile Protein Interactomes DataServer) is an interactive web server that provides unified generation and delivery of protein interactomes mapped to their respective proteomes. This resource is a new, fully redesigned server that includes a comprehensive collection of protein interactomes for more than 400 organisms (25 of which include more than 500 interactions) produced by the integration of only experimentally validated protein–protein physical interactions. For each protein–protein interaction (PPI) the server includes currently reported information about its experimental validation to allow selection and filtering at different quality levels. As a whole, it provides easy access to the interactomes from specific species and includes a global uniform compendium of 90,379 distinct proteins and 678,441 singular interactions. APID integrates and unifies PPIs from major primary databases of molecular interactions, from other specific repositories and also from experimentally resolved 3D structures of protein complexes where more than two proteins were identified. For this purpose, a collection of 8,388 structures were analyzed to identify specific PPIs. APID also includes a new graph tool (based on Cytoscape.js) for visualization and interactive analyses of PPI networks. The server does not require registration and it is freely available for use at http://apid.dep.usal.es. PMID:27131791

  5. Gliadin Detection in Food by Immunoassay

    NASA Astrophysics Data System (ADS)

    Grant, Gordon; Sporns, Peter; Hsieh, Y.-H. Peggy

    Immunoassays are very sensitive and efficient tests that are commonly used to identify a specific protein. Examples of applications in the food industry include identification of proteins expressed in genetically modified foods, allergens, or proteins associated with a disease, including celiac disease. This genetic disease is associated with Europeans and affects about one in every 200 people in North America. These individuals react immunologically to wheat proteins, and consequently their own immune systems attack and damage their intestines. This disease can be managed if wheat proteins, specifically "gliadins," are avoided in foods.

  6. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  7. HIV Molecular Immunology 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusim, Karina; Korber, Bette Tina Marie; Barouch, Dan

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through themore » coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.« less

  8. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  9. Different roles of CD4, CD8 and γδ T-lymphocytes in naive and vaccinated chickens during Salmonella Enteritidis infection.

    PubMed

    Sekelova, Zuzana; Polansky, Ondrej; Stepanova, Hana; Fedr, Radek; Faldynova, Marcela; Rychlik, Ivan; Vlasatikova, Lenka

    2017-07-01

    Lymphocytes represent the key antigen-specific leukocyte subpopulation. Despite their importance in mounting an immune response, an unbiased description of proteins expressed by chicken lymphocytes has not been presented. In this study, we therefore intravenously infected chickens with Salmonella Enteritidis, sorted CD4, CD8 and γδ T-lymphocytes from the spleen by flow cytometry and determined the proteome of each population by LC-MS/MS. CD4 T-lymphocyte characteristic proteins included ubiquitin SUMO-like domain and BAR domain containing proteins. CD8 T-lymphocyte specific proteins were characterized by purine ribonucleoside triphosphate binding and were involved in cell differentiation, cell activation and regulation of programmed cell death. γδ T-lymphocyte specific proteins exhibited enrichment of small GTPase of Rab type and GTP binding. Following infection, inducible proteins in CD4 lymphocytes included ribosomal proteins and downregulated proteins localized to the lysosome. CD8 T-lymphocytes induced MCM complex proteins, proteins required for DNA replication and machinery for protein processing in the endoplasmic reticulum. Proteins inducible in γδ T-lymphocytes belonged to immune system response, oxidative phosphorylation and the spliceosome. In this study, we predicted the likely events in lymphocyte response to systemic bacterial infection and identified proteins which can be used as markers specific for each lymphocyte subpopulation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  11. Identification of species- and tissue-specific proteins using proteomic strategy

    NASA Astrophysics Data System (ADS)

    Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.

    2017-09-01

    Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.

  12. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  13. Methods for validating the presence of and characterizing proteins deposited onto an array

    DOEpatents

    Schabacker, Daniel S.

    2010-09-21

    A method of determining if proteins have been transferred from liquid-phase protein fractions to an array comprising staining the array with a total protein stain and imaging the array, optionally comparing the staining with a standard curve generated by staining known amounts of a known protein on the same or a similar array; a method of characterizing proteins transferred from liquid-phase protein fractions to an array including staining the array with a post-translational modification-specific (PTM-specific) stain and imaging the array and, optionally, after staining the array with a PTM-specific stain and imaging the array, washing the array, re-staining the array with a total protein stain, imaging the array, and comparing the imaging with the PTM-specific stain with the imaging with the total protein stain; stained arrays; and images of stained arrays.

  14. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  15. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    PubMed Central

    2011-01-01

    Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/. Conclusions Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners. PMID:21682895

  16. De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity

    PubMed Central

    Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David

    2017-01-01

    In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862

  17. Protein Knockdown Technology: Application of Ubiquitin Ligase to Cancer Therapy.

    PubMed

    Ohoka, Nobumichi; Shibata, Norihito; Hattori, Takayuki; Naito, Mikihiko

    2016-01-01

    Selective degradation of pathogenic proteins by small molecules in cells is a novel approach for development of therapeutic agents against various diseases, including cancer. We and others have developed a protein knockdown technology with a series of hybrid small compounds, called SNIPERs (Specific and Nongenetic IAP-dependent Protein ERasers); and peptidic chimeric molecules, called PROTACs (proteolysis-targeting chimeric molecules), which induce selective degradation of target proteins via the ubiquitin-proteasome pathway. These compounds include two different ligands connected by a linker; one is a ligand for a ubiquitin ligase and the other is a ligand for the target protein, which are expected to crosslink these proteins in cells. Theoretically, any cytosolic protein can be targeted for degradation by this technology. To date, several SNIPERs and PROTACs against various oncogenic proteins have been developed, which specifically induce polyubiquitylation and proteasomal degradation of the oncogenic proteins, resulting in cell death, growth arrest, or impaired migration of cancer cells. Thus, this protein knockdown technology has a great potential for cancer therapy.

  18. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    PubMed Central

    Herbert, Martha

    2017-01-01

    Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease. PMID:28894619

  19. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    PubMed

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    PubMed

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  1. Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians.

    PubMed

    Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang

    2017-08-15

    To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The N-end rule pathway and regulation by proteolysis

    PubMed Central

    Varshavsky, Alexander

    2011-01-01

    The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing Nα-terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus, most proteins harbor a specific degradation signal, termed AcN-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases, and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation, and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights. PMID:21633985

  3. Tribbles in normal and malignant haematopoiesis.

    PubMed

    Stein, Sarah J; Mack, Ethan A; Rome, Kelly S; Pear, Warren S

    2015-10-01

    The tribbles protein family, an evolutionarily conserved group of pseudokinases, have been shown to regulate multiple cellular events including those involved in normal and malignant haematopoiesis. The three mammalian Tribbles homologues, Trib1, Trib2 and Trib3 are characterized by conserved motifs, including a pseudokinase domain and a C-terminal E3 ligase-binding domain. In this review, we focus on the role of Trib (mammalian Tribbles homologues) proteins in mammalian haematopoiesis and leukaemia. The Trib proteins show divergent expression in haematopoietic cells, probably indicating cell-specific functions. The roles of the Trib proteins in oncogenesis are also varied and appear to be tissue-specific. Finally, we discuss the potential mechanisms by which the Trib proteins preferentially regulate these processes in multiple cell types. © 2015 Authors; published by Portland Press Limited.

  4. HIV Molecular Immunology 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusim, Karina; Korber, Bette Tina; Brander, Christian

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and bindingmore » sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided. Alignments of CTL, helper T-cell, and antibody epitopes are available through the search interface on our web site at http:// www.hiv.lanl.gov/content/immunology.« less

  5. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  6. Dietary protein intake and quality in early life: impact on growth and obesity.

    PubMed

    Lind, Mads V; Larnkjær, Anni; Mølgaard, Christian; Michaelsen, Kim F

    2017-01-01

    Obesity is an increasing problem and high-protein intake early in life seems to increase later risk of obesity. This review summarizes recent publications in the area including observational and intervention studies and publications on underlying mechanisms. Recent observational and randomized controlled trials confirmed that high-protein intake in early life seems to increase early weight gain and the risk of later overweight and obesity. Recent studies have looked at the effect of different sources of protein, and especially high-animal protein intake seems to have an effect on obesity. Specific amino acids, such as leucine, have also been implicated in increasing later obesity risk maybe via specific actions on insulin-like growth factor I. Furthermore, additional underlying mechanisms including epigenetics have been linked to long-term obesogenic programming. Finally, infants with catch-up growth or specific genotypes might be particularly vulnerable to high-protein intake. Recent studies confirm the associations between high-protein intake during the first 2 years and later obesity. Furthermore, knowledge of the mechanisms involved and the role of different dietary protein sources and amino acids has increased, but intervention studies are needed to confirm the mechanisms. Avoiding high-protein intake in early life holds promise as a preventive strategy for childhood obesity.

  7. SP and KLF Transcription Factors in Digestive Physiology and Diseases.

    PubMed

    Kim, Chang-Kyung; He, Ping; Bialkowska, Agnieszka B; Yang, Vincent W

    2017-06-01

    Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  9. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).

    PubMed

    Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J

    2018-01-01

    The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.

  10. Food allergy animal models: an overview.

    PubMed

    Helm, Ricki M

    2002-05-01

    Specific food allergy is characterized by sensitization to innocuous food proteins with production of allergen-specific IgE that binds to receptors on basophils and mast cells. Upon recurrent exposure to the same allergen, an allergic response is induced by mediator release following cross-linking of cell-bound allergen-specific IgE. The determination of what makes an innocuous food protein an allergen in predisposed individuals is unknown; however, mechanistic and protein allergen predictive models are being actively investigated in a number of animal models. Currently, there is no animal model that will actively profile known food allergens, predict the allergic potential of novel food proteins, or demonstrate clinically the human food allergic sensitization/allergic response. Animal models under investigation include mice, rats, the guinea pig, atopic dog, and neonatal swine. These models are being assessed for production of IgE, clinical responses to re-exposure, and a ranking of food allergens (based on potency) including a nonfood allergen protein source. A selection of animal models actively being investigated that will contribute to our understanding of what makes a protein an allergen and future predictive models for assessing the allergenicity of novel proteins is presented in this review.

  11. A script to highlight hydrophobicity and charge on protein surfaces

    PubMed Central

    Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.

    2015-01-01

    The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483

  12. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis.

    PubMed

    Wang, Dan; Sun, Yong; Chang, Lili; Tong, Zheng; Xie, Quanliang; Jin, Xiang; Zhu, Liping; He, Peng; Li, Hongbin; Wang, Xuchu

    2018-06-30

    Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes*

    PubMed Central

    Parker, Benjamin L.; Thaysen-Andersen, Morten; Fazakerley, Daniel J.; Holliday, Mira; Packer, Nicolle H.; James, David E.

    2016-01-01

    Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane. PMID:26537798

  14. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes

    PubMed Central

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  15. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGES

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; ...

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  16. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  17. Chemoenzymatic Labeling of Proteins: Techniques and Approaches

    PubMed Central

    Rashidian, Mohammad; Dozier, Jonathan K.; Distefano, Mark D.

    2013-01-01

    Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally-occurring post-translational modifications, for creating antibody-drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics and protein-protein interactions and for the preparation of protein-polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups are not only inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase and N-myristoyl transferase. PMID:23837885

  18. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  19. Rap G protein signal in normal and disordered lymphohematopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minato, Nagahiro, E-mail: minato@imm.med.kyoto-u.ac.jp

    2013-09-10

    Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the developmentmore » and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.« less

  20. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. © 2015 American Society for Nutrition.

  1. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk?12

    PubMed Central

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-01-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. PMID:26567196

  2. Psp Stress Response Proteins Form a Complex with Mislocalized Secretins in the Yersinia enterocolitica Cytoplasmic Membrane.

    PubMed

    Srivastava, Disha; Moumene, Amal; Flores-Kim, Josué; Darwin, Andrew J

    2017-09-12

    The bacterial phage shock protein system (Psp) is a conserved extracytoplasmic stress response that is essential for the virulence of some pathogens, including Yersinia enterocolitica It is induced by events that can compromise inner membrane (IM) integrity, including the mislocalization of outer membrane pore-forming proteins called secretins. In the absence of the Psp system, secretin mislocalization permeabilizes the IM and causes rapid cell death. The Psp proteins PspB and PspC form an integral IM complex with two independent roles. First, the PspBC complex is required to activate the Psp response in response to some inducing triggers, including a mislocalized secretin. Second, PspBC are sufficient to counteract mislocalized secretin toxicity. Remarkably, secretin mislocalization into the IM induces psp gene expression without significantly affecting the expression of any other genes. Furthermore, psp null strains are killed by mislocalized secretins, whereas no other null mutants have been found to share this specific secretin sensitivity. This suggests an exquisitely specific relationship between secretins and the Psp system, but there has been no mechanism described to explain this. In this study, we addressed this deficiency by using a coimmunoprecipitation approach to show that the Psp proteins form a specific complex with mislocalized secretins in the Y. enterocolitica IM. Importantly, analysis of different secretin mutant proteins also revealed that this interaction is absolutely dependent on a secretin adopting a multimeric state. Therefore, the Psp system has evolved with the ability to detect and detoxify dangerous secretin multimers while ignoring the presence of innocuous monomers. IMPORTANCE The phage shock protein (Psp) response has been linked to important phenotypes in diverse bacteria, including those related to antibiotic resistance, biofilm formation, and virulence. This has generated widespread interest in understanding various aspects of its function. Outer membrane secretin proteins are essential components of export systems required for the virulence of many bacterial pathogens. However, secretins can mislocalize into the inner membrane, and this induces the Psp response in a highly specific manner and kills Psp-defective strains with similar specificity. There has been no mechanism described to explain this exquisitely specific relationship between secretins and the Psp system. Therefore, this study provides a critical advance by discovering that Psp effector proteins form a complex with secretins in the Yersinia enterocolitica inner membrane. Remarkably, this interaction is absolutely dependent on a secretin adopting its multimeric state. Therefore, the Psp system detects and detoxifies dangerous secretin multimers, while ignoring the presence of innocuous secretin monomers. Copyright © 2017 Srivastava et al.

  3. Identification and characterization of insect-specific proteins by genome data analysis

    PubMed Central

    Zhang, Guojie; Wang, Hongsheng; Shi, Junjie; Wang, Xiaoling; Zheng, Hongkun; Wong, Gane Ka-Shu; Clark, Terry; Wang, Wen; Wang, Jun; Kang, Le

    2007-01-01

    Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts) Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts). ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through experiments reported in the literature, supporting the accuracy of our approach. PMID:17407609

  4. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    NASA Astrophysics Data System (ADS)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  5. Computational Model for DNA Organization Mediated by Protein Interaction in Prokaryotes

    NASA Astrophysics Data System (ADS)

    Garimella, Karthik; Kharel, Savan

    2016-03-01

    In Escherichia Coli, there are several mechanisms that drive chromosomal organization. We know through experiments that the E. Coli chromosome is condensed into highly structured regions known as macrodomains (MDs). One of the regions known as the Terminus undergoes DNA-bridging condensation that form loops between distant DNA sites and it is known to be mediated by a Terminus specific protein, which binds to specific markers within the Terminus region. In the absence of Terminus specific protein, however, the Terminus region is known to not condense nearly as much, which will likely impede several biological processes including DNA replication. In order to understand the molecular basis of protein mediation in vivo several models of Terminus specific segregation have been constructed in silico which model DNA as polymer chains.

  6. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  7. Urine protein profiling identified alpha-1-microglobulin and haptoglobin as biomarkers for early diagnosis of acute allograft rejection following kidney transplantation.

    PubMed

    Stubendorff, Beatrice; Finke, Stephanie; Walter, Martina; Kniemeyer, Olaf; von Eggeling, Ferdinand; Gruschwitz, Torsten; Steiner, Thomas; Ott, Undine; Wolf, Gunter; Wunderlich, Heiko; Junker, Kerstin

    2014-12-01

    Early diagnosis of acute rejection and effective immunosuppressive therapy lead to improvement in graft survival following kidney transplantation. In this study, we aimed to establish a urinary protein profile suitable to distinguish between patients with rejection and stable graft function and to predict acute rejection based on postoperatively collected urine samples. A further objective was to identify candidate proteins for the use as biomarkers in clinical practice. Urine samples of 116 kidney recipients were included. Rejection was proven by biopsy (n = 58), and stable transplant function was monitored for at least 2 years (n = 58). Postoperative urine samples were collected between 3rd and 10th day following transplantation. Urinary protein profiles were obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Protein identification and validation were performed using multiplex fluorescence 2DE, peptide mass fingerprinting and enzyme-linked immunosorbent assay. A protein profile including four mass peaks differentiated acute rejection from stable transplants at the time point of rejection and at the postoperative state with 73 % sensitivity and 88 % specificity. Alpha-1-microglobulin (A1MG) and Haptoglobin (Hp) were identified as putative rejection biomarkers. Protein levels were significantly higher in postoperative urine from patients with rejection (A1MG 29.13 vs. 22.06 μg/ml, p = 0.001; Hp 628.34 vs. 248.57 ng/ml, p = 0.003). The combination of both proteins enabled the diagnosis of early rejection with 85 % sensitivity and 80 % specificity. Protein profiling using mass spectrometry is suitable for noninvasive detection of rejection-specific changes following kidney transplantation. A specific protein profile enables the prediction of early acute allograft rejection in the immediate postoperative period. A1MG and Hp appear to be reliable rejection biomarkers.

  8. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis.

    PubMed

    Piñol-Roma, S

    1999-01-01

    rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

  9. Site-specific protein labeling with PRIME and chelation-assisted Click chemistry

    PubMed Central

    Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.

    2016-01-01

    This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180

  10. Specific RNP capture with antisense LNA/DNA mixmers.

    PubMed

    Rogell, Birgit; Fischer, Bernd; Rettel, Mandy; Krijgsveld, Jeroen; Castello, Alfredo; Hentze, Matthias W

    2017-08-01

    RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe "specific ribonucleoprotein (RNP) capture," a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein-RNA interactions taking place at "zero distance." Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins. © 2017 Rogell et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants.

    PubMed

    Krystkowiak, Izabella; Manguy, Jean; Davey, Norman E

    2018-06-05

    There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.

  12. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane.

    PubMed

    Carel, Clément; Marcoux, Julien; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Demange, Pascal; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G; Renault, Marie A M

    2017-04-18

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum , a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum , we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O -mycoloylation, pyroglutamylation, and N -formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O -acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment.

  13. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane

    PubMed Central

    Carel, Clément; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G.; Renault, Marie A. M.

    2017-01-01

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum, a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum, we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O-mycoloylation, pyroglutamylation, and N-formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O-acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment. PMID:28373551

  14. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similarmore » protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.« less

  15. Immunofluorescence Analysis of Endogenous and Exogenous Centromere-kinetochore Proteins

    PubMed Central

    Niikura, Yohei; Kitagawa, Katsumi

    2016-01-01

    "Centromeres" and "kinetochores" refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.1-4 Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells. PMID:26967065

  16. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    PubMed

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  17. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less

  18. Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1998-01-01

    Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.

  19. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease

    PubMed Central

    Chatterjee, Gaurav; McGraw, Claire; Kasturirangan, Srinath; Schulz, Philip

    2012-01-01

    Protein misfolding and aggregation is a critically important feature in many devastating neurodegenerative diseases, therefore characterization of the CSF concentration profiles of selected key forms and morphologies of proteins involved in these diseases, including β-amyloid (Aβ) and α-synuclein (a-syn), can be an effective diagnostic assay for these diseases. CSF levels of tau and Aβ have been shown to have great promise as biomarkers for Alzheimer’s disease. However since the onset and progression of many neurodegenerative diseases have been strongly correlated with the presence of soluble oligomeric aggregates of proteins including various Aβ and a-syn aggregate species, specific detection and quantification of levels of each of these different toxic protein species in CSF may provide a simple and accurate means to presymptomatically diagnose and distinguish between these diseases. Here we show that the presence of different protein morphologies in human CSF samples can be readily detected using highly selective morphology specific reagents in conjunction with a sensitive electronic biosensor. We further show that these morphology specific reagents can readily distinguish between post-mortem CSF samples from AD, PD and cognitively normal sources. These studies suggest that detection of specific oligomeric aggregate species holds great promise as sensitive biomarkers for neurodegenerative disease. PMID:22076255

  20. The Protein-DNA Interface database

    PubMed Central

    2010-01-01

    The Protein-DNA Interface database (PDIdb) is a repository containing relevant structural information of Protein-DNA complexes solved by X-ray crystallography and available at the Protein Data Bank. The database includes a simple functional classification of the protein-DNA complexes that consists of three hierarchical levels: Class, Type and Subtype. This classification has been defined and manually curated by humans based on the information gathered from several sources that include PDB, PubMed, CATH, SCOP and COPS. The current version of the database contains only structures with resolution of 2.5 Å or higher, accounting for a total of 922 entries. The major aim of this database is to contribute to the understanding of the main rules that underlie the molecular recognition process between DNA and proteins. To this end, the database is focused on each specific atomic interface rather than on the separated binding partners. Therefore, each entry in this database consists of a single and independent protein-DNA interface. We hope that PDIdb will be useful to many researchers working in fields such as the prediction of transcription factor binding sites in DNA, the study of specificity determinants that mediate enzyme recognition events, engineering and design of new DNA binding proteins with distinct binding specificity and affinity, among others. Finally, due to its friendly and easy-to-use web interface, we hope that PDIdb will also serve educational and teaching purposes. PMID:20482798

  1. The Protein-DNA Interface database.

    PubMed

    Norambuena, Tomás; Melo, Francisco

    2010-05-18

    The Protein-DNA Interface database (PDIdb) is a repository containing relevant structural information of Protein-DNA complexes solved by X-ray crystallography and available at the Protein Data Bank. The database includes a simple functional classification of the protein-DNA complexes that consists of three hierarchical levels: Class, Type and Subtype. This classification has been defined and manually curated by humans based on the information gathered from several sources that include PDB, PubMed, CATH, SCOP and COPS. The current version of the database contains only structures with resolution of 2.5 A or higher, accounting for a total of 922 entries. The major aim of this database is to contribute to the understanding of the main rules that underlie the molecular recognition process between DNA and proteins. To this end, the database is focused on each specific atomic interface rather than on the separated binding partners. Therefore, each entry in this database consists of a single and independent protein-DNA interface.We hope that PDIdb will be useful to many researchers working in fields such as the prediction of transcription factor binding sites in DNA, the study of specificity determinants that mediate enzyme recognition events, engineering and design of new DNA binding proteins with distinct binding specificity and affinity, among others. Finally, due to its friendly and easy-to-use web interface, we hope that PDIdb will also serve educational and teaching purposes.

  2. Efficient Site-Specific Labeling of Proteins via Cysteines

    PubMed Central

    Kim, Younggyu; Ho, Sam O.; Gassman, Natalie R.; Korlann, You; Landorf, Elizabeth V.; Collart, Frank R.; Weiss, Shimon

    2011-01-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70–90%, and specificities are better than ~95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis. PMID:18275130

  3. Efficient site-specific labeling of proteins via cysteines.

    PubMed

    Kim, Younggyu; Ho, Sam O; Gassman, Natalie R; Korlann, You; Landorf, Elizabeth V; Collart, Frank R; Weiss, Shimon

    2008-03-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.

  4. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    PubMed

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  5. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  6. Phage-display for identifying peptides that bind the spike protein of transmissible gastroenteritis virus and possess diagnostic potential

    USDA-ARS?s Scientific Manuscript database

    The spike (S) protein is a key structural protein of coronaviruses including, the porcine transmissible gastroenteritis virus (TGEV). The S protein is a type I membrane glycoprotein located in the viral envelope and is responsible for mediating the binding of viral particles to specific cell recepto...

  7. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  8. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  9. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle.

    PubMed

    Armstrong, Stuart D; Xia, Dong; Bah, Germanus S; Krishna, Ritesh; Ngangyung, Henrietta F; LaCourse, E James; McSorley, Henry J; Kengne-Ouafo, Jonas A; Chounna-Ndongmo, Patrick W; Wanji, Samuel; Enyong, Peter A; Taylor, David W; Blaxter, Mark L; Wastling, Jonathan M; Tanya, Vincent N; Makepeace, Benjamin L

    2016-08-01

    Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle*

    PubMed Central

    Armstrong, Stuart D.; Xia, Dong; Bah, Germanus S.; Krishna, Ritesh; Ngangyung, Henrietta F.; LaCourse, E. James; McSorley, Henry J.; Kengne-Ouafo, Jonas A.; Chounna-Ndongmo, Patrick W.; Wanji, Samuel; Enyong, Peter A.; Taylor, David W.; Blaxter, Mark L.; Wastling, Jonathan M.; Tanya, Vincent N.; Makepeace, Benjamin L.

    2016-01-01

    Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus. The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers. PMID:27226403

  11. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    PubMed

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  12. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE PAGES

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.; ...

    2017-04-19

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  13. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  14. Serum protein mediators of dementia and aging proper.

    PubMed

    Royall, Donald R; Al-Rubaye, Safa; Bishnoi, Ram; Palmer, Raymond F

    2016-12-03

    The latent variable "δ" (for "dementia") appears to be uniquely responsible for the dementing aspects of cognitive impairment. Age, depressive symptoms, gender and the apolipoprotein E (APOE) ε4 allele are independently associated with δ. In this analysis, we explore serum proteins as potential mediators of age's specific association with δ in a large, ethnically diverse longitudinal cohort, the Texas Alzheimer's Research and Care Consortium (TARCC). 22 serum proteins were recognized as partial mediators of age's association with δ. These include Insulin-like Growth Factor-Binding Protein 2 (IGF-BP2), which we had previously associated with age-specific cognitive change, and both Pancreatic Polypeptide (PP) and von Willebrand Factor (vWF), previously associated with δ. Nine other δ-related proteins were not confirmed by this ethnicity adjusted analysis. Our findings suggest that age's association with the disabling fraction of cognitive performance is partially mediated by serum proteins, somatomedins and hormones. Those proteins may offer targets for the specific treatment of age-related effects on dementia severity and conversion risk.

  15. In-situ investigation of protein and DNA structure using UVRRS

    NASA Astrophysics Data System (ADS)

    Greek, L. Shane; Schulze, H. Georg; Blades, Michael W.; Haynes, Charles A.; Turner, Robin F. B.

    1997-05-01

    Ultraviolet resonance Raman spectroscopy (UVRRS) has the potential to become a sensitive, specific, versatile bioanalytical and biophysical technique for routine investigations of proteins, DNA, and their monomeric components, as well as a variety smaller, physiologically important aromatic molecules. The transition of UVRRS from a complex, specialized spectroscopic method to a common laboratory assay depends upon several developments, including a robust sample introduction method permitting routine, in situ analysis in standard laboratory environments. To this end, we recently reported the first fiber-optic probes suitable for deep-UV pulsed laser UVRRS. In this paper, we extend this work by demonstrating the applicability of such probes to studies of biochemical relevance, including investigations of the resonance enhancement of phosphotyrosine, thermal denaturation of RNase T1, and specific and non-specific protein binding. The advantages and disadvantages of the probes are discussed with reference to sample conditions and probe design considerations.

  16. Novel Peptide Sequence (“IQ-tag”) with High Affinity for NIR Fluorochromes Allows Protein and Cell Specific Labeling for In Vivo Imaging

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2007-01-01

    Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285

  17. The use of cell microinjection for the in vivo analysis of viral transcriptional regulatory protein domains.

    PubMed

    Green, Maurice; Thorburn, Andrew; Kern, Robert; Loewenstein, Paul M

    2007-01-01

    Microinjection of mammalian cells provides a powerful method for analyzing in vivo functions of viral genes and viral gene products. By microinjection, a controlled amount (ranging from several to many thousands of copies) of a viral or cellular gene, a protein product of a gene, a polypeptide fragment encoding a specific protein domain, or an RNA molecule can be delivered into a target cell and the functional consequences analyzed. Microinjection can be used to deliver antibody targeted to a specific protein domain in order to analyze the requirement of the protein for specific cell functions such as cell cycle progression, transcription of specific genes, or intracellular transport. This chapter describes examples of the successful use of microinjection to probe adenovirus E1A regulatory mechanisms. Detailed methods are provided for manual and semiautomatic microinjection of mammalian cells as well as bioassay protocols for microinjected cells including immunofluorescence, colorimetic, in situ hybridization, and autoradiography.

  18. Specificity of Intramembrane Protein–Lipid Interactions

    PubMed Central

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  19. A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer.

    PubMed

    Zhen, Yuanli; Zhang, Yajie; Yu, Yonghao

    2017-11-21

    PARP1 plays a critical role in regulating many biological processes linked to cellular stress responses. Although DNA strand breaks are potent stimuli of PARP1 enzymatic activity, the context-dependent mechanism regulating PARP1 activation and signaling is poorly understood. We performed global characterization of the PARP1-dependent, Asp/Glu-ADP-ribosylated proteome in a panel of cell lines originating from benign breast epithelial cells, as well as common subtypes of breast cancer. From these analyses, we identified 503 specific ADP-ribosylation sites on 322 proteins. Despite similar expression levels, PARP1 is differentially activated in these cell lines under genotoxic conditions, which generates signaling outputs with substantial heterogeneity. By comparing protein abundances and ADP-ribosylation levels, we could dissect cell-specific PARP1 targets that are driven by unique expression patterns versus cell-specific regulatory mechanisms of PARylation. Intriguingly, PARP1 modifies many proteins in a cell-specific manner, including those involved in transcriptional regulation, mRNA metabolism, and protein translation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Simultaneous neuron- and astrocyte-specific fluorescent marking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignmentmore » of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.« less

  2. Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.

    PubMed

    McCarthy, Alex J; Lindsay, Jodi A

    2013-10-01

    Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A Bromodomain-Containing Protein from Tomato Specifically Binds Potato Spindle Tuber Viroid RNA In Vitro and In Vivo

    PubMed Central

    Martínez de Alba, Angel Emilio; Sägesser, Rudolf; Tabler, Martin; Tsagris, Mina

    2003-01-01

    For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed. PMID:12915580

  4. A Novel Class of Modular Transporters for Vitamins in Prokaryotes ▿ †

    PubMed Central

    Rodionov, Dmitry A.; Hebbeln, Peter; Eudes, Aymerick; ter Beek, Josy; Rodionova, Irina A.; Erkens, Guus B.; Slotboom, Dirk J.; Gelfand, Mikhail S.; Osterman, Andrei L.; Hanson, Andrew D.; Eitinger, Thomas

    2009-01-01

    The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters. PMID:18931129

  5. Estimation of genetic parameters and detection of chromosomal regions affecting the major milk proteins and their post translational modifications in Danish Holstein and Danish Jersey cattle.

    PubMed

    Buitenhuis, Bart; Poulsen, Nina A; Gebreyesus, Grum; Larsen, Lotte B

    2016-08-02

    In the Western world bovine milk products are an important protein source in human diet. The major proteins in bovine milk are the four caseins (CN), αS1-, αS2-, β-, and k-CN and the two whey proteins, β-LG and α-LA. It has been shown that both the amount of specific CN and their isoforms including post-translational modifications (PTM) influence technological properties of milk. Therefore, the aim of this study was to 1) estimate genetic parameters for individual proteins in Danish Holstein (DH) (n = 371) and Danish Jersey (DJ) (n = 321) milk, and 2) detect genomic regions associated with specific milk protein and their different PTM forms using a genome-wide association study (GWAS) approach. For DH, high heritability estimates were found for protein percentage (0.47), casein percentage (0.43), k-CN (0.77), β-LG (0.58), and α-LA (0.40). For DJ, high heritability estimates were found for protein percentage (0.70), casein percentage (0.52), and α-LA (0.44). The heritability for G-k-CN, U-k-CN and GD was higher in the DH compared to the DJ, whereas the heritability for the PD of αS1-CN was lower in DH compared to DJ, whereas the PD for αS2-CN was higher in DH compared to DJ. The GWAS results for the main milk proteins were in line what has been earlier published. However, we showed that there were SNPs specifically regulating G-k-CN in DH. Some of these SNPs were assigned to casein protein kinase genes (CSNK1G3, PRKCQ). The genetic analysis of the major milk proteins and their PTM forms revealed that these were heritable in both DH and DJ. In DH, genomic regions specific for glycosylation of k-CN were detected. Furthermore, genomic regions for the major milk proteins confirmed the regions on BTA6 (casein cluster), BTA11 (PEAP), and BTA14 (DGAT1) as important regions influencing protein composition in milk. The results from this study provide confidence that it is possible to breed for specific milk protein including the different PTM forms.

  6. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  7. Case report: hematemesis could be an unusual presentation of cow's milk protein allergy in children in Egypt.

    PubMed

    Zaher, Manal Mohamed; Ahmed, Eman Mohamed; Morsy, Amal Abd El Alim

    2014-01-01

    Cow's milk protein allergy (CMPA) is common in infants with variable clinical presentation including varied gastrointestinal manifestation. Cow's milk protein allergy chiefly, involving occurs in children below the age of 3 years, successful therapy depends on completely eliminating cow's milk proteins (CMP) from the child's diet. Ideally, with the replacement of hypo or an allergenic food. Symptoms suggestive of CMPA may be encountered in approximately 5 to 15% of infants emphasizing the importance of controlled elimination/milk challenge procedures. We report on an Egyptian male infant, who developed frequent attacks of hematemesis when begin to eat foods other than breast milk including cow's milk and its dairy products at the age of three months. Possible cow's milk protein allergy was suspected. Further diagnostic work-up was done including: Hb, hematocrit, MCV: iron, ferritin, CRP, occult blood in stools, antibodies to H-pylori and upper GIT endoscopy and biopsy from snip of duodenal mucosa. Measurement of serum cow milk protein specific IgE by radio allegro sorbent test (RAST) technique (immune CAP specific IgE method) and results revealed cow's milk protein allergy. It is concluded that cow's milk protein allergy should be considered in cases of hematemesis presented in early infancy in infants who fed cow's milk early and that hematemesis should be added to the list of clinical presentation of CMPA.

  8. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  9. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    NASA Astrophysics Data System (ADS)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [Austin, TX

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Specific RNP capture with antisense LNA/DNA mixmers

    PubMed Central

    Rogell, Birgit; Fischer, Bernd; Rettel, Mandy; Krijgsveld, Jeroen; Castello, Alfredo; Hentze, Matthias W.

    2017-01-01

    RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe “specific ribonucleoprotein (RNP) capture,” a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein–RNA interactions taking place at “zero distance.” Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins. PMID:28476952

  1. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies

    PubMed Central

    Venter, P. Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E.; Schneemann, Anette

    2011-01-01

    Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery and tissue-specific bio-imaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to covalently display a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187

  2. Development of a Recombinant Protein-Based Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycoplasma bovis Infection in Cattle

    PubMed Central

    Wawegama, Nadeeka K.; Kanci, Anna; Marenda, Marc S.; Markham, Philip F.

    2014-01-01

    Mycoplasma bovis causes a range of diseases in cattle, including mastitis, arthritis, and pneumonia. However, accurate serological diagnosis of infection remains problematic. The studies described here aimed to identify an antigen that might be used to develop a more specific and sensitive diagnostic assay. A 226-kDa immunogenic protein was consistently detected in Western blots by antibodies in sera from calves experimentally infected with M. bovis. This protein was shown to be a membrane protein with lipase activity and was named mycoplasma immunogenic lipase A (MilA). Different regions of MilA were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins and recombinant products from the amino-terminal end shown to have strong immunoreactivity with M. bovis-specific bovine sera. The most immunoreactive fusion protein, GST-MilA-ab, was used to develop indirect IgM and IgG enzyme-linked immunosorbent assays (ELISAs). The IgM ELISA detected M. bovis-specific IgM antibody 2 weeks after infection with 97.1% sensitivity and had a specificity of 63.3%, while the IgG ELISA detected M. bovis-specific IgG 3 weeks after infection with 92.86% sensitivity and had a specificity of 98.7%, demonstrating that the IgG ELISA has potential for use as a sensitive and specific assay for detecting infection in cattle. PMID:24334686

  3. Chromatin immunoprecipitation of mouse embryos.

    PubMed

    Voss, Anne K; Dixon, Mathew P; McLennan, Tamara; Kueh, Andrew J; Thomas, Tim

    2012-01-01

    During prenatal development, a large number of different cell types are formed, the vast majority of which contain identical genetic material. The basis of the great variety in cell phenotype and function is the differential expression of the approximately 25,000 genes in the mammalian genome. Transcriptional activity is regulated at many levels by proteins, including members of the basal transcriptional apparatus, DNA-binding transcription factors, and chromatin-binding proteins. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency, with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method to assess if chromatin modifications or proteins are present at a specific locus. ChIP involves the cross linking of DNA and associated proteins and immunoprecipitation using specific antibodies to DNA-associated proteins followed by examination of the co-precipitated DNA sequences or proteins. In the last few years, ChIP has become an essential technique for scientists studying transcriptional regulation and chromatin structure. Using ChIP on mouse embryos, we can document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development. Here, we describe a ChIP technique adapted for mouse embryos.

  4. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  5. Glycosylation Changes in Serum Proteins Identify Patients with Pancreatic Cancer.

    PubMed

    Drabik, Anna; Bodzon-Kulakowska, Anna; Suder, Piotr; Silberring, Jerzy; Kulig, Jan; Sierzega, Marek

    2017-04-07

    After more than a decade of biomarker discovery using advanced proteomic and genomic approaches, very few biomarkers have been involved in clinical diagnostics. Most candidate biomarkers are focused on the protein component. Targeting post-translational modifications (PTMs) in combination with protein sequences will provide superior diagnostic information with regards to sensitivity and specificity. Glycosylation is one of the most common and functionally important PTMs. It plays a central role in many biological processes, including protein folding, host-pathogen interactions, immune response, and inflammation. Cancer-associated aberrant glycosylation has been identified in various types of cancer. Expression of cancer-specific glycan epitopes represents an excellent opportunity for diagnostics and potentially specific detection of tumors. Here, we report four proteins (LIFR, CE350, VP13A, HPT) found in sera from pancreatic cancer patients carrying aberrant glycan structures as compared to those of controls.

  6. Species-specific serine-threonine protein kinase Pkb2 of Bifidobacterium longum subsp. longum: Genetic environment and substrate specificity.

    PubMed

    Nezametdinova, V Z; Mavletova, D A; Alekseeva, M G; Chekalina, M S; Zakharevich, N V; Danilenko, V N

    2018-06-01

    The objective of this study was to determine for phosphorylated substrates of the species-specific serine-threonine protein kinase (STPK) Pkb2 from Bifidobacterium longum subsp. longum GT15. Two approaches were employed: analyses of phosphorylated membrane vesicles protein spectra following kinase reactions and analyses of the genes surrounding pkb2. A bioinformatics analysis of the genes surrounding pkb2 found a species-specific gene cluster PFNA in the genomes of 34 different bifidobacterial species. The identified cluster consisted of 5-8 genes depending on the species. The first five genes are characteristic for all considered species. These are the following genes encoding serine-threonine protein kinase (pkb2), fibronectin type III domain-containing protein (fn3), AAA-ATPase (aaa-atp), hypothetical protein with DUF58 domain (duf58) and transglutaminase (tgm). The sixth (protein phosphatase, prpC), seventh (hypothetical protein, BLGT_RS02790), and eighth (FHA domain-containing protein, fha) genes are included in this cluster, but they are not found in all species. The operon organization of the PFNA gene cluster was confirmed with transcriptional analysis. AAA-ATPase, which is encoded by a gene of the PFNA gene cluster, was found to be a substrate of the STPK Pkb2. Fourteen AAA-ATPase sites (seven serine, six threonine, and one tyrosine) phosphorylated by STPK Pkb2 were revealed. Analysis of the spectra of phosphorylated membrane vesicles proteins allowed us to identify eleven proteins that were considered as possible Pkb2 substrates. They belong to several functional classes: proteins involved in transcription and translation; proteins of the F1-domain of the FoF1-ATPase; ABC-transporters; molecular chaperone GroEL; and glutamine synthase, GlnA1. All identified proteins were considered moonlighting proteins. Three out of 11 proteins (glutamine synthetase GlnA1 and FoF1-ATPase alpha and beta subunits) were selected for further in vitro phosphorylation assays and were shown to be phosphorylated by Pkb2. Four phosphorylated substrates of the species-specific STPK Pkb2 from B. longum subsp. longum GT15 were identified for the first time. They included the moonlighting protein glutamine synthase GlnA, FoF1-ATPase alpha and beta subunits, and the chaperone MoxR family of AAA-ATPase. The ability of bifidobacterial STPK to phosphorylate the substrate on serine, threonine, and tyrosine residues was shown for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities.

    PubMed

    Wang, Anqi; Feng, Jiesi; Li, Yulong; Zou, Peng

    2018-04-18

    Optical biosensors have been invaluable tools in neuroscience research, as they provide the ability to directly visualize neural activity in real time, with high specificity, and with exceptional spatial and temporal resolution. Notably, a majority of these sensors are based on fluorescent protein scaffolds, which offer the ability to target specific cell types or even subcellular compartments. However, fluorescent proteins are intrinsically bulky tags, often insensitive to the environment, and always require excitation light illumination. To address these limitations, there has been a proliferation of alternative sensor scaffolds developed in recent years, including hybrid sensors that combine the advantages of synthetic fluorophores and genetically encoded protein tags, as well as bioluminescent probes. While still in their early stage of development as compared with fluorescent protein-based sensors, these novel probes have offered complementary solutions to interrogate various aspects of neuronal communication, including transmitter release, changes in membrane potential, and the production of second messengers. In this Review, we discuss these important new developments with a particular focus on design strategies.

  8. Antimicrobial preservatives induce aggregation of interferon alpha-2a: The order in which preservatives induce protein aggregation is independent of the protein

    PubMed Central

    Bis, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis c, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol > phenol > benzyl alcohol > phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. PMID:24974985

  9. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    PubMed

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Functional assessment of ubiquitin-depended processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins, were separated by SDS-PAGE and subjected for mass spectrometry-based analysis.With the described workflow, we identified more than 200 proteins including of 26S proteasome subunits, members of SUMO (Small Ubiquitin-like Modifier) family and ubiquitylated substrates. On the whole, our results provide an unbiased view of ubiquitylation state under microgravity conditions and thereby demonstrate the utility of proposed combination of analytical methods for functional assessment of ubiquitin-depended processes. Acknowledgment - We thank teams of Institute of Biomedical Problems of Russian Academy of Sciences and TsSKB “Progress” Samara for organization and preparation for spaceflight. This work is partially supported by the Russian Foundation for Basic Research (grant12-04-01836).

  11. A screen for over-secretion of proteins by yeast based on a dual component cellular phosphatase and immuno-chromogenic stain for exported bacterial alkaline phosphatase reporter

    PubMed Central

    2013-01-01

    Background To isolate over-secretors, we subjected to saturation mutagenesis, a strain of P.pastoris exporting E. coli alkaline phosphatase (EAP) fused to the secretory domain of the yeast α factor pheromone through cellular PHO1/KEX2 secretory processing signals as the α-sec-EAP reporter protein. Direct chromogenic staining for α-sec-EAP activity is non-specific as its NBT/BCIP substrate cross-reacts with cellular phosphatases which can be inhibited with Levulinic acid. However, the parental E(P) strain only exports detectable levels of α-sec-EAP at 69 hours and not within the 36 hour period post-seeding required for effective screening with the consequent absence of a reference for secretion. We substituted the endogenous cellular phosphatase activity as a comparative reference for secretion rate and levels as well as for colony alignment while elevating specificity and sensitivity of detection of the exported protein with other innovative modifications of the immuno-chromogenic staining application for screening protein export mutants. Results Raising the specificity and utility of staining for α-sec-EAP activity required 5 modifications including some to published methods. These included, exploitation of endogenous phosphatase activity, reduction of the cell/protein burden, establishment of the direct relation between concentrations of transcriptional inducer and exported membrane immobilized protein and concentrations of protein exported into growth media, amplification of immuno-specificity and sensitivity of detection of α-sec-EAP reporter enzyme signal and restriction of staining to optimal concentrations of antisera and time periods. The resultant immuno-chromogenic screen allows for the detection of early secretion and as little as 1.3 fold over-secretion of α-sec-EAP reporter protein by E(M) mutants in the presence of 10 fold -216 fold higher concentrations of HSA. Conclusions The modified immuno-chromogenic screen is sensitive, specific and has led to the isolation of mutants E(M) over-secreting the α-sec-EAP reporter protein by a minimum of 50 fold higher levels than that exported by non-mutagenized E(P) parental strains. Unselected proteins were also over-secreted. PMID:23602005

  12. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T.more » maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.« less

  13. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis.

    PubMed

    Choi, Eunyoung; Han, Cecil; Park, Inju; Lee, Boyeon; Jin, Sora; Choi, Heejin; Kim, Do Han; Park, Zee Yong; Eddy, Edward M; Cho, Chunghee

    2008-12-12

    To determine the mechanisms of spermatogenesis, it is essential to identify and characterize germ cell-specific genes. Here we describe a protein encoded by a novel germ cell-specific gene, Mm.290718/ZFP541, identified from the mouse spermatocyte UniGene library. The protein contains specific motifs and domains potentially involved in DNA binding and chromatin reorganization. An antibody against Mm.290718/ZFP541 revealed the existence of the protein in testicular spermatogenic cells (159 kDa) but not testicular and mature sperm. Immunostaining analysis of cells at various stages of spermatogenesis consistently showed that the protein is present in spermatocytes and round spermatids only. Transfection assays and immunofluorescence studies indicate that the protein is localized specifically in the nucleus. Proteomic analyses performed to explore the functional characteristics of Mm.290718/ZFP541 showed that the protein forms a unique complex. Other major components of the complex included histone deacetylase 1 (HDAC1) and heat-shock protein A2. Disappearance of Mm.290718/ZFP541 was highly correlated with hyperacetylation in spermatids during spermatogenesis, and specific domains of the protein were involved in the regulation of interactions and nuclear localization of HDAC1. Furthermore, we found that premature hyperacetylation, induced by an HDAC inhibitor, is associated with an alteration in the integrity of Mm.290718/ZFP541 in spermatogenic cells. Our results collectively suggest that the Mm.290718/ZFP541 complex is implicated in chromatin remodeling during spermatogenesis, and we provide further information on the previously unknown molecular mechanism. Consequently, we re-designate Mm.290718/ZFP541 as "SHIP1" representing spermatogenic cell HDAC-interacting protein 1.

  14. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection

    PubMed Central

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface. PMID:29360877

  15. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.

    PubMed

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.

  16. Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme.

    PubMed

    Ekman, Martin; Sandh, Gustaf; Nenninger, Anja; Oliveira, Paulo; Stensjö, Karin

    2014-03-01

    Ferritin-like proteins constitute a remarkably heterogeneous protein family, including ferritins, bacterioferritins and Dps proteins. The genome of the filamentous heterocyst-forming cyanobacterium Nostoc punctiforme encodes five ferritin-like proteins. In the present paper, we report a multidimensional characterization of these proteins. Our phylogenetic and bioinformatics analyses suggest both structural and physiological differences among the ferritin-like proteins. The expression of these five genes responded differently to hydrogen peroxide treatment, with a significantly higher rise in transcript level for Npun_F3730 as compared with the other four genes. A specific role for Npun_F3730 in the cells tolerance against hydrogen peroxide was also supported by the inactivation of Npun_F3730, Npun_R5701 and Npun_R6212; among these, only the ΔNpun_F3730 strain showed an increased sensitivity to hydrogen peroxide compared with wild type. Analysis of promoter-GFP reporter fusions of the ferritin-like genes indicated that Npun_F3730 and Npun_R5701 were expressed in all cell types of a diazotrophic culture, while Npun_F6212 was expressed specifically in heterocysts. Our study provides the first comprehensive analysis combining functional differentiation and cellular specificity within this important group of proteins in a multicellular cyanobacterium. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Random copolymers that protect proteins

    NASA Astrophysics Data System (ADS)

    Alexander-Katz, Alfredo; Van Lehn, Reid C.

    2018-03-01

    Scientists have tried and in some limited cases succeeded to harness proteins to do chemistry (1) or use them in functional materials. However, most proteins only function correctly if they fold into specific conformations, which typically occurs with the assistance of other proteins (such as chaperones, translocons, or transporters) that mediate structure formation, membrane insertion, and intracellular trafficking (2, 3). Several methods have been used to improve protein stability in nonbiological environments—including micelle encapsulation, polymer conjugation, and sol-gel trapping (4)—but for most intended applications, they suffer from low levels of functionality, difficult chemical postfunctionalization, or the requirement of very specific solvent environments. On page 1239 of this issue, Panganiban et al. (5) introduce an approach for stabilizing proteins in disparate solvent environments that does not suffer from these drawbacks.

  18. A comprehensive catalog of human KRAB-associated zinc finger genes: Insights into the evolutionary history of a large family of transcriptional repressors

    PubMed Central

    Huntley, Stuart; Baggott, Daniel M.; Hamilton, Aaron T.; Tran-Gyamfi, Mary; Yang, Shan; Kim, Joomyeong; Gordon, Laurie; Branscomb, Elbert; Stubbs, Lisa

    2006-01-01

    Krüppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotes. KRAB-ZNF proteins, in which a potent repressor domain is attached to a tandem array of DNA-binding zinc-finger motifs, are specific to tetrapod vertebrates and represent the largest class of ZNF proteins in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the genome sequence for key motifs and then constructed and manually curated gene models incorporating those sequences. The resulting gene catalog contains 423 KRAB-ZNF protein-coding loci, yielding alternative transcripts that altogether predict at least 742 structurally distinct proteins. Active rounds of segmental duplication, involving single genes or larger regions and including both tandem and distributed duplication events, have driven the expansion of this mammalian gene family. Comparisons between the human genes and ZNF loci mined from the draft mouse, dog, and chimpanzee genomes not only identified 103 KRAB-ZNF genes that are conserved in mammals but also highlighted a substantial level of lineage-specific change; at least 136 KRAB-ZNF coding genes are primate specific, including many recent duplicates. KRAB-ZNF genes are widely expressed and clustered genes are typically not coregulated, indicating that paralogs have evolved to fill roles in many different biological processes. To facilitate further study, we have developed a Web-based public resource with access to gene models, sequences, and other data, including visualization tools to provide genomic context and interaction with other public data sets. PMID:16606702

  19. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  20. Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation

    PubMed Central

    Guo, Ailan; Gu, Hongbo; Zhou, Jing; Mulhern, Daniel; Wang, Yi; Lee, Kimberly A.; Yang, Vicky; Aguiar, Mike; Kornhauser, Jon; Jia, Xiaoying; Ren, Jianmin; Beausoleil, Sean A.; Silva, Jeffrey C.; Vemulapalli, Vidyasiri; Bedford, Mark T.; Comb, Michael J.

    2014-01-01

    Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins. PMID:24129315

  1. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  2. Saturation Fluorescence Labeling of Proteins for Proteomic Analyses

    PubMed Central

    Pretzer, Elizabeth; Wiktorowicz, John E.

    2008-01-01

    We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations including a disulfide reducing agent (TCEP), pH, incubation time, linearity of labeling, and saturating dye: protein thiol ratio with protein standards to gauge specific and non-specific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific vs. non-specific labeling in the presence of thiourea are also discussed. We have found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, α-lactalbumin) is achieved at 50-100-fold excess of the uncharged maleimide-functionalized BODIPY™ dyes over Cys. We confirm our previous findings and those of others that the maleimide dyes are not impacted by the presence of 2M thiourea. Moreover, we establish that 2 mM TCEP used as reductant is optimal. We also establish further that labeling is optimal at pH 7.5 and complete after 30 min. Low non-specific labeling was gauged by the inclusion of non-Cys containing proteins (horse myoglobin, bovine carbonic anhydrase) to the labeling mixture. We also show that the dye exhibits little to no effect on the two dimensional mobilities of labeled proteins derived from cells. PMID:18191033

  3. Tutorial on Protein Ontology Resources

    PubMed Central

    Arighi, Cecilia; Drabkin, Harold; Christie, Karen R.; Ross, Karen; Natale, Darren

    2017-01-01

    The Protein Ontology (PRO) is the reference ontology for proteins in the Open Biomedical Ontologies (OBO) foundry and consists of three sub-ontologies representing protein classes of homologous genes, proteoforms (e.g., splice isoforms, sequence variants, and post-translationally modified forms), and protein complexes. PRO defines classes of proteins and protein complexes, both species-specific and species non-specific, and indicates their relationships in a hierarchical framework, supporting accurate protein annotation at the appropriate level of granularity, analyses of protein conservation across species, and semantic reasoning. In this first section of this chapter, we describe the PRO framework including categories of PRO terms and the relationship of PRO to other ontologies and protein resources. Next, we provide a tutorial about the PRO website (proconsortium.org) where users can browse and search the PRO hierarchy, view reports on individual PRO terms, and visualize relationships among PRO terms in a hierarchical table view, a multiple sequence alignment view, and a Cytoscape network view. Finally, we describe several examples illustrating the unique and rich information available in PRO. PMID:28150233

  4. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.

    PubMed

    Lang, Kathrin; Davis, Lloyd; Wallace, Stephen; Mahesh, Mohan; Cox, Daniel J; Blackman, Melissa L; Fox, Joseph M; Chin, Jason W

    2012-06-27

    Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.

  5. Engineering peptide ligase specificity by proteomic identification of ligation sites.

    PubMed

    Weeks, Amy M; Wells, James A

    2018-01-01

    Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.

  6. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation.

    PubMed

    Currie, Erin; Guo, Xiuling; Christiano, Romain; Chitraju, Chandramohan; Kory, Nora; Harrison, Kenneth; Haas, Joel; Walther, Tobias C; Farese, Robert V

    2014-07-01

    Accurate protein inventories are essential for understanding an organelle's functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Comparative Proteomics of Human and Macaque Milk Reveals Species-Specific Nutrition during Postnatal Development.

    PubMed

    Beck, Kristen L; Weber, Darren; Phinney, Brett S; Smilowitz, Jennifer T; Hinde, Katie; Lönnerdal, Bo; Korf, Ian; Lemay, Danielle G

    2015-05-01

    Milk has been well established as the optimal nutrition source for infants, yet there is still much to be understood about its molecular composition. Therefore, our objective was to develop and compare comprehensive milk proteomes for human and rhesus macaques to highlight differences in neonatal nutrition. We developed a milk proteomics technique that overcomes previous technical barriers including pervasive post-translational modifications and limited sample volume. We identified 1606 and 518 proteins in human and macaque milk, respectively. During analysis of detected protein orthologs, we identified 88 differentially abundant proteins. Of these, 93% exhibited increased abundance in human milk relative to macaque and include lactoferrin, polymeric immunoglobulin receptor, alpha-1 antichymotrypsin, vitamin D-binding protein, and haptocorrin. Furthermore, proteins more abundant in human milk compared with macaque are associated with development of the gastrointestinal tract, the immune system, and the brain. Overall, our novel proteomics method reveals the first comprehensive macaque milk proteome and 524 newly identified human milk proteins. The differentially abundant proteins observed are consistent with the perspective that human infants, compared with nonhuman primates, are born at a slightly earlier stage of somatic development and require additional support through higher quantities of specific proteins to nurture human infant maturation.

  8. Superglue from bacteria: unbreakable bridges for protein nanotechnology.

    PubMed

    Veggiani, Gianluca; Zakeri, Bijan; Howarth, Mark

    2014-10-01

    Biotechnology is often limited by weak interactions. We suggest that an ideal interaction between proteins would be covalent, specific, require addition of only a peptide tag to the protein of interest, and form under a wide range of conditions. Here we summarize peptide tags that are able to form spontaneous amide bonds, based on harnessing reactions of adhesion proteins from the bacterium Streptococcus pyogenes. These include the irreversible peptide-protein interaction of SpyTag with SpyCatcher, as well as irreversible peptide-peptide interactions via SpyLigase. We describe existing applications, including polymerization to enhance cancer cell capture, assembly of living biomaterial, access to diverse protein shapes, and improved enzyme resilience. We also indicate future opportunities for resisting biological force and extending the scope of protein nanotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Guo, Yanzhi; Kuang, Qifan; Pu, Xuemei; Ji, Yue; Zhang, Zhihang; Li, Menglong

    2015-04-01

    The assessment of binding affinity between ligands and the target proteins plays an essential role in drug discovery and design process. As an alternative to widely used scoring approaches, machine learning methods have also been proposed for fast prediction of the binding affinity with promising results, but most of them were developed as all-purpose models despite of the specific functions of different protein families, since proteins from different function families always have different structures and physicochemical features. In this study, we proposed a random forest method to predict the protein-ligand binding affinity based on a comprehensive feature set covering protein sequence, binding pocket, ligand structure and intermolecular interaction. Feature processing and compression was respectively implemented for different protein family datasets, which indicates that different features contribute to different models, so individual representation for each protein family is necessary. Three family-specific models were constructed for three important protein target families of HIV-1 protease, trypsin and carbonic anhydrase respectively. As a comparison, two generic models including diverse protein families were also built. The evaluation results show that models on family-specific datasets have the superior performance to those on the generic datasets and the Pearson and Spearman correlation coefficients ( R p and Rs) on the test sets are 0.740, 0.874, 0.735 and 0.697, 0.853, 0.723 for HIV-1 protease, trypsin and carbonic anhydrase respectively. Comparisons with the other methods further demonstrate that individual representation and model construction for each protein family is a more reasonable way in predicting the affinity of one particular protein family.

  11. Beer, Cider, and Wine Allergy

    PubMed Central

    Tadros, Susan

    2017-01-01

    Background. Allergy to beer is often due to specific proteins in barley and sometimes to lipid transfer protein. Allergy to wine is frequently due to a sensitivity to grape proteins. We present a rare case of allergy to beer, wine, and cider resulting from IgE reactivity to yeasts and moulds which also explained the patient's additional sensitivity to yeast extracts and blue cheese. Case Presentation. The patient's symptoms included throat and facial itching accompanied by mild wheeze and severe urticaria. Diagnosis of allergy to yeast was confirmed by specific IgE testing as well as that to relevant foods and beverages. The patient's ongoing management included advice to avoid beer, wine, and other food groups containing specific yeasts, in addition to carrying a short acting nonsedating antihistamine as well as an adrenaline autoinjector. Conclusions. Cases of yeast allergy are extremely rare in medical literature but may be underrecognised and should be considered in patients presenting with reactions to alcoholic beverages and other yeast-containing products. PMID:28396809

  12. Beer, Cider, and Wine Allergy.

    PubMed

    Bansal, Rhea A; Tadros, Susan; Bansal, Amolak S

    2017-01-01

    Background . Allergy to beer is often due to specific proteins in barley and sometimes to lipid transfer protein. Allergy to wine is frequently due to a sensitivity to grape proteins. We present a rare case of allergy to beer, wine, and cider resulting from IgE reactivity to yeasts and moulds which also explained the patient's additional sensitivity to yeast extracts and blue cheese. Case Presentation . The patient's symptoms included throat and facial itching accompanied by mild wheeze and severe urticaria. Diagnosis of allergy to yeast was confirmed by specific IgE testing as well as that to relevant foods and beverages. The patient's ongoing management included advice to avoid beer, wine, and other food groups containing specific yeasts, in addition to carrying a short acting nonsedating antihistamine as well as an adrenaline autoinjector. Conclusions . Cases of yeast allergy are extremely rare in medical literature but may be underrecognised and should be considered in patients presenting with reactions to alcoholic beverages and other yeast-containing products.

  13. Identification of C1q as a Binding Protein for Advanced Glycation End Products.

    PubMed

    Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji

    2016-01-26

    Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.

  14. Adaptor proteins in protein kinase C-mediated signal transduction.

    PubMed

    Schechtman, D; Mochly-Rosen, D

    2001-10-01

    Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.

  15. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients.

    PubMed

    Vezzalini, Marzia; Mafficini, Andrea; Tomasello, Luisa; Lorenzetto, Erika; Moratti, Elisabetta; Fiorini, Zeno; Holyoake, Tessa L; Pellicano, Francesca; Krampera, Mauro; Tecchio, Cristina; Yassin, Mohamed; Al-Dewik, Nader; Ismail, Mohamed A; Al Sayab, Ali; Monne, Maria; Sorio, Claudio

    2017-06-21

    Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34 + /CD38 bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions.

  16. Comparative analysis of programmed cell death pathways in filamentous fungi.

    PubMed

    Fedorova, Natalie D; Badger, Jonathan H; Robson, Geoff D; Wortman, Jennifer R; Nierman, William C

    2005-12-08

    Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.

  17. Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML

    PubMed Central

    2012-01-01

    Background WASP family proteins stimulate the actin-nucleating activity of the ARP2/3 complex. They include members of the well-known WASP and WAVE/Scar proteins, and the recently identified WASH and WHAMM proteins. WASP family proteins contain family specific N-terminal domains followed by proline-rich regions and C-terminal VCA domains that harbour the ARP2/3-activating regions. Results To reveal the evolution of ARP2/3 activation by WASP family proteins we performed a "holistic" analysis by manually assembling and annotating all homologs in most of the eukaryotic genomes available. We have identified two new families: the WAML proteins (WASP and MIM like), which combine the membrane-deforming and actin bundling functions of the IMD domains with the ARP2/3-activating VCA regions, and the WAWH protein (WASP without WH1 domain) that have been identified in amoebae, Apusozoa, and the anole lizard. Surprisingly, with one exception we did not identify any alternative splice forms for WASP family proteins, which is in strong contrast to other actin-binding proteins like Ena/VASP, MIM, or NHS proteins that share domains with WASP proteins. Conclusions Our analysis showed that the last common ancestor of the eukaryotes must have contained a homolog of WASP, WAVE, and WASH. Specific families have subsequently been lost in many taxa like the WASPs in plants, algae, Stramenopiles, and Euglenozoa, and the WASH proteins in fungi. The WHAMM proteins are metazoa specific and have most probably been invented by the Eumetazoa. The diversity of WASP family proteins has strongly been increased by many species- and taxon-specific gene duplications and multimerisations. All data is freely accessible via http://www.cymobase.org. PMID:22316129

  18. Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins.

    PubMed

    Jaiswal, Mamta; Dvorsky, Radovan; Ahmadian, Mohammad Reza

    2013-02-08

    The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies.

  19. Background | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The term "proteomics" refers to a large-scale comprehensive study of a specific proteome resulting from its genome, including abundances of proteins, their variations and modifications, and interacting partners and networks in order to understand cellular processes involved.  Similarly, “Cancer proteomics” refers to comprehensive analyses of proteins and their derivatives translated from a specific cancer genome using a human biospecimen or a preclinical model (e.g., cultured cell or animal model).

  20. Meconium proteins as a source of biomarkers for the assessment of the intrauterine environment of the fetus.

    PubMed

    Lisowska-Myjak, B; Skarżyńska, E; Bakun, M

    2018-06-01

    Intrauterine environmental factors can be associated with perinatal complications and long-term health outcomes although the underlying mechanisms remain poorly defined. Meconium formed exclusively in utero and passed naturally by a neonate may contain proteins which characterise the intrauterine environment. The aim of the study was proteomic analysis of the composition of meconium proteins and their classification by biological function. Proteomic techniques combining isoelectrofocussing fractionation and LC-MS/MS analysis were used to study the protein composition of a meconium sample obtained by pooling 50 serial meconium portions from 10 healthy full-term neonates. The proteins were classified by function based on the literature search for each protein in the PubMed database. A total of 946 proteins were identified in the meconium, including 430 proteins represented by two or more peptides. When the proteins were classified by their biological function the following were identified: immunoglobulin fragments and enzymatic, neutrophil-derived, structural and fetal intestine-specific proteins. Meconium is a rich source of proteins deposited in the fetal intestine during its development in utero. A better understanding of their specific biological functions in the intrauterine environment may help to identify these proteins which may serve as biomarkers associated with specific clinical conditions/diseases with the possible impact on the fetal development and further health consequences in infants, older children and adults.

  1. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms

    PubMed Central

    Adams, Nancy E.; Maurelli, Anthony T.

    2015-01-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB–RB transitions. PMID:25998263

  2. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.

    PubMed

    Fisher, Derek J; Adams, Nancy E; Maurelli, Anthony T

    2015-08-01

    Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.

  3. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Moorhead, Greg B

    2013-09-01

    The major plant serine/threonine protein phosphatases belong to the phosphoprotein phosphatase (PPP) family. Over the past few years the complement of Arabidopsis thaliana PPP family of catalytic subunits has been cataloged and many regulatory subunits identified. Specific roles for PPPs have been characterized, including roles in auxin and brassinosteroid signaling, in phototropism, in regulating the target of rapamycin pathway, and in cell stress responses. In this review, we provide a framework for understanding the PPP family by exploring the fundamental role of the phosphatase regulatory subunits that drive catalytic engine specificity. Although there are fewer plant protein phosphatases compared with their protein kinase partners, their function is now recognized to be as dynamic and as regulated as that of protein kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Prediction of protein-protein interaction network using a multi-objective optimization approach.

    PubMed

    Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit

    2016-06-01

    Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score.

  5. Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development.

    PubMed

    Ha, Woo Tae; Jeong, Ha Yeon; Lee, Seung Yoon; Song, Hyuk

    2016-09-01

    The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.

  6. Strategic Protein Target Analysis for Developing Drugs to Stop Dental Caries

    PubMed Central

    Horst, J.A.; Pieper, U.; Sali, A.; Zhan, L.; Chopra, G.; Samudrala, R.; Featherstone, J.D.B.

    2012-01-01

    Dental caries is the most common disease to cause irreversible damage in humans. Several therapeutic agents are available to treat or prevent dental caries, but none besides fluoride has significantly influenced the disease burden globally. Etiologic mechanisms of the mutans group streptococci and specific Lactobacillus species have been characterized to various degrees of detail, from identification of physiologic processes to specific proteins. Here, we analyze the entire Streptococcus mutans proteome for potential drug targets by investigating their uniqueness with respect to non-cariogenic dental plaque bacteria, quality of protein structure models, and the likelihood of finding a drug for the active site. Our results suggest specific targets for rational drug discovery, including 15 known virulence factors, 16 proteins for which crystallographic structures are available, and 84 previously uncharacterized proteins, with various levels of similarity to homologs in dental plaque bacteria. This analysis provides a map to streamline the process of clinical development of effective multispecies pharmacologic interventions for dental caries. PMID:22899687

  7. Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation

    PubMed Central

    Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514

  8. Protein-based hydrogels for tissue engineering

    PubMed Central

    Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.

    2017-01-01

    The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513

  9. Instrumental biosensors: new perspectives for the analysis of biomolecular interactions.

    PubMed

    Nice, E C; Catimel, B

    1999-04-01

    The use of instrumental biosensors in basic research to measure biomolecular interactions in real time is increasing exponentially. Applications include protein-protein, protein-peptide, DNA-protein, DNA-DNA, and lipid-protein interactions. Such techniques have been applied to, for example, antibody-antigen, receptor-ligand, signal transduction, and nuclear receptor studies. This review outlines the principles of two of the most commonly used instruments and highlights specific operating parameters that will assist in optimising experimental design, data generation, and analysis.

  10. The Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged leukaemia cell viability.

    PubMed

    Grey, William; Ivey, Adam; Milne, Thomas A; Haferlach, Torsten; Grimwade, David; Uhlmann, Frank; Voisset, Edwige; Yu, Veronica

    2018-01-01

    The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCF Skp2 and APC Cdc20 . Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the Mll N and Mll C subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Biomarkers identified from serum proteomic analysis for the differential diagnosis of systemic lupus erythematosus.

    PubMed

    Kazemipour, N; Qazizadeh, H; Sepehrimanesh, M; Salimi, S

    2015-05-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that involves different organs. Its most important feature is the production of specific autoantibodies against nuclear or cytoplasmic antigens. Proteomic analysis of serum, as one of the most readily available body fluids, can be used as a method for clarifying the pathogenesis of SLE. In this study the serum proteome of 13 patients with SLE was evaluated and compared with seven healthy control participants. A specific kit was used to remove high-abundance proteins. After depletion, the protein expression patterns created by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF-MS were used to identify disease-associated proteins. We found differential expression of 15 protein spots, including seven up-regulated and eight down-regulated proteins in SLE samples, in comparison with healthy participants. These spots were identified by MALDI-TOF/TOF-MS and classified into three groups include keratins, apolipoproteins and albumin, and individual proteins such as transthyretin, haptoglobin and prothrombin. These findings can help to clarify the pathophysiology and mechanism of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons.

    PubMed

    Devaux, Sara; Poulain, Fabienne E; Devignot, Véronique; Lachkar, Sylvie; Irinopoulou, Theano; Sobel, André

    2012-06-22

    During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.

  13. Conversion of scFv peptide-binding specificity for crystal chaperone development

    PubMed Central

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2011-01-01

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 Å resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a ∼52 Å channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries. PMID:21217145

  14. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A

    NASA Astrophysics Data System (ADS)

    Leserman, Lee D.; Barbet, Jacques; Kourilsky, François; Weinstein, John N.

    1980-12-01

    Many applications envisioned for liposomes in cell biology and chemotherapy require their direction to specific cellular targets1-3. The ability to use antibody as a means of conferring specificity to liposomes would markedly increase their usefulness. We report here a method for covalently coupling soluble proteins, including monoclonal antibody and Staphylococcus aureus protein A (ref. 4), to small sonicated liposomes, by using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 3-(2-pyridyldithio)propionate (SPDP, Pharmacia). Liposomes bearing covalently coupled mouse monoclonal antibody against human β2-microglobulin [antibody B1.1G6 (IgG2a, κ) (B. Malissen et al., in preparation)] bound specifically to human, but not to mouse cells. Liposomes bearing protein A became bound to human cells previously incubated with the B1.1G6 antibody, but not to cells incubated without antibody. The coupling method results in efficient binding of protein to the liposomes without aggregation and without denaturation of the coupled ligand; at least 60% of liposomes bound functional protein. Further, liposomes did not leak encapsulated carboxyfluorescein (CF) as a consequence of the reaction.

  15. Protein Adsorption and Its Role in Bacterial Film Development

    DTIC Science & Technology

    1989-06-27

    only the secondary antibody conjugated to alkaline phosphatase was used. Combined Amino Acids as Measured by HPLC We are interested in a simple, direct...specific assay for chitin that relies on the lectin, wheat germ agglutinin (WGA). Lectins are a general class of proteins that bind to carbohydrates. The...protein; 2) a new method for measuring combined amino acids (includes proteins) in seawater was shown to measure higher concentration than the old

  16. Roles of Apicomplexan protein kinases at each life cycle stage.

    PubMed

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains.

    PubMed

    Mattow, J; Jungblut, P R; Schaible, U E; Mollenkopf, H J; Lamer, S; Zimny-Arndt, U; Hagens, K; Müller, E C; Kaufmann, S H

    2001-08-01

    A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.

  18. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.

    PubMed

    Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin

    2014-12-04

    In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

  19. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors

    PubMed Central

    2013-01-01

    Background The widespread protozoan parasite Toxoplasma gondii interferes with host cell functions by exporting the contents of a unique apical organelle, the rhoptry. Among the mix of secreted proteins are an expanded, lineage-specific family of protein kinases termed rhoptry kinases (ROPKs), several of which have been shown to be key virulence factors, including the pseudokinase ROP5. The extent and details of the diversification of this protein family are poorly understood. Results In this study, we comprehensively catalogued the ROPK family in the genomes of Toxoplasma gondii, Neospora caninum and Eimeria tenella, as well as portions of the unfinished genome of Sarcocystis neurona, and classified the identified genes into 42 distinct subfamilies. We systematically compared the rhoptry kinase protein sequences and structures to each other and to the broader superfamily of eukaryotic protein kinases to study the patterns of diversification and neofunctionalization in the ROPK family and its subfamilies. We identified three ROPK sub-clades of particular interest: those bearing a structurally conserved N-terminal extension to the kinase domain (NTE), an E. tenella-specific expansion, and a basal cluster including ROP35 and BPK1 that we term ROPKL. Structural analysis in light of the solved structures ROP2, ROP5, ROP8 and in comparison to typical eukaryotic protein kinases revealed ROPK-specific conservation patterns in two key regions of the kinase domain, surrounding a ROPK-conserved insert in the kinase hinge region and a disulfide bridge in the kinase substrate-binding lobe. We also examined conservation patterns specific to the NTE-bearing clade. We discuss the possible functional consequences of each. Conclusions Our work sheds light on several important but previously unrecognized features shared among rhoptry kinases, as well as the essential differences between active and degenerate protein kinases. We identify the most distinctive ROPK-specific features conserved across both active kinases and pseudokinases, and discuss these in terms of sequence motifs, evolutionary context, structural impact and potential functional relevance. By characterizing the proteins that enable these parasites to invade the host cell and co-opt its signaling mechanisms, we provide guidance on potential therapeutic targets for the diseases caused by coccidian parasites. PMID:23742205

  20. Calcium affecting protein expression in longan under simulated acid rain stress.

    PubMed

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  1. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE 3‐1

    PubMed Central

    Troisi, Elizabeth M.; Rockman, Michael E.; Nguyen, Phil P.; Oliver, Emily E.

    2015-01-01

    Summary Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion‐specific requirements for the propagation of the [URE 3] prion variant [URE 3‐1], we screened 12 yeast cytosolic J‐proteins, and here we report a novel role for the J‐protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle‐mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE 3‐1] is specifically dependent upon Swa2, but not on any of the 11 other J‐proteins. Further, we show that [URE 3‐1] propagation requires both a functional J‐domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2‐clathrin binding. Because the J‐domain of Swa2 can be replaced with the J‐domains of other proteins, our data strongly suggest that prion‐chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation. PMID:26031938

  2. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Transition from a Phytopathogenic Smut Ancestor to an Anamorphic Biocontrol Agent Deciphered by Comparative Whole-Genome Analysis[W][OPEN

    PubMed Central

    Lefebvre, François; Joly, David L.; Labbé, Caroline; Teichmann, Beate; Linning, Rob; Belzile, François; Bakkeren, Guus; Bélanger, Richard R.

    2013-01-01

    Pseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ∼23 Mb includes 6877 predicted protein coding genes. Genome features, including hallmarks of pathogenicity, are very similar in P. flocculosa and U. maydis, Sporisorium reilianum, and Ustilago hordei. Furthermore, P. flocculosa, a strict anamorph, revealed conserved and seemingly intact mating-type and meiosis loci typical of Ustilaginales. By contrast, we observed the loss of a specific subset of candidate secreted effector proteins reported to influence virulence in U. maydis as the singular divergence that could explain its nonpathogenic nature. These results suggest that P. flocculosa could have once been a virulent smut fungus that lost the specific effectors necessary for host compatibility. Interestingly, the biocontrol agent appears to have acquired genes encoding secreted proteins not found in the compared Ustilaginales, including necrosis-inducing-Phytophthora-protein- and Lysin-motif- containing proteins believed to have direct relevance to its lifestyle. The genome sequence should contribute to new insights into the subtle genetic differences that can lead to drastic changes in fungal pathogen lifestyles. PMID:23800965

  4. Annexins - scaffolds modulating PKC localization and signaling.

    PubMed

    Hoque, Monira; Rentero, Carles; Cairns, Rose; Tebar, Francesc; Enrich, Carlos; Grewal, Thomas

    2014-06-01

    Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca(2+)) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. DNA-Templated Introduction of an Aldehyde Handle in Proteins.

    PubMed

    Kodal, Anne Louise B; Rosen, Christian B; Mortensen, Michael R; Tørring, Thomas; Gothelf, Kurt V

    2016-07-15

    Many medical and biotechnological applications rely on protein labeling, but a key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by simple residue-specific random labeling, but generally requires genetic engineering. Using site-selective DNA-templated reductive amination, we created DNA-protein conjugates with control over labeling stoichiometry and without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing the coupling of a second reactive DNA strand in the vicinity of a protein metal-binding site. We demonstrate DNA-templated reductive amination for His6 -tagged proteins and metal-binding proteins, including IgG1 antibodies. We also used a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde on the protein. This functions as a handle for further modifications with desired labels. In addition to directing the aldehyde positioning, the DNA provides a straightforward route for purification between reaction steps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins.

    PubMed

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J; Ellis, Brian E; Haughn, George W

    2017-02-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins1[OPEN

    PubMed Central

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J.; Ellis, Brian E.

    2017-01-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. PMID:28003327

  8. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732

  9. Specific Non-Local Interactions Are Not Necessary for Recovering Native Protein Dynamics

    PubMed Central

    Dasgupta, Bhaskar; Kasahara, Kota; Kamiya, Narutoshi; Nakamura, Haruki; Kinjo, Akira R.

    2014-01-01

    The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA). In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the ‘contact number diffusion’ model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics. PMID:24625758

  10. Membrane fusion and exocytosis.

    PubMed

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  11. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions.

    PubMed

    Shriver, Zachary; Raman, Rahul; Viswanathan, Karthik; Sasisekharan, Ram

    2009-08-28

    Protein-glycan interactions are important regulators of a variety of biological processes, ranging from immune recognition to anticoagulation. An important area of active research is directed toward understanding the role of host cell surface glycans as recognition sites for pathogen protein receptors. Recognition of cell surface glycans is a widely employed strategy for a variety of pathogens, including bacteria, parasites, and viruses. We present here a representative example of such an interaction: the binding of influenza A hemagglutinin (HA) to specific sialylated glycans on the cell surface of human upper airway epithelial cells, which initiates the infection cycle. We detail a generalizable strategy to understand the nature of protein-glycan interactions both structurally and biochemically, using HA as a model system. This strategy combines a top-down approach using available structural information to define important contacts between glycans and HA, with a bottom-up approach using data-mining and informatics approaches to identify the common motifs that distinguish glycan binders from nonbinders. By probing protein-glycan interactions simultaneously through top-down and bottom-up approaches, we can scientifically validate a series of observations. This in turn provides additional confidence and surmounts known challenges in the study of protein-glycan interactions, such as accounting for multivalency, and thus truly defines concepts such as specificity, affinity, and avidity. With the advent of new technologies for glycomics-including glycan arrays, data-mining solutions, and robust algorithms to model protein-glycan interactions-we anticipate that such combination approaches will become tractable for a wide variety of protein-glycan interactions.

  12. Functional Characterization of Schizophrenia-Associated Variation in CACNA1C

    PubMed Central

    Eckart, Nicole; Song, Qifeng; Yang, Rebecca; Wang, Ruihua; Zhu, Heng; McCallion, Andrew S.; Avramopoulos, Dimitrios

    2016-01-01

    Calcium channel subunits, including CACNA1C, have been associated with multiple psychiatric disorders. Specifically, genome wide association studies (GWAS) have repeatedly identified the single nucleotide polymorphism (SNP) rs1006737 in intron 3 of CACNA1C to be strongly associated with schizophrenia and bipolar disorder. Here, we show that rs1006737 marks a quantitative trait locus for CACNA1C transcript levels. We test 16 SNPs in high linkage disequilibrium with rs1007637 and find one, rs4765905, consistently showing allele-dependent regulatory function in reporter assays. We find allele-specific protein binding for 13 SNPs including rs4765905. Using protein microarrays, we identify several proteins binding ≥3 SNPs, but not control sequences, suggesting possible functional interactions and combinatorial haplotype effects. Finally, using circular chromatin conformation capture, we show interaction of the disease-associated region including the 16 SNPs with the CACNA1C promoter and other potential regulatory regions. Our results elucidate the pathogenic relevance of one of the best-supported risk loci for schizophrenia and bipolar disorder. PMID:27276213

  13. Selective memory generalization by spatial patterning of protein synthesis

    PubMed Central

    O’Donnell, Cian; Sejnowski, Terrence J.

    2014-01-01

    Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462

  14. Selective memory generalization by spatial patterning of protein synthesis.

    PubMed

    O'Donnell, Cian; Sejnowski, Terrence J

    2014-04-16

    Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Plastid proteomics for elucidating iron limited remodeling of plastid physiology in diatoms

    NASA Astrophysics Data System (ADS)

    Gomes, K. M.; Nunn, B. L.; Jenkins, B. D.

    2016-02-01

    Diatoms are important primary producers in the world's oceans and their growth is constrained in large regions by low iron availability. This low iron-induced limitation of primary production is due to the requirement for iron in components of essential metabolic pathways including key chloroplast functions such as photosynthesis and nitrate assimilation. Diatoms can bloom and accumulate high biomass during introduction of iron into low iron waters, indicating adaptations allowing for their survival in iron-limited waters and rapid growth when iron becomes more abundant. Prior studies have shown that under iron limited stress, diatoms alter plastid-specific processes including components of electron transport, size of light harvesting capacity and chlorophyll content, suggesting plastid-specific protein regulation. Due to their complex evolutionary history, resulting from a secondary endosymbiosis, knowledge regarding the complement of plastid localized proteins remains limited in comparison to other model photosynthetic organisms. While in-silico prediction of diatom protein localization provides putative candidates for plastid-localization, these analyses can be limited as most plastid prediction models were developed using plants, primary endosymbionts. In order to characterize proteins enriched in diatom chloroplast and to understand how the plastid proteome is remodeled in response to iron limitation, we used mass spectrometry based proteomics to compare plastid- enriched protein fractions from Thalassiosira pseudonana, grown in iron replete and limited conditions. These analyses show that iron stress alters regulation of major metabolic pathways in the plastid including the Calvin cycle and fatty acid synthesis. These components provide promising targets to further characterize the plastid specific response to iron limitation.

  16. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  17. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel ITIM protein

    PubMed Central

    Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.

    2007-01-01

    Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation. PMID:17186946

  18. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.

    PubMed

    Shahi, Payam; Kim, Samuel C; Haliburton, John R; Gartner, Zev J; Abate, Adam R

    2017-03-14

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  19. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    NASA Astrophysics Data System (ADS)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  20. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    PubMed Central

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-01-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing. PMID:28290550

  1. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease.

    PubMed

    Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella; Giorgi, Alessandra; Schininà, Maria Eugenia; Coccia, Raffaella; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2014-06-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes. Conclusions Our current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study. PMID:22793791

  3. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions

    PubMed Central

    Graf, Michael; Arenz, Stefan; Huter, Paul; Dönhöfer, Alexandra; Nováček, Jiří

    2017-01-01

    Abstract Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA. PMID:27986857

  4. Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation

    PubMed Central

    Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne

    2018-01-01

    A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260

  5. Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration.

    PubMed

    Fernández-Montes Moraleda, Belén; San Román, Julio; Rodríguez-Lorenzo, Luís M

    2013-08-01

    Protein-surface interaction may determine the success or failure of an implanted device. Not much attention have been paid to the specific surface parametes of hydroxyapatite (OHAp) that modulates and determines the formation and potential activity of the layer of proteins that is first formed when the material get in contact with the host tissue. the influence of specific surface area (SSA), crystallite size (CS) and particle size (PS) of OHAp on the adsorption of proteins relevant for bone regeneration is evaluated in this article. OHAp have been prepared by a wet chemical reaction of Ca(OH)2 with H3PO4. One set of reactions included poly acrylic acid in the reactant solution to modify the properties of the powder. Fibrinogen (Fg) Fraction I, type I: from Human plasma, (67% Protein), and Fibronectin (Fn) from Human plasma were selected to perform the adsorption experiments. The analysis of protein adsorption was carried out by UV/Vis spectrometry. A lower SSA and a different aspect ratio are obtained when the acrylic acid is included in the reaction badge. The deconvolution of the amide I band on the Raman spectra of free and adsorbed proteins reveals that the interaction apatite-protein happens through the carboxylate groups of the proteins. The combined analysis of CS, SSA and PS should be considered on the design of OHAp materials intended to interact with proteins. Copyright © 2013 Wiley Periodicals, Inc.

  6. The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.

    PubMed

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2010-02-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. The authors used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10-Gy dose of x-rays. Both TBI and LKI altered the urinary protein profile within 24 h with noticeable differences in gene ontology categories. Some proteins, including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2, were detected only in the TBI group. Some other proteins, including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Urine protein (Up) and creatinine (Uc) (Up/Uc) ratios and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation.

  7. Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis

    PubMed Central

    Islam, Nazrul; Nagy, Attila; Garrett, Wesley M.; Shelton, Dan

    2016-01-01

    ABSTRACT Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. IMPORTANCE In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide. E. coli O104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis. PMID:27208096

  8. Retinoid Pathway and Cancer Therapeutics

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2010-01-01

    The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid × receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with the emphasis on the application of retinoids in cancer treatment and prevention. PMID:20654663

  9. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Pharmaceuticals

    EPA Science Inventory

    Adverse effects of many chemical contaminants, including human pharmaceuticals and other chemicals of emerging concern (CECs), are initiated through interactions with specific proteins within the cells of effected organisms. When protein targets of a given chemical are known--as ...

  10. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    PubMed

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  11. Prion-specific Hsp40 function: The role of the auxilin homolog Swa2

    PubMed Central

    Oliver, Emily E.; Troisi, Elizabeth M.; Hines, Justin K.

    2017-01-01

    ABSTRACT Yeast prions are protein-based genetic elements that propagate through cell populations via cytosolic transfer from mother to daughter cell. Molecular chaperone proteins including Hsp70, the Hsp40/J-protein Sis1, and Hsp104 are required for continued prion propagation, however the specific requirements of chaperone proteins differ for various prions. We recently reported that Swa2, the yeast homolog of the mammalian protein auxilin, is specifically required for the propagation of the prion [URE3].1 [URE3] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain of Swa2, but does not require Swa2 clathrin binding. We concluded that the TPR domain determines the specificity of the genetic interaction between Swa2 and [URE3], and that this domain likely interacts with one or more proteins with a C-terminal EEVD motif. Here we extend that analysis to incorporate additional data that supports this hypothesis. We also present new data eliminating Hsp104 as the relevant Swa2 binding partner and discuss our findings in the context of other recent work involving Hsp90. Based on these findings, we propose a new model for Swa2's involvement in [URE3] propagation in which Swa2 and Hsp90 mediate the formation of a multi-protein complex that increases the number of sites available for Hsp104 disaggregation. PMID:28574745

  12. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    PubMed

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  14. Interactome Mapping Guided by Tissue-Specific Phosphorylation in Age-Related Macular Degeneration

    PubMed Central

    Sripathi, Srinivas R.; He, Weilue; Prigge, Cameron L.; Sylvester, O’Donnell; Um, Ji-Yeon; Powell, Folami L.; Neksumi, Musa; Bernstein, Paul S.; Choo, Dong-Won; Bartoli, Manuela; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration. PMID:28580316

  15. Interactome Mapping Guided by Tissue-Specific Phosphorylation in Age-Related Macular Degeneration.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Prigge, Cameron L; Sylvester, O'Donnell; Um, Ji-Yeon; Powell, Folami L; Neksumi, Musa; Bernstein, Paul S; Choo, Dong-Won; Bartoli, Manuela; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-02-01

    The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration.

  16. Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan.

    PubMed

    Hua, Weiwei; Lou, Yimin; Xu, Weiyuan; Cheng, Zhixian; Gong, Xingwen; Huang, Jianying

    2016-01-01

    Affinity adsorption purification of hexahistidine-tagged (His-tagged) proteins using EDTA-chitosan-based adsorption was designed and carried out. Chitosan was elaborated with ethylenediaminetetraacetic acid (EDTA), and the resulting polymer was characterized by FTIR, TGA, and TEM. Different metals including Ni(2+), Cu(2+), and Zn(2+) were immobilized with EDTA-chitosan, and their capability to the specific adsorption of His-tagged proteins were then investigated. The results showed that Ni(2+)-EDTA-chitosan and Zn(2+)-EDTA-chitosan had high affinity toward the His-tagged proteins, thus isolating them from protein mixture. The target fluorescent-labeled hexahistidine protein remained its fluorescent characteristic throughout the purification procedure when Zn(2+)-EDTA-chitosan was used as a sorbent, wherein the real-time monitor was performed to examine the immigration of fluorescent-labeled His-tagged protein. Comparatively, Zn(2+)-EDTA-chitosan showed more specific binding ability for the target protein, but with less binding capacity. It was further proved that this purification system could be recovered and reused at least for 5 times and could run on large scales. The presented M(2+)-EDTA-chitosan system, with the capability to specifically bind His-tagged proteins, make the purification of His-tagged proteins easy to handle, leaving out fussy preliminary treatment, and with the possibility of continuous processing and a reduction in operational cost in relation to the costs of conventional processes.

  17. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin.

    PubMed

    Tuveng, Tina Rise; Arntzen, Magnus Øverlie; Bengtsson, Oskar; Gardner, Jeffrey G; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2016-07-01

    Studies of the secretomes of microbes grown on insoluble substrates are important for the discovery of novel proteins involved in biomass conversion. However, data in literature and this study indicate that secretome samples tend to be contaminated with cytoplasmic proteins. We have examined the secretome of the Gram-negative soil bacterium Cellvibrio japonicus using a simple plate-based culturing technique that yields samples with high fractions (60-75%) of proteins that are predicted to be secreted. By combining this approach with label-free quantification using the MaxLFQ algorithm, we have mapped and quantified proteins secreted by C. japonicus during growth on α- and β-chitin. Hierarchical clustering of the detected protein quantities revealed groups of up-regulated proteins that include all five putative C. japonicus chitinases as well as a chitin-specific lytic polysaccharide monooxygenase (CjLPMO10A). A small set of secreted proteins were co-regulated with known chitin-specific enzymes, including several with unknown catalytic functions. These proteins provide interesting targets for further studies aimed at unraveling the enzymatic machineries used by C. japonicus for recalcitrant polysaccharide degradation. Studies of chitin degradation indicated that C. japonicus indeed produces an efficient chitinolytic enzyme cocktail. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD002843 (http://proteomecentral.proteomexchange.org/dataset/PXD002843). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. TAL effector-DNA specificity.

    PubMed

    Scholze, Heidi; Boch, Jens

    2010-01-01

    TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.

  19. Up-regulation of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 3 (HCN3) by Specific Interaction with K+ Channel Tetramerization Domain-containing Protein 3 (KCTD3)*

    PubMed Central

    Cao-Ehlker, Xiaochun; Zong, Xiangang; Hammelmann, Verena; Gruner, Christian; Fenske, Stefanie; Michalakis, Stylianos; Wahl-Schott, Christian; Biel, Martin

    2013-01-01

    Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes. PMID:23382386

  20. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the American Physiological Society.

  1. Extracellular vesicles and intercellular communication within the nervous system

    PubMed Central

    Fitzpatrick, Zachary; Maguire, Casey A.; Breakefield, Xandra O.

    2016-01-01

    Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a “kit” of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction. PMID:27035811

  2. Dissecting Arabidopsis Gβ Signal Transduction on the Protein Surface1[W][OA

    PubMed Central

    Jiang, Kun; Frick-Cheng, Arwen; Trusov, Yuri; Delgado-Cerezo, Magdalena; Rosenthal, David M.; Lorek, Justine; Panstruga, Ralph; Booker, Fitzgerald L.; Botella, José Ramón; Molina, Antonio; Ort, Donald R.; Jones, Alan M.

    2012-01-01

    The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gβ-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gβ-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits. PMID:22570469

  3. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS.

    PubMed

    Kruh-Garcia, Nicole A; Wolfe, Lisa M; Chaisson, Lelia H; Worodria, William O; Nahid, Payam; Schorey, Jeff S; Davis, J Lucian; Dobos, Karen M

    2014-01-01

    The identification of easily measured, accurate diagnostic biomarkers for active tuberculosis (TB) will have a significant impact on global TB control efforts. Because of the host and pathogen complexities involved in TB pathogenesis, identifying a single biomarker that is adequately sensitive and specific continues to be a major hurdle. Our previous studies in models of TB demonstrated that exosomes, such as those released from infected macrophages, contain mycobacterial products, including many Mtb proteins. In this report, we describe the development of targeted proteomics assays employing multiplexed multiple reaction monitoring mass spectrometry (MRM-MS) in order to allow us to follow those proteins previously identified by western blot or shotgun mass spectrometry, and enhance biomarker discovery to include detection of Mtb proteins in human serum exosomes. Targeted MRM-MS assays were applied to exosomes isolated from human serum samples obtained from culture-confirmed active TB patients to detect 76 peptides representing 33 unique Mtb proteins. Our studies revealed the first identification of bacteria-derived biomarker candidates of active TB in exosomes from human serum. Twenty of the 33 proteins targeted for detection were found in the exosomes of TB patients, and included multiple peptides from 8 proteins (Antigen 85B, Antigen 85C, Apa, BfrB, GlcB, HspX, KatG, and Mpt64). Interestingly, all of these proteins are known mycobacterial adhesins and/or proteins that contribute to the intracellular survival of Mtb. These proteins will be included as target analytes in future validation studies as they may serve as markers for persistent active and latent Mtb infection. In summary, this work is the first step in identifying a unique and specific panel of Mtb peptide biomarkers encapsulated in exosomes and reveals complex biomarker patterns across a spectrum of TB disease states.

  4. Detection of Mycobacterium tuberculosis Peptides in the Exosomes of Patients with Active and Latent M. tuberculosis Infection Using MRM-MS

    PubMed Central

    Kruh-Garcia, Nicole A.; Wolfe, Lisa M.; Chaisson, Lelia H.; Worodria, William O.; Nahid, Payam; Schorey, Jeff S.; Davis, J. Lucian; Dobos, Karen M.

    2014-01-01

    The identification of easily measured, accurate diagnostic biomarkers for active tuberculosis (TB) will have a significant impact on global TB control efforts. Because of the host and pathogen complexities involved in TB pathogenesis, identifying a single biomarker that is adequately sensitive and specific continues to be a major hurdle. Our previous studies in models of TB demonstrated that exosomes, such as those released from infected macrophages, contain mycobacterial products, including many Mtb proteins. In this report, we describe the development of targeted proteomics assays employing multiplexed multiple reaction monitoring mass spectrometry (MRM-MS) in order to allow us to follow those proteins previously identified by western blot or shotgun mass spectrometry, and enhance biomarker discovery to include detection of Mtb proteins in human serum exosomes. Targeted MRM-MS assays were applied to exosomes isolated from human serum samples obtained from culture-confirmed active TB patients to detect 76 peptides representing 33 unique Mtb proteins. Our studies revealed the first identification of bacteria-derived biomarker candidates of active TB in exosomes from human serum. Twenty of the 33 proteins targeted for detection were found in the exosomes of TB patients, and included multiple peptides from 8 proteins (Antigen 85B, Antigen 85C, Apa, BfrB, GlcB, HspX, KatG, and Mpt64). Interestingly, all of these proteins are known mycobacterial adhesins and/or proteins that contribute to the intracellular survival of Mtb. These proteins will be included as target analytes in future validation studies as they may serve as markers for persistent active and latent Mtb infection. In summary, this work is the first step in identifying a unique and specific panel of Mtb peptide biomarkers encapsulated in exosomes and reveals complex biomarker patterns across a spectrum of TB disease states. PMID:25080351

  5. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  6. Isolation and characterization of target sequences of the chicken CdxA homeobox gene.

    PubMed Central

    Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A

    1993-01-01

    The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943

  7. The human fatty acid-binding protein family: Evolutionary divergences and functions

    PubMed Central

    2011-01-01

    Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. PMID:21504868

  8. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects.

    PubMed

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection.

  9. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate

    DOE PAGES

    Poudel, Suresh; Giannone, Richard J.; Basen, Mirko; ...

    2018-03-23

    Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less

  10. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Suresh; Giannone, Richard J.; Basen, Mirko

    Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less

  11. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate.

    PubMed

    Poudel, Suresh; Giannone, Richard J; Basen, Mirko; Nookaew, Intawat; Poole, Farris L; Kelly, Robert M; Adams, Michael W W; Hettich, Robert L

    2018-01-01

    Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii 's utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.

  12. Prostate Cancer Screening: Should You Get a PSA Test?

    MedlinePlus

    ... Mayo Clinic Staff Cancer screening tests — including the prostate-specific antigen (PSA) test to look for signs of prostate ... of harm to the person undergoing the testing. Prostate-specific antigen (PSA) is a protein produced by both cancerous ( ...

  13. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    ERIC Educational Resources Information Center

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  14. Why are hyperactive ice-binding-proteins so active?

    NASA Astrophysics Data System (ADS)

    Braslavsky, Ido; Celik, Yeliz; Pertaya, Natalya; Eun Choi, Young; Bar, Maya; Davies, Peter L.

    2008-03-01

    Ice binding proteins (IBPs), also called `antifreeze proteins' or `ice structuring proteins', are a class of proteins that protect organisms from freezing injury. These proteins have many applications in medicine and agriculture, and as a platform for future biotechnology applications. One of the interesting questions in this field focuses on the hyperactivity of some IBPs. Ice binding proteins can be classified in two groups: moderate ones that can depress the freezing point up to ˜1.0 ^oC and hyperactive ones that can depress the freezing point several-fold further even at lower concentrations. It has been suggested that the hyperactivity of IBPs stem from the fact that they block growth out of specific ice surfaces, more specifically the basal planes of ice. Here we show experimental results based on fluorescence microscopy, highlighting the differences between moderate IBPs and hyperactive IBPs. These include direct evidence for basal plane affinity of hyperactive IBPs, the effects of IBPs on growth-melt behavior of ice and the dynamics of their interaction with ice.

  15. Structure-Templated Predictions of Novel Protein Interactions from Sequence Information

    PubMed Central

    Betel, Doron; Breitkreuz, Kevin E; Isserlin, Ruth; Dewar-Darch, Danielle; Tyers, Mike; Hogue, Christopher W. V

    2007-01-01

    The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles. Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we describe a novel predictive method known as domain–motif interactions from structural topology (D-MIST) for elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were derived from extant protein structures and protein interaction data and then used to predict novel protein interactions in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results demonstrate that new protein interactions can be predicted exclusively from sequence information. PMID:17892321

  16. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity

    PubMed Central

    Ho, Vincent K.; Angelotti, Timothy

    2013-01-01

    Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins. Therefore, some REEPs can be further described as ER membrane shaping adapter proteins. PMID:24098485

  17. Structural and Phylogenetic Analysis of a Conserved Actinobacteria-Specific Protein (ASP1; SCO1997) from Streptomyces Coelicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, B.; Sugiman-Marangos, S; Junop, M

    2009-01-01

    The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.

  18. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    NASA Astrophysics Data System (ADS)

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-01

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00520e

  19. Using peptide array to identify binding motifs and interaction networks for modular domains.

    PubMed

    Li, Shawn S-C; Wu, Chenggang

    2009-01-01

    Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.

  20. Allosteric Modulation of protein oligomerization: an emerging approach to drug design

    NASA Astrophysics Data System (ADS)

    Gabizon, Ronen; Friedler, Assaf

    2014-03-01

    Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.

  1. YPD™, PombePD™ and WormPD™: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information

    PubMed Central

    Costanzo, Maria C.; Crawford, Matthew E.; Hirschman, Jodi E.; Kranz, Janice E.; Olsen, Philip; Robertson, Laura S.; Skrzypek, Marek S.; Braun, Burkhard R.; Hopkins, Kelley Lennon; Kondu, Pinar; Lengieza, Carey; Lew-Smith, Jodi E.; Tillberg, Michael; Garrels, James I.

    2001-01-01

    The BioKnowledge Library is a relational database and web site (http://www.proteome.com) composed of protein-specific information collected from the scientific literature. Each Protein Report on the web site summarizes and displays published information about a single protein, including its biochemical function, role in the cell and in the whole organism, localization, mutant phenotype and genetic interactions, regulation, domains and motifs, interactions with other proteins and other relevant data. This report describes four species-specific volumes of the BioKnowledge Library, concerned with the model organisms Saccharo­myces cerevisiae (YPD), Schizosaccharomyces pombe (PombePD) and Caenorhabditis elegans (WormPD), and with the fungal pathogen Candida albicans (CalPD™). Protein Reports of each species are unified in format, easily searchable and extensively cross-referenced between species. The relevance of these comprehensively curated resources to analysis of proteins in other species is discussed, and is illustrated by a survey of model organism proteins that have similarity to human proteins involved in disease. PMID:11125054

  2. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    PubMed

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  3. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.

    PubMed

    Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris

    2007-12-03

    The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.

  4. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  5. C-Reactive Protein on Postoperative Day 1 Is a Reliable Predictor of Pancreas-Specific Complications After Pancreaticoduodenectomy.

    PubMed

    Guilbaud, Théophile; Birnbaum, David Jérémie; Lemoine, Coralie; Chirica, Mircea; Risse, Olivier; Berdah, Stéphane; Girard, Edouard; Moutardier, Vincent

    2018-05-01

    Postoperative pancreatic fistula and pancreas-specific complications have a significant influence on patient management and outcomes after pancreatoduodenectomy. The aim of the study was to assess the value of serum C-reactive protein on the postoperative day 1 as early predictor of pancreatic fistula and pancreas-specific complications. Between 2013 and 2016, 110 patients underwent pancreaticoduodenectomy. Clinical, biological, intraoperative, and pathological characteristics were prospectively recorded. Pancreatic fistula was graded according to the International Study Group on Pancreatic Fistula classification. A composite endpoint was defined as pancreas-specific complications including pancreatic fistula, intra-abdominal abscess, postoperative hemorrhage, and bile leak. The diagnostic accuracy of serum C-reactive protein on postoperative day 1 in predicting adverse postoperative outcomes was assessed by ROC curve analysis. Six patients (5%) died and 87 (79%) experienced postoperative complications (pancreatic-specific complications: n = 58 (53%); pancreatic fistula: n = 48 (44%)). A soft pancreatic gland texture, a main pancreatic duct diameter < 3 mm and serum C-reactive protein ≥ 100 mg/L on postoperative day 1 were independent predictors of pancreas-specific complications (p < 0.01) and pancreatic fistula (p < 0.01). ROC analysis showed that serum C-reactive protein ≥ 100 mg/L on postoperative day 1 was a significant predictor of pancreatic fistula (AUC: 0.70; 95%CI: 0.60-0.79, p < 0.01) and pancreas-specific complications (AUC: 0.72; 95%CI: 0.62-0.82, p < 0.01). ROC analysis showed that serum C-reactive protein ≥ 50 mg/L at discharge was a significant predictor of 90-day hospital readmission (AUC: 0.70; 95%CI: 0.60-0.79, p < 0.01). C-reactive protein levels reliably predict risks of pancreatic fistula, pancreas-specific complications, and hospital readmission, and should be inserted in risk-stratified management algorithms after pancreaticoduodenectomy.

  6. THE URINE PROTEOME FOR RADIATION BIODOSIMETRY: EFFECT OF TOTAL BODY VERSUS LOCAL KIDNEY IRRADIATION

    PubMed Central

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. We used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10 Gy dose of X-rays. Both TBI and LKI altered the urinary protein profile within 24 hours with noticeable differences in Gene Ontology categories. Some proteins including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2 were detected only in the TBI group. Some other proteins including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Up/Uc ratio and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation. PMID:20065682

  7. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis.

    PubMed

    Sethi, Manveen K; Thaysen-Andersen, Morten; Kim, Hoguen; Park, Cheol Keun; Baker, Mark S; Packer, Nicolle H; Paik, Young-Ki; Hancock, William S; Fanayan, Susan

    2015-08-03

    Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae

    PubMed Central

    Rund, Samuel S. C.; Bonar, Nicolle A.; Champion, Matthew M.; Ghazi, John P.; Houk, Cameron M.; Leming, Matthew T.; Syed, Zainulabeuddin; Duffield, Giles E.

    2013-01-01

    We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae. PMID:23986098

  9. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  10. Multi-Harmony: detecting functional specificity from sequence alignment

    PubMed Central

    Brandt, Bernd W.; Feenstra, K. Anton; Heringa, Jaap

    2010-01-01

    Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein–protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww. PMID:20525785

  11. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins.

    PubMed

    Capitanchik, Charlotte; Dixon, Charles; Swanson, Selene K; Florens, Laurence; Kerr, Alastair R W; Schirmer, Eric C

    2018-06-18

    Nuclear envelopathies/laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. One possible explanation of this tissue specificity is that tissue-specific partners become disrupted from larger complexes, but a little investigated alternate hypothesis is that the mutated proteins themselves have tissue-specific splice variants. Here, we analyze RNA-Seq datasets to identify muscle-specific splice variants of nuclear envelope genes that could be relevant to the study of laminopathies, particularly muscular dystrophies, that are not currently annotated in sequence databases. Notably, we found novel isoforms or tissue-specificity of isoforms for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, a regulator of the emerin gene that is linked to Emery-Dreifuss muscular dystrophy. Interestingly, the muscle-specific exon in Lmo7 is rich in serine phosphorylation motifs, suggesting an important regulatory function. Evidence for muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies was also found. Tissue-specific variants were also indicated for several nucleoporins including Nup54, Nup133, Nup153 and Nup358/RanBP2. We confirmed expression of novel Lmo7 and RanBP2 variants with RT-PCR and found that specific knockdown of the Lmo7 variant caused a reduction in myogenic index during mouse C2C12 myogenesis. Global analysis revealed an enrichment of tissue-specific splice variants for nuclear envelope proteins in general compared to the rest of the genome, suggesting that splice variants contribute to regulating its tissue-specific functions.

  12. Identifying Neurofibromin-Specific Regulatory Nodes for Therapeutic Targeting in NF1

    DTIC Science & Technology

    2016-10-01

    adapter protein SPRED1, to function, and we are utilizing the latest technical innovations including CRISPR technology to find genes that regulate...neurofibromin depends on the adapter protein SPRED1, to function, and we are utilizing the latest technical innovations including CRISPR technology...signaling NF1-Null HEK 293T cells have been generated using CRISPR /Cas9 and single clones have been expanded for biochemical assays (Figure 2). NF1-Null

  13. Optimization of Photoactive Protein Z for Fast and Efficient Site-Specific Conjugation of Native IgG

    PubMed Central

    2015-01-01

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody’s antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community. PMID:25121619

  14. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG.

    PubMed

    Hui, James Z; Tsourkas, Andrew

    2014-09-17

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.

  15. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    PubMed

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  16. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    PubMed

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  17. Evidence that "brain-specific" FOX-1, FOX-2, and nPTB alternatively spliced isoforms are produced in the lens.

    PubMed

    Bitel, Claudine L; Nathan, Rachel; Wong, Patrick; Kuppasani, Sunil; Matsushita, Masafumi; Kanazawa, Hrioshi; Frederikse, Peter H

    2011-04-01

    Alternative RNA splicing is essential in development and more rapid physiological processes that include disease mechanisms. Studies over the last 20 years demonstrated that RNA binding protein families, which mediate the alternative splicing of a large percentage of genes in mammals, contain isoforms with mutually exclusive expression in non-neural and neural progenitor cells vs. post-mitotic neurons, and regulate the comprehensive reprogramming of alternative splicing during neurogenesis. Polypyrimidine tract binding (PTB) proteins and Fox-1 proteins also undergo mutually exclusive alternative splicing in neural and non-neural cells that regulates their tissue-specific expression and splicing activities. Over the past 50 years, striking morphological similarities noted between lens fiber cells and neurons suggested that cell biology processes and gene expression profiles may be shared as well. Here, we examined mouse and rat lenses to determine if alternative splicing of neuronal nPTB and Fox-1/Fox-2 isoforms also occurs in lenses. Immunoblot, immunofluorescence, and RT-PCR were used to examine expression and alternative splicing of transcripts in lens and brain. We demonstrated that exon 10 is predominantly included in nPTB transcripts consistent with nPTB protein in lenses, and that alternatively spliced Fox-1/-2 lens transcripts contain exons that have been considered neuron-specific. We identified a 3' alternative Fox-1 exon in lenses that encodes a nuclear localization signal consistent with its protein distribution detected in fiber cells. Neuronal alternative splicing of kinesin KIF1Bβ2 has been associated with PTB/nPTB and Fox-2, and we found that two 'neuron-specific' exons are also included in lenses. The present study provides evidence that alternative neuronal nPTB and Fox-1/Fox-2 isoforms are also produced in lenses. These findings raise questions regarding the extent these factors contribute to a similar reprogramming of alternative splicing during lens differentiation, and the degree that alternative gene transcripts produced during neurogenesis are also expressed in the lens.

  18. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  19. Plasma fractionation issues.

    PubMed

    Farrugia, Albert; Evers, Theo; Falcou, Pierre-Francois; Burnouf, Thierry; Amorim, Luiz; Thomas, Sylvia

    2009-04-01

    Procurement and processing of human plasma for fractionation of therapeutic proteins or biological medicines used in clinical practice is a multi-billion dollar international trade. Together the private sector and public sector (non-profit) provide large amounts of safe and effective therapeutic plasma proteins needed worldwide. The principal therapeutic proteins produced by the dichotomous industry include gamma globulins or immunoglobulins (including pathogen-specific hyperimmune globulins, such as hepatitis B immune globulins) albumin, factor VIII and Factor IX concentrates. Viral inactivation, principally by solvent detergent and other processes, has proven highly effective in preventing transmission of enveloped viruses, viz. HBV, HIV, and HCV.

  20. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.

    PubMed

    Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S

    2012-01-01

    Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. UniDrug-Target is expected to accelerate pathogen-specific drug targets identification which will increase their success and durability as drugs developed against them have less chance to develop resistances and adverse impact on environment. The server is freely available at http://117.211.115.67/UDT/main.html. The standalone application (source codes) is available at http://www.bioinformatics.org/ftp/pub/bioinfojuit/UDT.rar.

  1. Function of YY1 in Long-Distance DNA Interactions

    PubMed Central

    Atchison, Michael L.

    2014-01-01

    During B cell development, long-distance DNA interactions are needed for V(D)J somatic rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for class switch recombination (CSR) needed for antibody maturation. The tissue-specificity and developmental timing of these mechanisms is a subject of active investigation. A small number of factors are implicated in controlling Ig locus long-distance interactions including Pax5, Yin Yang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will focus on the role of YY1 in controlling these mechanisms. YY1 is a multifunctional transcription factor involved in transcriptional activation and repression, X chromosome inactivation, Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoylation, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development, at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy chain and Igκ loci. Our recent data show that YY1 is also required for CSR. The mechanisms implicated in YY1 control of long-distance DNA interactions include controlling non-coding antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with complexes involved in long-distance DNA interactions including the cohesin and condensin complexes. Though common rearrangement mechanisms operate at all Ig loci, their distinct temporal activation along with the ubiquitous nature of YY1 poses challenges for determining the specific mechanisms of YY1 function in these processes, and their regulation at the tissue-specific and B cell stage-specific level. The large numbers of post-translational modifications that control YY1 functions are possible candidates for regulation. PMID:24575094

  2. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences.

    PubMed

    Deng, Wankun; Wang, Chenwei; Zhang, Ying; Xu, Yang; Zhang, Shuang; Liu, Zexian; Xue, Yu

    2016-12-22

    Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org.

  3. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences

    PubMed Central

    Deng, Wankun; Wang, Chenwei; Zhang, Ying; Xu, Yang; Zhang, Shuang; Liu, Zexian; Xue, Yu

    2016-01-01

    Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org. PMID:28004786

  4. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  5. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  6. N-mustard analogs of S-adenosyl-L-methionine as biochemical probes of protein arginine methylation.

    PubMed

    Hymbaugh Bergman, Sarah J; Comstock, Lindsay R

    2015-08-01

    Nucleosomes, the fundamental building blocks of eukaryotic chromatin, undergo post-synthetic modifications and play a major role in the regulation of transcriptional processes. Combinations of these modifications, including methylation, regulate chromatin structure, determining its different functional states and playing a central role in differentiation. The biological significance of cellular methylation, particularly on chromatin, is widely recognized, yet we know little about the mechanisms that link biological methylation events. To characterize and fully understand protein methylation, we describe here novel N-mustard analogs of S-adenosyl-l-methionine (SAM) as biochemical tools to better understand protein arginine methylation events using protein arginine methyltransferase 1 (PRMT1). Specifically, azide- and alkyne-functionalized N-mustard analogs serve as cofactor mimics of SAM and are enzymatically transferred to a model peptide substrate in a PRMT1-dependent fashion. Once incorporated, the resulting alkynes and azides can be modified through chemoselective ligations, including click chemistry and the Staudinger ligation. These results readily demonstrate the feasibility of utilizing N-mustard analogs as biochemical tools to site-specifically label substrates of PRMT1 and serve as an alternative approach to study protein methylation events. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Crystallographic Studies of Intermediate Filament Proteins.

    PubMed

    Guzenko, Dmytro; Chernyatina, Anastasia A; Strelkov, Sergei V

    Intermediate filaments (IFs), together with microtubules and actin microfilaments, are the three main cytoskeletal components in metazoan cells. IFs are formed by a distinct protein family, which is made up of 70 members in humans. Most IF proteins are tissue- or organelle-specific, which includes lamins, the IF proteins of the nucleus. The building block of IFs is an elongated dimer, which consists of a central α-helical 'rod' domain flanked by flexible N- and C-terminal domains. The conserved rod domain is the 'signature feature' of the IF family. Bioinformatics analysis reveals that the rod domain of all IF proteins contains three α-helical segments of largely conserved length, interconnected by linkers. Moreover, there is a conserved pattern of hydrophobic repeats within each segment, which includes heptads and hendecads. This defines the presence of both left-handed and almost parallel coiled-coil regions along the rod length. Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined. Here, we discuss some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement. Further insights into the structure of the coiled coil and the terminal domains have been obtained using electron paramagnetic resonance measurements on the full-length protein, with spin labels attached at specific positions. This atomic resolution information, as well as further interesting findings, such as the variation of the coiled-coil stability along the rod length, provide clues towards interpreting the data on IF assembly, collected by a range of methods. However, a full description of this process at the molecular level is not yet at hand.

  8. Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140.

    PubMed

    Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J

    2016-10-23

    Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.

  9. Genome-Wide Cell Type-Specific Mapping of In Vivo Chromatin Protein Binding Using an FLP-Inducible DamID System in Drosophila.

    PubMed

    Pindyurin, Alexey V

    2017-01-01

    A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.

  10. Dissecting Antibodies with Regards to Linear and Conformational Epitopes

    PubMed Central

    Forsström, Björn; Bisławska Axnäs, Barbara; Rockberg, Johan; Danielsson, Hanna; Bohlin, Anna; Uhlen, Mathias

    2015-01-01

    An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets. PMID:25816293

  11. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide.

    PubMed

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-21

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the 'personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.

  12. Proteomic alteration in gastic adenocarcinomas from Japanese patients

    PubMed Central

    Yoshihara, Takahiro; Kadota, Yoshito; Yoshimura, Yoshiyuki; Tatano, Yutaka; Takeuchi, Naohiro; Okitsu, Hiroshi; Umemoto, Atsushi; Yamauchi, Takashi; Itoh, Kohji

    2006-01-01

    Background Gastric adenocarcinomas comprise one of the common types of cancers in Asian countries including Japan. Comprehensive protein profiling of paired surgical specimens of primary gastric adenocarcinomas and nontumor mucosae derived from Japanese patients was carried out by means of two-dimensional gel electrophoresis (2D-EP) and liquid chromatography-electrospray ionic tandem mass spectrometry (LC-ESI-MS) to establish gastric cancer-specific proteins as putative clinical biomarkers and molecular targets for chemotherapy. Results Relatively common alterations in protein expression were revealed in the tumor tissues. Increases in manganese dismutase and nonhistone chromosomal protein HMG-1 (HMG-1) were observed, while decreases in carbonic anhydrases I and II, glutatione-S-transferase and foveolin precursor (gastrokine-1) (FOV), an 18-kDa stomach-specific protein with putative tumor suppressor activity, were detected. RT-PCR analysis also revealed significant down-regulation of FOV mRNA expression in tumor tissues. Conclusion A possible pathological role for down-regulation of FOV in gastric carcinogenesis was demonstrated. Evaluation of the specific decreases in gene and protein expression of FOV in patients may be utilized as clinical biomarkers for effective diagnosis and assessment of gastric cancer. PMID:17187689

  13. Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates

    PubMed Central

    Kang, Hong-Jun; Vassilopoulos, Athanassios

    2016-01-01

    Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context. PMID:26966987

  14. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  15. The role of SUMOylation in ageing and senescent decline.

    PubMed

    Princz, Andrea; Tavernarakis, Nektarios

    2017-03-01

    Posttranslational protein modifications are playing crucial roles in essential cellular mechanisms. SUMOylation is a reversible posttranslational modification of specific target proteins by the attachment of a small ubiquitin-like protein. Although the mechanism of conjugation of SUMO to proteins is analogous to ubiquitination, it requires its own, specific set of enzymes. The consequences of SUMOylation are widely variable, depending on the physiological state of the cell and the attached SUMO isoform. Accumulating recent findings have revealed a prominent role of SUMOylation in molecular pathways that govern senescence and ageing. Here, we review the link between SUMO attachment events and cellular processes that influence senescence and ageing, including promyelocytic leukaemia (PML) nuclear body and telomere function, autophagy, reactive oxygen species (ROS) homeostasis and growth factor signalling. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    PubMed Central

    Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang

    2013-01-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166

  17. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    PubMed

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  18. High Mobility Group N Proteins Modulate the Fidelity of the Cellular Transcriptional Profile in a Tissue- and Variant-specific Manner*

    PubMed Central

    Kugler, Jamie E.; Horsch, Marion; Huang, Di; Furusawa, Takashi; Rochman, Mark; Garrett, Lillian; Becker, Lore; Bohla, Alexander; Hölter, Sabine M.; Prehn, Cornelia; Rathkolb, Birgit; Racz, Ildikó; Aguilar-Pimentel, Juan Antonio; Adler, Thure; Adamski, Jerzy; Beckers, Johannes; Busch, Dirk H.; Eickelberg, Oliver; Klopstock, Thomas; Ollert, Markus; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; Garfinkel, Benny; Orly, Joseph; Ovcharenko, Ivan; Bustin, Michael

    2013-01-01

    The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1tm1/tm1, Hmgn3tm1/tm1, and Hmgn5tm1/tm1 mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgntm1/tm1 lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner. PMID:23620591

  19. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase.

    PubMed

    Walker, Michael J; Rylett, Caroline M; Keen, Jeff N; Audsley, Neil; Sajid, Mohammed; Shirras, Alan D; Isaac, R Elwyn

    2006-05-02

    In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a gamma-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. gamma-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG gamma-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong gamma-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. We have applied biochemical approaches, not used previously, to characterise prominent D. melanogaster accessory gland products. Of the thirteen accessory gland secreted proteins reported in this study, six were represented in a D. simulans male accessory gland EST library that was biased for male-specific genes. Therefore, the present study has identified seven new secreted accessory gland proteins, including GGT-1, which was not recognised previously as a secreted accessory gland product.

  20. MNDA binds NPM/B23 and the NPM-MLF1 chimera generated by the t(3;5) associated with myelodysplastic syndrome and acute myeloid leukemia.

    PubMed

    Xie, J; Briggs, J A; Morris, S W; Olson, M O; Kinney, M C; Briggs, R C

    1997-10-01

    The myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein expressed specifically in developing cells of the human myelomonocytic lineage, including the end-stage monocytes/macrophages and granulocytes. Nuclear localization, lineage- and stage-specific expression, association with chromatin, and regulation by interferon alpha indicate that this protein is involved in regulating gene expression uniquely associated with the differentiation process and/or function of the monocyte/macrophage. MNDA does not bind specific DNA sequences, but rather a set of nuclear proteins that includes nucleolin (C23). Both in vitro binding assays and co-immunoprecipitation were used to demonstrate that MNDA also binds protein B23 (nucleophosmin/NPM). Three reciprocal chromosome translocations found in certain cases of leukemia/lymphoma involve fusions with the NPM/B23 gene, t(5;17) NPM-RARalpha, t(2;5) NPM-ALK, and the t(3;5) NPM-MLF1. In the current study, MNDA was not able to bind the NPM-ALK chimera originating from the t(2;5) and containing residues 1-117 of NPM. However, MNDA did bind the NPM-MLF1 product of the t(3;5) that contains the N-terminal 175 residues of NPM. The additional 58 amino acids (amino acids 117-175) of the NPM sequence that are contained in the product of the NPM-MLF1 fusion gene relative to the product of the NPM-ALK fusion appear responsible for MNDA binding. This additional NPM sequence contains a nuclear localization signal and clusters of acidic residues believed to bind nuclear localization signals of other proteins. Whereas NPM and nucleolin are primarily localized within the nucleolus, MNDA is distributed throughout the nucleus including the nucleolus, suggesting that additional interactions define overall MNDA localization.

  1. Glycobiology simplified: diverse roles of glycan recognition in inflammation

    PubMed Central

    Schnaar, Ronald L.

    2016-01-01

    Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978

  2. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5’UTRs of Selected Tumor Suppressors

    PubMed Central

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja

    2016-01-01

    Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors. PMID:27171412

  3. Proteins involved in neuronal differentiation of neuroblastoma cell line N1E-115.

    PubMed

    Oh, Ji-Eun; Freilinger, Angelika; Gelpi, Ellen; Pollak, Arnold; Hengstschläger, Markus; Lubec, Gert

    2007-06-01

    Neuronal differentiation (ND) represents a well-defined phenomenon in biological terms but proteins involved have not been studied systematically. We therefore aimed to study ND by retinoic acid (RA) in a widely used neuroblastoma cell line by comparative proteomics. The ND was induced in the N1E-115 cell line by serum deprivation and RA treatment. Undifferentiated cells and cells undergoing serum deprivation served as controls. Protein extracts were run on 2-DE followed by MALDI-TOF or MALDI-TOF-TOF analysis. Quantification was carried out using specific software and stringent statistical analysis was performed. Tubulin beta 5, cat eye syndrome critical region protein 5 homolog, putative GTP-binding protein PTD004 homolog, and the metabolic proteins glyceraldehyde-3-phosphate dehydrogenase and transketolase were differentially regulated. Differential protein levels of cytoskeleton proteins including tubulins and metabolic proteins have been reported to be regulated by ND. Herein, specific signaling differences as reflected by putative GTP-binding protein PTD004 changes in differentiated cells are shown and a possible role for the Cat eye syndrome critical region protein 5 homolog is proposed. The protein disulfide isomerase associated 3 protein fits the already proposed findings of chaperon regulation by ND. The study forms the molecular basis for further evaluation of the functional roles of the differentially expressed proteins in ND.

  4. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  5. RNA Recognition and Stress Granule Formation by TIA Proteins

    PubMed Central

    Waris, Saboora; Wilce, Matthew Charles James; Wilce, Jacqueline Anne

    2014-01-01

    Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress. PMID:25522169

  6. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-04

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement.

  7. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  8. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    PubMed

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  9. Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response

    PubMed Central

    Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan

    2015-01-01

    ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8+ T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations. PMID:26085166

  10. AbMiner: a bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies.

    PubMed

    Major, Sylvia M; Nishizuka, Satoshi; Morita, Daisaku; Rowland, Rick; Sunshine, Margot; Shankavaram, Uma; Washburn, Frank; Asin, Daniel; Kouros-Mehr, Hosein; Kane, David; Weinstein, John N

    2006-04-06

    Monoclonal antibodies are used extensively throughout the biomedical sciences for detection of antigens, either in vitro or in vivo. We, for example, have used them for quantitation of proteins on "reverse-phase" protein lysate arrays. For those studies, we quality-controlled > 600 available monoclonal antibodies and also needed to develop precise information on the genes that encode their antigens. Translation among the various protein and gene identifier types proved non-trivial because of one-to-many and many-to-one relationships. To organize the antibody, protein, and gene information, we initially developed a relational database in Filemaker for our own use. When it became apparent that the information would be useful to many other researchers faced with the need to choose or characterize antibodies, we developed it further as AbMiner, a fully relational web-based database under MySQL, programmed in Java. AbMiner is a user-friendly, web-based relational database of information on > 600 commercially available antibodies that we validated by Western blot for protein microarray studies. It includes many types of information on the antibody, the immunogen, the vendor, the antigen, and the antigen's gene. Multiple gene and protein identifier types provide links to corresponding entries in a variety of other public databases, including resources for phosphorylation-specific antibodies. AbMiner also includes our quality-control data against a pool of 60 diverse cancer cell types (the NCI-60) and also protein expression levels for the NCI-60 cells measured using our high-density "reverse-phase" protein lysate microarrays for a selection of the listed antibodies. Some other available database resources give information on antibody specificity for one or a couple of cell types. In contrast, the data in AbMiner indicate specificity with respect to the antigens in a pool of 60 diverse cell types from nine different tissues of origin. AbMiner is a relational database that provides extensive information from our own laboratory and other sources on more than 600 available antibodies and the genes that encode the antibodies' antigens. The data will be made freely available at http://discover.nci.nih.gov/abminer.

  11. Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells

    PubMed Central

    Marcilla, Antonio; Trelis, María; Cortés, Alba; Sotillo, Javier; Cantalapiedra, Fernando; Minguez, María Teresa; Valero, María Luz; Sánchez del Pino, Manuel Mateo; Muñoz-Antoli, Carla; Toledo, Rafael; Bernal, Dolores

    2012-01-01

    The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents. PMID:23029346

  12. SUMO proteases as potential targets for cancer therapy.

    PubMed

    Bialik, Piotr; Woźniak, Katarzyna

    2017-12-08

    Sumoylation is one of the post-translational modifications of proteins, responsible for the regulation of many cellular processes, such as DNA replication and repair, transcription, signal transduction and nuclear transport. During sumoylation, SUMO proteins are covalently attached to the ε-amino group of lysine in target proteins via an enzymatic cascade that requires the sequential action of E1, E2 and E3 enzymes. An important aspect of sumoylation is its reversibility, which involves SUMO-specific proteases called SENPs. SENPs (sentrin/SUMO-specific proteases) catalyze the deconjugation of SUMO proteins using their isopeptidase activity. These enzymes participate through hydrolase activity in the reaction of SUMO protein maturation, which involves the removal of a short fragment on the C-terminus of SUMO inactive form and exposure two glycine residues. SENPs are important for maintaining the balance between sumoylated and desumoylated proteins required for normal cellular physiology. Six SENP isoforms (SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7) have been identified in mammals. These SENPs can be divided into three subfamilies based on their sequence homology, substrate specificity and subcellular localization. Results of studies indicate the role of SUMO proteases in the development of human diseases including cancer, suggesting that these proteins may be attractive targets for new drugs.

  13. Protein immobilization techniques for microfluidic assays

    PubMed Central

    Kim, Dohyun; Herr, Amy E.

    2013-01-01

    Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization. PMID:24003344

  14. Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2006-03-28

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  15. Selective destruction of cells infected with human immunodeficiency virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2003-09-30

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  16. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.

    PubMed

    Troupin, Andrea; Londono-Renteria, Berlin; Conway, Michael J; Cloherty, Erin; Jameson, Samuel; Higgs, Stephen; Vanlandingham, Dana L; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Human HOXA5 homeodomain enhances protein transduction and its application to vascular inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Young; Park, Kyoung sook; Cho, Eun Jung

    2011-07-01

    Highlights: {yields} We have developed an E. coli protein expression vector including human specific gene sequences for protein cellular delivery. {yields} The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence. {yields} HOXA5-APE1/Ref-1 inhibited TNF-alpha-induced monocyte adhesion to endothelial cells. {yields} Human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins. -- Abstract: Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including humanmore » specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 {sup o}C was greater than in 4 {sup o}C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-{alpha}-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.« less

  18. Evaluating, Comparing, and Interpreting Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108

  19. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    PubMed

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  20. Functional cell-surface display of a lipase-specific chaperone.

    PubMed

    Wilhelm, Susanne; Rosenau, Frank; Becker, Stefan; Buest, Sebastian; Hausmann, Sascha; Kolmar, Harald; Jaeger, Karl-Erich

    2007-01-02

    Lipases are important enzymes in biotechnology. Extracellular bacterial lipases from Pseudomonads and related species require the assistance of specific chaperones, designated "Lif" proteins (lipase specific foldases). Lifs, a unique family of steric chaperones, are anchored to the periplasmic side of the inner membrane where they convert lipases into their active conformation. We have previously shown that the autotransporter protein EstA from P. aeruginosa can be used to direct a variety of proteins to the cell surface of Escherichia coli. Here we demonstrate for the first time the functional cell-surface display of the Lif chaperone and FACS (fluorescence-activated cell sorting)-based analysis of bacterial cells that carried foldase-lipase complexes. The model Lif protein, LipH from P. aeruginosa, was displayed at the surface of E. coli cells. Surface exposed LipH was functional and efficiently refolded chemically denatured lipase. The foldase autodisplay system reported here can be used for a variety of applications including the ultrahigh-throughput screening of large libraries of foldase variants generated by directed evolution.

  1. WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions.

    PubMed

    Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki

    2011-02-04

    PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.

  2. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis

    PubMed Central

    Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U.

    2014-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  3. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  5. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  6. Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae)

    PubMed Central

    Teng, Zi-Wen; Xiong, Shi-Jiao; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Stanley, David; Yan, Zhi-Chao; Ye, Gong-Yin; Fang, Qi

    2017-01-01

    Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components. PMID:28417942

  7. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

    PubMed

    Ward, Carl C; Kleinman, Jordan I; Nomura, Daniel K

    2017-06-16

    Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.

  8. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana *

    PubMed Central

    Ndah, Elvis; Jonckheere, Veronique

    2017-01-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. PMID:28432195

  9. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana.

    PubMed

    Willems, Patrick; Ndah, Elvis; Jonckheere, Veronique; Stael, Simon; Sticker, Adriaan; Martens, Lennart; Van Breusegem, Frank; Gevaert, Kris; Van Damme, Petra

    2017-06-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection

    PubMed Central

    Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan

    2014-01-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins –Protein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476

  11. Phosphoinositide-binding proteins in autophagy.

    PubMed

    Lystad, Alf Håkon; Simonsen, Anne

    2016-08-01

    Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.

  12. Legume Lectins: Proteins with Diverse Applications

    PubMed Central

    Lagarda-Diaz, Irlanda; Guzman-Partida, Ana Maria; Vazquez-Moreno, Luz

    2017-01-01

    Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets. PMID:28604616

  13. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB)

    PubMed Central

    Pamp, Sünje J.; Harrington, Eoghan D.; Quake, Stephen R.; Relman, David A.; Blainey, Paul C.

    2012-01-01

    Segmented filamentous bacteria (SFB) are host-specific intestinal symbionts that comprise a distinct clade within the Clostridiaceae, designated Candidatus Arthromitus. SFB display a unique life cycle within the host, involving differentiation into multiple cell types. The latter include filaments that attach intimately to intestinal epithelial cells, and from which “holdfasts” and spores develop. SFB induce a multifaceted immune response, leading to host protection from intestinal pathogens. Cultivation resistance has hindered characterization of these enigmatic bacteria. In the present study, we isolated five SFB filaments from a mouse using a microfluidic device equipped with laser tweezers, generated genome sequences from each, and compared these sequences with each other, as well as to recently published SFB genome sequences. Based on the resulting analyses, SFB appear to be dependent on the host for a variety of essential nutrients. SFB have a relatively high abundance of predicted proteins devoted to cell cycle control and to envelope biogenesis, and have a group of SFB-specific autolysins and a dynamin-like protein. Among the five filament genomes, an average of 8.6% of predicted proteins were novel, including a family of secreted SFB-specific proteins. Four ADP-ribosyltransferase (ADPRT) sequence types, and a myosin-cross-reactive antigen (MCRA) protein were discovered; we hypothesize that they are involved in modulation of host responses. The presence of polymorphisms among mouse SFB genomes suggests the evolution of distinct SFB lineages. Overall, our results reveal several aspects of SFB adaptation to the mammalian intestinal tract. PMID:22434425

  14. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling.

    PubMed

    Bendz, Henriette; Ruhland, Sibylle C; Pandya, Maya J; Hainzl, Otmar; Riegelsberger, Stefan; Braüchle, Christoph; Mayer, Matthias P; Buchner, Johannes; Issels, Rolf D; Noessner, Elfriede

    2007-10-26

    Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.

  15. A case for protein-level and site-level specificity in glycoproteomic studies of disease.

    PubMed

    Schumacher, Katherine N; Dodds, Eric D

    2016-06-01

    Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.

  16. Dynamics simulations for engineering macromolecular interactions

    NASA Astrophysics Data System (ADS)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  17. Dynamics simulations for engineering macromolecular interactions.

    PubMed

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20,000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  18. The novel Legionella pneumophila type II secretion substrate NttC contributes to infection of amoebae Hartmannella vermiformis and Willaertia magna.

    PubMed

    Tyson, Jessica Y; Vargas, Paloma; Cianciotto, Nicholas P

    2014-12-01

    The type II protein secretion (T2S) system of Legionella pneumophila secretes over 25 proteins, including novel proteins that have no similarity to proteins of known function. T2S is also critical for the ability of L. pneumophila to grow within its natural amoebal hosts, including Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria lovaniensis. Thus, T2S has an important role in the natural history of legionnaires' disease. Our previous work demonstrated that the novel T2S substrate NttA promotes intracellular infection of A. castellanii, whereas the secreted RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all promote infection of H. vermiformis and N. lovaniensis. In this study, we determined that another novel T2S substrate that is specific to Legionella, designated NttC, is unique in being required for intracellular infection of H. vermiformis but not for infection of N. lovaniensis or A. castellanii. Expanding our repertoire of amoebal hosts, we determined that Willaertia magna is susceptible to infection by L. pneumophila strains 130b, Philadelphia-1 and Paris. Furthermore, T2S and, more specifically, NttA, NttC and PlaC were required for infection of W. magna. Taken together, these data demonstrate that the T2S system of L. pneumophila is critical for infection of at least four types of aquatic amoebae and that the importance of the individual T2S substrates varies in a host cell-specific fashion. Finally, it is now clear that novel T2S-dependent proteins that are specific to the genus Legionella are particularly important for L. pneumophila infection of key, environmental hosts. © 2014 The Authors.

  19. Study of intermolecular contacts in the proline-rich homeodomain (PRH)-DNA complex using molecular dynamics simulations.

    PubMed

    Jalili, Seifollah; Karami, Leila

    2012-03-01

    The proline-rich homeodomain (PRH)-DNA complex consists of a protein with 60 residues and a 13-base-pair DNA. The PRH protein is a transcription factor that plays a key role in the regulation of gene expression. PRH is a significant member of the Q50 class of homeodomain proteins. The homeodomain section of PRH is essential for binding to DNA and mediates sequence-specific DNA binding. Three 20-ns molecular dynamics (MD) simulations (free protein, free DNA and protein-DNA complex) in explicit solvent water were performed to elucidate the intermolecular contacts in the PRH-DNA complex and the role of dynamics of water molecules forming water-mediated contacts. The simulation provides a detailed explanation of the trajectory of hydration water molecules. The simulations show that some water molecules in the protein-DNA interface exchange with bulk waters. The simulation identifies that most of the contacts consisted of direct interactions between the protein and DNA including specific and non-specific contacts, but several water-mediated polar contacts were also observed. The specific interaction between Gln50 and C18 and water-mediated hydrogen bond between Gln50 and T7 were found to be present during almost the entire time of the simulation. These results show good consistency with experimental and previous computational studies. Structural properties such as root-mean-square deviations (RMSD), root-mean-square fluctuations (RMSF) and secondary structure were also analyzed as a function of time. Analyses of the trajectories showed that the dynamic fluctuations of both the protein and the DNA were lowered by the complex formation.

  20. Cholesterol impairment contributes to neuroserpin aggregation

    NASA Astrophysics Data System (ADS)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  1. Personalized protein corona on nanoparticles and its clinical implications.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Tabatabaei, Mateen; Farokhzad, Omid C; Mahmoudi, Morteza

    2017-02-28

    It is now well understood that once in contact with biological fluids, nanoscale objects lose their original identity and acquire a new biological character, referred to as a protein corona. The protein corona changes many of the physicochemical properties of nanoparticles, including size, surface charge, and aggregation state. These changes, in turn, affect the biological fate of nanoparticles, including their pharmacokinetics, biodistribution, and therapeutic efficacy. It is progressively being accepted that even slight variations in the composition of a protein source (e.g., plasma and serum) can substantially change the composition of the corona formed on the surface of the exact same nanoparticles. Recently it has been shown that the protein corona is strongly affected by the patient's specific disease. Therefore, the same nanomaterial incubated with plasma proteins of patients with different pathologies adsorb protein coronas with different compositions, giving rise to the concept of personalized protein corona. Herein, we review this concept along with recent advances on the topic, with a particular focus on clinical relevance.

  2. Progress towards the development of SH2 domain inhibitors.

    PubMed

    Kraskouskaya, Dziyana; Duodu, Eugenia; Arpin, Carolynn C; Gunning, Patrick T

    2013-04-21

    Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.

  3. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less

  4. Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine

    PubMed Central

    Arntzen, Magnus Øverlie; Karlskås, Ingrid Lea; Skaugen, Morten; Eijsink, Vincent G. H.; Mathiesen, Geir

    2015-01-01

    Enterococcus faecalis is a robust bacterium, which is able to survive in and adapt to hostile environments such as the urinary tract and bladder. In this label-free quantitative proteomic study based on MaxQuant LFQ algorithms, we identified 127 proteins present in the secretome of the clinical vancomycin-resistant isolate E. faecalis V583 and we compared proteins secreted in the initial phase of cultivation in urine with the secretome during cultivation in standard laboratory medium, 2xYT. Of the 54 identified proteins predicted to be secreted, six were exclusively found after cultivation in urine including the virulence factor EfaA (“endocarditis specific antigen”) and its homologue EF0577 (“adhesion lipoprotein”). These two proteins are both involved in manganese transport, known to be an important determinant of colonization and infection, and may additionally function as adhesins. Other detected urine-specific proteins are involved in peptide transport (EF0063 and EF3106) and protease inhibition (EF3054). In addition, we found an uncharacterized protein (EF0764), which had not previously been linked to the adaptation of V583 to a urine environment, and which is unique to E. faecalis. Proteins found in both environments included a histone-like protein, EF1550, that was up-regulated during cultivation in urine and that has a homologue in streptococci (HlpA) known to be involved in bacterial adhesion to host cells. Up-regulated secreted proteins included autolysins. These results from secretome analyses are largely compatible with previously published data from transcriptomics studies. All in all, the present data indicate that transport, in particular metal transport, adhesion, cell wall remodelling and the unknown function carried out by the unique EF0764 are important for enterococcal adaptation to the urine environment. These results provide a basis for a more targeted exploration of novel proteins involved in the adaptability and pathogenicity of E. faecalis. PMID:25915650

  5. Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine.

    PubMed

    Arntzen, Magnus Øverlie; Karlskås, Ingrid Lea; Skaugen, Morten; Eijsink, Vincent G H; Mathiesen, Geir

    2015-01-01

    Enterococcus faecalis is a robust bacterium, which is able to survive in and adapt to hostile environments such as the urinary tract and bladder. In this label-free quantitative proteomic study based on MaxQuant LFQ algorithms, we identified 127 proteins present in the secretome of the clinical vancomycin-resistant isolate E. faecalis V583 and we compared proteins secreted in the initial phase of cultivation in urine with the secretome during cultivation in standard laboratory medium, 2xYT. Of the 54 identified proteins predicted to be secreted, six were exclusively found after cultivation in urine including the virulence factor EfaA ("endocarditis specific antigen") and its homologue EF0577 ("adhesion lipoprotein"). These two proteins are both involved in manganese transport, known to be an important determinant of colonization and infection, and may additionally function as adhesins. Other detected urine-specific proteins are involved in peptide transport (EF0063 and EF3106) and protease inhibition (EF3054). In addition, we found an uncharacterized protein (EF0764), which had not previously been linked to the adaptation of V583 to a urine environment, and which is unique to E. faecalis. Proteins found in both environments included a histone-like protein, EF1550, that was up-regulated during cultivation in urine and that has a homologue in streptococci (HlpA) known to be involved in bacterial adhesion to host cells. Up-regulated secreted proteins included autolysins. These results from secretome analyses are largely compatible with previously published data from transcriptomics studies. All in all, the present data indicate that transport, in particular metal transport, adhesion, cell wall remodelling and the unknown function carried out by the unique EF0764 are important for enterococcal adaptation to the urine environment. These results provide a basis for a more targeted exploration of novel proteins involved in the adaptability and pathogenicity of E. faecalis.

  6. Male contraception: past, present and future.

    PubMed

    Payne, Christopher; Goldberg, Erwin

    2014-01-01

    Current contraceptive options available to men include withdrawal, condoms, and vasectomy, each of which has its own drawbacks. In this chapter we will describe the pros and cons for each, as well as methodological and product updates. Statistics from the U.S. Centers for Disease Control on acceptance and satisfaction will be included. Advances in vasectomy and reversal will be presented. Methods to develop new contraceptive technologies fall into two categories: hormonal and non-hormonal. Many targets and strategies have been proposed for non-hormonal male contraception within the testis. Targets include structural components in the testis, as well as enzymes, ion channels and other proteins specific to spermatozoa. Here we provide an overview of the spermatogenic mechanisms and proteins that have received research interest to date. We also discuss potential novel targets, such as ubiquitin specific proteases, that warrant greater research emphasis.

  7. Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis.

    PubMed

    Islam, Nazrul; Nagy, Attila; Garrett, Wesley M; Shelton, Dan; Cooper, Bret; Nou, Xiangwu

    2016-07-15

    Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide. E. coli O104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  9. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators

    PubMed Central

    Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.

    2013-01-01

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157

  10. Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae.

    PubMed

    Smith, Jenna E; Baker, Kristian E

    2017-01-01

    RNA binding proteins play critical roles in shaping the complex life cycle of cellular transcripts. For most RNAs, the association with a distinct complement of proteins serves to orchestrate its unique pattern of maturation, localization, translation, and stability. A key aspect to understanding how transcripts are differentially regulated lies, therefore, in the ability to identify the particular repertoire of protein binding partners associated with an individual transcript. We describe here an optimized experimental procedure for purifying a single mRNA population from yeast cells for the characterization of transcript-specific mRNA-protein complexes (mRNPs) as they exist in vivo. Chemical cross-linking is used to trap native mRNPs and facilitate the co-purification of protein complexes associated with an individual transcript population that is captured under stringent conditions from cell lysates through hybridization to complementary DNA oligonucleotides. The resulting mRNP is highly enriched and largely devoid of non-target transcripts, and can be used for a number of downstream analyses including protein identification by mass spectrometry.

  11. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    PubMed

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  12. Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications.

    PubMed

    Porter, Joseph J; Mehl, Ryan A

    2018-01-01

    Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.

  13. TALE transcription factors during early development of the vertebrate brain and eye.

    PubMed

    Schulte, Dorothea; Frank, Dale

    2014-01-01

    Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.

  14. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    PubMed Central

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  15. Heat shock proteins and toll-like receptors.

    PubMed

    Asea, Alexzander

    2008-01-01

    Researchers have only just begun to elucidate the relationship between heat shock proteins (HSP) and Toll-like receptors (TLR). HSP were originally described as an intracellular molecular chaperone of naïve, aberrantly folded, or mutated proteins and primarily implicated as a cytoprotective protein when cells are exposed to stressful stimuli. However, recent studies have ascribed novel functions to the Hsp70 protein depending on its localization: Surface-bound Hsp70 specifically activate natural killer (NK) cells, while Hsp70 released into the extracellular milieu specifically bind to Toll-like receptors (TLR) 2 and 4 on antigen-presenting cells (APC) and exerts immunoregulatory effects, including upregulation of adhesion molecules, co-stimulatory molecule expression, and cytokine and chemokine release-a process known as the chaperokine activity of Hsp70. This chapter discusses the most recent advances in the understanding of heat shock protein (HSP) and TLR interactions in general and highlights recent findings that demonstrate Hsp70 is a ligand for TLR and its biological significance.

  16. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies.

    PubMed

    Cuthbert, Peter C; Stanford, Lianne E; Coba, Marcelo P; Ainge, James A; Fink, Ann E; Opazo, Patricio; Delgado, Jary Y; Komiyama, Noboru H; O'Dell, Thomas J; Grant, Seth G N

    2007-03-07

    Understanding the mechanisms whereby information encoded within patterns of action potentials is deciphered by neurons is central to cognitive psychology. The multiprotein complexes formed by NMDA receptors linked to synaptic membrane-associated guanylate kinase (MAGUK) proteins including synapse-associated protein 102 (SAP102) and other associated proteins are instrumental in these processes. Although humans with mutations in SAP102 show mental retardation, the physiological and biochemical mechanisms involved are unknown. Using SAP102 knock-out mice, we found specific impairments in synaptic plasticity induced by selective frequencies of stimulation that also required extracellular signal-regulated kinase signaling. This was paralleled by inflexibility and impairment in spatial learning. Improvement in spatial learning performance occurred with extra training despite continued use of a suboptimal search strategy, and, in a separate nonspatial task, the mutants again deployed a different strategy. Double-mutant analysis of postsynaptic density-95 and SAP102 mutants indicate overlapping and specific functions of the two MAGUKs. These in vivo data support the model that specific MAGUK proteins couple the NMDA receptor to distinct downstream signaling pathways. This provides a mechanism for discriminating patterns of synaptic activity that lead to long-lasting changes in synaptic strength as well as distinct aspects of cognition in the mammalian nervous system.

  17. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking.

    PubMed

    Sasse, Alexander; de Vries, Sjoerd J; Schindler, Christina E M; de Beauchêne, Isaure Chauvot; Zacharias, Martin

    2017-01-01

    Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol.

  18. Blood Biomarkers for Assessing the Exposure and Response of Mammals to Chemical and Biological Agents

    DTIC Science & Technology

    2012-03-15

    of animals from three inbred mouse strains exposed to the toxins acetaminophen and carbon tetrachloride for transcriptomes, proteins and miRNA...biomarkers.; 3) establishing MRM mass spectrometry assays for at least 25 liver-specific blood proteins based on the acetaminophen, CCL4, and other model...tetrachloride for protein biomarkers using proteomics technologies, including MRM; 5) Analyzing time course experiments of rat tissues and blood exposed to

  19. Stress-Induced Protein S-Glutathionylation and S-Trypanothionylation in African Trypanosomes—A Quantitative Redox Proteome and Thiol Analysis

    PubMed Central

    Ulrich, Kathrin; Finkenzeller, Caroline; Merker, Sabine; Rojas, Federico; Matthews, Keith; Ruppert, Thomas

    2017-01-01

    Abstract Aims: Trypanosomatids have a unique trypanothione-based thiol redox metabolism. The parasite-specific dithiol is synthesized from glutathione and spermidine, with glutathionylspermidine as intermediate catalyzed by trypanothione synthetase. In this study, we address the oxidative stress response of African trypanosomes with special focus on putative protein S-thiolation. Results: Challenging bloodstream Trypanosoma brucei with diamide, H2O2 or hypochlorite results in distinct levels of reversible overall protein S-thiolation. Quantitative proteome analyses reveal 84 proteins oxidized in diamide-stressed parasites. Fourteen of them, including several essential thiol redox proteins and chaperones, are also enriched when glutathione/glutaredoxin serves as a reducing system indicating S-thiolation. In parasites exposed to H2O2, other sets of proteins are modified. Only three proteins are S-thiolated under all stress conditions studied in accordance with a highly specific response. H2O2 causes primarily the formation of free disulfides. In contrast, in diamide-treated cells, glutathione, glutathionylspermidine, and trypanothione are almost completely protein bound. Remarkably, the total level of trypanothione is decreased, whereas those of glutathione and glutathionylspermidine are increased, indicating partial hydrolysis of protein-bound trypanothione. Depletion of trypanothione synthetase exclusively induces protein S-glutathionylation. Total mass analyses of a recombinant peroxidase treated with T(SH)2 and either diamide or hydrogen peroxide verify protein S-trypanothionylation as stable modification. Innovation: Our data reveal for the first time that trypanosomes employ protein S-thiolation when exposed to exogenous and endogenous oxidative stresses and trypanothione, despite its dithiol character, forms protein-mixed disulfides. Conclusion: The stress-specific responses shown here emphasize protein S-trypanothionylation and S-glutathionylation as reversible protection mechanism in these parasites. Antioxid. Redox Signal. 27, 517–533. PMID:28338335

  20. BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS

    PubMed Central

    Johnstone, Scott; Isakson, Brant; Locke, Darren

    2010-01-01

    Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177

  1. Protein supplementation with sports protein bars in renal patients.

    PubMed

    Meade, Anthony

    2007-05-01

    Malnutrition prevalence in patients on dialysis is well established. The protein requirements for both hemodialysis and peritoneal dialysis have been documented elsewhere, including the Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. The clinical challenge is to assist patients in meeting these targets, especially in those with anorexia. Traditional supplements have included fluid, which is an issue for patients who are fluid restricted. The study objectives were to (1) investigate the range of sports protein supplements that may be suitable for patients on hemodialysis to use and (2) trial nonfluid protein supplements in patients on hemodialysis. Known manufacturers of sports protein bars and other sports supplements available in Australia were contacted for the nutrient breakdown of high-protein products, specifically potassium, protein, and phosphorus contents. As a result, selected high-protein sports bars (Protein FX, Aussie Bodies, Port Melbourne, Victoria, Australia) were used as an alternative to the more commonly used renal-specific fluid supplements (Nepro, Abbott Laboratories, Abbott Park, IL; Novasource Renal, Novartis Nutrition Corporation, Fremont, MI; and Renilon, Nutricia, Wiltshire, UK) in patients with poor nutritional status requiring supplementation. Patient satisfaction and clinical nutrition markers were investigated. The study took place at inpatient, in-center, and satellite hemodialysis settings in Adelaide, South Australia. A total of 32 patients (16 females and 16 males) with an average age of 62.9 years (range 32-86 years) undergoing hemodialysis (acute and maintenance) were included. Subjects were selected by the author as part of routine clinical nutrition care. Patients trialed sports protein bars as a protein supplement alone or in conjunction with other supplementary products. All patients were in favor of the trial, with 22 of 32 patients continuing with the protein bars as the preferred supplement. The major reasons for not continuing were taste and chewability, especially in older patients with dentures. Serum potassium and phosphate levels were not increased with supplementation. Measured serum albumin and protein catabolic rate were considered unreliable indicators because not all patients were medically stable. Sports protein bars are an acceptable protein and energy supplement for patients on hemodialysis. Sports protein bars are well accepted by patients except when dentures limit chewability. Sports protein bars have advantages over fluid-based supplements in patients with fluid restrictions.

  2. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans.

    PubMed

    Simske, Jeffrey S

    2013-07-01

    The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.

  3. Micromechanical sensors based on conformational change of proteins

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Buchapudi, Koutilya R.; Gao, Hongyan; Xu, Xiaohe; Ji, Hai-Feng

    2008-04-01

    Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental, and fast throughput analysis. One of recently focus in this technology is the development of biosensors based on the conformational change of proteins on MCL surfaces. The surface stress changes due to conformational change of the proteins upon interaction with specific analytes are promising as transducers of chemical information. We will discuss our recent results on several biosensors due to conformational change of proteins. The proteins include glucose oxidase (GOx), organophosphorus hydrolyses (OPH), Calmodulin (CaM), and Horseradish peroxidase (HRP).

  4. Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations

    PubMed Central

    Lee, Yeunkum; Kang, Hyojin; Lee, Bokyoung; Zhang, Yinhua; Kim, Yoonhee; Kim, Shinhyun; Kim, Won-Ki; Han, Kihoon

    2017-01-01

    Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations. PMID:28469556

  5. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dian; Shukla, Anil K.; Chen, Baowei

    2013-04-01

    S-nitrosylation (SNO) is an important reversible thiol oxidation event that has been increasingly recognized for its role in cell signaling. While many proteins susceptible to S-nitrosylation have been reported, site-specific identification of physiologically relevant SNO modifications remains an analytical challenge due to the low-abundance and labile nature of the modification. Herein we present further improvement and optimization of the recently reported, resin-assisted cysteinyl peptide enrichment protocol for SNO identification and the extension of this application to mouse skeletal muscle to identify specific sites sensitive to S-nitrosylation by quantitative reactivity profiling. The results of our data indicate that the protein- andmore » peptide-level enrichment protocols provide comparable specificity and coverage of SNO-peptide identifications. S-nitrosylation reactivity profiling was performed by quantitatively comparing the site-specific SNO modification levels in samples treated with S-nitrosoglutathione (GSNO), an NO donor, at two different physiologically relevant concentrations (i.e., 10 μM and 100 μM). The reactivity profiling experiments overall identified 489 SNO-modified cysteine sites from 197 proteins with the specificity of 95.2% at the unique-peptide-level based on the percentage of Cys-peptides. Among these sites, 260 sites from 135 proteins were observed with relatively high reactivity to S-nitrosylation; such SNO-sensitive sites are more likely to be physiologically relevant. Many of the SNO-sensitive proteins are preferentially localized in mitochondria, contractile fiber and actin cytoskeleton, suggesting the susceptibility of these subcellular compartments to redox regulation. Moreover, the SNO-sensitive proteins seem to be primarily involved in metabolic pathways, including TCA cycle, glycolysis/gluconeogenesis, glutathione metabolism, and fatty acid metabolism, suggesting the importance of redox regulation in muscle metabolism and insulin action.« less

  6. A mechanism regulating proteolysis of specific proteins during renal tubular cell growth.

    PubMed

    Franch, H A; Sooparb, S; Du, J; Brown, N S

    2001-06-01

    Growth factors suppress the degradation of cellular proteins in lysosomes in renal epithelial cells. Whether this process also involves specific classes of proteins that influence growth processes is unknown. We investigated chaperone-mediated autophagy, a lysosomal import pathway that depends on the 73-kDa heat shock cognate protein and allows the degradation of proteins containing a specific lysosomal import consensus sequence (KFERQ motif). Epidermal growth factor (EGF) or ammonia, but not transforming growth factor beta1, suppresses total protein breakdown in cultured NRK-52E renal epithelial cells. EGF or ammonia prolonged the half-life of glyceraldehyde-3-phosphate dehydrogenase, a classic substrate for chaperone-mediated autophagy, by more than 90%, whereas transforming growth factor beta1 did not. EGF caused a similar increase in the half-life of the KFERQ-containing paired box-related transcription factor, Pax2. The increase in half-life was accompanied by an increased accumulation of proteins with a KFERQ motif including glyceraldehyde-3-phosphate dehydrogenase and Pax2. Ammonia also increased the level of the Pax2 protein. Lysosomal import of KFERQ proteins depends on the abundance of the 96-kDa lysosomal glycoprotein protein (lgp96), and we found that EGF caused a significant decrease in lgp96 in cellular homogenates and associated with lysosomes. We conclude that EGF in cultured renal cells regulates the breakdown of proteins targeted for destruction by chaperone-mediated autophagy. Because suppression of this pathway results in an increase in Pax2, these results suggest a novel mechanism for the regulation of cell growth.

  7. Identification of specific bovine blood biomarkers with a non-targeted approach using HPLC ESI tandem mass spectrometry.

    PubMed

    Lecrenier, M C; Marbaix, H; Dieu, M; Veys, P; Saegerman, C; Raes, M; Baeten, V

    2016-12-15

    Animal by-products are valuable protein sources in animal nutrition. Among them are blood products and blood meal, which are used as high-quality material for their beneficial effects on growth and health. Within the framework of the feed ban relaxation, the development of complementary methods in order to refine the identification of processed animal proteins remains challenging. The aim of this study was to identify specific biomarkers that would allow the detection of bovine blood products and processed animal proteins using tandem mass spectrometry. Seventeen biomarkers were identified: nine peptides for bovine plasma powder; seven peptides for bovine haemoglobin powder, including six peptides for bovine blood meal; and one peptide for porcine blood. They were not detected in several commercial compound feed or feed materials, such as blood by-products of other animal origins, milk-derived products and fish meal. These biomarkers could be used for developing a species-specific and blood-specific detection method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts. PMID:26890609

  9. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.

  10. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    PubMed

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    PubMed Central

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  12. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.

    PubMed

    Zhou, Rong; Basile, Franco

    2017-09-05

    A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.

  13. Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage

    PubMed Central

    2014-01-01

    Introduction Cartilage protein distribution and the changes that occur in cartilage ageing and disease are essential in understanding the process of cartilage ageing and age related diseases such as osteoarthritis. The aim of this study was to investigate the peptide profiles in ageing and osteoarthritic (OA) cartilage sections using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Methods The distribution of proteins in young, old and OA equine cartilage was compared following tryptic digestion of cartilage slices and MALDI-MSI undertaken with a MALDI SYNAPT™ HDMS system. Protein identification was undertaken using database searches following multivariate analysis. Peptide intensity differences between young, ageing and OA cartilage were imaged with Biomap software. Analysis of aggrecanase specific cleavage patterns of a crude cartilage proteoglycan extract were used to validate some of the differences in peptide intensity identified. Immunohistochemistry studies validated the differences in protein abundance. Results Young, old and OA equine cartilage was discriminated based on their peptide signature using discriminant analysis. Proteins including aggrecan core protein, fibromodulin, and cartilage oligomeric matrix protein were identified and localised. Fibronectin peptides displayed a stronger intensity in OA cartilage. Age-specific protein markers for collectin-43 and cartilage oligomeric matrix protein were identified. In addition potential fibromodulin and biglycan peptides targeted for degradation in OA were detected. Conclusions MALDI-MSI provided a novel platform to study cartilage ageing and disease enabling age and disease specific peptides in cartilage to be elucidated and spatially resolved. PMID:24886698

  14. Short communication: Proteomic characterization of tuberculin purified protein derivative from Mycobacterium bovis.

    PubMed

    Cho, Yun Sang; Jang, Young-Boo; Lee, Sang-Eun; Cho, Je-Yoel; Ahn, Jung-Mo; Hwang, Inyeong; Heo, Eunjeong; Nam, Hyang-Mi; Cho, Donghee; Her, Moon; Jean, Young Hwa; Jung, Suk Chan; Kim, Jong Man; Lee, Hee Soo; Lee, Keechan; Belisle, John T

    2015-08-01

    Bovine tuberculin purified protein derivative (bPPD) is used as an intradermal test (IT) reagent to detect bovine tuberculosis (bTB) in most countries. Identification of bPPD proteins is critical to understanding the immunological reaction of IT at the molecular level. While bPPD from the United Kingdom (UK) and Brazil (BR) have been recently defined at the proteomic level, bPPD from the Republic of Korea (KR) has not yet been analyzed. Here, bPPD KR proteome was examined for the first time. In total, 271 proteins were identified, including Mycobacterium bovis-specific proteins Mb0854c and Mb2898, and 42 known T cell antigens. On comparing with proteomes of bPPD UK and BR, 33 proteins were found to be common among all three bPPDs, of which 15 proteins were T cell antigens. M. bovis-specific antigens with T cell activity in bPPD may be novel candidates for use as alternatives to currently available bPPD in diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  16. New methods for the analysis of the protein-solvent interface

    NASA Astrophysics Data System (ADS)

    Goodfellow, Julia M.; Pitt, William R.; Smart, Oliver S.; Williams, Mark A.

    1995-09-01

    The protein-solvent interface is complex and may include solvent channels and cavities as well as the normal surface water molecules. We describe several algorithms for investigating the intra- and inter-molecular interactions of proteins in general but with the aim of developing methods to accurately and definitively characterise the interactions of water and other small ligands with proteins. Specifically, we present the methods which underlie three programs (AQUARIUS2, HOLE and PRO_ACT) which can be used to to look at different aspects of these interactions.

  17. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  18. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.

    PubMed Central

    Liu, Zhongle; Moran, Gary P.; Myers, Lawrence C.

    2016-01-01

    Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of ‘free,’ non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large ‘free’ pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the activation domain of ‘free’ Tlo protein competes with DNA bound transcription factors for targets that regulate key aspects of C. albicans cell physiology. PMID:27741243

  19. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop.

    PubMed

    Chabierski, Stefan; Barzon, Luisa; Papa, Anna; Niedrig, Matthias; Bramson, Jonathan L; Richner, Justin M; Palù, Giorgio; Diamond, Michael S; Ulbert, Sebastian

    2014-05-09

    West Nile Virus (WNV) is an emerging mosquito-transmitted flavivirus that continues to spread and cause disease throughout several parts of the world, including Europe and the Americas. Specific diagnosis of WNV infections using current serological testing is complicated by the high degree of cross-reactivity between antibodies against other clinically relevant flaviviruses, including dengue, tick-borne encephalitis (TBEV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses. Cross-reactivity is particularly problematic in areas where different flaviviruses co-circulate or in populations that have been immunized with vaccines against TBEV, JEV, or YFV. The majority of cross-reactive antibodies against the immunodominant flavivirus envelope (E) protein target a conserved epitope in the fusion loop at the distal end of domain II. We tested a loss-of-function bacterially expressed recombinant WNV E protein containing mutations in the fusion loop and an adjacent loop domain as a possible diagnostic reagent. By comparing the binding of sera from humans infected with WNV or other flaviviruses to the wild type and the mutant E proteins, we analyzed the potential of this technology to specifically detect WNV antibodies. Using this system, we could reliably determine WNV infections. Antibodies from WNV-infected individuals bound equally well to the wild type and the mutant protein. In contrast, sera from persons infected with other flaviviruses showed significantly decreased binding to the mutant protein. By calculating the mean differences between antibody signals detected using the wild type and the mutant proteins, a value could be assigned for each of the flaviviruses, which distinguished their pattern of reactivity. Recombinant mutant E proteins can be used to discriminate infections with WNV from those with other flaviviruses. The data have important implications for the development of improved, specific serological assays for the detection of WNV antibodies in regions where other flaviviruses co-circulate or in populations that are immunized with other flavivirus vaccines.

  20. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.

    PubMed

    Liu, Zhongle; Moran, Gary P; Sullivan, Derek J; MacCallum, Donna M; Myers, Lawrence C

    2016-10-01

    Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of 'free,' non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large 'free' pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the activation domain of 'free' Tlo protein competes with DNA bound transcription factors for targets that regulate key aspects of C. albicans cell physiology.

  1. Plant-based microRNA presences in mice and human sera to breast milk

    USDA-ARS?s Scientific Manuscript database

    Plant foods contain hundreds of thousands of different small RNAs, including microRNAs (miRNAs). A microRNA (miRNA) is a tiny (19-24 nucleotide) piece of RNA that attaches to a specific protein-making mRNA, thus inhibiting protein production. A recent finding shows that a miRNA in rice survives dige...

  2. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor); Rembaum, Alan (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  3. Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots.

    PubMed

    Zavalova, L; Lukyanov, S; Baskova, I; Snezhkov, E; Akopov, S; Berezhnoy, S; Bogdanova, E; Barsova, E; Sverdlov, E D

    1996-11-27

    We previously detected in salivary gland secretions of the medicinal leech (Hirudo medicinalis) a novel enzymatic activity, endo-epsilon(gamma-Glu)-Lys isopeptidase, which cleaves isopeptide bonds formed by transglutaminase (Factor XIIIa) between glutamine gamma-carboxamide and the epsilon-amino group of lysine. Such isopeptide bonds, either within or between protein polypeptide chains are formed in many biological processes. However, before we started our work no enzymes were known to be capable of specifically splitting isopeptide bonds in proteins. The isopeptidase activity we detected was specific for isopeptide bonds. The enzyme was termed destabilase. Here we report the first purification of destabilase, part of its amino acid sequence isolation and sequencing of two related cDNAs derived from the gene family that encodes destabilase proteins, and the detection of isopeptidase activity encoded by one of these cDNAs cloned in a baculovirus expression vector. The deduced mature protein products of these cDNAs contain 115 and 116 amino acid residues, including 14 highly conserved Cys residues, and are formed from precursors containing specific leader peptides. No homologous sequences were found in public databases.

  4. Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    PubMed Central

    Förster, Frank; Beisser, Daniela; Grohme, Markus A.; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C.; Shkumatov, Alexander V.; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  5. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.

    PubMed

    Zhou, P; Huang, J; Tian, F

    2012-01-01

    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  6. The actin homologue MreB organizes the bacterial cell membrane

    PubMed Central

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W.

    2014-01-01

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. PMID:24603761

  7. The actin homologue MreB organizes the bacterial cell membrane.

    PubMed

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W

    2014-03-07

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes.

  8. Rab protein evolution and the history of the eukaryotic endomembrane system

    PubMed Central

    Brighouse, Andrew; Dacks, Joel B.

    2010-01-01

    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450

  9. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    PubMed

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  10. Proteoliposomes in nanobiotechnology.

    PubMed

    Ciancaglini, P; Simão, A M S; Bolean, M; Millán, J L; Rigos, C F; Yoneda, J S; Colhone, M C; Stabeli, R G

    2012-03-01

    Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.

  11. Metagenomics and the protein universe

    PubMed Central

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  12. Activity-Based Protein Profiling of Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Wright, Aaron T.

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include:more » enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.« less

  13. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    PubMed

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further understand the differential roles of GPCR/G protein mediated intracellular signaling system across various metazoan lineages. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology

    PubMed Central

    Pirazzini, Marco; Rossetto, Ornella; Eleopra, Roberto

    2017-01-01

    The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology. PMID:28356439

  15. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology.

    PubMed

    Pirazzini, Marco; Rossetto, Ornella; Eleopra, Roberto; Montecucco, Cesare

    2017-04-01

    The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology. Copyright © 2017 by The Author(s).

  16. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  17. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  18. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-01-30

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  19. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-02-13

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  20. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2003-11-18

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  1. [Regulation of heat shock gene expression in response to stress].

    PubMed

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS protein mRNAs ensure their preferential translation in stress.

  2. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy.

    PubMed

    Hwang, Soyoun; Greenlee, Justin J; Nicholson, Eric M

    2017-01-01

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.

  3. Determination of allergenic egg proteins in food by protein-, mass spectrometry-, and DNA-based methods.

    PubMed

    Lee, Ji-Yun; Kim, Chang Jong

    2010-01-01

    Egg allergy is one of the most common food allergies in both adults and children, and foods including eggs and their byproducts should be declared under food allergen labeling policies in industrial countries. Therefore, to develop and validate a sensitive and specific method to detect hidden egg allergens in foods, we compared immunochemical, DNA-based, and proteomic methods for detecting egg allergens in foods using egg allergen standards such as egg whole protein, egg white protein, egg yolk protein, ovomucoid, ovalbumin, ovotransferrin, lysozyme, and alpha-livetin. Protein-based immunochemical methods, including ELISA as an initial screening quantitative analysis and immunoblotting as a final confirmatory qualitative analysis, were very sensitive and specific in detecting potentially allergenic egg residues in processed foods in trace amounts. In contrast, the proteomics-based, matrix-assisted laser desorption/ionization time-of-flight MS and LC-tandem quadrupole time-of-flight MS methods were not able to detect some egg allergens, such as ovomucoid, because of its nondenaturing property under urea and trypsin. The DNA-based PCR method could not distinguish between egg and chicken meat because it is tissue-nonspecific. In further studies for the feasibility of these immunochemical methods on 100 real raw dietary samples, four food samples without listed egg ingredients produced a positive response by ELISA, but exhibited negative results by immunoblotting.

  4. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis.

    PubMed

    Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M

    2016-06-01

    MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biofortification of soybean meal: immunological properties of the 27 kDa γ-zein.

    PubMed

    Krishnan, Hari B; Jang, Sungchan; Kim, Won-Seok; Kerley, Monty S; Oliver, Melvin J; Trick, Harold N

    2011-02-23

    Legumes, including soybeans ( Glycine max ), are deficient in sulfur-containing amino acids, which are required for the optimal growth of monogastric animals. This deficiency can be overcome by expressing heterologous proteins rich in sulfur-containing amino acids in soybean seeds. A maize 27 kDa γ-zein, a cysteine-rich protein, has been successfully expressed in several crops including soybean, barley, and alfalfa with the intent to biofortify these crops for animal feed. Previous work has shown that the maize 27 kDa zein can withstand digestion by pepsin and elicit an immunogenic response in young pigs. By use of sera from patients who tested positive by ImmunoCAP assay for elevated IgE to maize proteins, specific IgE binding to the 27 kDa γ-zein is demonstrated. Bioinformatic analysis using the full-length and 80 amino acid sliding window FASTA searches identified significant sequence homology of the 27 kDa γ-zein with several known allergens. Immunoblot analysis using human serum that cross-reacts with maize seed proteins also revealed specific IgE-binding to the 27 kDa γ-zein in soybean seed protein extracts containing the 27 kDa zein. This study demonstrates for the first time the allergenicity potential of the 27 kDa γ-zein and the potential that this protein has to limit livestock performance when used in soybeans that serve as a biofortified feed supplement.

  6. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  7. Vaccination against group B streptococcus.

    PubMed

    Heath, Paul T; Feldman, Robert G

    2005-04-01

    Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.

  8. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract.

    PubMed

    Lee, Bokyung; Tachon, Sybille; Eigenheer, Richard A; Phinney, Brett S; Marco, Maria L

    2015-08-07

    We found that incubation of probiotic Lactobacillus casei BL23 in milk at 4 °C prior to ingestion increased its survival in the mammalian digestive tract. To investigate the specific molecular adaptations of L. casei to milk, we used tandem mass spectrometry to compare proteins produced by L. casei BL23 at 4 °C in milk to those in exponential and stationary phase cells in laboratory culture medium at either 37 or 4 °C. These comparisons revealed a core of expressed L. casei proteins as well as proteins produced in either a growth-phase or temperature-specific manner. In total, 205 L. casei proteins were uniquely expressed or detected in higher abundance specifically as a result of incubation in milk and included an over-representation of proteins for cell surface modification, fatty acid metabolism, amino acid transport and metabolism, and inorganic ion transport. Genes for DltD (d-alanine transfer protein), FabH (3-oxoacyl-ACP synthase), RecA (recombinase A), and Sod (superoxide dismutase) were targeted for inactivation. The competitive fitness of the mutants was altered in the mouse intestine compared with wild-type cells. These results show that the food matrix can have a profound influence on dietary (probiotic) bacteria and their functional significance in the mammalian gut.

  9. Specificity and disease in the ubiquitin system

    PubMed Central

    Chaugule, Viduth K.; Walden, Helen

    2016-01-01

    Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation. PMID:26862208

  10. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.

    PubMed

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-07-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.

  11. Memory T-Cell-Mediated Immune Responses Specific to an Alternative Core Protein in Hepatitis C Virus Infection

    PubMed Central

    Bain, Christine; Parroche, Peggy; Lavergne, Jean Pierre; Duverger, Blandine; Vieux, Claude; Dubois, Valérie; Komurian-Pradel, Florence; Trépo, Christian; Gebuhrer, Lucette; Paranhos-Baccala, Glaucia; Penin, François; Inchauspé, Geneviève

    2004-01-01

    In vitro studies have described the synthesis of an alternative reading frame form of the hepatitis C virus (HCV) core protein that was named F protein or ARFP (alternative reading frame protein) and includes a domain coded by the +1 open reading frame of the RNA core coding region. The expression of this protein in HCV-infected patients remains controversial. We have analyzed peripheral blood from 47 chronically or previously HCV-infected patients for the presence of T lymphocytes and antibodies specific to the ARFP. Anti-ARFP antibodies were detected in 41.6% of the patients infected with various HCV genotypes. Using a specific ARFP 99-amino-acid polypeptide as well as four ARFP predicted class I-restricted 9-mer peptides, we show that 20% of the patients display specific lymphocytes capable of producing gamma interferon, interleukin-10, or both cytokines. Patients harboring three different viral genotypes (1a, 1b, and 3) carried T lymphocytes reactive to genotype 1b-derived peptides. In longitudinal analysis of patients receiving therapy, both core and ARFP-specific T-cell- and B-cell-mediated responses were documented. The magnitude and kinetics of the HCV antigen-specific responses differed and were not linked with viremia or therapy outcome. These observations provide strong and new arguments in favor of the synthesis, during natural HCV infection, of an ARFP derived from the core sequence. Moreover, the present data provide the first demonstration of the presence of T-cell-mediated immune responses directed to this novel HCV antigen. PMID:15367612

  12. Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929.

    PubMed

    Liu, Siqing

    2014-11-01

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol (EtOH) production facility, exhibits high tolerance to environmental EtOH concentrations. This study aimed to identify proteins produced by B-30929 in response to environmental EtOH. Cellular proteins expressed by B-30929 growing in media with 10 versus 0% EtOH were compared by 2DE, followed by in-gel digestion and MALDI-MS analyses. Twenty EtOH responsive proteins were identified. These include a proline-specific peptidase (Lbuc_1852); a membrane protein (Lbuc_0921), two general stress-related proteins including a 10 kDa chaperonin (GroESL Lbuc_1359) and a 29 kDa member of the HK 97 family (Lbuc_1523); metabolic enzymes involving redox potential balances (Lbuc_2051 and Lbuc_0522) and carbohydrate fermentation (Lbuc_1319 and Lbuc_2157); nitrogen, amino acid, and fatty acid metabolism proteins (Lbuc_1994, Lbuc_0446, Lbuc_0858, Lbuc_0707, and Lbuc_0787). These changes suggested B-30929 cells respond to EtOH by degradation of available proteins and fatty acids and increased production of specific enzymes and molecular chaperons. These results can be used to guide genetic modifications to increase EtOH tolerance in industrial biocatalysts. The data have been deposited to World-2DPAGE (http://world-2dpage.expasy.org/repository/0068/; username liu, password 1h8d6Mg1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions

    PubMed Central

    Hu, Gang; Wu, Zhonghua

    2017-01-01

    Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs. PMID:29257115

  14. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  15. White adipose tissue and cardiovascular disease.

    PubMed

    Matsuzawa, Yuji

    2005-12-01

    Adipocytes have recently been shown to secrete a variety of bioactive substances called 'adipocytokines', and have been recognized as endocrine cells. Tumour necrosis factor (TNF)-alphaalpha, plasminogen activator inhibitor-1 (PAI-1) and heparin-binding epidermal-growth-factor-like growth factor (HBEGF) are among these adipocytokines, and they contribute to the development of vascular diseases. Visfatin is a visceral fat-specific protein that may be related to the development of obesity-related diseases such as diabetes mellitus and cardiovascular disease. In contrast, adiponectin, an adipose-tissue-specific collagen-like protein, has recently been reported as an important anti-atherogenic and anti-diabetic protein. Adipocytokine secretion may be regulated dynamically by the nutritional state. Visceral fat accumulation leads to dysfunction of adipocytes (including hypersecretion of TNF-alphaalpha, PAI-1 and HBEGF, and hyposecretion of adiponectin), which results in the development of a variety of metabolic and circulatory diseases. In this review, the importance of adipocytokines, including adiponectin, is discussed with respect to cardiovascular disease.

  16. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.

    PubMed

    Rowland, Meng M; Bostic, Heidi E; Gong, Denghuang; Speers, Anna E; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F; Best, Michael D

    2011-12-27

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P₃-binding proteins.

  17. Phosphatidylinositol (3,4,5)-Trisphosphate Activity Probes for the Labeling and Proteomic Characterization of Protein Binding Partners

    PubMed Central

    Rowland, Meng M.; Bostic, Heidi E.; Gong, Denghuang; Speers, Anna E.; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F.; Best, Michael D.

    2013-01-01

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane-association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins as well as a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by on-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analog as well as through protein denaturation, indicating specific labeling. In addition, probes featuring different linker lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts, labeled proteins were observed by in-gel detection and characterized using post-labeling with biotin, affinity chromatography and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P3-binding proteins. PMID:22074223

  18. A peptide affinity column for the identification of integrin alpha IIb-binding proteins.

    PubMed

    Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh

    2008-03-01

    To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.

  19. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  20. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome.

    PubMed

    Judelson, Howard S; Ah-Fong, Audrey M V; Aux, George; Avrova, Anna O; Bruce, Catherine; Cakir, Cahid; da Cunha, Luis; Grenville-Briggs, Laura; Latijnhouwers, Maita; Ligterink, Wilco; Meijer, Harold J G; Roberts, Samuel; Thurber, Carrie S; Whisson, Stephen C; Birch, Paul R J; Govers, Francine; Kamoun, Sophien; van West, Pieter; Windass, John

    2008-04-01

    Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.

  1. Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays.

    PubMed

    Hu, Chao-Jun; Song, Guang; Huang, Wei; Liu, Guo-Zhen; Deng, Chui-Wen; Zeng, Hai-Pan; Wang, Li; Zhang, Feng-Chun; Zhang, Xuan; Jeong, Jun Seop; Blackshaw, Seth; Jiang, Li-Zhi; Zhu, Heng; Wu, Lin; Li, Yong-Zhe

    2012-09-01

    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.

  2. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    PubMed Central

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  3. Radioimmunoassay of the marjor group specific protein of endogenous baboon type C viruses: relation to the RD-114/CCC group and detection of antigen in normal baboon tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherr, C.J.; Todaro, G.J.

    1974-09-01

    The major group specific (gs) protein of the endogenous baboon type C virus M7 was purified to homogeneity by gel filtration and isoelectric focusing. The protein has a molecular weight of approximately 33,000, as determined by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate, and an isoelectric point (pl) of 7.1, different from the pls of similarly purified gs proteins from six other mammalian type C viruses. Detergent disrupted M7 virus, whether grown in canine thymus or human rhabdomyosarcoma cells, fully displaced radiolabeled M7 gs protein from antigen-antibody complexes in a competitive radioimmunoassay. No antigenic differences were detected among themore » gs proteins of five independent isolates of baboon type C viruses grown in various cultured cell lines. The gs proteins of six independently isolated feline viruses of the RD-114/CCC group were antigenically related to, but could be distinguished from, the gs proteins of baboon type C viruses. No significant cross-reactions were observed in the radioimmunoassay for M7 gs protein using several other type C viruses, including two previously isolated from a woolly monkey and a gibbon ape. Group specific antigen was found in normal baboon testicular and splenic tissues using the M7 radioimmunoassay; no gs antigen could be detected in these same tissues using a radioimmunoassay for the gs protein of the woolly monkey type C virus. No gs antigen was found in baboon liver or in the tissues of several other primates. (auth)« less

  4. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein

    PubMed Central

    Hoashi, Toshihiko; Sato, Shinichi; Yamaguchi, Yuji; Passeron, Thierry; Tamaki, Kunihiko; Hearing, Vincent J.

    2010-01-01

    Melanosomes are organelles specialized for the production of melanin pigment and are specifically produced by melanocytic cells. More than 150 pigmentation-related genes have been identified, including glycoprotein nonmetastatic melanoma protein b (GPNMB). A recent proteomics analysis revealed that GPNMB is localized in melanosomes, and GPNMB is a membrane-bound glycoprotein that shows high homology with a well-known melanosomal structural protein, Pmel17/gp100. In this study, we show that GPNMB is expressed in melanocytes of normal human skin, as well as in human melanoma cells. GPNMB is heavily glycosylated and is enriched in mature (stage III and IV) melanosomes in contrast to MART-1 and Pmel17, which are abundant in early (stage I and II) melanosomes. MART-1 and Pmel17 play critical roles in the maturation of early melanosomes; thus, we speculate that GPNMB might be important in the functions of late melanosomes, possibly their transport and/or transfer to keratinocytes. We also demonstrate that a secreted form of GPNMB is released by ectodomain shedding from the largely Golgi-modified form of GPNMB and that the PKC and Ca2+ intracellular signaling pathways regulate that shedding. We conclude that GPNMB is a melanosomal protein that is released by proteolytic ectodomain shedding and might be a useful and specific histological marker of melanocytic cells.—Hoashi, T., Sato, S., Yamaguchi, Y., Passeron, T., Tamaki, K., Hearing, V. J. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. PMID:20056711

  5. Discovery of Novel Isoforms of Huntingtin Reveals a New Hominid-Specific Exon

    PubMed Central

    Popowski, Melissa; Haremaki, Tomomi; Croft, Gist F.; Deglincerti, Alessia; Brivanlou, Ali H.

    2015-01-01

    Huntington’s disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease. PMID:26010866

  6. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    PubMed

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  7. How Single-site Mutation Affects HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Landau, David P.; Vogel, Thomas; Wüst, Thomas; Li, Ying Wai

    2014-03-01

    We developed a heuristic method based on Wang-Landauand multicanonical sampling for determining the ground-state degeneracy of HP lattice proteins . Our algorithm allowed the most precise estimations of the (sometimes substantial) ground-state degeneracies of some widely studied HP sequences. We investigated the effects of single-site mutation on specific long HP lattice proteins comprehensively, including structural changes in ground-states, changes of ground-state degeneracy and thermodynamic properties of the systems. Both extremely sensitive and insensitive cases have been observed; consequently, properties such as specific heat, tortuosities etc. may be either largely unaffected or may change significantly due to mutation. More interestingly, mutation can even induce a lower ground-state energy in a few cases. Supported by NSF.

  8. Interaction between Saccharomyces cerevisiae Mitochondrial DNA-Binding Protein Abf2p and Cce1p Resolvase.

    PubMed

    Samoilova, E O; Krasheninnikov, I A; Levitskii, S A

    2016-10-01

    Mitochondrial DNA is susceptible to the action of reactive oxygen species generated by the reactions of oxidative phosphorylation. Homologous recombination is one of the mechanisms providing integrity of the mitochondrial genome. Some proteins that take part in this process in budding yeast mitochondria have been identified. These include Abf2p, the major protein of the mt-nucleoid that specifically binds cruciform DNA, and Cce1p - Holliday junction resolvase. Here we show that Abf2p does not significantly affect either binding of Cce1p to branched DNA or rate and specificity of Holliday junction resolution. These data suggest the existence of an alternative homologous recombination pathway in yeast mitochondria.

  9. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum

    PubMed Central

    2012-01-01

    Background The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. Results We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. Conclusion Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology. PMID:23181666

  10. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep).

    PubMed

    Guellouz, Asma; Valerio-Lepiniec, Marie; Urvoas, Agathe; Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a "filtration" procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×10(9) independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.

  11. Selection of Specific Protein Binders for Pre-Defined Targets from an Optimized Library of Artificial Helicoidal Repeat Proteins (alphaRep)

    PubMed Central

    Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties. PMID:24014183

  12. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    PubMed

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  13. Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro.

    PubMed

    Guo, Deyin; Spetz, Carl; Saarma, Mart; Valkonen, Jari P T

    2003-05-01

    Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions.

  14. Dendrite and Axon Specific Geometrical Transformation in Neurite Development

    PubMed Central

    Mironov, Vasily I.; Semyanov, Alexey V.; Kazantsev, Victor B.

    2016-01-01

    We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size. PMID:26858635

  15. ProTSAV: A protein tertiary structure analysis and validation server.

    PubMed

    Singh, Ankita; Kaushik, Rahul; Mishra, Avinash; Shanker, Asheesh; Jayaram, B

    2016-01-01

    Quality assessment of predicted model structures of proteins is as important as the protein tertiary structure prediction. A highly efficient quality assessment of predicted model structures directs further research on function. Here we present a new server ProTSAV, capable of evaluating predicted model structures based on some popular online servers and standalone tools. ProTSAV furnishes the user with a single quality score in case of individual protein structure along with a graphical representation and ranking in case of multiple protein structure assessment. The server is validated on ~64,446 protein structures including experimental structures from RCSB and predicted model structures for CASP targets and from public decoy sets. ProTSAV succeeds in predicting quality of protein structures with a specificity of 100% and a sensitivity of 98% on experimentally solved structures and achieves a specificity of 88%and a sensitivity of 91% on predicted protein structures of CASP11 targets under 2Å.The server overcomes the limitations of any single server/method and is seen to be robust in helping in quality assessment. ProTSAV is freely available at http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    PubMed

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  17. Prediction of molecular mimicry candidates in human pathogenic bacteria

    PubMed Central

    Doxey, Andrew C; McConkey, Brendan J

    2013-01-01

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053

  18. Identification of Proteins in Promastigote and Amastigote-like Leishmania Using an Immunoproteomic Approach

    PubMed Central

    Coelho, Vinicio T. S.; Oliveira, Jamil S.; Valadares, Diogo G.; Chávez-Fumagalli, Miguel A.; Duarte, Mariana C.; Lage, Paula S.; Soto, Manuel; Santoro, Marcelo M.; Tavares, Carlos A. P.; Fernandes, Ana Paula; Coelho, Eduardo A. F.

    2012-01-01

    Background The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). Methodology/Principal Findings Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. Conclusions/Significance The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL. PMID:22272364

  19. The C. elegans rab family: identification, classification and toolkit construction.

    PubMed

    Gallegos, Maria E; Balakrishnan, Sanjeev; Chandramouli, Priya; Arora, Shaily; Azameera, Aruna; Babushekar, Anitha; Bargoma, Emilee; Bokhari, Abdulmalik; Chava, Siva Kumari; Das, Pranti; Desai, Meetali; Decena, Darlene; Saramma, Sonia Dev Devadas; Dey, Bodhidipra; Doss, Anna-Louise; Gor, Nilang; Gudiputi, Lakshmi; Guo, Chunyuan; Hande, Sonali; Jensen, Megan; Jones, Samantha; Jones, Norman; Jorgens, Danielle; Karamchedu, Padma; Kamrani, Kambiz; Kolora, Lakshmi Divya; Kristensen, Line; Kwan, Kelly; Lau, Henry; Maharaj, Pranesh; Mander, Navneet; Mangipudi, Kalyani; Menakuru, Himabindu; Mody, Vaishali; Mohanty, Sandeepa; Mukkamala, Sridevi; Mundra, Sheena A; Nagaraju, Sudharani; Narayanaswamy, Rajhalutshimi; Ndungu-Case, Catherine; Noorbakhsh, Mersedeh; Patel, Jigna; Patel, Puja; Pendem, Swetha Vandana; Ponakala, Anusha; Rath, Madhusikta; Robles, Michael C; Rokkam, Deepti; Roth, Caroline; Sasidharan, Preeti; Shah, Sapana; Tandon, Shweta; Suprai, Jagdip; Truong, Tina Quynh Nhu; Uthayaruban, Rubatharshini; Varma, Ajitha; Ved, Urvi; Wang, Zeran; Yu, Zhe

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).

  20. The C. elegans Rab Family: Identification, Classification and Toolkit Construction

    PubMed Central

    Gallegos, Maria E.; Balakrishnan, Sanjeev; Chandramouli, Priya

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB). PMID:23185324

  1. A Bioinformatics Workflow for Variant Peptide Detection in Shotgun Proteomics*

    PubMed Central

    Li, Jing; Su, Zengliu; Ma, Ze-Qiang; Slebos, Robbert J. C.; Halvey, Patrick; Tabb, David L.; Liebler, Daniel C.; Pao, William; Zhang, Bing

    2011-01-01

    Shotgun proteomics data analysis usually relies on database search. However, commonly used protein sequence databases do not contain information on protein variants and thus prevent variant peptides and proteins from been identified. Including known coding variations into protein sequence databases could help alleviate this problem. Based on our recently published human Cancer Proteome Variation Database, we have created a protein sequence database that comprehensively annotates thousands of cancer-related coding variants collected in the Cancer Proteome Variation Database as well as noncancer-specific ones from the Single Nucleotide Polymorphism Database (dbSNP). Using this database, we then developed a data analysis workflow for variant peptide identification in shotgun proteomics. The high risk of false positive variant identifications was addressed by a modified false discovery rate estimation method. Analysis of colorectal cancer cell lines SW480, RKO, and HCT-116 revealed a total of 81 peptides that contain either noncancer-specific or cancer-related variations. Twenty-three out of 26 variants randomly selected from the 81 were confirmed by genomic sequencing. We further applied the workflow on data sets from three individual colorectal tumor specimens. A total of 204 distinct variant peptides were detected, and five carried known cancer-related mutations. Each individual showed a specific pattern of cancer-related mutations, suggesting potential use of this type of information for personalized medicine. Compatibility of the workflow has been tested with four popular database search engines including Sequest, Mascot, X!Tandem, and MyriMatch. In summary, we have developed a workflow that effectively uses existing genomic data to enable variant peptide detection in proteomics. PMID:21389108

  2. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site prediction tools. In the independent testing, the high sensitivity and specificity of the proposed method demonstrate the predictive effectiveness of the identified substrate motifs and the importance of investigating potential kinases for viral protein phosphorylation sites.

  3. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.

  4. Plasmodium vivax trophozoite-stage proteomes

    PubMed Central

    Anderson, D.C.; Lapp, Stacey A.; Akinyi, Sheila; Meyer, Esmeralda V.S.; Barnwell, John W.; Korir-Morrison, Cindy; Galinski, Mary R.

    2015-01-01

    Plasmodium vivax is the causative infectious agent of 80–300 million annual cases of malaria. Many aspects of this parasite’s biology remain unknown. To further elucidate the interaction of P. vivax with its Saimiri boliviensis host, we obtained detailed proteomes of infected red blood cells, representing the trophozoite-enriched stage of development. Data from two of three biological replicate proteomes, emphasized here, were analyzed using five search engines, which enhanced identifications and resulted in the most comprehensive P. vivax proteomes to date, with 1375 P. vivax and 3209 S. boliviensis identified proteins. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with P. vivax’s known reticulocyte host–cell specificity. A majority of the host and pathogen proteins identified belong to specific functional categories, and several parasite gene families, while 33% of the P. vivax proteins have no reported function. Hemoglobin was significantly oxidized in both proteomes, and additional protein oxidation and nitration was detected in one of the two proteomes. Detailed analyses of these post-translational modifications are presented. The proteins identified here significantly expand the known P. vivax proteome and complexity of available host protein functionality underlying the host–parasite interactive biology, and reveal unsuspected oxidative modifications that may impact protein function. Biological significance Plasmodium vivax malaria is a serious neglected disease, causing an estimated 80 to 300 million cases annually in 95 countries. Infection can result in significant morbidity and possible death. P. vivax, unlike the much better-studied Plasmodium falciparum species, cannot be grown in long-term culture, has a dormant form in the liver called the hypnozoite stage, has a reticulocyte host–cell preference in the blood, and creates caveolae vesicle complexes at the surface of the infected reticulocyte membranes. Studies of stage-specific P. vivax expressed proteomes have been limited in scope and focused mainly on pathogen proteins, thus limiting understanding of the biology of this pathogen and its host interactions. Here three P. vivax proteomes are reported from biological replicates based on purified trophozoite-infected reticulocytes from different Saimiri boliviensis infections (the main non-human primate experimental model for P. vivax biology and pathogenesis). An in-depth analysis of two of the proteomes using 2D LC/MS/MS and multiple search engines identified 1375 pathogen proteins and 3209 host proteins. Numerous functional categories of both host and pathogen proteins were identified, including several known P. vivax protein family members (e.g., PHIST, eTRAMP and VIR), and 33% of protein identifications were classified as hypothetical. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with this parasite species’ known reticulocyte host–cell specificity. In two biological replicates analyzed for post-translational modifications, hemoglobin was extensively oxidized, and various other proteins were also oxidized or nitrated in one of the two replicates. The cause of such protein modification remains to be determined but could include oxidized heme and oxygen radicals released from the infected red blood cell’s parasite-induced acidic digestive vacuoles. In any case, the data suggests the presence of distinct infection-specific conditions whereby both the pathogen and host infected red blood cell proteins may be subject to significant oxidative stress. PMID:25545414

  5. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.

    PubMed

    Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta

    2012-11-07

    Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.

  6. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae

    PubMed Central

    2012-01-01

    Background Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. Conclusions We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found. PMID:23134664

  7. Mapping of protein- and chromatin-interactions at the nuclear lamina.

    PubMed

    Kubben, Nard; Voncken, Jan Willem; Misteli, Tom

    2010-01-01

    The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.

  8. Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation*

    PubMed Central

    Huebner, Alyssa R.; Cheng, Lei; Somparn, Poorichaya; Knepper, Mark A.; Fenton, Robert A.; Pisitkun, Trairak

    2016-01-01

    Exosomes, derived from multivesicular bodies (MVBs), contain proteins and genetic materials from their cell of origin and are secreted from various cells types, including kidney epithelial cells. In general, it is thought that protein cargo is ubiquitylated but that ubiquitin is cleaved by specific deubiquitylases during the process of cargo incorporation into MVBs. Here, we provide direct evidence that, in vivo, deubiquitylation is not essential. Ubiquitin was detected within human MVBs and urinary exosomes by electron microscopy. Of the >6000 proteins identified in human urinary exosomes was mass spectrometry, 15% were ubiquitylated with various topologies (Lys63>Lys48> Lys11>Lys6>Lys29>Lys33>Lys27). A significant preference for basic amino acids upstream of ubiquitylation sites suggests specific ubiquitylation motifs. The current studies demonstrate that, in vivo, deubiquitylation of proteins is not necessary for their incorporation into MVBs and highlight that urinary exosomes are an enriched source for studying ubiquitin modifications in physiological or disease states. PMID:26884507

  9. Global Picture of Protein Regulation in Response to Dibutyl Phthalate (DBP) Stress of Two Brassica parachinensis Cultivars Differing in DBP Accumulation.

    PubMed

    Zhao, Hai-Ming; Huang, He-Biao; Du, Huan; Xiang, Lei; Mo, Ce-Hui; Li, Yan-Wen; Cai, Quan-Ying; Li, Hui; Liu, Jie-Sheng; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-05-09

    iTRAQ analysis was used to map the proteomes of two Brassica parachinensis cultivars that differed in dibutyl phthalate (DBP) accumulation. A total of 5699 proteins were identified to obtain 152 differentially regulated proteins, of which 64 and 48 were specific to a high- and a low-DBP-accumulation cultivar, respectively. Genotype-specific biological processes were involved in coping with DBP stress, accounting for the variation in DBP tolerance and accumulation. Formation of high DBP accumulation in B. parachinensis might attribute to the more effective regulation of protein expression in physiology and metabolism, including (a) enhanced cell wall biosynthesis and modification, (b) better maintenance of photosynthesis and energy balance, (c) greatly improved total capacity for antioxidation and detoxification, and (d) enhanced cellular transport and signal transduction. Our novel findings contribute to a global picture of DBP-induced alterations of protein profiles in crops and provide valuable information for the development of molecular-assisted breeds of low-accumulation cultivars.

  10. Electroporation and use of hepatitis B virus envelope L proteins as bionanocapsules.

    PubMed

    Yamada, Tadanori; Jung, Joohee; Seno, Masaharu; Kondo, Akihiko; Ueda, Masakazu; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2012-06-01

    Hepatitis B virus (HBV) envelope L proteins, when synthesized in yeast cells, form a hollow bionanocapsule (BNC) in which genes (including large plasmids up to 40 kbp), small interfering RNA (siRNA), drugs, and proteins can be enclosed by electroporation. BNCs made from L proteins have several advantages as a delivery system: Because they display a human liver-specific receptor (the pre-S region of the L protein) on their surface, BNCs can efficiently and specifically deliver their contents to human liver-derived cells and tissues ex vivo (in cell culture) and in vivo (in a mouse xenograft model). Retargeting can be achieved simply by substituting other biorecognition molecules such as antibodies, ligands, receptors, and homing peptides for the pre-S region. In addition, BNCs have already been proven to be safe for use in humans during their development as an immunogen of hepatitis B vaccine. This protocol describes the loading of BNCs and their use in cell culture and in vivo.

  11. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.

    PubMed

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-11-17

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.

  12. Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry.

    PubMed

    Montowska, Magdalena; Alexander, Morgan R; Tucker, Gregory A; Barrett, David A

    2015-11-15

    We present the application of a novel ambient LESA-MS method for the authentication of processed meat products. A set of 25 species and protein-specific heat stable peptide markers has been detected in processed samples manufactured from beef, pork, horse, chicken and turkey meat. We demonstrate that several peptides derived from myofibrillar and sarcoplasmic proteins are sufficiently resistant to processing to serve as specific markers of processed products. The LESA-MS technique required minimal sample preparation without fractionation and enabled the unambiguous and simultaneous identification of skeletal muscle proteins and peptides as well as other components of animal origin, including the milk protein such as casein alpha-S1, in whole meat product digests. We have identified, for the first time, six fast type II and five slow/cardiac type I MHC peptide markers in various processed meat products. The study demonstrates that complex mixtures of processed proteins/peptides can be examined effectively using this approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Preliminary analysis of cold stress responsive proteins in Mesocestoides corti larvae.

    PubMed

    Canclini, Lucía; Esteves, Adriana

    2007-07-01

    Many parasites undergo sudden changes in environmental conditions at some stage during their life cycle. The molecular response to this variation is characterised by a rapid transcriptional activation of a specific set of genes coding for proteins generically known as stress proteins. They appear to be also involved in various biological processes including cell proliferation and differentiation. The platyhelminth parasite, Mesocestoides corti (Cestoda) presents important properties as a model organism. Under stress conditions, key molecules involved in metabolic pathways as well as in the growth and differentiation of the parasite can be identified. 2D protein expression profile of tetrathyridia of M. corti, submitted to nutritional starvation and cold stress is described, as well as the recovery pattern. A set of specifically expressed proteins was observed in each experimental condition. Quantitative and qualitative differences and stress recovery pattern are also reported. This work makes evident the high plasticity and resistance to extreme environmental conditions of these parasites at the molecular level.

  14. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function.

    PubMed

    Ye, Junqiang; Beetz, Nadine; O'Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V; Bassel-Duby, Rhonda; Olson, Eric N; Maniatis, Tom

    2015-06-09

    We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation-contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation-contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing.

  15. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells

    PubMed Central

    Shen, Betty W.; Song, Yifan; Frayo, Shani; Convertine, Anthony J.; Margineantu, Daciana; Booth, Garrett; Correia, Bruno E.; Cheng, Yuanhua; Schief, William R.; Hockenbery, David M.; Press, Oliver W.; Stoddard, Barry L.; Stayton, Patrick S.; Baker, David

    2014-01-01

    SUMMARY Since apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homologue of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions, but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High specificity designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates. PMID:24949974

  16. Purification of anti-Japanese encephalitis virus monoclonal antibody by ceramic hydroxyapatite chromatography without proteins A and G.

    PubMed

    Saito, Maiko; Kurosawa, Yae; Okuyama, Tsuneo

    2012-02-01

    Antibody purification using proteins A and G has been a standard method for research and industrial processes. The conventional method, however, includes a three-step process, including buffer exchange, before chromatography. In addition, proteins A and G require low pH elution, which causes antibody aggregation and inactivates the antibody's immunity. This report proposes a two-step method using hydroxyapatite chromatography and membrane filtration, without proteins A and G. This novel method shortens the running time to one-third the conventional method for each cycle. Using our two-step method, 90.2% of the monoclonal antibodies purified were recovered in the elution fraction, the purity achieved was >90%, and most of the antigen-specific activity was retained. This report suggests that the two-step method using hydroxyapatite chromatography and membrane filtration should be considered as an alternative to purification using proteins A and G.

  17. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  18. WAVE2 Forms a Complex with PKA and Is Involved in PKA Enhancement of Membrane Protrusions*

    PubMed Central

    Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki

    2011-01-01

    PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation. PMID:21119216

  19. Phage display: concept, innovations, applications and future.

    PubMed

    Pande, Jyoti; Szewczyk, Magdalena M; Grover, Ashok K

    2010-01-01

    Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy

    PubMed Central

    Wang, Guey-Shin; Kearney, Debra L.; De Biasi, Mariella; Taffet, George; Cooper, Thomas A.

    2007-01-01

    Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide expansion in the 3′ untranslated region (3′ UTR) of DM protein kinase (DMPK). The key feature of DM1 pathogenesis is nuclear accumulation of RNA, which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of CUG-binding proteins (CUGBPs). Cardiac involvement occurs in more than 80% of individuals with DM1 and is responsible for up to 30% of disease-related deaths. We have generated an inducible and heart-specific DM1 mouse model expressing expanded CUG RNA in the context of DMPK 3′ UTR that recapitulated pathological and molecular features of DM1 including dilated cardiomyopathy, arrhythmias, systolic and diastolic dysfunction, and misregulated alternative splicing. Combined in situ hybridization and immunofluorescent staining for CUGBP1 and CUGBP2, the 2 CUGBP1 and ETR-3 like factor (CELF) proteins expressed in heart, demonstrated elevated protein levels specifically in nuclei containing foci of CUG repeat RNA. A time-course study demonstrated that colocalization of MBNL1 with RNA foci and increased CUGBP1 occurred within hours of induced expression of CUG repeat RNA and coincided with reversion to embryonic splicing patterns. These results indicate that CUGBP1 upregulation is an early and primary response to expression of CUG repeat RNA. PMID:17823658

  1. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR.

    PubMed

    Phillips, Brittany L; Banerjee, Ayan; Sanchez, Brenda J; Di Marco, Sergio; Gallouzi, Imed-Eddine; Pavlath, Grace K; Corbett, Anita H

    2018-06-25

    RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.

  2. Cleavage-site specificity of prolyl endopeptidase FAP investigated with a full-length protein substrate.

    PubMed

    Huang, Chih-Hsiang; Suen, Ching-Shu; Lin, Ching-Ting; Chien, Chia-Hui; Lee, Hsin-Ying; Chung, Kuei-Min; Tsai, Ting-Yueh; Jiaang, Weir-Tong; Hwang, Ming-Jing; Chen, Xin

    2011-06-01

    Fibroblast activation protein (FAP) is a prolyl-cleaving endopeptidase proposed as an anti-cancer drug target. It is necessary to define its cleavage-site specificity to facilitate the identification of its in vivo substrates and to understand its biological functions. We found that the previously identified substrate of FAP, α(2)-anti-plasmin, is not a robust substrate in vitro. Instead, an intracellular protein, SPRY2, is cleavable by FAP and more suitable for investigation of its substrate specificity in the context of the full-length globular protein. FAP prefers uncharged residues, including small or bulky hydrophobic amino acids, but not charged amino acids, especially acidic residue at P1', P3 and P4 sites. Molecular modelling analysis shows that the substrate-binding site of FAP is surrounded by multiple tyrosine residues and some negatively charged residues, which may exert least preference for substrates with acidic residues. This provides an explanation why FAP cannot cleave interleukins, which have a glutamate at either P4 or P2', despite their P3-P2-P1 sites being identical to SPRY2 or α-AP. Our study provided new information on FAP cleavage-site specificity, which differs from the data obtained by profiling with a peptide library or with the denatured protein, gelatin, as the substrate. Furthermore, our study suggests that negatively charged residues should be avoided when designing FAP inhibitors.

  3. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  4. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  5. Allergic reaction to latex: a risk factor for unsuspected anaphylaxis.

    PubMed

    Warpinski, J R; Folgert, J; Cohen, M; Bush, R K

    1991-01-01

    Allergic reactions to latex, including anaphylaxis may be a problem in certain individuals exposed to latex. Four atopic patients with symptoms of rhinitis, asthma, anaphylaxis, and/or urticaria upon contact with latex products were studied. The patients showed IgE binding to latex RAST disks ranging from 1.0 to 27.3 times the negative control. Latex products (gloves, balloons, and condoms) directly bound IgE from all four patients. Eluted proteins from the latex products inhibited IgE binding to commercial latex RAST disks. SDS-PAGE demonstrated multiple latex protein bands by Coomassie Blue staining between 14 and 66 kD. Immunoblotting showed specific IgE binding to latex proteins at 30 and 66 kD. These results indicate that latex-allergic patients have IgE directed against specific latex proteins. Allergy to latex can pose a substantial health risk to susceptible individuals.

  6. NgBR is essential for endothelial cell glycosylation and vascular development.

    PubMed

    Park, Eon Joo; Grabińska, Kariona A; Guan, Ziqiang; Sessa, William C

    2016-02-01

    NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development. © 2016 The Authors.

  7. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    PubMed Central

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730

  8. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    PubMed

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  9. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences

    PubMed Central

    Nagano, Yukio; Furuhashi, Hirofumi; Inaba, Takehito; Sasaki, Yukiko

    2001-01-01

    Complementary DNA encoding a DNA-binding protein, designated PLATZ1 (plant AT-rich sequence- and zinc-binding protein 1), was isolated from peas. The amino acid sequence of the protein is similar to those of other uncharacterized proteins predicted from the genome sequences of higher plants. However, no paralogous sequences have been found outside the plant kingdom. Multiple alignments among these paralogous proteins show that several cysteine and histidine residues are invariant, suggesting that these proteins are a novel class of zinc-dependent DNA-binding proteins with two distantly located regions, C-x2-H-x11-C-x2-C-x(4–5)-C-x2-C-x(3–7)-H-x2-H and C-x2-C-x(10–11)-C-x3-C. In an electrophoretic mobility shift assay, the zinc chelator 1,10-o-phenanthroline inhibited DNA binding, and two distant zinc-binding regions were required for DNA binding. A protein blot with 65ZnCl2 showed that both regions are required for zinc-binding activity. The PLATZ1 protein non-specifically binds to A/T-rich sequences, including the upstream region of the pea GTPase pra2 and plastocyanin petE genes. Expression of the PLATZ1 repressed those of the reporter constructs containing the coding sequence of luciferase gene driven by the cauliflower mosaic virus (CaMV) 35S90 promoter fused to the tandem repeat of the A/T-rich sequences. These results indicate that PLATZ1 is a novel class of plant-specific zinc-dependent DNA-binding protein responsible for A/T-rich sequence-mediated transcriptional repression. PMID:11600698

  10. The chemical basis for the origin of the genetic code and the process of protein synthesis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The major thrust is to understand just how the process of protein synthesis, including that very important aspect, genetic coding, came to be. Two aspects of the problem: the chemistry of active aminoacyl species; and affinities between amino acids and nucleotides, and specifically, how these affinities might affect the chemistry between the two are stressed.

  11. Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.

    PubMed

    Yeats, Trevor H; Bacic, Antony; Johnson, Kim L

    2018-04-18

    Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.

  12. Activity-dependent neuroprotective protein (ADNP): a case study for highly conserved chordata-specific genes shaping the brain and mutated in cancer.

    PubMed

    Gozes, Illana; Yeheskel, Adva; Pasmanik-Chor, Metsada

    2015-01-01

    The recent finding of activity-dependent neuroprotective protein (ADNP) as a protein decreased in serum of patients with Alzheimer's disease (AD) compared to controls, alongside with the discovery of ADNP mutations in autism and coupled with the original description of cancer mutations, ignited an interest for a comparative analysis of ADNP with other AD/autism/cancer-associated genes. We strive toward a better understanding of the molecular structure of key players in psychiatric/neurodegenerative diseases including autism, schizophrenia, and AD. This article includes data mining and bioinformatics analysis on the ADNP gene and protein, in addition to other related genes, with emphasis on recent literature. ADNP is discovered here as unique to chordata with specific autism mutations different from cancer-associated mutation. Furthermore, ADNP exhibits similarities to other cancer/autism-associated genes. We suggest that key genes, which shape and maintain our brain and are prone to mutations, are by in large unique to chordata. Furthermore, these brain-controlling genes, like ADNP, are linked to cell growth and differentiation, and under different stress conditions may mutate or exhibit expression changes leading to cancer propagation. Better understanding of these genes could lead to better therapeutics.

  13. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    PubMed Central

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  14. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    PubMed Central

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  15. Binding regularities in complexes of transcription factors with operator DNA: homeodomain family.

    PubMed

    Chirgadze, Yu N; Zheltukhin, E I; Polozov, R V; Sivozhelezov, V S; Ivanov, V V

    2009-06-01

    In order to disclose general regularities of binding in homeodomain-DNA complexes we considered five of them and extended the observed regularities over the entire homeodomain family. The five complexes have been selected by similarity of protein structures and patterns of contacting residues. Their long range interactions and interfaces were compared. The long-range stage of the recognition process was characterized by electrostatic potentials about 5 Angstrom away from molecular surfaces of protein or DNA. For proteins, clear positive potential is displayed only at the side contacting the DNA. The double-chained DNA molecule displays a rather strong negative potential, especially in their grooves. Thus, a functional role of electrostatics is a guiding of the protein into the DNA major groove, so the protein and DNA could form a loose non-specific complex. At the close-range stage, neutralization of the phosphate charges by positively charged residues is necessary for decreasing the strong electrostatic potential of DNA, allowing nucleotide bases to participate in the formation of protein-DNA atomic contacts in the interface. The recognizing alpha-helix of protein was shown to form both invariant and variable groups of contacts with DNA by means of certain specific side groups. The invariant contacts included highly specific protein-DNA hydrogen bonds between asparagine and adenine, nonpolar contacts of hydrophobic amino acids serving as a stereochemical barrier for fixing the protein factor on DNA, and an interface cluster of water molecules providing local conformational mobility necessary for the dissociation process. There is a unique water molecule within the interface that is conservative and located at the interface center. Invariant contacts of the proteins are mostly formed with the TAAT motif of the promoter DNA forward strand. While the invariant contacts specify the family of homeodomains, the variable contacts that are formed with the reverse strand of DNA provide specificity of individual complexes within the homeodomain family.

  16. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins.

    PubMed

    Vásquez-Garzón, Verónica R; Rouimi, Patrick; Jouanin, Isabelle; Waeg, Georg; Zarkovic, Neven; Villa-Treviño, Saul; Guéraud, Françoise

    2012-05-01

    Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.

  17. Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins.

    PubMed

    López-Sánchez, Noelia; González-Fernández, Zaira; Niinobe, Michio; Yoshikawa, Kazuaki; Frade, José María

    2007-07-18

    In mammals, the type II melanoma antigen (Mage) protein family is constituted by at least 10 closely related members that are expressed in different tissues, including the nervous system. These proteins are believed to regulate cell cycle withdrawal, neuronal differentiation, and apoptosis. However, the analysis of their specific function has been complicated by functional redundancy. In accordance with previous studies in teleosts and Drosophila, we present evidence that only one mage gene exists in genomes from protists, fungi, plants, nematodes, insects, and nonmammalian vertebrates. We have identified the chicken mage gene and cloned the cDNA encoding the chick Mage protein (CMage). CMage shares close homology with the type II Mage protein family, and, as previously shown for the type II Mage proteins Necdin and Mage-G1, it can interact with the transcription factor E2F-1. CMage is expressed in specific regions of the developing nervous system including the retinal ganglion cell layer, the ventral horn of the spinal cord, and the dorsal root ganglia, coinciding with the expression of the neurotrophin receptor p75 (p75(NTR)) in these regions. We show that the intracellular domain of p75(NTR) can interact with both CMage and Necdin, thus preventing the binding of the latter proteins to the transcription factor E2F-1, and facilitating the proapoptotic activity of E2F-1 in N1E-115 differentiating neurons. The presence of a single mage gene in the chicken genome, together with the close functional resemblance between CMage and Necdin, makes this species ideal to further analyze signal transduction through type II Mage proteins.

  18. Integration of multiple biological features yields high confidence human protein interactome.

    PubMed

    Karagoz, Kubra; Sevimoglu, Tuba; Arga, Kazim Yalcin

    2016-08-21

    The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dynamics simulations for engineering macromolecular interactions

    PubMed Central

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-01-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions. PMID:23822508

  20. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine.

    PubMed

    Kumar, Ravindra; Kumari, Bandana; Kumar, Manish

    2017-01-01

    The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i) proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii) proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83.69%. We have also annotated six different proteomes to predict the candidate endoplasmic reticulum resident proteins in them. A webserver, ERPred, was developed to make the method available to the scientific community, which can be accessed at http://proteininformatics.org/mkumar/erpred/index.html. We found that out of 124 proteins of the training dataset, only 66 proteins had endoplasmic reticulum retention signals, which shows that these signals are not an absolute necessity for endoplasmic reticulum resident proteins to remain inside the endoplasmic reticulum. This observation also strongly indicates the role of additional factors in retention of proteins inside the endoplasmic reticulum. Our proposed predictor, ERPred, is a signal independent tool. It is tuned for the prediction of endoplasmic reticulum resident proteins, even if the query protein does not contain specific ER-retention signal.

  1. The transcriptional activator ZNF143 is essential for normal development in zebrafish

    PubMed Central

    2012-01-01

    Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development. PMID:22268977

  2. The transcriptional activator ZNF143 is essential for normal development in zebrafish.

    PubMed

    Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R

    2012-01-23

    ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.

  3. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    PubMed

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka

    2008-06-06

    Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less

  5. Seminal plasma as a diagnostic fluid for male reproductive system disorders.

    PubMed

    Drabovich, Andrei P; Saraon, Punit; Jarvi, Keith; Diamandis, Eleftherios P

    2014-05-01

    Molecular biomarkers hold promise to advance the noninvasive diagnosis of male reproductive system disorders and facilitate the identification and management of these conditions through screening, early diagnosis and more accurate prognosis. Seminal plasma has great potential as a proximal fluid for protein biomarker discovery and as a clinical sample for noninvasive diagnostics. The seminal plasma proteome contains thousands of proteins and includes a large number of tissue-specific proteins that might accurately indicate a pathological process in the tissue of origin. Potential protein biomarkers for male reproductive system disorders are more abundant in seminal plasma than in blood serum or urine, and, therefore, are more easily identified and quantified in semen by mass spectrometry and other techniques. These methods have enabled elaboration of the composition of the seminal plasma proteome and the tissue specificity of seminal plasma proteins. Strategies have been developed to discover protein biomarkers in seminal plasma through integrated 'omics' approaches. Biomarkers of male infertility and prostate cancer are now emerging, and it is evident that seminal plasma has the potential to complement other diagnostic tools available in urology clinics.

  6. Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys

    PubMed Central

    Dai, Huaxin; Cao, Fangbin; Chen, Xianhong; Zhang, Mian; Ahmed, Imrul Mosaddek; Chen, Zhong-Hua; Li, Chengdao; Zhang, Guoping; Wu, Feibo

    2013-01-01

    Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance. PMID:23691047

  7. Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications

    PubMed Central

    2018-01-01

    Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described. PMID:29849913

  8. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms.

    PubMed

    Lin, Wei-Jye; Salton, Stephen R

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  9. The Regulated Secretory Pathway and Human Disease: Insights from Gene Variants and Single Nucleotide Polymorphisms

    PubMed Central

    Lin, Wei-Jye; Salton, Stephen R.

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired. PMID:23964269

  10. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity.

    PubMed

    Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F

    2015-03-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    PubMed Central

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  12. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions.

    PubMed

    Okur, Halil I; Hladílková, Jana; Rembert, Kelvin B; Cho, Younhee; Heyda, Jan; Dzubiella, Joachim; Cremer, Paul S; Jungwirth, Pavel

    2017-03-09

    Ions differ in their ability to salt out proteins from solution as expressed in the lyotropic or Hofmeister series of cations and anions. Since its first formulation in 1888, this series has been invoked in a plethora of effects, going beyond the original salting out/salting in idea to include enzyme activities and the crystallization of proteins, as well as to processes not involving proteins like ion exchange, the surface tension of electrolytes, or bubble coalescence. Although it has been clear that the Hofmeister series is intimately connected to ion hydration in homogeneous and heterogeneous environments and to ion pairing, its molecular origin has not been fully understood. This situation could have been summarized as follows: Many chemists used the Hofmeister series as a mantra to put a label on ion-specific behavior in various environments, rather than to reach a molecular level understanding and, consequently, an ability to predict a particular effect of a given salt ion on proteins in solutions. In this Feature Article we show that the cationic and anionic Hofmeister series can now be rationalized primarily in terms of specific interactions of salt ions with the backbone and charged side chain groups at the protein surface in solution. At the same time, we demonstrate the limitations of separating Hofmeister effects into independent cationic and anionic contributions due to the electroneutrality condition, as well as specific ion pairing, leading to interactions of ions of opposite polarity. Finally, we outline the route beyond Hofmeister chemistry in the direction of understanding specific roles of ions in various biological functionalities, where generic Hofmeister-type interactions can be complemented or even overruled by particular steric arrangements in various ion binding sites.

  13. Monocyte Chemoattractant Protein 1 (MCP-1) in Obesity and Diabetes

    PubMed Central

    Panee, Jun

    2012-01-01

    Monocyte chemoattractant protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past 2 decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized. PMID:22766373

  14. A facile method to screen inhibitors of protein-protein interactions including MDM2-p53 displayed on T7 phage.

    PubMed

    Ishi, Kazutomo; Sugawara, Fumio

    2008-05-01

    Protein-protein interactions are essential in many biological processes including cell cycle and apoptosis. It is currently of great medical interest to inhibit specific protein-protein interactions in order to treat a variety of disease states. Here, we describe a facile multiwell plate assay method using T7 phage display to screen for candidate inhibitors of protein-protein interactions. Because T7 phage display is an effective method for detecting protein-protein interactions, we aimed to utilize this technique to screen for small-molecule inhibitors that disrupt these types of interaction. We used the well-characterized interaction between p53 and MDM2 and an inhibitor of this interaction, nutlin 3, as a model system to establish a new screening method. Phage particles displaying p53 interacted with GST-MDM2 immobilized on 96-well plates, and the interaction was inhibited by nutlin 3. Multiwell plate assay was then performed using a natural product library, which identified dehydroaltenusin as a candidate inhibitor of the p53-MDM2 interaction. We discuss the potential applications of this novel T7 phage display methodology, which we propose to call 'reverse phage display'.

  15. Biosynthesis of human myeloperoxidase.

    PubMed

    Nauseef, William M

    2018-03-15

    Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability.

    PubMed

    Da Cruz, Sandrine; Parone, Philippe A; Gonzalo, Philippe; Bienvenut, Willy V; Tondera, Daniel; Jourdain, Alexis; Quadroni, Manfredo; Martinou, Jean-Claude

    2008-05-01

    Stomatin is a member of a large family of proteins including prohibitins, HflK/C, flotillins, mechanoreceptors and plant defense proteins, that are thought to play a role in protein turnover. Using different proteomic approaches, we and others have identified SLP-2, a member of the stomatin gene family, as a component of the mitochondria. In this study, we show that SLP-2 is strongly associated with the mitochondrial inner membrane and that it interacts with prohibitins. Depleting HeLa cells of SLP-2 lead to increased proteolysis of prohibitins and of subunits of the respiratory chain complexes I and IV. Further supporting the role of SLP-2 in regulating the stability of specific mitochondrial proteins, we found that SLP-2 is up-regulated under conditions of mitochondrial stress leading to increased protein turnover. These data indicate that SLP-2 plays a role in regulating the stability of mitochondrial proteins including prohibitins and subunits of respiratory chain complexes.

  17. Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication

    PubMed Central

    König, Renate; Zhou, Yingyao; Elleder, Daniel; Diamond, Tracy L.; Bonamy, Ghislain M.C.; Irelan, Jeffrey T.; Chiang, Chih-yuan; Tu, Buu P.; De Jesus, Paul D.; Lilley, Caroline E.; Seidel, Shannon; Opaluch, Amanda M.; Caldwell, Jeremy S.; Weitzman, Matthew D.; Kuhen, Kelli L.; Bandyopadhyay, Sourav; Ideker, Trey; Orth, Anthony P.; Miraglia, Loren J.; Bushman, Frederic D.; Young, John A.; Chanda, Sumit K.

    2008-01-01

    Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA damage response and RNA splicing were identified as important modulators of early stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of post-translational modification, and nucleic acid binding proteins. Finally, fifteen proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multi-scale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate early steps of HIV-1 infection. PMID:18854154

  18. Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    PubMed Central

    Porwollik, Steffen; Mottaz-Brewer, Heather; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; McClelland, Michael; Heffron, Fred; Smith, Richard D.

    2009-01-01

    Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella. PMID:19277208

  19. Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation

    PubMed

    Welch; Mauran; Maridonneau-Parini

    1996-06-01

    Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.

  20. Toward an Enhanced Sampling Molecular Dynamics Method for Studying Ligand-Induced Conformational Changes in Proteins.

    PubMed

    Andersen, Ole Juul; Grouleff, Julie; Needham, Perri; Walker, Ross C; Jensen, Frank

    2015-11-19

    Current enhanced sampling molecular dynamics methods for studying large conformational changes in proteins suffer from certain limitations. These include, among others, the need for user defined collective variables, the prerequisite of both start and end point structures of the conformational change, and the need for a priori knowledge of the amount by which to boost specific parts of the potential. In this paper, a framework is proposed for a molecular dynamics method for studying ligand-induced conformational changes, in which the nonbonded interactions between the ligand and the protein are used to calculate a biasing force. The method requires only a single input structure, and does not entail the use of collective variables. We provide a proof-of-concept for accelerating conformational changes in three simple test molecules, as well as promising results for two proteins known to undergo domain closure upon ligand binding. For the ribose-binding protein, backbone root-mean-square deviations as low as 0.75 Å compared to the crystal structure of the closed conformation are obtained within 50 ns simulations, whereas no domain closures are observed in unbiased simulations. A skewed closed structure is obtained for the glutamine-binding protein at high bias values, indicating that specific protein-ligand interactions might suppress important protein-protein interactions.

  1. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  2. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns.

    PubMed

    Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun

    2017-04-01

    Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multistate approaches in computational protein design

    PubMed Central

    Davey, James A; Chica, Roberto A

    2012-01-01

    Computational protein design (CPD) is a useful tool for protein engineers. It has been successfully applied towards the creation of proteins with increased thermostability, improved binding affinity, novel enzymatic activity, and altered ligand specificity. Traditionally, CPD calculations search and rank sequences using a single fixed protein backbone template in an approach referred to as single-state design (SSD). While SSD has enjoyed considerable success, certain design objectives require the explicit consideration of multiple conformational and/or chemical states. Cases where a “multistate” approach may be advantageous over the SSD approach include designing conformational changes into proteins, using native ensembles to mimic backbone flexibility, and designing ligand or oligomeric association specificities. These design objectives can be efficiently tackled using multistate design (MSD), an emerging methodology in CPD that considers any number of protein conformational or chemical states as inputs instead of a single protein backbone template, as in SSD. In this review article, recent examples of the successful design of a desired property into proteins using MSD are described. These studies employing MSD are divided into two categories—those that utilized multiple conformational states, and those that utilized multiple chemical states. In addition, the scoring of competing states during negative design is discussed as a current challenge for MSD. PMID:22811394

  4. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation.

    PubMed

    Kumar, Raj; Calhoun, William J

    2008-12-01

    Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.

  5. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana.

    PubMed

    McClure, B; Mou, B; Canevascini, S; Bernatzky, R

    1999-11-09

    Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind S(C10)-RNase in SI N. alata S(C10)S(C10) and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia x SI N. alata S(C10)S(C10)) hybrids with reduced levels of HT-protein continued to express S(C10)-RNase but failed to reject S(C10)-pollen. Control hybrids expressing both S(C10)-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolker, Eugene

    Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information.

  7. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    PubMed

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  8. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  9. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  10. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer.

    PubMed

    Seidel, Carole; Schnekenburger, Michael; Mazumder, Aloran; Teiten, Marie-Hélène; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc

    2016-01-01

    Histone deacetylase (HDAC)6 is a unique isoenzyme targeting specific substrates including α-tubulin and heat shock protein (HSP)90. HDAC6 is involved in protein trafficking and degradation, cell shape and migration. Deregulation of HDAC6 activity is associated with a variety of diseases including cancer leading to a growing interest for developing HDAC6 inhibitors. Here, we identified two new structurally related 4-hydroxybenzoic acids as selective HDAC6 inhibitors reducing proliferation, colony and spheroid formation as well as viability of prostate cancer cells. Both compounds strongly enhanced α-tubulin acetylation leading to remodeling of microtubular organization. Furthermore, 4-hydroxybenzoic acids decreased HSP90α regulation of the human androgen receptor in prostate cancer cells by increasing HSP90α acetylation levels. Collectively, our data support the potential of 4-hydroxybenzoic acid derivatives as HDAC6-specific inhibitors with anti-cancer properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease.

    PubMed

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J

    2017-12-01

    Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.

  12. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Chen, Yuling; Li, Andrew S.; Reid, Michael B.

    2003-01-01

    Reactive oxygen species (ROS) are thought to promote muscle atrophy in chronic wasting diseases, but the underlying mechanism has not been determined. Here we show that H2O2 stimulates ubiquitin conjugation to muscle proteins through transcriptional regulation of the enzymes (E2 and E3 proteins) that conjugate ubiquitin to muscle proteins. Incubation of C2C12 myotubes with 100 microM H2O2 increased the rate of 125I-labeled ubiquitin conjugation to muscle proteins in whole cell extracts. This response required at least 4-h exposure to H2O2 and persisted for at least 24 h. Preincubating myotubes with cycloheximide or actinomycin D blocked H2O2 stimulation of ubiquitin-conjugating activity, suggesting that gene transcription is required. Northern blot analyses revealed that H2O2 upregulates expression of specific E3 and E2 proteins that are thought to regulate muscle catabolism, including atrogin1/MAFbx, MuRF1, and E214k. These results suggest that ROS stimulate protein catabolism in skeletal muscle by upregulating the ubiquitin conjugation system.

  13. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  14. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins includingmore » SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.« less

  15. Flavivirus Replication Complex Assembly Revealed by DNAJC14 Functional Mapping

    PubMed Central

    Yi, Zhigang; Yuan, Zhenghong; Rice, Charles M.

    2012-01-01

    DNAJC14 is an Hsp40 family member that broadly modulates flavivirus replication. The mechanism by which DNAJC14 stoichiometrically participates in flavivirus replication complex (RC) formation is unknown; both reduced and elevated levels result in replication inhibition. Using yellow fever virus (YFV), we demonstrate that DNAJC14 redistributes and clusters with YFV nonstructural proteins via a transmembrane domain and a newly identified membrane-binding domain (MBD), which both mediate targeting to detergent-resistant membranes. Furthermore, the RC and DNAJC14 reside as part of a protein interaction network that remains after 1% Triton solubilization. Mutagenesis studies demonstrate that entry into this protein interaction network requires the DNAJC14 C-terminal self-interaction domain. Fusion of the DNAJC14 MBD and self-interaction domain with another Hsp40 family protein is sufficient to confer YFV-inhibitory activity. Our findings support a novel model of DNAJC14 action that includes specific membrane targeting of both DNAJC14 and YFV replication proteins, the formation of protein interactions, and a microdomain-specific chaperone event leading to RC formation. This process alters the properties of the RC membrane and results in the formation of a protein scaffold that maintains the RC. PMID:22915803

  16. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a.

    PubMed

    Miranda, Tina Branscombe; Webb, Kristofor J; Edberg, Dale D; Reeves, Raymond; Clarke, Steven

    2005-10-28

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation.

  17. APC+/− alters colonic fibroblast proteome in FAP

    PubMed Central

    Dixon, Maketa P.; Blagoi, Elena L.; Nicolas, Emmanuelle; Seeholzer, Steven H.; Cheng, David; He, Yin A.; Coudry, Renata A.; Howard, Sharon D.; Riddle, Dawn M.; Cooper, Harry S.; Boman, Bruce M.; Conrad, Peggy; Crowell, James A.; Bellacosa, Alfonso; Knudson, Alfred; Yeung, Anthony T.; Kopelovich, Levy

    2011-01-01

    Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a “one-hit” effect. PMID:21411865

  18. Stress Proteins and Initiation of Immune Response: Chaperokine activity of Hsp72

    PubMed Central

    Asea, Alexzander

    2006-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response. PMID:16385842

  19. Stress proteins and initiation of immune response: chaperokine activity of hsp72.

    PubMed

    Asea, Alexzander

    2005-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response.

  20. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication.

    PubMed

    Shlomai, Joseph

    2010-11-01

    Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.

  1. Inositol Pentakisphosphate Isomers Bind PH Domains with Varying Specificity and Inhibit Phosphoinositide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Jackson; S Al-Saigh; C Schultz

    2011-12-31

    PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similaritymore » of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathway.« less

  2. Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats.

    PubMed

    Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R

    1995-08-04

    Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.

  3. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi.

    PubMed

    Liao, Y; Williams, T J; Ye, J; Charlesworth, J; Burns, B P; Poljak, A; Raftery, M J; Cavicchioli, R

    2016-11-22

    Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community.

  4. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi

    PubMed Central

    Liao, Y.; Williams, T. J.; Ye, J.; Charlesworth, J.; Burns, B. P.; Poljak, A.; Raftery, M. J.; Cavicchioli, R.

    2016-01-01

    Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community. PMID:27874045

  5. Evaluation of the Recombinant Protein TpF1 of Treponema pallidum for Serodiagnosis of Syphilis

    PubMed Central

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying

    2013-01-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  6. Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis

    PubMed Central

    Nair, Manoj K. M.; De Masi, Leon; Yue, Min; Galván, Estela M.; Chen, Huaiqing; Wang, Fang

    2015-01-01

    Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

  7. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities.

    PubMed

    Kreutzenbeck, Peter; Kröger, Carsten; Lausberg, Frank; Blaudeck, Natascha; Sprenger, Georg A; Freudl, Roland

    2007-03-16

    The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.

  8. Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV.

    PubMed

    Brown, Eric P; Weiner, Joshua A; Lin, Shu; Natarajan, Harini; Normandin, Erica; Barouch, Dan H; Alter, Galit; Sarzotti-Kelsoe, Marcella; Ackerman, Margaret E

    2018-04-01

    The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d

  10. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer

    PubMed Central

    O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik

    2015-01-01

    To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329

  11. Intrinsic disorder in scaffold proteins: Getting more from less

    PubMed Central

    Cortese, Marc S.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3β, p53, Ste5, titin, Fus3, BRCA1, Titin, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure. PMID:18619997

  12. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines

    PubMed Central

    2014-01-01

    Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231

  13. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines.

    PubMed

    Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin

    2014-04-28

    It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.

  14. OST-HTH: a novel predicted RNA-binding domain

    PubMed Central

    2010-01-01

    Background The mechanism by which the arthropod Oskar and vertebrate TDRD5/TDRD7 proteins nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. Using sequence profile searches we identify a novel domain in these proteins that is widely conserved across eukaryotes and bacteria. Results Using contextual information from domain architectures, sequence-structure superpositions and available functional information we predict that this domain is likely to adopt the winged helix-turn-helix fold and bind RNA with a potential specificity for dsRNA. We show that in eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Conclusions Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized domain (DUF88). We present evidence that it is an RNAse belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains and might be recruited to degrade certain RNAs. Reviewers This article was reviewed by Sandor Pongor and Arcady Mushegian. PMID:20302647

  15. Purification of CFTR for mass spectrometry analysis: identification of palmitoylation and other post-translational modifications

    PubMed Central

    McClure, Michelle; DeLucas, Lawrence J.; Wilson, Landon; Ray, Marjorie; Rowe, Steven M.; Wu, Xiaoyun; Dai, Qun; Hong, Jeong S.; Sorscher, Eric J.; Kappes, John C.; Barnes, Stephen

    2012-01-01

    Post-translational modifications (PTMs) play a crucial role during biogenesis of many transmembrane proteins. Previously, it had not been possible to evaluate PTMs in cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial ion channel responsible for cystic fibrosis, because of difficulty obtaining sufficient amounts of purified protein. We recently used an inducible overexpression strategy to generate recombinant CFTR protein at levels suitable for purification and detailed analysis. Using liquid chromatography (LC) tandem and multiple reaction ion monitoring (MRM) mass spectrometry, we identified specific sites of PTMs, including palmitoylation, phosphorylation, methylation and possible ubiquitination. Many of these covalent CFTR modifications have not been described previously, but are likely to influence key and clinically important molecular processes including protein maturation, gating and the mechanisms underlying certain mutations associated with disease. PMID:22119790

  16. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    PubMed

    Bala Tannan, Neeta; Collu, Giovanna; Humphries, Ashley C; Serysheva, Ekatherina; Weber, Ursula; Mlodzik, Marek

    2018-01-01

    AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  17. Redox Signaling Regulated by Cysteine Persulfide and Protein Polysulfidation.

    PubMed

    Kasamatsu, Shingo; Nishimura, Akira; Morita, Masanobu; Matsunaga, Tetsuro; Abdul Hamid, Hisyam; Akaike, Takaaki

    2016-12-15

    For decades, reactive persulfide species including cysteine persulfide (CysSSH) have been known to exist endogenously in organisms. However, the physiological significance of endogenous persulfides remains poorly understood. That cystathionine β-synthase and cystathionine γ-lyase produced CysSSH from cystine was recently demonstrated. An endogenous sulfur transfer system involving CysSSH evidently generates glutathione persulfide (GSSH) that exists at concentrations greater than 100 μM in vivo. Because reactive persulfide species such as CysSSH and GSSH have higher nucleophilicity than parental cysteine (Cys) and glutathione do, these reactive species exhibit strong scavenging activities against oxidants, e.g., hydrogen peroxide, and electrophiles, which contributes to redox signaling regulation. Also, several papers indicated that various proteins and enzymes have Cys polysulfides including CysSSH at their specific Cys residues, which is called protein polysulfidation. Apart from the redox signaling regulatory mechanism, another plausible function of protein polysulfidation is providing protection for protein thiol residues against irreversible chemical modification caused by oxidants and electrophiles. Elucidation of the redox signaling regulatory mechanism of reactive persulfide species including small thiol molecules and thiol-containing proteins should lead to the development of new therapeutic strategies and drug discoveries for oxidative and electrophilic stress-related diseases.

  18. Local Structural Differences in Homologous Proteins: Specificities in Different SCOP Classes

    PubMed Central

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G.

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I’ and II’ are also identified as preferred sites for insertions. PMID:22745680

  19. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency

    PubMed Central

    Barna, Maria; Pusic, Aya; Zollo, Ornella; Costa, Maria; Kondrashov, Nadya; Rego, Eduardo; Rao, Pulivarthi H; Ruggero, Davide

    2008-01-01

    The Myc oncogene regulates the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III, and rDNA1,2. An outstanding question is whether and how increasing the cellular protein synthesis capacity can affect the multi-step process leading to cancer. We utilized ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Eμ–Myc/+ transgenic mice to normal levels and show that in this context Myc's oncogenic potential is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a novel paradigm that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation employed to regulate the expression of selective mRNAs. We show that an aberrant increase in cap-dependent translation downstream Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (p58-PITSLRE)3-5, which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Eμ–Myc/+ mice. When accurate translational control is re-established in Eμ–Myc/+ mice, genome instability is suppressed. Our findings reveal how perturbations in translational control provide a highly specific outcome on gene expression, genome stability, and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level. PMID:19011615

  20. Application of Protein Microarrays for Multiplexed Detection of Antibodies to Tumor Antigens in Breast Cancer

    PubMed Central

    Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua

    2012-01-01

    There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903

Top