Sample records for specific recognition site

  1. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    PubMed

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  2. Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in Transcript Decay.

    PubMed

    Jiang, Peng; Singh, Mona; Coller, Hilary A

    2013-01-01

    Transcript degradation is a widespread and important mechanism for regulating protein abundance. Two major regulators of transcript degradation are RNA Binding Proteins (RBPs) and microRNAs (miRNAs). We computationally explored whether RBPs and miRNAs cooperate to promote transcript decay. We defined five RBP motifs based on the evolutionary conservation of their recognition sites in 3'UTRs as the binding motifs for Pumilio (PUM), U1A, Fox-1, Nova, and UAUUUAU. Recognition sites for some of these RBPs tended to localize at the end of long 3'UTRs. A specific group of miRNA recognition sites were enriched within 50 nts from the RBP recognition sites for PUM and UAUUUAU. The presence of both a PUM recognition site and a recognition site for preferentially co-occurring miRNAs was associated with faster decay of the associated transcripts. For PUM and its co-occurring miRNAs, binding of the RBP to its recognition sites was predicted to release nearby miRNA recognition sites from RNA secondary structures. The mammalian miRNAs that preferentially co-occur with PUM binding sites have recognition seeds that are reverse complements to the PUM recognition motif. Their binding sites have the potential to form hairpin secondary structures with proximal PUM binding sites that would normally limit RISC accessibility, but would be more accessible to miRNAs in response to the binding of PUM. In sum, our computational analyses suggest that a specific set of RBPs and miRNAs work together to affect transcript decay, with the rescue of miRNA recognition sites via RBP binding as one possible mechanism of cooperativity.

  3. Functional specificity of a Hox protein mediated by the recognition of minor groove structure.

    PubMed

    Joshi, Rohit; Passner, Jonathan M; Rohs, Remo; Jain, Rinku; Sosinsky, Alona; Crickmore, Michael A; Jacob, Vinitha; Aggarwal, Aneel K; Honig, Barry; Mann, Richard S

    2007-11-02

    The recognition of specific DNA-binding sites by transcription factors is a critical yet poorly understood step in the control of gene expression. Members of the Hox family of transcription factors bind DNA by making nearly identical major groove contacts via the recognition helices of their homeodomains. In vivo specificity, however, often depends on extended and unstructured regions that link Hox homeodomains to a DNA-bound cofactor, Extradenticle (Exd). Using a combination of structure determination, computational analysis, and in vitro and in vivo assays, we show that Hox proteins recognize specific Hox-Exd binding sites via residues located in these extended regions that insert into the minor groove but only when presented with the correct DNA sequence. Our results suggest that these residues, which are conserved in a paralog-specific manner, confer specificity by recognizing a sequence-dependent DNA structure instead of directly reading a specific DNA sequence.

  4. TU-FG-209-12: Treatment Site and View Recognition in X-Ray Images with Hierarchical Multiclass Recognition Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, X; Mazur, T; Yang, D

    Purpose: To investigate an approach of automatically recognizing anatomical sites and imaging views (the orientation of the image acquisition) in 2D X-ray images. Methods: A hierarchical (binary tree) multiclass recognition model was developed to recognize the treatment sites and views in x-ray images. From top to bottom of the tree, the treatment sites are grouped hierarchically from more general to more specific. Each node in the hierarchical model was designed to assign images to one of two categories of anatomical sites. The binary image classification function of each node in the hierarchical model is implemented by using a PCA transformationmore » and a support vector machine (SVM) model. The optimal PCA transformation matrices and SVM models are obtained by learning from a set of sample images. Alternatives of the hierarchical model were developed to support three scenarios of site recognition that may happen in radiotherapy clinics, including two or one X-ray images with or without view information. The performance of the approach was tested with images of 120 patients from six treatment sites – brain, head-neck, breast, lung, abdomen and pelvis – with 20 patients per site and two views (AP and RT) per patient. Results: Given two images in known orthogonal views (AP and RT), the hierarchical model achieved a 99% average F1 score to recognize the six sites. Site specific view recognition models have 100 percent accuracy. The computation time to process a new patient case (preprocessing, site and view recognition) is 0.02 seconds. Conclusion: The proposed hierarchical model of site and view recognition is effective and computationally efficient. It could be useful to automatically and independently confirm the treatment sites and views in daily setup x-ray 2D images. It could also be applied to guide subsequent image processing tasks, e.g. site and view dependent contrast enhancement and image registration. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less

  5. The prediction of human exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyev, V.V.; Salamov, A.A.; Lawrence, C.B.

    1994-12-31

    Discriminant analysis is applied to the problem of recognition 5`-, internal and 3`-exons in human DNA sequences. Specific recognition functions were developed for revealing exons of particular types. The method based on a splice site prediction algorithm that uses the linear Fisher discriminant to combine the information about significant triplet frequencies of various functional parts of splice site regions and preferences of oligonucleotide in protein coding and nation regions. The accuracy of our splice site recognition function is about 97%. A discriminant function for 5`-exon prediction includes hexanucleotide composition of upstream region, triplet composition around the ATG codon, ORF codingmore » potential, donor splice site potential and composition of downstream introit region. For internal exon prediction, we combine in a discriminant function the characteristics describing the 5`- intron region, donor splice site, coding region, acceptor splice site and Y-intron region for each open reading frame flanked by GT and AG base pairs. The accuracy of precise internal exon recognition on a test set of 451 exon and 246693 pseudoexon sequences is 77% with a specificity of 79% and a level of pseudoexon ORF prediction of 99.96%. The recognition quality computed at the level of individual nucleotides is 89%, for exon sequences and 98% for intron sequences. A discriminant function for 3`-exon prediction includes octanucleolide composition of upstream nation region, triplet composition around the stop codon, ORF coding potential, acceptor splice site potential and hexanucleotide composition of downstream region. We unite these three discriminant functions in exon predicting program FEX (find exons). FEX exactly predicts 70% of 1016 exons from the test of 181 complete genes with specificity 73%, and 89% exons are exactly or partially predicted. On the average, 85% of nucleotides were predicted accurately with specificity 91%.« less

  6. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin.

    PubMed

    Fuchs, Julian E; Huber, Roland G; Waldner, Birgit J; Kahler, Ursula; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-01-01

    Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm "dynamics govern specificity" might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design.

  7. Mannose-recognition mutant of the galactose/N-acetylgalactosamine-specific C-type lectin CEL-I engineered by site-directed mutagenesis.

    PubMed

    Moriuchi, Hiromi; Unno, Hideaki; Goda, Shuichiro; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu

    2015-07-01

    CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydrate-binding site on the specificity of the lectin. Trp105 of EPN-CEL-I was replaced by a histidine residue using site-directed mutagenesis, and the binding affinity of the resulting mutant, EPNH-CEL-I, was examined by sugar-polyamidoamine dendrimer assay, isothermal titration calorimetry, and glycoconjugate microarray analysis. Tertiary structure of the EPNH-CEL-I/mannose complex was determined by X-ray crystallographic analysis. Sugar-polyamidoamine dendrimer assay and glycoconjugate microarray analysis revealed a drastic change in the specificity of EPNH-CEL-I from galactose/N-acetylgalactosamine to mannose. The association constant of EPNH-CEL-I for mannose was determined to be 3.17×10(3) M(-1) at 25°C. Mannose specificity of EPNH-CEL-I was achieved by stabilization of the binding of mannose in a correct orientation, in which the EPN motif can form proper hydrogen bonds with 3- and 4-hydroxy groups of the bound mannose. Specificity of CEL-I can be engineered by mutating a limited number of amino acid residues in addition to the QPD/EPN motifs. Versatility of the C-type carbohydrate-recognition domain structure in the recognition of various carbohydrate chains could become a promising platform to develop novel molecular recognition proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-12-01

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  9. Functional and Neuroanatomical Specificity of Episodic Memory Dysfunction in Schizophrenia: An fMRI study of the Relational and Item-Specific Encoding Task

    PubMed Central

    Ragland, J. Daniel; Ranganath, Charan; Harms, Michael P.; Barch, Deanna M.; Gold, James M.; Layher, Evan; Lesh, Tyler A.; MacDonald, Angus W.; Niendam, Tara A.; Phillips, Joshua; Silverstein, Steven M.; Yonelinas, Andrew P.; Carter, Cameron S.

    2015-01-01

    Importance Individuals with schizophrenia (SZ) can encode item-specific information to support familiarity-based recognition, but are disproportionately impaired encoding inter-item relationships (relational encoding) and recollecting information. The Relational and Item-Specific Encoding (RiSE) paradigm has been used to disentangle these encoding and retrieval processes, which may be dependent on specific medial temporal lobe (MTL) and prefrontal cortex (PFC) subregions. Functional imaging during RiSE task performance could help to specify dysfunctional neural circuits in SZ that can be targeted for interventions to improve memory and functioning in the illness. Objectives To use functional magnetic resonance imaging (fMRI) to test the hypothesis that SZ disproportionately affects MTL and PFC subregions during relational encoding and retrieval, relative to item-specific memory processes. Imaging results from healthy comparison subjects (HC) will also be used to establish neural construct validity for RiSE. Design, Setting, and Participants This multi-site, case-control, cross-sectional fMRI study was conducted at five CNTRACS sites. The final sample included 52 clinically stable outpatients with SZ, and 57 demographically matched HC. Main Outcomes and Measures Behavioral performance speed and accuracy (d’) on item recognition and associative recognition tasks. Voxelwise statistical parametric maps for a priori MTL and PFC regions of interest (ROI), testing activation differences between relational and item-specific memory during encoding and retrieval. Results Item recognition was disproportionately impaired in SZ patients relative to controls following relational encoding. The differential deficit was accompanied by reduced dorsolateral prefrontal cortex (DLPFC) activation during relational encoding in SZ, relative to HC. Retrieval success (hits > misses) was associated with hippocampal (HI) activation in HC during relational item recognition and associative recognition conditions, and HI activation was specifically reduced in SZ for recognition of relational but not item-specific information. Conclusions In this unique, multi-site fMRI study, HC results supported RiSE construct validity by revealing expected memory effects in PFC and MTL subregions during encoding and retrieval. Comparison of SZ and HC revealed disproportionate memory deficits in SZ for relational versus item-specific information, accompanied by regionally and functionally specific deficits in DLPFC and HI activation. PMID:26200928

  10. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE PAGES

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  11. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  12. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  13. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin

    PubMed Central

    Fuchs, Julian E.; Huber, Roland G.; Waldner, Birgit J.; Kahler, Ursula; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm “dynamics govern specificity” might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design. PMID:26496636

  14. Understanding the molecular differential recognition of muramyl peptide ligands by LRR domains of human NOD receptors.

    PubMed

    Vijayrajratnam, Sukhithasri; Pushkaran, Anju Choorakottayil; Balakrishnan, Aathira; Vasudevan, Anil Kumar; Biswas, Raja; Mohan, Chethampadi Gopi

    2017-07-27

    Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso -diaminopimelic acid ( meso DAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. Using Temporal Modulation Sensitivity to Select Stimulation Sites for Processor MAPs in Cochlear Implant Listeners

    PubMed Central

    Garadat, Soha N.; Zwolan, Teresa A.; Pfingst, Bryan E.

    2013-01-01

    Previous studies in our laboratory showed that temporal acuity as assessed by modulation detection thresholds (MDTs) varied across activation sites and that this site-to-site variability was subject specific. Using two 10-channel MAPs, the previous experiments showed that processor MAPs that had better across-site mean (ASM) MDTs yielded better speech recognition than MAPs with poorer ASM MDTs tested in the same subject. The current study extends our earlier work on developing more optimal fitting strategies to test the feasibility of using a site-selection approach in the clinical domain. This study examined the hypothesis that revising the clinical speech processor MAP for cochlear implant (CI) recipients by turning off selected sites that have poorer temporal acuity and reallocating frequencies to the remaining electrodes would lead to improved speech recognition. Twelve CI recipients participated in the experiments. We found that site selection procedure based on MDTs in the presence of a masker resulted in improved performance on consonant recognition and recognition of sentences in noise. In contrast, vowel recognition was poorer with the experimental MAP than with the clinical MAP, possibly due to reduced spectral resolution when sites were removed from the experimental MAP. Overall, these results suggest a promising path for improving recipient outcomes using personalized processor-fitting strategies based on a psychophysical measure of temporal acuity. PMID:23881208

  16. Specific minor groove solvation is a crucial determinant of DNA binding site recognition

    PubMed Central

    Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.

    2014-01-01

    The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976

  17. Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering

    PubMed Central

    Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993

  18. Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F.

    PubMed

    Chen, Sheng; Wan, Hoi Ying

    2011-01-15

    BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions.

  19. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  20. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE PAGES

    Hu, Liya; Ramani, Sasirekha; Czako, Rita; ...

    2015-09-30

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  1. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Liya; Ramani, Sasirekha; Czako, Rita

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  2. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.

    PubMed

    Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.

  3. An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese.

    PubMed

    Vipond, I B; Moon, B J; Halford, S E

    1996-02-13

    The EcoRV restriction endonuclease cleaves DNA at its recognition sequence more readily with Mg2+ as the cofactor than with Mn2+ but, at noncognate sequences that differ from the EcoRV site by one base pair, Mn2+ gives higher rates than Mg2+. A mutant of EcoRV, in which an isoleucine near the active site was replaced by leucine, showed the opposite behavior. It had low activity with Mg2+, but, in the presence of Mn2+ ions, it cleaved the recognition site faster than wild-type EcoRV with either Mn2+ or Mg2+. The mutant was also more specific for the recognition sequence than the native enzyme: the noncognate DNA cleavages by wild-type EcoRV and Mn2+ were not detected with the mutant. Further mutagenesis showed that the protein required the same acidic residues at its active site as wild-type EcoRV. The Ile-->Leu mutation seems to perturb the configuration of the metal-binding ligands at the active site so that the protein has virtually no affinity for Mg2+ yet it can still bind Mn2+ ions, though the latter only occurs when the protein is at the recognition site. This contrasts to wild-type EcoRV, where Mn2+ ions bind readily to complexes with either cognate and noncognate DNA and only Mg2+ shows the discrimination between the complexes. The structural perturbation is a specific consequence of leucine in place of isoleucine, since mutants with valine or alanine were similar to wild-type EcoRV.

  4. Type III restriction-modification enzymes: a historical perspective.

    PubMed

    Rao, Desirazu N; Dryden, David T F; Bheemanaik, Shivakumara

    2014-01-01

    Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

  5. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  6. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  7. Engineering Translational Activators with CRISPR-Cas System.

    PubMed

    Du, Pei; Miao, Chensi; Lou, Qiuli; Wang, Zefeng; Lou, Chunbo

    2016-01-15

    RNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-repressive RNA module (crRNA) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation. Unlike small RNA as a translational activator, the endoribonuclease-based activator is able to efficiently unfold the perfect RBS-crRNA pairing. As an exchangeable module, the crRNA-RBS duplex was forwardly and reversely engineered to modulate the dynamic range of translational activity. We further showed that Csy4 and its recognition site, together as a module, can also be replaced by orthogonal endoribonuclease-recognition site homologues. These modularly structured, high-performance translational activators would endow the programming of gene expression in the translation level with higher feasibility.

  8. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  9. An SRY mutation causing human sex reversal resolves a general mechanism of structure-specific DNA recognition: application to the four-way DNA junction.

    PubMed

    Peters, R; King, C Y; Ukiyama, E; Falsafi, S; Donahoe, P K; Weiss, M A

    1995-04-11

    SRY, a genetic "master switch" for male development in mammals, exhibits two biochemical activities: sequence-specific recognition of duplex DNA and sequence-independent binding to the sharp angles of four-way DNA junctions. Here, we distinguish between these activities by analysis of a mutant SRY associated with human sex reversal (46, XY female with pure gonadal dysgenesis). The substitution (168T in human SRY) alters a nonpolar side chain in the minor-groove DNA recognition alpha-helix of the HMG box [Haqq, C.M., King, C.-Y., Ukiyama, E., Haqq, T.N., Falsalfi, S., Donahoe, P.K., & Weiss, M.A. (1994) Science 266, 1494-1500]. The native (but not mutant) side chain inserts between specific base pairs in duplex DNA, interrupting base stacking at a site of induced DNA bending. Isotope-aided 1H-NMR spectroscopy demonstrates that analogous side-chain insertion occurs on binding of SRY to a four-way junction, establishing a shared mechanism of sequence- and structure-specific DNA binding. Although the mutant DNA-binding domain exhibits > 50-fold reduction in sequence-specific DNA recognition, near wild-type affinity for four-way junctions is retained. Our results (i) identify a shared SRY-DNA contact at a site of either induced or intrinsic DNA bending, (ii) demonstrate that this contact is not required to bind an intrinsically bent DNA target, and (iii) rationalize patterns of sequence conservation or diversity among HMG boxes. Clinical association of the I68T mutation with human sex reversal supports the hypothesis that specific DNA recognition by SRY is required for male sex determination.

  10. Evolution of I-SceI Homing Endonucleases with Increased DNA Recognition Site Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Rakesh; Ho, Kwok Ki; Tenney, Kristen

    2013-09-18

    Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G{sub +4} base pair for the wild-type A:T{sub +4} base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T{sub +4} were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T{sub +4} or the C:G{submore » +4} base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G{sub +4} recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T{sub +4} target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G{sub +4} target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed -36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G{sub +4} substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.« less

  11. Alteration of the carbohydrate-binding specificity of a C-type lectin CEL-I mutant with an EPN carbohydrate-binding motif.

    PubMed

    Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro

    2013-07-01

    CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.

  12. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  13. TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting

    PubMed Central

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308

  14. RNA editing site recognition in heterologous plant mitochondria.

    PubMed

    Choury, David; Araya, Alejandro

    2006-12-01

    RNA editing is a process that modifies the information content of mitochondrial messenger RNAs in flowering plants changing specific cytosine residues into uridine. To gain insight into editing site recognition, we used electroporation to introduce engineered wheat (Triticum aestivum) or potato (Solanum tuberosum) mitochondrial cox2 genes, and an atp9-containing chimeric gene, into non-cognate mitochondria, and observed the efficiency of editing in these contexts. Both wheat and potato mitochondria were able to express "foreign" constructs, and their products were properly spliced. Seventeen and twelve editing sites are present in the coding regions of wheat and potato cox2 transcripts, respectively. Eight are common to both plants, whereas nine are specific to wheat, and four to potato. An analogous situation is found for the atp9 mRNA coding regions from these species. We found that both mitochondria were able to recognize sites that are already present as T at the genomic level, making RNA editing unnecessary for that specific residue in the cognate organelle. Our results demonstrate that non-cognate mitochondria are able to edit residues that are not edited in their own transcripts, and support the hypothesis that the same trans-acting factor may recognize several editing sites.

  15. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site.

    PubMed

    Cheng, Hao D; Grimm, Sebastian K; Gilman, Morgan Sa; Gwom, Luc Christian; Sok, Devin; Sundling, Christopher; Donofrio, Gina; Hedestam, Gunilla B Karlsson; Bonsignori, Mattia; Haynes, Barton F; Lahey, Timothy P; Maro, Isaac; von Reyn, C Fordham; Gorny, Miroslaw K; Zolla-Pazner, Susan; Walker, Bruce D; Alter, Galit; Burton, Dennis R; Robb, Merlin L; Krebs, Shelly J; Seaman, Michael S; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-08

    Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.

  16. Multimedia-based decision support system for hazards recognition and abatement

    DOEpatents

    Czachowski, John B.; Zoldak, John T.

    1998-01-01

    A system for monitoring a site includes a portable data collection module used in the field to collect site specific data, and a processor module located at a central location. The data collection module displays choices of categories of findings, and then specific findings within each category. A selected specific finding is then displayed in report form with a citation to the specific code or statutory requirement, as well as a recommended course of action and an abatement date.

  17. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.

    PubMed

    Bhagavat, Raghu; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-09-01

    Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  19. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    PubMed

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  20. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan

    2011-11-18

    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{submore » d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.« less

  1. Identification of amino acids in the N-terminal SH2 domain of phospholipase C gamma 1 important in the interaction with epidermal growth factor receptor.

    PubMed

    Gergel, J R; McNamara, D J; Dobrusin, E M; Zhu, G; Saltiel, A R; Miller, W T

    1994-12-13

    Photoaffinity labeling and site-directed mutagenesis have been used to identify amino acid residues of the phospholipase C gamma 1 (PLC gamma 1) N-terminal SH2 domain involved in recognition of the activated epidermal growth factor receptor (EGFR). The photoactive amino acid p-benzoylphenylalanine (Bpa) was incorporated into phosphotyrosine-containing peptides derived from EGFR autophosphorylation sites Tyr992 and Tyr1068. Irradiation of these labels in the presence of SH2 domains showed cross-linking which was time-dependent and specific; labeling was inhibited with non-Bpa-containing peptides from EGFR in molar excess. The phosphotyrosine residue on the peptides was important for SH2 recognition, as dephosphorylated peptides did not cross-link. Radiolabeled peptides were used to identify sites of cross-linking to the N-terminal SH2 of PLC gamma 1. Bpa peptide-SH2 complexes were digested with trypsin, and radioactive fragments were purified by HPLC and analyzed by Edman sequencing. These experiments showed Arg562 and an additional site in the alpha A-beta B region of the SH2 domain, most likely Glu587, to be labeled by the Tyr992-derived peptide. Similar analysis of the reaction with the Tyr1068-derived photoaffinity label identified Leu653 as the cross-linked site. Mutation of the neighboring residues of Glu587 decreased photo-cross-linking, emphasizing the importance of this region of the molecule for recognition. These results are consistent with evidence from the v-Src crystal structure and implicate the loop spanning residues Gln640-Ser654 of PLC gamma 1 in specific recognition of phosphopeptides.

  2. Defining the mRNA recognition signature of a bacterial toxin protein

    DOE PAGES

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; ...

    2015-10-27

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less

  3. Defining the mRNA recognition signature of a bacterial toxin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less

  4. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    PubMed

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  5. Programmable RNA recognition and cleavage by CRISPR/Cas9

    PubMed Central

    O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.

    2014-01-01

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage1-5. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA4-7. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in many cell types and organisms8, but it has been thought to be incapable of targeting RNA5. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalyzed DNA cleavage7. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous mRNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable and tagless transcript recognition. PMID:25274302

  6. Specificity of a protein-protein interface: local dynamics direct substrate recognition of effector caspases.

    PubMed

    Fuchs, Julian E; von Grafenstein, Susanne; Huber, Roland G; Wallnoefer, Hannes G; Liedl, Klaus R

    2014-04-01

    Proteases are prototypes of multispecific protein-protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well-defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in programmed cell death and inflammation, turning caspases into interesting drug targets. Specific ligand binding to one particular caspase is difficult to achieve, as substrate specificities of caspase isoforms are highly similar. In an effort to rationalize substrate specificity of two closely related caspases, we investigate the substrate promiscuity of the effector Caspases 3 and 7 by data mining (cleavage entropy) and by molecular dynamics simulations. We find a strong correlation between binding site rigidity and substrate readout for individual caspase subpockets explaining more stringent substrate readout of Caspase 7 via its narrower conformational space. Caspase 3 subpockets S3 and S4 show elevated local flexibility explaining the more unspecific substrate readout of that isoform in comparison to Caspase 7. We show by in silico exchange mutations in the S3 pocket of the proteases that a proline residue in Caspase 7 contributes to the narrowed conformational space of the binding site. These findings explain the substrate specificities of caspases via a mechanism of conformational selection and highlight the crucial importance of binding site local dynamics in substrate recognition of proteases. Proteins 2014; 82:546-555. © 2013 Wiley Periodicals, Inc. Copyright © 2013 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  7. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    PubMed

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework. Copyright 2001 Academic Press.

  8. Molecularly imprinted polymers for the recognition of proteins: the state of the art.

    PubMed

    Bossi, A; Bonini, F; Turner, A P F; Piletsky, S A

    2007-01-15

    Molecular imprinting has proved to be an effective technique for the creation of recognition sites on a polymer scaffold. Protein imprinting has been a focus for many chemists working in the area of molecular recognition, since the creation of synthetic polymers that can specifically recognise proteins is a very challenging but potentially extremely rewarding objective. It is expected that molecularly imprinted polymers (MIPs) with specificity for proteins will find application in medicine, diagnostics, proteomics, environmental analysis, sensors and drug delivery. In this review, the authors provide an overview of the progress achieved in the decade between 1994 and 2005, with respect to the challenging area of MIPs for protein recognition. The discussion furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages and highlighting trends and possible future directions.

  9. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing

    PubMed Central

    Yang, Qin; Gilmartin, Gregory M.; Doublié, Sylvie

    2010-01-01

    Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing. PMID:20479262

  10. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2010-06-01

    Human Cleavage Factor Im (CFI(m)) is an essential component of the pre-mRNA 3' processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFI(m)25) of the CFI(m) complex possesses a characteristic alpha/beta/alpha Nudix fold, CFI(m)25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFI(m)25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFI(m)25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson-Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap(4)A (diadenosine tetraphosphate) by CFI(m)25 suggests a potential role for small molecules in the regulation of mRNA 3' processing.

  11. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Chang, Tzu-Hao; Bretaña, Neil; Lai, K; Weng, Julia; Lee, Tzong-Yi

    2015-01-01

    In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data. However, no development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities. In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs. A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to the training data of the predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (76.13%) and outperform other ubiquitination site prediction tool. A case study demonstrated the effectiveness of the characterized substrate motifs for identifying ubiquitination sites. The proposed method presents a practical means of preliminary analysis and greatly diminishes the total number of potential targets required for further experimental confirmation. This method may help unravel their mechanisms and roles in E3 recognition and ubiquitin-mediated protein degradation.

  12. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.

    PubMed

    Repanas, Kostas; Zingler, Nora; Layer, Liliana E; Schumann, Gerald G; Perrakis, Anastassis; Weichenrieder, Oliver

    2007-01-01

    The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for approximately 28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.

  13. The application of automatic recognition techniques in the Apollo 9 SO-65 experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1970-01-01

    A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.

  14. 30 CFR 46.11 - Site-specific hazard awareness training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... environmental conditions, recognition and avoidance of hazards such as electrical and powered-haulage hazards, traffic patterns and control, and restricted areas; and warning and evacuation signals, evacuation and...

  15. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellon, S.F.; Coleman, J.H.; Lippard, S.J.

    The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedi-chloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-(Pt(NH{sub 3}){sub 2}(d(GpG))), cis-(Pt(NH){sub 3}{sub 2}(d(ApG))), and cis-(Pt(NH{sub 3}){sub 2}(d(GpTpG))) adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymersmore » containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. The authors find that the cis-GG and cis-AG adducts both unwind DNA by 13{degrees}, while the cis-GTG adduct unwinds DNA by 23{degrees}. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA. The authors propose that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13{degrees} and bending by 35{degrees} are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells.« less

  16. Variola virus topoisomerase: DNA cleavage specificity and distribution of sites in Poxvirus genomes.

    PubMed

    Minkah, Nana; Hwang, Young; Perry, Kay; Van Duyne, Gregory D; Hendrickson, Robert; Lefkowitz, Elliot J; Hannenhalli, Sridhar; Bushman, Frederic D

    2007-08-15

    Topoisomerase enzymes regulate superhelical tension in DNA resulting from transcription, replication, repair, and other molecular transactions. Poxviruses encode an unusual type IB topoisomerase that acts only at conserved DNA sequences containing the core pentanucleotide 5'-(T/C)CCTT-3'. In X-ray structures of the variola virus topoisomerase bound to DNA, protein-DNA contacts were found to extend beyond the core pentanucleotide, indicating that the full recognition site has not yet been fully defined in functional studies. Here we report quantitation of DNA cleavage rates for an optimized 13 bp site and for all possible single base substitutions (40 total sites), with the goals of understanding the molecular mechanism of recognition and mapping topoisomerase sites in poxvirus genome sequences. The data allow a precise definition of enzyme-DNA interactions and the energetic contributions of each. We then used the resulting "action matrix" to show that favorable topoisomerase sites are distributed all along the length of poxvirus DNA sequences, consistent with a requirement for local release of superhelical tension in constrained topological domains. In orthopox genomes, an additional central cluster of sites was also evident. A negative correlation of predicted topoisomerase sites was seen relative to early terminators, but no correlation was seen with early or late promoters. These data define the full variola virus topoisomerase recognition site and provide a new window on topoisomerase function in vivo.

  17. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Substrate recognition by ribonucleoprotein ribonuclease MRP

    PubMed Central

    Esakova, Olga; Perederina, Anna; Quan, Chao; Berezin, Igor; Krasilnikov, Andrey S.

    2011-01-01

    The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5′ ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed. PMID:21173200

  19. Substrate recognition by ribonucleoprotein ribonuclease MRP.

    PubMed

    Esakova, Olga; Perederina, Anna; Quan, Chao; Berezin, Igor; Krasilnikov, Andrey S

    2011-02-01

    The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.

  20. The Readability of Information Literacy Content on Academic Library Web Sites

    ERIC Educational Resources Information Center

    Lim, Adriene

    2010-01-01

    This article reports on a study addressing the readability of content on academic libraries' Web sites, specifically content intended to improve users' information literacy skills. Results call for recognition of readability as an evaluative component of text in order to better meet the needs of diverse user populations. (Contains 8 tables.)

  1. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity.more » The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.« less

  2. Dynamic nanoplatforms in biosensor and membrane constitutional systems.

    PubMed

    Mahon, Eugene; Aastrup, Teodor; Barboiu, Mihail

    2012-01-01

    Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate-protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell-cell interaction and communication. Protein-protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

  3. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex

    PubMed Central

    Chakraborty, Sagnik; Steinbach, Peter J; Paul, Debamita; Mu, Hong; Broyde, Suse

    2018-01-01

    Abstract Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions. PMID:29267981

  4. Microgravity

    NASA Image and Video Library

    1998-12-01

    Type II restriction enzymes, such as Eco R1 endonulease, present a unique advantage for the study of sequence-specific recognition because they leave a record of where they have been in the form of the cleaved ends of the DNA sites where they were bound. The differential behavior of a sequence -specific protein at sites of differing base sequence is the essence of the sequence-specificity; the core question is how do these proteins discriminate between different DNA sequences especially when the two sequences are very similar. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  5. Protein Crystal Eco R1 Endonulease-DNA Complex

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Type II restriction enzymes, such as Eco R1 endonulease, present a unique advantage for the study of sequence-specific recognition because they leave a record of where they have been in the form of the cleaved ends of the DNA sites where they were bound. The differential behavior of a sequence -specific protein at sites of differing base sequence is the essence of the sequence-specificity; the core question is how do these proteins discriminate between different DNA sequences especially when the two sequences are very similar. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  6. Molecular recognition of DNA base pairs by the formamido/pyrrole and formamido/imidazole pairings in stacked polyamides.

    PubMed

    Buchmueller, Karen L; Staples, Andrew M; Uthe, Peter B; Howard, Cameron M; Pacheco, Kimberly A O; Cox, Kari K; Henry, James A; Bailey, Suzanna L; Horick, Sarah M; Nguyen, Binh; Wilson, W David; Lee, Moses

    2005-01-01

    Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, -ImPy- and -PyPy-. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and DeltaT (M) experiments. The f/Py pairing, when placed next to the -ImPy- or -PyPy- central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With -ImPy- central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson-Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the -PyPy- central pairings.

  7. Exosites in the substrate specificity of blood coagulation reactions.

    PubMed

    Bock, P E; Panizzi, P; Verhamme, I M A

    2007-07-01

    The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.

  8. Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site.

    PubMed

    Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L

    2000-08-25

    Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.

  9. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  10. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  11. Thermodynamics of DNA target site recognition by homing endonucleases

    PubMed Central

    Eastberg, Jennifer H.; Smith, Audrey McConnell; Zhao, Lei; Ashworth, Justin; Shen, Betty W.; Stoddard, Barry L.

    2007-01-01

    The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding. PMID:17947319

  12. 77 FR 18242 - Environmental Management Site-Specific Advisory Board Chairs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ..., 2012 [cir] EM Program Update [cir] Recognition of Departing Chairs [cir] EM SSAB Chairs' Round Robin... [cir] EM SSAB Chairs' Round Robin: Cross-Complex Issues Thursday, April 19, 2012 [cir] DOE Headquarters...

  13. Mechanism of substrate recognition by the novel Botulinum Neurotoxin subtype F5.

    PubMed

    Guo, Jiubiao; Chan, Edward Wai Chi; Chen, Sheng

    2016-01-22

    Botulinum Neurotoxins (BoNTs) are the causative agents of botulism, which act by potently inhibiting the neurotransmitter release in motor neurons. Seven serotypes of BoNTs designated as BoNT/A-G have been identified. Recently, two novel types of Botulinum neurotoxins, which cleave a novel scissile bond, L(54)-E(55), of VAMP-2 have been reported including BoNT/F subtype F5 and serotype H. However, little has been known on how these BoNTs recognize their substrates. The present study addressed for the first time the unique substrate recognition mechanism of LC/F5. Our data indicated that the optimal peptide required for efficient LC/F5 substrate cleavage is VAMP-2 (20-65). Interestingly, the overall mode of substrate recognition adopted by LC/F5 was similar to LC/F1, except that its recognition sites were shifted one helix toward the N-terminus of VAMP-2 when compared to that of LC/F1. The composition of LC/F5 pockets were found to have changed accordingly to facilitate specific recognition of these new sites of VAMP-2, including the P2', P1', P2, P3, B3, B2 and B1 sites. The study provides direct evidence of the evolutionary adaption of BoNT to recognize its substrate which is useful for effective antitoxin and inhibitor development.

  14. Mono and Multivalency In Tethered Protein-Carbohydrate Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratto, T V; Langry, K C; Rudd, R E

    2004-01-29

    Molecular recognition in biological systems typically involves large numbers of interactions simultaneously. By using a multivalent approach, weak interactions with fairly low specificity can become strong highly specific interactions. Additionally, this allows an organism to control the strength and specificity of an interaction simply by controlling the number of binding molecules (or binding sites), which in turn can be controlled through transcriptional regulation.

  15. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  16. Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif.

    PubMed Central

    Kelly, J J; Baird, E E; Dervan, P B

    1996-01-01

    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Six polyamides containing three to eight rings bind DNA sites 5-10 bp in length, respectively. Quantitative DNase I footprint titration experiments demonstrate that affinity maximizes and is similar at ring sizes of five, six, and seven. Sequence specificity decreases as the length of the polyamides increases beyond five rings. These results provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity. Images Fig. 4 PMID:8692930

  17. Engineering a switch-on peptide to ricin A chain for increasing its specificity towards HIV-infected cells.

    PubMed

    Au, Ka-Yee; Wang, Rui-Rui; Wong, Yuen-Ting; Wong, Kam-Bo; Zheng, Yong-Tang; Shaw, Pang-Chui

    2014-03-01

    Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA. HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants. C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells. RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication. Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Corona Phase Molecular Recognition (CoPhMoRe) to Enable New Nanosensor Interfaces

    NASA Astrophysics Data System (ADS)

    Strano, Michael

    2015-03-01

    Our lab at MIT has been interested in how the 1D and 2D electronic structures of carbon nanotubes and graphene respectively can be utilized to advance new concepts in molecular detection. We introduce CoPhMoRe or corona phase molecular recognition as a method of discovering synthetic antibodies, or nanotube-templated recognition sites from a heteropolymer library. We show that certain synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymers-nanotube recognition complexes for riboflavin, L-thyroxine and estradiol. The platform opens new opportunities to create synthetic recognition sites for molecular detection. We have also extended this molecular recognition technique to neurotransmitters, producing the first fluorescent sensor for dopamine. Another area of advancement in biosensor development is the use of near infrared fluorescent carbon nanotube sensors for in-vivo detection. Here, we show that PEG-ligated d(AAAT)7 DNA wrapped SWNT are selective for nitric oxide, a vasodilator of blood vessels, and can be tail vein injected into mice and localized within the viable mouse liver. We use an SJL mouse model to study liver inflammation in vivo using the spatially and spectrally resolved nIR signature of the localized SWNT sensors.

  19. A global optimization algorithm for protein surface alignment

    PubMed Central

    2010-01-01

    Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230

  20. Creation of a type IIS restriction endonuclease with a long recognition sequence

    PubMed Central

    Lippow, Shaun M.; Aha, Patti M.; Parker, Matthew H.; Blake, William J.; Baynes, Brian M.; Lipovšek, Daša

    2009-01-01

    Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases. PMID:19304757

  1. Molecular recognition of DNA base pairs by the formamido/pyrrole and formamido/imidazole pairings in stacked polyamides

    PubMed Central

    Buchmueller, Karen L.; Staples, Andrew M.; Uthe, Peter B.; Howard, Cameron M.; Pacheco, Kimberly A. O.; Cox, Kari K.; Henry, James A.; Bailey, Suzanna L.; Horick, Sarah M.; Nguyen, Binh; Wilson, W. David; Lee, Moses

    2005-01-01

    Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, –ImPy– and –PyPy–. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and ΔTM experiments. The f/Py pairing, when placed next to the –ImPy– or –PyPy– central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With –ImPy– central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson–Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the –PyPy– central pairings. PMID:15703305

  2. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  3. Domain repertoires as a tool to derive protein recognition rules.

    PubMed

    Zucconi, A; Panni, S; Paoluzi, S; Castagnoli, L; Dente, L; Cesareni, G

    2000-08-25

    Several approaches, some of which are described in this issue, have been proposed to assemble a complete protein interaction map. These are often based on high throughput methods that explore the ability of each gene product to bind any other element of the proteome of the organism. Here we propose that a large number of interactions can be inferred by revealing the rules underlying recognition specificity of a small number (a few hundreds) of families of protein recognition modules. This can be achieved through the construction and characterization of domain repertoires. A domain repertoire is assembled in a combinatorial fashion by allowing each amino acid position in the binding site of a given protein recognition domain to vary to include all the residues allowed at that position in the domain family. The repertoire is then searched by phage display techniques with any target of interest and from the primary structure of the binding site of the selected domains one derives rules that are used to infer the formation of complexes between natural proteins in the cell.

  4. Evolution of hierarchical cytoplasmic inheritance in the plasmodial slime mold Physarum polycephalum.

    PubMed

    Iwanaga, Akiko; Sasaki, Akira

    2004-04-01

    A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in the heteroplasmic zygotes. If the recombination rate is above the threshold, suppressor alleles are equally distributed in each mating type at evolutionary equilibrium. Based on the theoretical results of the site-specific nuclease model, we propose that a nested subsequence structure in the recognition sequence should underlie the linear dominance hierarchy of mitochondrial transmission.

  5. Species-specific recognition of the carrier insect by dauer larvae of the nematode Caenorhabditis japonica.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-02-15

    Host recognition is crucial during the phoretic stage of nematodes because it facilitates their association with hosts. However, limited information is available on the direct cues used for host recognition and host specificity in nematodes. Caenorhabditis japonica forms an intimate association with the burrower bug Parastrachia japonensis. Caenorhabditis japonica dauer larvae (DL), the phoretic stage of the nematode, are mainly found on adult P. japonensis females but no other species. To understand the mechanisms of species-specific and female carrier-biased ectophoresy in C. japonica, we investigated whether C. japonica DL could recognize their hosts using nematode loading and chemoattraction experiments. During the loading experiments, up to 300 C. japonica DL embarked on male and female P. japonensis, whereas none or very few utilized the other shield bugs Erthesina fullo and Macroscytus japonensis or the terrestrial isopod Armadillidium vulgare. In the chemoattraction experiments, hexane extracts containing the body surface components of nymphs and both adult P. japonensis sexes attracted C. japonica DL, whereas those of other shield bugs did not. Parastrachia japonensis extracts also arrested the dispersal of C. japonica DL released at a site where hexane extracts were spotted on an agar plate; i.e. >50% of DL remained at the site even 60 min after nematode inoculation whereas M. japonensis extracts or hexane alone did not have the same effect. These results suggest that C. japonica DL recognize their host species using direct chemical attractants from their specific host to maintain their association.

  6. Characterization of the recognition specificity of BH2, a monoclonal antibody prepared against the HLA-B27 heavy chain.

    PubMed

    Yu, Hui-Chun; Huang, Kuang-Yung; Lu, Ming-Chi; Huang, Hsien-Lu; Liu, Wei-Ting; Lee, Wen-Chien; Liu, Su-Qin; Huang, Hsien-Bin; Lai, Ning-Sheng

    2015-04-13

    BH2, a monoclonal antibody prepared against the denatured human leukocytic antigen-B27 heavy chain (HLA-B27 HC), can immunoprecipitate the misfolded HLA-B27 HC complexed with Bip in the endoplasmic reticulum and recognize the homodimerized HLA-B27 HC that is often observed on the cell membrane of patients suffered from ankylosing spondylitis (AS). However, the recognition specificity of BH2 toward the other molecules of HLA-B type and toward the different types of HLA molecules remained uncharacterized. In this study, we carried out the HLA-typing by using the Luminex Technology to characterize the recognition specificity of BH2 and analyzed the binding domain of HLA-B27 HC by BH2. Our results indicated that BH2 preferably binds to molecules of HLA-B and -C rather than HLA-A and the binding site is located within the α2 domain of HLA-B27 HC.

  7. Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody-protein A/G-gold nanocluster conjugates

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad; Schneider, Lilli; Ströbel, Philipp; Marx, Alexander; Packeisen, Jens; Schlücker, Sebastian

    2014-01-01

    SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates.SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05890e

  8. Inactivation by Phenylglyoxal of the Specific Binding of 1-Naphthyl Acetic Acid with Membrane-Bound Auxin Binding Sites from Maize Coleoptiles

    PubMed Central

    Navé, Jean-François; Benveniste, Pierre

    1984-01-01

    The specific binding of 1-[3H]naphthyl acetic acid (NAA) to membrane-bound binding sites from maize (Zea mays cv INRA 258) coleoptiles is inactivated by phenylglyoxal. The inactivation obeys pseudo first-order kinetics. The rate of inactivation is proportional to phenylglyoxal concentration. Under conditions at which significant binding occurs, NAA, R and S-1-naphthyl 2-propionic acids protect the auxin binding site against inactivation by phenylglyoxal. Scatchard analysis shows that the inhibition of binding corresponds to a decrease in the concentration of sites but not in the affinity. The results of the present chemical modification study indicate that at least one arginyl residue is involved in the positively charged recognition site of the carboxylate anion of NAA. PMID:16663499

  9. A Comprehensive Study of Molecular Evolution at the Self-Incompatibility Locus of Rosaceae.

    PubMed

    Ashkani, Jahanshah; Rees, D J G

    2016-03-01

    The family Rosaceae includes a range of important fruit trees, most of which have the S-RNase-based self-incompatibility (SI). Several models have been developed to explain how pollen (SLF) and pistil (S-RNase) components of the S-locus interact. It was discovered in 2010 that additional SLF proteins are involved in pollen specificity, and a Collaborative Non-Self Recognition model has been proposed for SI in Solanaceae; however, the validity of such model remains to be elucidated for other species. The results of this study support the divergent evolution of the S-locus genes from two Rosaceae subfamilies, Prunoideae/Amygdaloideae and Maloideae, The difference identified in the selective pressures between the two lineages provides evidence for positive selection at specific sites in both the S-RNase and the SLF proteins. The evolutionary findings of this study support the role of multiple SLF proteins leading to a Collaborative Non-Self Recognition model for SI in the Maloideae. Furthermore, the identification of the sites responsible for SI specificity determination and the mapping of these sites onto the modelled tertiary structure of ancestor proteins provide useful information for rational functional redesign and protein engineering for the future engineering of new functional alleles providing increased diversity in the SI system in the Maloideae.

  10. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences.

    PubMed

    Deng, Wankun; Wang, Chenwei; Zhang, Ying; Xu, Yang; Zhang, Shuang; Liu, Zexian; Xue, Yu

    2016-12-22

    Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org.

  11. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences

    PubMed Central

    Deng, Wankun; Wang, Chenwei; Zhang, Ying; Xu, Yang; Zhang, Shuang; Liu, Zexian; Xue, Yu

    2016-01-01

    Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org. PMID:28004786

  12. MPEG-7 audio-visual indexing test-bed for video retrieval

    NASA Astrophysics Data System (ADS)

    Gagnon, Langis; Foucher, Samuel; Gouaillier, Valerie; Brun, Christelle; Brousseau, Julie; Boulianne, Gilles; Osterrath, Frederic; Chapdelaine, Claude; Dutrisac, Julie; St-Onge, Francis; Champagne, Benoit; Lu, Xiaojian

    2003-12-01

    This paper reports on the development status of a Multimedia Asset Management (MAM) test-bed for content-based indexing and retrieval of audio-visual documents within the MPEG-7 standard. The project, called "MPEG-7 Audio-Visual Document Indexing System" (MADIS), specifically targets the indexing and retrieval of video shots and key frames from documentary film archives, based on audio-visual content like face recognition, motion activity, speech recognition and semantic clustering. The MPEG-7/XML encoding of the film database is done off-line. The description decomposition is based on a temporal decomposition into visual segments (shots), key frames and audio/speech sub-segments. The visible outcome will be a web site that allows video retrieval using a proprietary XQuery-based search engine and accessible to members at the Canadian National Film Board (NFB) Cineroute site. For example, end-user will be able to ask to point on movie shots in the database that have been produced in a specific year, that contain the face of a specific actor who tells a specific word and in which there is no motion activity. Video streaming is performed over the high bandwidth CA*net network deployed by CANARIE, a public Canadian Internet development organization.

  13. The Structure and Specificity of the Type III Secretion System Effector NleC Suggest a DNA Mimicry Mechanism of Substrate Recognition

    PubMed Central

    2015-01-01

    Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221

  14. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    PubMed

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.

    PubMed

    Nayak, Dhananjaya; Guo, Qing; Sousa, Rui

    2009-05-15

    Yeast mitochondrial (YMt) and phage T7 RNA polymerases (RNAPs) are two divergent representatives of a large family of single subunit RNAPs that are also found in the mitochondria and chloroplasts of higher eukaryotes, mammalian nuclei, and many other bacteriophage. YMt and phage T7 promoters differ greatly in sequence and length, and the YMt RNAP uses an accessory factor for initiation, whereas T7 RNAP does not. We obtain evidence here that, despite these apparent differences, both the YMt and T7 RNAPs utilize a similar promoter recognition loop to bind their respective promoters. Mutations in this element in YMt RNAP specifically disrupt mitochondrial promoter utilization, and experiments with site-specifically tethered chemical nucleases indicate that this element binds the mitochondrial promoter almost identically to how the promoter recognition loop from the phage RNAP binds its promoter. Sequence comparisons reveal that the other members of the single subunit RNAP family display loops of variable sequence and size at a position corresponding to the YMt and T7 RNAP promoter recognition loops. We speculate that these elements may be involved in promoter recognition in most or all of these enzymes and that this element's structure allows it to accommodate significant sequence and length variation to provide a mechanism for rapid evolution of new promoter specificities in this RNAP family.

  16. Pseudoknot and translational control in the expression of the S15 ribosomal protein.

    PubMed

    Bénard, L; Philippe, C; Ehresmann, B; Ehresmann, C; Portier, C

    1996-01-01

    Translational autocontrol of the expression of the ribosomal protein S15 proceeds through the transitory formation of a pseudoknot. A synopsis of the known data is used to propose a molecular model of the mechanism involved and for the role of the pseudoknot. This latter structure is able to recruit 30S ribosomal subunits to initiate translation, but also to bind S15 and to stop translation by trapping the ribosome on its loading site. Information on the S15 protein recognition of the messenger RNA site was deduced from mutational analyses and chemical probing. A comparison of this messenger site with the S15 ribosomal binding site was conducted by analysing hydroxyl radical footprintings of these two sites. The existence of two subsites in 16S RNA suggests that the ribosomal protein S15 might present either two different binding sites or at least one common subsite. Clues for the presence of a common site between the messenger and 16S RNA are given which cannot rule out that recognition specificity is linked to a few other determinants. Whether these determinants are different or not remains an open question.

  17. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  18. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE PAGES

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...

    2017-07-07

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  19. Widespread Site-Dependent Buffering of Human Regulatory Polymorphism

    PubMed Central

    Kutyavin, Tanya; Stamatoyannopoulos, John A.

    2012-01-01

    The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF–binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein–DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human–chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of “perfect” genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements. PMID:22457641

  20. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.

    PubMed

    Nunez, Noelia; Clifton, Molly M K; Funnell, Alister P W; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G R; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C M; Mackay, Joel P; Crossley, Merlin

    2011-11-04

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.

  1. The Multi-zinc Finger Protein ZNF217 Contacts DNA through a Two-finger Domain*

    PubMed Central

    Nunez, Noelia; Clifton, Molly M. K.; Funnell, Alister P. W.; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G. R.; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C. M.; Mackay, Joel P.; Crossley, Merlin

    2011-01-01

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif. PMID:21908891

  2. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  3. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Bianchet, Mario A.; Fernández-Robledo, José A.; Amzel, L. Mario

    2013-01-01

    Although lectins are “hard-wired” in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins—the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc—has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity. PMID:22973821

  4. Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine.

    PubMed

    Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami; Haginaka, Jun

    2013-11-01

    Molecularly imprinted polymers (MIPs) for creatinine were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer and divinylbenzene as a crosslinker. The prepared MIPs were monodispersed with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high- and low-affinity sites, were formed on the MIPs. The retention and molecular-recognition properties of the MIPs were evaluated by hydrophilic interaction chromatography using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase. With an increase of acetonitrile content, the retention factor of creatinine was increased on the MIP. In addition to shape recognition, hydrophilic interactions seemed to enhance the recognition of creatinine on the MIP. The MIPs' molecular-recognition ability was specific for creatinine; the structurally related compounds such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine were not recognized. Furthermore, the creatinine concentrations in human serum and urine were successfully determined by direct injection of the deproteinized serum and diluted urine samples onto the MIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome

    PubMed Central

    Ullers, Ronald S.; Houben, Edith N.G.; Raine, Amanda; ten Hagen-Jongman, Corinne M.; Ehrenberg, Måns; Brunner, Joseph; Oudega, Bauke; Harms, Nellie; Luirink, Joen

    2003-01-01

    As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro–synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain. PMID:12756233

  6. Polyhydroxylated [60]fullerene binds specifically to functional recognition sites on a monomeric and a dimeric ubiquitin

    NASA Astrophysics Data System (ADS)

    Zanzoni, Serena; Ceccon, Alberto; Assfalg, Michael; Singh, Rajesh K.; Fushman, David; D'Onofrio, Mariapina

    2015-04-01

    The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with 15N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways.The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with 15N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways. Electronic supplementary information (ESI) available: Experimental details. Fig. S1. Characterization of fullerenol by dynamic light scattering. Fig. S2. Size-exclusion chromatography. Fig. S3. 15N R1 spin relaxation rates of Ub and Ub2 upon subsequent additions of fullerenol. See DOI: 10.1039/c5nr00539f

  7. Quantitative Expression and Immunogenicity of MAGE-3 and -6 in Upper Aerodigestive Tract Cancer

    PubMed Central

    Andrade Filho, Pedro A.; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L.

    2009-01-01

    The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aero-digestive tract (UADT) tumor cells and its association with T cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using western blot. HLA-A*0201:MAGE-3(271–279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. Based on MAGE-3/6 expression we could identify 31 (47%) of the 65 UADT tumors which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, two MAGE-3/6 mRNAhigh SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6 specific knockdown. RNAi–transfected cells showed that MAGE expression, and MAGE-CTL recognition, were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials. PMID:19610063

  8. Quantitative expression and immunogenicity of MAGE-3 and -6 in upper aerodigestive tract cancer.

    PubMed

    Filho, Pedro A Andrade; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L

    2009-10-15

    The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aerodigestive tract (UADT) tumor cells and its association with T-cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE-specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+ squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using Western blot. HLA-A*0201:MAGE-3- (271-279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. On the basis of the MAGE-3/6 expression, we could identify 31 (47%) of the 65 UADT tumors, which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, 2 MAGE-3/6 mRNA(high) SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6-specific knockdown. RNAi-transfected cells showed that MAGE expression and MAGE-CTL recognition were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR-based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials.

  9. Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80.

    PubMed

    Anamika; Spyracopoulos, Leo

    2016-02-26

    Recognition and repair of double-stranded DNA breaks (DSB) involves the targeted recruitment of BRCA tumor suppressors to damage foci through binding of both ubiquitin (Ub) and the Ub-like modifier SUMO. RAP80 is a component of the BRCA1 A complex, and plays a key role in the recruitment process through the binding of Lys(63)-linked poly-Ub chains by tandem Ub interacting motifs (UIM). RAP80 also contains a SUMO interacting motif (SIM) just upstream of the tandem UIMs that has been shown to specifically bind the SUMO-2 isoform. The RAP80 tandem UIMs and SIM function collectively for optimal recruitment of BRCA1 to DSBs, although the molecular basis of this process is not well understood. Using NMR spectroscopy, we demonstrate that the RAP80 SIM binds SUMO-2, and that both specificity and affinity are enhanced through phosphorylation of the canonical CK2 site within the SIM. The affinity increase results from an enhancement of electrostatic interactions between the phosphoserines of RAP80 and the SIM recognition module within SUMO-2. The NMR structure of the SUMO-2·phospho-RAP80 complex reveals that the molecular basis for SUMO-2 specificity is due to isoform-specific sequence differences in electrostatic SIM recognition modules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Site-specific protein labeling with PRIME and chelation-assisted Click chemistry

    PubMed Central

    Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.

    2016-01-01

    This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180

  11. The active site of O-GlcNAc transferase imposes constraints on substrate sequence

    PubMed Central

    Rafie, Karim; Blair, David E.; Borodkin, Vladimir S.; Albarbarawi, Osama; van Aalten, Daan M. F.

    2016-01-01

    O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoa. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay on a library of peptides. The sites of O-GlcNAc modification were mapped by ETD-mass spectrometry, and found to correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with human OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that while the N-terminal TPR repeats of hOGT may play a role in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a significant contribution to O-GlcNAc site specificity. PMID:26237509

  12. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.

    PubMed

    Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang

    2013-04-01

    Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

  13. Physical signals for protein-DNA recognition

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Qin; Zeng, Jia; Yan, Hong

    2009-09-01

    This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein-DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do.

  14. Antibodies causing thrombocytopenia in patients treated with RGD-mimetic platelet inhibitors recognize ligand-specific conformers of αIIb/β3 integrin

    PubMed Central

    Rasmussen, Mark; Zhu, Jieqing; Aster, Richard H.

    2012-01-01

    Arginine-glycine-aspartic acid (RGD)–mimetic platelet inhibitors act by occupying the RGD recognition site of αIIb/β3 integrin (GPIIb/IIIa), thereby preventing the activated integrin from reacting with fibrinogen. Thrombocytopenia is a well-known side effect of treatment with this class of drugs and is caused by Abs, often naturally occurring, that recognize αIIb/β3 in a complex with the drug being administered. RGD peptide and RGD-mimetic drugs are known to induce epitopes (ligand-induced binding sites [LIBS]) in αIIb/β3 that are recognized by certain mAbs. It has been speculated, but not shown experimentally, that Abs from patients who develop thrombocytopenia when treated with an RGD-mimetic inhibitor similarly recognize LIBS determinants. We addressed this question by comparing the reactions of patient Abs and LIBS-specific mAbs against αIIb/β3 in a complex with RGD and RGD-mimetic drugs, and by examining the ability of selected non-LIBS mAbs to block binding of patient Abs to the liganded integrin. Findings made provide evidence that the patient Abs recognize subtle, drug-induced structural changes in the integrin head region that are clustered about the RGD recognition site. The target epitopes differ from classic LIBS determinants, however, both in their location and by virtue of being largely drug-specific. PMID:22490676

  15. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  16. Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain.

    PubMed

    Lim, Wooi F; Burdach, Jon; Funnell, Alister P W; Pearson, Richard C M; Quinlan, Kate G R; Crossley, Merlin

    2016-04-20

    Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA bindingin vitro, it appears thatin vivoFDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to theVEGF-Apromoter as predicted, but was also found to occupy approximately 25,000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50,000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Molecular evolution and functional divergence of the cytochrome P450 3 (CYP3) Family in Actinopterygii (ray-finned fish).

    PubMed

    Yan, Jun; Cai, Zhonghua

    2010-12-10

    The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable. Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family. The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene duplication. Site-specific evolution in substrate recognition was related to functional divergence in the Actinopterygii CYP3 family.

  18. Strand-specific Recognition of DNA Damages by XPD Provides Insights into Nucleotide Excision Repair Substrate Versatility*

    PubMed Central

    Buechner, Claudia N.; Heil, Korbinian; Michels, Gudrun; Carell, Thomas; Kisker, Caroline; Tessmer, Ingrid

    2014-01-01

    Recognition and removal of DNA damages is essential for cellular and organismal viability. Nucleotide excision repair (NER) is the sole mechanism in humans for the repair of carcinogenic UV irradiation-induced photoproducts in the DNA, such as cyclobutane pyrimidine dimers. The broad substrate versatility of NER further includes, among others, various bulky DNA adducts. It has been proposed that the 5′-3′ helicase XPD (xeroderma pigmentosum group D) protein plays a decisive role in damage verification. However, despite recent advances such as the identification of a DNA-binding channel and central pore in the protein, through which the DNA is threaded, as well as a dedicated lesion recognition pocket near the pore, the exact process of target site recognition and verification in eukaryotic NER still remained elusive. Our single molecule analysis by atomic force microscopy reveals for the first time that XPD utilizes different recognition strategies to verify structurally diverse lesions. Bulky fluorescein damage is preferentially detected on the translocated strand, whereas the opposite strand preference is observed for a cyclobutane pyrimidine dimer lesion. Both states, however, lead to similar conformational changes in the resulting specific complexes, indicating a merge to a “final” verification state, which may then trigger the recruitment of further NER proteins. PMID:24338567

  19. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  20. Tb3+-cleavage assays reveal specific Mg2+ binding sites necessary to pre-fold the btuB riboswitch for AdoCbl binding

    NASA Astrophysics Data System (ADS)

    Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.

    2017-03-01

    Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.

  1. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  2. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  3. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC

    PubMed Central

    Kong, Daochun; Coleman, Thomas R.; DePamphilis, Melvin L.

    2003-01-01

    Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe. PMID:12840006

  5. Pathways to Medical Home Recognition: A Qualitative Comparative Analysis of the PCMH Transformation Process.

    PubMed

    Mendel, Peter; Chen, Emily K; Green, Harold D; Armstrong, Courtney; Timbie, Justin W; Kress, Amii M; Friedberg, Mark W; Kahn, Katherine L

    2017-12-15

    To understand the process of practice transformation by identifying pathways for attaining patient-centered medical home (PCMH) recognition. The CMS Federally Qualified Health Center (FQHC) Advanced Primary Care Practice Demonstration was designed to help FQHCs achieve NCQA Level 3 PCMH recognition and improve patient outcomes. We used a stratified random sample of 20 (out of 503) participating sites for this analysis. We developed a conceptual model of structural, cultural, and implementation factors affecting PCMH transformation based on literature and initial qualitative interview themes. We then used conventional cross-case analysis, followed by qualitative comparative analysis (QCA), a cross-case method based on Boolean logic algorithms, to systematically identify pathways (i.e., combinations of factors) associated with attaining-or not attaining-Level 3 recognition. Site-level indicators were derived from semistructured interviews with site leaders at two points in time (mid- and late-implementation) and administrative data collected prior to and during the demonstration period. The QCA results identified five distinct pathways to attaining PCMH recognition and four distinct pathways to not attaining recognition by the end of the demonstration. Across these pathways, one condition (change leader capacity) was common to all pathways for attaining recognition, and another (previous improvement or recognition experience) was absent in all pathways for not attaining recognition. In general, sites could compensate for deficiencies in one factor with capacity in others, but they needed a threshold of strengths in cultural and implementation factors to attain PCMH recognition. Future efforts at primary care transformation should take into account multiple pathways sites may pursue. Sites should be assessed on key cultural and implementation factors, in addition to structural components, in order to differentiate interventions and technical assistance. © Health Research and Educational Trust.

  6. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site.

    PubMed Central

    McKinney, J D

    1989-01-01

    Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666

  7. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  8. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  9. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid.

    PubMed

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.

  10. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    PubMed

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved design of hammerhead ribozyme for selective digestion of target RNA through recognition of site-specific adenosine-to-inosine RNA editing

    PubMed Central

    Fukuda, Masatora; Kurihara, Kei; Yamaguchi, Shota; Oyama, Yui; Deshimaru, Masanobu

    2014-01-01

    Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites. PMID:24448449

  12. Surface imprinted beads for the recognition of human serum albumin.

    PubMed

    Bonini, Francesca; Piletsky, Sergey; Turner, Anthony P F; Speghini, Adolfo; Bossi, Alessandra

    2007-04-15

    The synthesis of poly-aminophenylboronic acid (ABPA) imprinted beads for the recognition of the protein human serum albumin (HSA) is reported. In order to create homogeneous recognition sites, covalent immobilisation of the template HSA was exploited. The resulting imprinted beads were selective for HSA. The indirect imprinting factor (IF) calculated from supernatant was 1.6 and the direct IF, evaluated from the protein recovered from the beads, was 1.9. The binding capacity was 1.4 mg/g, which is comparable to commercially available affinity materials. The specificity of the HSA recognition was evaluated with competitive experiments, indicating a molar ratio 4.5/1 of competitor was necessary to displace half of the bound HSA. The recognition and binding of the imprinted beads was also tested with a complex sample, human serum and targeted removal of HSA without a loss of the other protein components was demonstrated. The easy preparation protocol of derivatised beads and a good protein recognition properties make the approach an attractive solution to analytical and bio-analytical problems in the field of biotechnology.

  13. Modulation of the NMDA receptor by polyamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K.; Romano, C.; Dichter, M.A.

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been foundmore » to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.« less

  14. Alteration of gene expression by restriction enzymes electroporated into plant cells.

    PubMed

    Ashraf, M; Altschuler, M; Galasinski, S; Griffiths, T D

    1993-06-01

    The alteration in the expression of a beta-glucuronidase (GUS) reporter gene was used to monitor the effect of restriction endonucleases electroporated into the tobacco (Nicotiana tabacum L.) protoplasts. Restriction enzyme (RE) Hind III which does not have a recognition site within the gene cassette, had little effect on enzyme activity. In contrast restriction endonucleases Hae III and Sau3A1 which possess 8 and 16 recognition sites in the GUS cassette, were found to reduce the enzyme activity by 89% and 94% respectively when compared to control electroporations. Restriction-site mutation analysis (RSM) and Southern blot analysis indicated the enzymatic degradation of GUS coding sequence by the REs Hae III and Sau3A1. Results of this study suggest that on electroporation, REs can enter into plant cells and alter the expression of the GUS gene. The alteration of gene expression is thus correlated with the digestion of GUS template DNA. Future applications of this technique could include addressing fundamental questions with regard to DNA repair, site-specific recombination, identifying mutations, insertional mutagenesis, enhancement of stable transformation and gene tagging in plants.

  15. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2015-03-25

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5).

    PubMed

    Katayama, Syouichi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2015-05-19

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.

  17. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    PubMed Central

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  18. Closely Related Antibody Receptors Exploit Fundamentally Different Strategies for Steroid Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdino, P.; Aldag, C.; Hilvert, D.

    2009-05-26

    Molecular recognition by the adaptive immune system relies on specific high-affinity antibody receptors that are generated from a restricted set of starting sequences through homologous recombination and somatic mutation. The steroid binding antibody DB3 and the catalytic Diels-Alderase antibody 1E9 derive from the same germ line sequences but exhibit very distinct specificities and functions. However, mutation of only two of the 36 sequence differences in the variable domains, Leu{sup H47}Trp and Arg{sup H100}Trp, converts 1E9 into a high-affinity steroid receptor with a ligand recognition profile similar to DB3. To understand how these changes switch binding specificity and function, we determinedmore » the crystal structures of the 1E9 Leu{sup H47}Trp/Arg{sup H100}Trp double mutant (1E9dm) as an unliganded Fab at 2.05 {angstrom} resolution and in complex with two configurationally distinct steroids at 2.40 and 2.85 {angstrom}. Surprisingly, despite the functional mimicry of DB3, 1E9dm employs a distinct steroid binding mechanism. Extensive structural rearrangements occur in the combining site, where residue H47 acts as a specificity switch and H100 adapts to different ligands. Unlike DB3, 1E9dm does not use alternative binding pockets or different sets of hydrogen-bonding interactions to bind configurationally distinct steroids. Rather, the different steroids are inserted more deeply into the 1E9dm combining site, creating more hydrophobic contacts that energetically compensate for the lack of hydrogen bonds. These findings demonstrate how subtle mutations within an existing molecular scaffold can dramatically modulate the function of immune receptors by inducing unanticipated, but compensating, mechanisms of ligand interaction.« less

  19. Thermodynamic Modeling of Donor Splice Site Recognition in pre-mRNA

    NASA Astrophysics Data System (ADS)

    Aalberts, Daniel P.; Garland, Jeffrey A.

    2004-03-01

    When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 snRNA with the donor (5') splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our Finding with Binding method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.

  20. Thermodynamic modeling of donor splice site recognition in pre-mRNA

    NASA Astrophysics Data System (ADS)

    Garland, Jeffrey A.; Aalberts, Daniel P.

    2004-04-01

    When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 small nuclear RNA with the donor ( 5' ) splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our “finding with binding” method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.

  1. Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,3-1,4-β- d-glucanases

    NASA Astrophysics Data System (ADS)

    Tsai, Li-Chu; Chen, Yi-Ning; Shyur, Lie-Fen

    2008-12-01

    Glycosyl hydrolase family 16 (GHF16) truncated Fibrobacter succinogenes (TFs) and GHF17 barley 1,3-1,4-β- d-glucanases (β-glucanases) possess different structural folds, β-jellyroll and (β/α)8, although they both catalyze the specific hydrolysis of β-1,4 glycosidic bonds adjacent to β-1,3 linkages in mixed β-1,3 and β-1,4 β- d-glucans or lichenan. Differences in the active site region residues of TFs β-glucanase and barley β-glucanase create binding site topographies that require different substrate conformations. In contrast to barley β-glucanase, TFs β-glucanase possesses a unique and compact active site. The structural analysis results suggest that the tyrosine residue, which is conserved in all known 1,3-1,4-β- d-glucanases, is involved in the recognition of mixed β-1,3 and β-1,4 linked polysaccharide.

  2. Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, E.; Hartshorn, K; Horlacher, T

    2009-01-01

    Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced bindingmore » to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.« less

  3. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition

    PubMed Central

    Newman, Matthew; Murray-Rust, Judith; Lally, John; Rudolf, Jana; Fadden, Andrew; Knowles, Philip P; White, Malcolm F; McDonald, Neil Q

    2005-01-01

    The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)2 domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3′ flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes. PMID:15719018

  4. The unique role of the visual word form area in reading.

    PubMed

    Dehaene, Stanislas; Cohen, Laurent

    2011-06-01

    Reading systematically activates the left lateral occipitotemporal sulcus, at a site known as the visual word form area (VWFA). This site is reproducible across individuals/scripts, attuned to reading-specific processes, and partially selective for written strings relative to other categories such as line drawings. Lesions affecting the VWFA cause pure alexia, a selective deficit in word recognition. These findings must be reconciled with the fact that human genome evolution cannot have been influenced by such a recent and culturally variable activity as reading. Capitalizing on recent functional magnetic resonance imaging experiments, we provide strong corroborating evidence for the hypothesis that reading acquisition partially recycles a cortical territory evolved for object and face recognition, the prior properties of which influenced the form of writing systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Enhancing Adsorption Capacity while Maintaining Specific Recognition Performance of Mesoporous Silica: A Novel Imprinting Strategy with Amphiphilic Ionic Liquid as Surfactant.

    PubMed

    Ding, Shichao; Li, Zhiling; Cheng, Yuan; Du, Chunbao; Gao, Junfeng; Zhang, Yong-Wei; Zhang, Nan; Li, Zhaotong; Chang, Ninghui; Hu, Xiaoling

    2018-06-21

    In order to facilitate the broad applications of molecular recognition materials in biomedical areas, it is critical to enhance their adsorption capacity while maintaining their excellent recognition performance. In this work, we designed and synthesized well-defined peptide-imprinted mesoporous silica (PIMS) for specific recognition of an immunostimulating hexapeptide from human casein (IHHC) by using amphiphilic ionic liquid as the surfactant to anchor IHHC via a combination of one step sol-gel method and docking oriented imprinting approach. Thereinto, theoretical calculation was employed to reveal the multiple binding interactions and dual-template configuration between amphiphilic ionic liquid and IHHC. The fabricated PIMS was characterized and an in-depth analysis of specific recognition mechanism was conducted. Results revealed that both adsorption and recognition capabilities of PIMS far exceeded that of the NIMS's. More significantly, the PIMS exhibited a superior binding capacity (60.5 mg g-1), which could increase 18.9% than the previous work. The corresponding imprinting factor and selectivity coefficient could reach up to 4.51 and 3.30, respectively. The PIMS also possessed lickety-split kinetic binding for IHHC, which the equilibrium time was only 10 min. All of these merits were due to the high surface area and the synergistic effect of multiple interactions (including hydrogen bonding, π-π stacking, ion-ion electrostatic interactions and van der Waals interactions, etc.) between PIMS and IHHC in imprinted sites. The present work suggests the potential application of PIMS for large-scale and high-effective separation of IHHC, which may lead to their broad applications in drug/gene deliver, biosensors, catalyst and so on. © 2018 IOP Publishing Ltd.

  7. π-Cation Interactions in Molecular Recognition: Perspectives on Pharmaceuticals and Pesticides.

    PubMed

    Liang, Zhibin; Li, Qing X

    2018-04-04

    The π-cation interaction that differs from the cation-π interaction is a valuable concept in molecular design of pharmaceuticals and pesticides. In this Perspective we present an up-to-date review (from 1995 to 2017) on bioactive molecules involving π-cation interactions with the recognition site, and categorize into systems of inhibitor-enzyme, ligand-receptor, ligand-transporter, and hapten-antibody. The concept of π-cation interactions offers use of π systems in a small molecule to enhance the binding affinity, specificity, selectivity, lipophilicity, bioavailability, and metabolic stability, which are physiochemical features desired for drugs and pesticides.

  8. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    USDA-ARS?s Scientific Manuscript database

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  9. A self-excising beta-recombinase/six cassette for repetitive gene deletion and homokaryon purification in Neurospora crassa

    USDA-ARS?s Scientific Manuscript database

    In a previous study we developed a cassette employing a bacterial beta-recombinase acting on six recognition sequences (beta-rec/six), which allowed repetitive site-specific gene deletion and marker recycling in Neurospora crassa. However, only one positive selection marker was used in the cassette...

  10. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    PubMed Central

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  11. Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease.

    PubMed

    Békés, Miklós; van der Heden van Noort, Gerbrand J; Ekkebus, Reggy; Ovaa, Huib; Huang, Tony T; Lima, Christopher D

    2016-05-19

    Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors

    PubMed Central

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-01-01

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn91 in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus. PMID:22642577

  13. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    PubMed

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  14. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine

    PubMed Central

    Zhang, Yan; Wang, Lei; Schultz, Peter G.; Wilson, Ian A.

    2005-01-01

    The Methanococcus jannaschii tRNATyr/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-l-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 Å, respectively, for comparison with the published structure of TyrRS complexed with tRNATyr and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257–263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through π-stacking and hydrogen bonding interactions. Loop 133–143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNATyr. Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133–143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over l-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. PMID:15840835

  15. Biomimetic/Optical Sensors for Detecting Bacterial Species

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites that bind only to molecules matched to the sites; other molecules are excluded. In a sensor according to the proposal, the MIP would feature molecular recognition sites that would bind the specific signaling molecules selectively according to their size, shape, and chemical functionality (see figure). As the film took up the signaling molecules in the molecular recognition sites, the index of refraction and thickness of the film would change, causing a wavelength shift of the peak of the resonance spectrum. It has been estimated that by measuring this wavelength shift, it should be possible to detect as little as 10 picomoles of a peptide signaling compound.

  16. A Compact Viral Processing Proteinase/Ubiquitin Hydrolase from the OTU Family

    PubMed Central

    Chenon, Mélanie; Andreani, Jessica; Guerois, Raphaël; Jupin, Isabelle; Bressanelli, Stéphane

    2013-01-01

    Turnip yellow mosaic virus (TYMV) - a member of the alphavirus-like supergroup of viruses - serves as a model system for positive-stranded RNA virus membrane-bound replication. TYMV encodes a precursor replication polyprotein that is processed by the endoproteolytic activity of its internal cysteine proteinase domain (PRO). We recently reported that PRO is actually a multifunctional enzyme with a specific ubiquitin hydrolase (DUB) activity that contributes to viral infectivity. Here, we report the crystal structure of the 150-residue PRO. Strikingly, PRO displays no homology to other processing proteinases from positive-stranded RNA viruses, including that of alphaviruses. Instead, the closest structural homologs of PRO are DUBs from the Ovarian tumor (OTU) family. In the crystal, one molecule's C-terminus inserts into the catalytic cleft of the next, providing a view of the N-terminal product complex in replication polyprotein processing. This allows us to locate the specificity determinants of PRO for its proteinase substrates. In addition to the catalytic cleft, at the exit of which the active site is unusually pared down and solvent-exposed, a key element in molecular recognition by PRO is a lobe N-terminal to the catalytic domain. Docking models and the activities of PRO and PRO mutants in a deubiquitylating assay suggest that this N-terminal lobe is also likely involved in PRO's DUB function. Our data thus establish that DUBs can evolve to specifically hydrolyze both iso- and endopeptide bonds with different sequences. This is achieved by the use of multiple specificity determinants, as recognition of substrate patches distant from the cleavage sites allows a relaxed specificity of PRO at the sites themselves. Our results thus shed light on how such a compact protein achieves a diversity of key functions in viral genome replication and host-pathogen interaction. PMID:23966860

  17. Specific intermolecular interactions of conserved water molecules with amino acids in the Galectin-1 carbohydrate recognition domain

    NASA Astrophysics Data System (ADS)

    Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.

    2010-08-01

    Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.

  18. Carbohydrate recognition by the antiviral lectin cyanovirin-N

    PubMed Central

    Fujimoto, Yukiji K.; Green, David F.

    2012-01-01

    Cyanovirin-N is a cyanobacterial lectin with potent antiviral activity, and has been the focus of extensive pre-clinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and Molecular-Mechanics/ Poisson–Boltzmann/Surface-Area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wildtype CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein–carbohydrate complexes. PMID:23057413

  19. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG.

    PubMed Central

    Churchill, M E; Jones, D N; Glaser, T; Hefner, H; Searles, M A; Travers, A A

    1995-01-01

    The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region. Images PMID:7720717

  20. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis

    PubMed Central

    2012-01-01

    Background The mycobacteriophage large serine recombinase Bxb1 catalyzes site-specific recombination between its corresponding attP and attB recognition sites. Previously, we and others have shown that Bxb1 has catalytic activity in various eukaryotic species including Nicotiana tabacum, Schizosaccharomyces pombe, insects and mammalian cells. Results In this work, the Bxb1 recombinase gene was transformed and constitutively expressed in Arabidopsis thaliana plants harboring a chromosomally integrated attP and attB-flanked target sequence. The Bxb1 recombinase successfully excised the target sequence in a conservative manner and the resulting recombination event was heritably transmitted to subsequent generations in the absence of the recombinase transgene. In addition, we also show that Bxb1 recombinase expressing plants can be manually crossed with att-flanked target transgenic plants to generate excised progeny. Conclusion The Bxb1 large serine recombinase performs site-specific recombination in Arabidopsis thaliana germinal tissue, producing stable lines free of unwanted DNA. The precise site-specific deletion produced by Bxb1 in planta demonstrates that this enzyme can be a useful tool for the genetic engineering of plants without selectable marker transgenes or other undesirable exogenous sequences. PMID:22436504

  1. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    PubMed Central

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  2. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.

    PubMed

    Posey, Karen L; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.

  3. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach

    PubMed Central

    Abi-Ghanem, Josephine; Chusainow, Janet; Karimova, Madina; Spiegel, Christopher; Hofmann-Sieber, Helga; Hauber, Joachim; Buchholz, Frank; Pisabarro, M. Teresa

    2013-01-01

    Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine. PMID:23275541

  4. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1.

    PubMed

    Deng, Lu; Velikovsky, C Alejandro; Swaminathan, Chittoor P; Cho, Sangwoo; Mariuzza, Roy A

    2005-09-09

    The enzyme phospholipase Cgamma1 (PLCgamma1) is essential for T cell signaling and activation. Following T cell receptor ligation, PLCgamma1 interacts through its SH2 and SH3 domains with the adaptors LAT and SLP-76, respectively, to form a multiprotein signaling complex that leads to activation of PLCgamma1 by Syk tyrosine kinases. To identify the binding site for PLCgamma1 in SLP-76, we used isothermal titration calorimetry to measure affinities for the interaction of PLCgamma1-SH3 with a set of overlapping peptides spanning the central proline-rich region of SLP-76. PLCgamma1-SH3 bound with high specificity to the SLP-76 motif 186PPVPPQRP193, which represents the minimal binding site. To understand the basis for selective recognition, we determined the crystal structures of PLCgamma1-SH3 in free form, and bound to a 10-mer peptide containing this site, to resolutions of 1.60 A and 1.81 A, respectively. The structures reveal that several key contacting residues of the SH3 shift toward the SLP-76 peptide upon complex formation, optimizing the fit and strengthening hydrophobic interactions. Selectivity results mainly from strict shape complementarity between protein and peptide, rather than sequence-specific hydrogen bonding. In addition, Pro193 of SLP-76 assists in positioning Arg192 into the compass pocket of PLCgamma1-SH3, which coordinates the compass residue through an unusual aspartate. The PLCgamma1-SH3/SLP-76 structure provides insights into ligand binding by SH3 domains related to PLCgamma1-SH3, as well as into recognition by PLCgamma1 of signaling partners other than SLP-76.

  5. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets.

    PubMed

    Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V

    2016-01-15

    Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The Molecular Origin of the MMR-dependent Apoptosis Pathway from Dynamics Analysis of MutSα-DNA Complexes

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R.

    2012-01-01

    The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459

  7. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  8. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGES

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; ...

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  9. Fibronectin tetrapeptide is target for syphilis spirochete cytadherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.D.; Baseman, J.B.; Alderete, J.F.

    1985-11-01

    The syphilis bacterium, Treponema pallidum, parasitizes host cells through recognition of fibronectin (Fn) on cell surfaces. The active site of the Fn molecule has been identified as a four-amino acid sequence, arg-gly-asp-ser (RGDS), located on each monomer of the cell-binding domain. The synthetic heptapeptide gly-arg-gly-asp-ser-pro-cys (GRGDSPC), with the active site sequence RGDS, specifically competed with SVI-labeled cell-binding domain acquisition by T. pallidum. Additionally, the same heptapeptide with the RGDS sequence diminished treponemal attachment to HEp-2 and HT1080 cell monolayers. Related heptapeptides altered in one key amino acid within the RGDS sequence failed to inhibit Fn cell-binding domain acquisition or parasitismmore » of host cells by T. pallidum. The data support the view that T. pallidum cytadherence of host cells is through recognition of the RGDS sequence also important for eukaryotic cell-Fn binding.« less

  10. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site.

    PubMed

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Wang, Junzhi; Fry, Elizabeth E; Stuart, David I; Rao, Zihe

    2017-01-24

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.

  11. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.

    PubMed

    Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A

    2014-11-21

    To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.

  12. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition.

    PubMed

    Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C

    1998-11-10

    Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

  13. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition

    PubMed Central

    Jun, Susie; Wallen, Robert V.; Goriely, Anne; Kalionis, Bill; Desplan, Claude

    1998-01-01

    Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes. PMID:9811867

  14. Simulation of Biomimetic Recognition between Polymers and Surfaces

    NASA Astrophysics Data System (ADS)

    Golumbfskie, Aaron J.; Pande, Vijay S.; Chakraborty, Arup K.

    1999-10-01

    Many biological processes, such as transmembrane signaling and pathogen-host interactions, are initiated by a protein recognizing a specific pattern of binding sites on part of a membrane or cell surface. By recognition, we imply that the polymer quickly finds and then adsorbs strongly on the pattern-matched region and not on others. The development of synthetic systems that can mimic such recognition between polymers and surfaces could have significant impact on advanced applications such as the development of sensors, molecular-scale separation processes, and synthetic viral inhibition agents. Attempting to affect recognition in synthetic systems by copying the detailed chemistries to which nature has been led over millenia of evolution does not seem practical for most applications. This leads us to the following question: Are there any universal strategies that can affect recognition between polymers and surfaces? Such generic strategies may be easier to implement in abiotic applications. We describe results that suggest that biomimetic recognition between synthetic polymers and surfaces is possible by exploiting certain generic strategies, and we elucidate the kinetic mechanisms by which this occurs. Our results suggest convenient model systems for experimental studies of dynamics in free energy landscapes characteristic of frustrated systems.

  15. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE PAGES

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  16. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  17. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains.

    PubMed

    Lind, Judith; Backert, Steffen; Hoffmann, Rebecca; Eichler, Jutta; Yamaoka, Yoshio; Perez-Perez, Guillermo I; Torres, Javier; Sticht, Heinrich; Tegtmeyer, Nicole

    2016-09-02

    Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways. Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies for each of the three sites in CagA are not forthcoming. This study was designed to systematically analyze the detection preferences of each phosphorylated East Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with high specificity. However, the sequence recognition by the different antibodies was found to bear high variability. From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well. Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that none of the antibodies reacted with non-phospho-CagA peptides and in accordance were able to recognize phosphotyrosine proteins in human cells. The results of this study disclose the various binding preferences of commercial anti-phosphotyrosine antibodies for phospho-EPIYA-motifs, and are valuable in the application for further characterization of CagA phosphorylation events during infection with H. pylori and risk prediction for gastric disease development.

  18. Accurate and sensitive quantification of protein-DNA binding affinity.

    PubMed

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  19. Accurate and sensitive quantification of protein-DNA binding affinity

    PubMed Central

    Rastogi, Chaitanya; Rube, H. Tomas; Kribelbauer, Judith F.; Crocker, Justin; Loker, Ryan E.; Martini, Gabriella D.; Laptenko, Oleg; Freed-Pastor, William A.; Prives, Carol; Stern, David L.; Mann, Richard S.; Bussemaker, Harmen J.

    2018-01-01

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. PMID:29610332

  20. Pattern recognition of native plant communities: Manitou Colorado test site

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.

    1972-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information about 11 vegetation classes and two nonvegetation classes at the Manitou Experimental Forest. Intensive preprocessing of the scanner signals was required to eliminate a serious scan angle effect. Final processing of the normalized data provided acceptable recognition results of generalized plant community types. Serious errors occurred with attempts to classify specific community types within upland grassland areas. The consideration of the convex mixtures concept (effects of amounts of live plant cover, exposed soil, and plant litter cover on apparent scene radiances) significantly improved the classification of some of the grassland classes.

  1. Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.

    PubMed

    Rousseau, Beth A; Hou, Zhonggang; Gramelspacher, Max J; Zhang, Yan

    2018-03-01

    The microbial CRISPR systems enable adaptive defense against mobile elements and also provide formidable tools for genome engineering. The Cas9 proteins are type II CRISPR-associated, RNA-guided DNA endonucleases that identify double-stranded DNA targets by sequence complementarity and protospacer adjacent motif (PAM) recognition. Here we report that the type II-C CRISPR-Cas9 from Neisseria meningitidis (Nme) is capable of programmable, RNA-guided, site-specific cleavage and recognition of single-stranded RNA targets and that this ribonuclease activity is independent of the PAM sequence. We define the mechanistic feature and specificity constraint for RNA cleavage by NmeCas9 and also show that nuclease null dNmeCas9 binds to RNA target complementary to CRISPR RNA. Finally, we demonstrate that NmeCas9-catalyzed RNA cleavage can be blocked by three families of type II-C anti-CRISPR proteins. These results fundamentally expand the targeting capacities of CRISPR-Cas9 and highlight the potential utility of NmeCas9 as a single platform to target both RNA and DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  3. Mode of VAMP Substrate Recognition and Inhibition of Clostridium botulinum Neurotoxin F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, R.; Schmidt, J; Stafford, R

    2009-01-01

    Clostridium botulinum neurotoxins (BoNTs) cleave neuronal proteins responsible for neurotransmitter release, causing the neuroparalytic disease botulism. BoNT serotypes B, D, F and G cleave and inactivate vesicle-associated membrane protein (VAMP), each at a unique peptide bond. The specificity of BoNTs depends on the mode of substrate recognition. We have investigated the mechanism of substrate recognition of BoNT F by determining the crystal structures of its complex with two substrate-based inhibitors, VAMP 22-58/Gln58D-cysteine and 27-58/Gln58D-cysteine. The inhibitors bind to BoNT F in the canonical direction (as seen for BoNTs A and E substrates) but are positioned specifically via three major exositesmore » away from the active site. The cysteine sulfur of the inhibitors interacts with the zinc and exists as sulfinic acid in the inhibitor VAMP 27-58/Gln58D-cysteine. Arg133 and Arg171, which form part of two separate exosites, are crucial for substrate binding and catalysis.« less

  4. DNA recognition by synthetic constructs.

    PubMed

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The recognition and modification sites for the bacterial type I restriction systems KpnAI, StySEAI, StySENI and StySGI

    PubMed Central

    Kasarjian, Julie K. A.; Hidaka, Masumi; Horiuchi, Takashi; Iida, Masatake; Ryu, Junichi

    2004-01-01

    Using an in vivo plasmid transformation method, we have determined the DNA sequences recognized by the KpnAI, StySEAI, StySENI and StySGI R-M systems from Klebsiella oxytoca strain M5a1, Salmonella eastbourne, Salmonella enteritidis and Salmonella gelsenkirchen, respectively. These type I restriction-modification systems were originally identified using traditional phage assay, and described here is the plasmid transformation test and computer program used to determine their DNA recognition sequences. For this test, we constructed two sets of plasmids, pL and pE, that contain phage lambda and Escherichia coli K-12 chromosomal DNA fragments, respectively. Further, using the methylation sensitivities of various known type II restriction enzymes, we identified the target adenines for methylation (listed in bold italics below as A or T in case of the complementary strand). The recognition sequence and methylation sites are GAA(6N)TGCC (KpnAI), ACA(6N)TYCA (StySEAI), CGA(6N)TACC (StySENI) and TAAC(7N)RTCG (StySGI). These DNA recognition sequences all have a typical type I bipartite pattern and represent three novel specificities and one isoschizomer (StySENI). For confirmation, oligonucleotides containing each of the predicted sequences were synthesized, cloned into plasmid pMECA and transformed into each strain, resulting in a large reduction in efficiency of transformation (EOT). PMID:15199175

  6. National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses

    PubMed Central

    Binkley, Helen M.; Beckett, Joseph; Casa, Douglas J.; Kleiner, Douglas M.; Plummer, Paul E.

    2002-01-01

    Objective: To present recommendations for the prevention, recognition, and treatment of exertional heat illnesses and to describe the relevant physiology of thermoregulation. Background: Certified athletic trainers evaluate and treat heat-related injuries during athletic activity in “safe” and high-risk environments. While the recognition of heat illness has improved, the subtle signs and symptoms associated with heat illness are often overlooked, resulting in more serious problems for affected athletes. The recommendations presented here provide athletic trainers and allied health providers with an integrated scientific and practical approach to the prevention, recognition, and treatment of heat illnesses. These recommendations can be modified based on the environmental conditions of the site, the specific sport, and individual considerations to maximize safety and performance. Recommendations: Certified athletic trainers and other allied health providers should use these recommendations to establish on-site emergency plans for their venues and athletes. The primary goal of athlete safety is addressed through the prevention and recognition of heat-related illnesses and a well-developed plan to evaluate and treat affected athletes. Even with a heat-illness prevention plan that includes medical screening, acclimatization, conditioning, environmental monitoring, and suitable practice adjustments, heat illness can and does occur. Athletic trainers and other allied health providers must be prepared to respond in an expedient manner to alleviate symptoms and minimize morbidity and mortality. PMID:12937591

  7. Basic and complex emotion recognition in children with autism: cross-cultural findings.

    PubMed

    Fridenson-Hayo, Shimrit; Berggren, Steve; Lassalle, Amandine; Tal, Shahar; Pigat, Delia; Bölte, Sven; Baron-Cohen, Simon; Golan, Ofer

    2016-01-01

    Children with autism spectrum conditions (ASC) have emotion recognition deficits when tested in different expression modalities (face, voice, body). However, these findings usually focus on basic emotions, using one or two expression modalities. In addition, cultural similarities and differences in emotion recognition patterns in children with ASC have not been explored before. The current study examined the similarities and differences in the recognition of basic and complex emotions by children with ASC and typically developing (TD) controls across three cultures: Israel, Britain, and Sweden. Fifty-five children with high-functioning ASC, aged 5-9, were compared to 58 TD children. On each site, groups were matched on age, sex, and IQ. Children were tested using four tasks, examining recognition of basic and complex emotions from voice recordings, videos of facial and bodily expressions, and emotional video scenarios including all modalities in context. Compared to their TD peers, children with ASC showed emotion recognition deficits in both basic and complex emotions on all three modalities and their integration in context. Complex emotions were harder to recognize, compared to basic emotions for the entire sample. Cross-cultural agreement was found for all major findings, with minor deviations on the face and body tasks. Our findings highlight the multimodal nature of ER deficits in ASC, which exist for basic as well as complex emotions and are relatively stable cross-culturally. Cross-cultural research has the potential to reveal both autism-specific universal deficits and the role that specific cultures play in the way empathy operates in different countries.

  8. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    NASA Astrophysics Data System (ADS)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  9. A multistep damage recognition mechanism for global genomic nucleotide excision repair

    PubMed Central

    Sugasawa, Kaoru; Okamoto, Tomoko; Shimizu, Yuichiro; Masutani, Chikahide; Iwai, Shigenori; Hanaoka, Fumio

    2001-01-01

    A mammalian nucleotide excision repair (NER) factor, the XPC–HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC–HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC–HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC–HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC–HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC–HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER. PMID:11238373

  10. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    PubMed

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  11. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8.

    PubMed Central

    Allmang, C; Mougel, M; Westhof, E; Ehresmann, B; Ehresmann, C

    1994-01-01

    Ribosomal protein S8 specifically recognizes a helical and irregular region of 16S rRNA that is highly evolutionary constrained. Despite its restricted size, the precise conformation of this region remains a question of debate. Here, we used chemical probing to analyze the structural consequences of mutations in this RNA region. These data, combined with computer modelling and previously published data on protein binding were used to investigate the conformation of the RNA binding site. The experimental data confirm the model in which adenines A595, A640 and A642 bulge out in the deep groove. In addition to the already proposed non canonical U598-U641 interaction, the structure is stabilized by stacking interactions (between A595 and A640) and an array of hydrogen bonds involving bases and the sugar phosphate backbone. Mutations that alter the ability to form these interdependent interactions result in a local destabilization or reorganization. The specificity of recognition by protein S8 is provided by the irregular and distorted backbone and the two bulged adenines 640 and 642 in the deep groove. The third adenine (A595) is not a direct recognition site but must adopt a bulged position. The U598-U641 pair should not be directly in contact with the protein. Images PMID:7937081

  12. Non-RVD mutations that enhance the dynamics of the TAL repeat array along the superhelical axis improve TALEN genome editing efficacy

    PubMed Central

    Tochio, Naoya; Umehara, Kohei; Uewaki, Jun-ichi; Flechsig, Holger; Kondo, Masaharu; Dewa, Takehisa; Sakuma, Tetsushi; Yamamoto, Takashi; Saitoh, Takashi; Togashi, Yuichi; Tate, Shin-ichi

    2016-01-01

    Transcription activator-like effector (TALE) nuclease (TALEN) is widely used as a tool in genome editing. The DNA binding part of TALEN consists of a tandem array of TAL-repeats that form a right-handed superhelix. Each TAL-repeat recognises a specific base by the repeat variable diresidue (RVD) at positions 12 and 13. TALEN comprising the TAL-repeats with periodic mutations to residues at positions 4 and 32 (non-RVD sites) in each repeat (VT-TALE) exhibits increased efficacy in genome editing compared with a counterpart without the mutations (CT-TALE). The molecular basis for the elevated efficacy is unknown. In this report, comparison of the physicochemical properties between CT- and VT-TALEs revealed that VT-TALE has a larger amplitude motion along the superhelical axis (superhelical motion) compared with CT-TALE. The greater superhelical motion in VT-TALE enabled more TAL-repeats to engage in the target sequence recognition compared with CT-TALE. The extended sequence recognition by the TAL-repeats improves site specificity with limiting the spatial distribution of FokI domains to facilitate their dimerization at the desired site. Molecular dynamics simulations revealed that the non-RVD mutations alter inter-repeat hydrogen bonding to amplify the superhelical motion of VT-TALE. The TALEN activity is associated with the inter-repeat hydrogen bonding among the TAL repeats. PMID:27883072

  13. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2

    PubMed Central

    Wickliffe, Katherine E.; Lorenz, Sonja; Wemmer, David E.; Kuriyan, John; Rape, Michael

    2011-01-01

    Ubiquitin chains of different topologies trigger distinct functional consequences, including protein degradation and reorganization of complexes. The assembly of most ubiquitin chains is promoted by E2s, yet how these enzymes achieve linkage specificity is poorly understood. We have discovered that the K11-specific Ube2S orients the donor ubiquitin through an essential non-covalent interaction that occurs in addition to the thioester bond at the E2 active site. The E2-donor ubiquitin complex transiently recognizes the acceptor ubiquitin, primarily through electrostatic interactions. The recognition of the acceptor ubiquitin surface around Lys11, but not around other lysines, generates a catalytically competent active site, which is composed of residues of both Ube2S and ubiquitin. Our studies suggest that monomeric E2s promote linkage-specific ubiquitin chain formation through substrate-assisted catalysis. PMID:21376237

  14. Gene trap and gene inversion methods for conditional gene inactivation in the mouse

    PubMed Central

    Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.

    2005-01-01

    Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575

  15. Across-site patterns of modulation detection: Relation to speech recognitiona)

    PubMed Central

    Garadat, Soha N.; Zwolan, Teresa A.; Pfingst, Bryan E.

    2012-01-01

    The aim of this study was to identify across-site patterns of modulation detection thresholds (MDTs) in subjects with cochlear implants and to determine if removal of sites with the poorest MDTs from speech processor programs would result in improved speech recognition. Five hundred millisecond trains of symmetric-biphasic pulses were modulated sinusoidally at 10 Hz and presented at a rate of 900 pps using monopolar stimulation. Subjects were asked to discriminate a modulated pulse train from an unmodulated pulse train for all electrodes in quiet and in the presence of an interleaved unmodulated masker presented on the adjacent site. Across-site patterns of masked MDTs were then used to construct two 10-channel MAPs such that one MAP consisted of sites with the best masked MDTs and the other MAP consisted of sites with the worst masked MDTs. Subjects’ speech recognition skills were compared when they used these two different MAPs. Results showed that MDTs were variable across sites and were elevated in the presence of a masker by various amounts across sites. Better speech recognition was observed when the processor MAP consisted of sites with best masked MDTs, suggesting that temporal modulation sensitivity has important contributions to speech recognition with a cochlear implant. PMID:22559376

  16. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    PubMed

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  17. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio.

    PubMed

    Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  18. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that aremore » not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less

  19. Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes

    PubMed Central

    Zhang, Fan; Saini, Adesh K.; Shin, Byung-Sik; Nanda, Jagpreet; Hinnebusch, Alan G.

    2015-01-01

    The translation preinitiation complex (PIC) is thought to assume an open conformation when scanning the mRNA leader, with AUG recognition evoking a closed conformation and more stable P site interaction of Met-tRNAi; however, physical evidence is lacking that AUG recognition constrains interaction of mRNA with the 40S binding cleft. We compared patterns of hydroxyl radical cleavage of rRNA by Fe(II)-BABE tethered to unique sites in eIF1A in yeast PICs reconstituted with mRNA harboring an AUG or near-cognate (AUC) start codon. rRNA residues in the P site display reduced cleavage in AUG versus AUC PICs; and enhanced cleavage in the AUC complexes was diminished by mutations of scanning enhancer elements of eIF1A that increase near-cognate recognition in vivo. This suggests that accessibility of these rRNA residues is reduced by accommodation of Met-tRNAi in the P site (PIN state) and by their interactions with the anticodon stem of Met-tRNAi. Our cleavage data also provide evidence that AUG recognition evokes dissociation of eIF1 from its 40S binding site, ejection of the eIF1A-CTT from the P-site and rearrangement to a closed conformation of the entry channel with reduced mobility of mRNA. PMID:25670678

  20. Mutations altering the cleavage specificity of a homing endonuclease

    PubMed Central

    Seligman, Lenny M.; Chisholm, Karen M.; Chevalier, Brett S.; Chadsey, Meggen S.; Edwards, Samuel T.; Savage, Jeremiah H.; Veillet, Adeline L.

    2002-01-01

    The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences. PMID:12202772

  1. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens.

    PubMed

    Bum-Erdene, Khuchtumur; Leffler, Hakon; Nilsson, Ulf J; Blanchard, Helen

    2015-09-01

    Human galectin-4 is a lectin that is expressed mainly in the gastrointestinal tract and exhibits metastasis-promoting roles in some cancers. Its tandem-repeat nature exhibits two distinct carbohydrate recognition domains allowing crosslinking by simultaneous binding to sulfated and non-sulfated (but not sialylated) glycosphingolipids and glycoproteins, facilitating stabilization of lipid rafts. Critically, galectin-4 exerts favourable or unfavourable effects depending upon the cancer. Here we report the first X-ray crystallographic structural information on human galectin-4, specifically the C-terminal carbohydrate recognition domain of human (galectin-4C) in complex with lactose, lactose-3'-sulfate, 2'-fucosyllactose, lacto-N-tetraose and lacto-N-neotetraose. These structures enable elucidation of galectin-4C binding fine-specificity towards sulfated and non-sulfated lacto- and neolacto-series sphingolipids as well as to human blood group antigens. Analysis of the lactose-3'-sulfate complex structure shows that galectin-4C does not recognize the sulfate group using any specific amino acid, but binds the ligand nonetheless. Complex structures with lacto-N-tetraose and lacto-N-neotetraose displayed differences in binding interactions exhibited by the non-reducing-end galactose. That of lacto-N-tetraose points outward from the protein surface whereas that of lacto-N-neotetraose interacts directly with the protein. Recognition patterns of human galectin-4C towards lacto- and neolacto-series glycosphingolipids are similar to those of human galectin-3; however, detailed scrutiny revealed differences stemming from the extended binding site that offer distinction in ligand profiles of these two galectins. Structural characterization of the complex with 2'-fucosyllactose, a carbohydrate with similarity to the H antigen, and molecular dynamics studies highlight structural features that allow specific recognition of A and B antigens, whilst a lack of interaction with the 2'-fucose of blood group antigens was revealed. 4YLZ, 4YM0, 4YM1, 4YM2, 4YM3. © 2015 FEBS.

  2. Time course of brain activation elicited by basic emotions.

    PubMed

    Hot, Pascal; Sequeira, Henrique

    2013-11-13

    Whereas facial emotion recognition protocols have shown that each discrete emotion has a specific time course of brain activation, there is no electrophysiological evidence to support these findings for emotional induction by complex pictures. Our objective was to specify the differences between the time courses of brain activation elicited by feelings of happiness and, with unpleasant pictures, by feelings of disgust and sadness. We compared event-related potentials (ERPs) elicited by the watching of high-arousing pictures from the International Affective Picture System, selected to induce specific emotions. In addition to a classical arousal effect on late positive components, we found specific ERP patterns for each emotion in early temporal windows (<200 ms). Disgust was the first emotion to be associated with different brain processing after 140 ms, whereas happiness and sadness differed in ERPs elicited at the frontal and central sites after 160 ms. Our findings highlight the limits of the classical averaging of ERPs elicited by different emotions inside the same valence and suggest that each emotion could elicit a specific temporal pattern of brain activation, similar to those observed with emotional face recognition.

  3. Robust, self-assembled, biocompatible films

    DOEpatents

    Swanson, Basil I; Anderson, Aaron S.; Dattelbaum, Andrew M.; Schmidt, Jurgen G.

    2014-06-24

    The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.

  4. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome

    PubMed Central

    2010-01-01

    Background The large serine recombinase phiC31 from broad host range Streptomyces temperate phage, catalyzes the site-specific recombination of two recognition sites that differ in sequence, typically known as attachment sites attB and attP. Previously, we characterized the phiC31 catalytic activity and modes of action in the fission yeast Schizosaccharomyces pombe. Results In this work, the phiC31 recombinase gene was placed under the control of the Arabidopsis OXS3 promoter and introduced into Arabidopsis harboring a chromosomally integrated attB and attP-flanked target sequence. The phiC31 recombinase excised the attB and attP-flanked DNA, and the excision event was detected in subsequent generations in the absence of the phiC31 gene, indicating germinal transmission was possible. We further verified that the genomic excision was conservative and that introduction of a functional recombinase can be achieved through secondary transformation as well as manual crossing. Conclusion The phiC31 system performs site-specific recombination in germinal tissue, a prerequisite for generating stable lines with unwanted DNA removed. The precise site-specific deletion by phiC31 in planta demonstrates that the recombinase can be used to remove selectable markers or other introduced transgenes that are no longer desired and therefore can be a useful tool for genome engineering in plants. PMID:20178628

  6. Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics

    PubMed Central

    Heller, Daniel A.; Pratt, George W.; Zhang, Jingqing; Nair, Nitish; Hansborough, Adam J.; Boghossian, Ardemis A.; Reuel, Nigel F.; Barone, Paul W.; Strano, Michael S.

    2011-01-01

    A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide–nanotube complexes form a virtual “chaperone sensor,” which reports modulation of the peptide secondary structure via changes in single-walled carbon nanotubes, near-infrared photoluminescence. A split-channel microscope constructed to image quantized spectral wavelength shifts in real time, in response to nitroaromatic adsorption, results in the first single-nanotube imaging of solvatochromic events. The described indirect detection mechanism, as well as an additional exciton quenching-based optical nitroaromatic detection method, illustrate that functionalization of the carbon nanotube surface can result in completely unique sites for recognition, resolvable at the single-molecule level. PMID:21555544

  7. Structure-guided Discovery of Dual-recognition Chemibodies.

    PubMed

    Cheng, Alan C; Doherty, Elizabeth M; Johnstone, Sheree; DiMauro, Erin F; Dao, Jennifer; Luthra, Abhinav; Ye, Jay; Tang, Jie; Nixey, Thomas; Min, Xiaoshan; Tagari, Philip; Miranda, Les P; Wang, Zhulun

    2018-05-15

    Small molecules and antibodies each have advantages and limitations as therapeutics. Here, we present for the first time to our knowledge, the structure-guided design of "chemibodies" as small molecule-antibody hybrids that offer dual recognition of a single target by both a small molecule and an antibody, using DPP-IV enzyme as a proof of concept study. Biochemical characterization demonstrates that the chemibodies present superior DPP-IV inhibition compared to either small molecule or antibody component alone. We validated our design by successfully solving a co-crystal structure of a chemibody in complex with DPP-IV, confirming specific binding of the small molecule portion at the interior catalytic site and the Fab portion at the protein surface. The discovery of chemibodies presents considerable potential for novel therapeutics that harness the power of both small molecule and antibody modalities to achieve superior specificity, potency, and pharmacokinetic properties.

  8. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    PubMed

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  9. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    PubMed Central

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-01-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871

  10. Direct observation of TALE protein dynamics reveals a two-state search mechanism.

    PubMed

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M

    2015-06-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process-a search state and a recognition state-facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.

  11. Application of virtual screening and molecular dynamics for the analysis of selectivity of inhibitors of HU proteins targeted to the DNA-recognition site

    NASA Astrophysics Data System (ADS)

    Talyzina, A. A.; Agapova, Yu. K.; Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Rakitina, T. V.

    2017-11-01

    DNA-Binding HU proteins are essential for the maintenance of genomic DNA supercoiling and compaction in prokaryotic cells and are promising pharmacological targets for the design of new antibacterial agents. The virtual screening for low-molecular-weight compounds capable of specifically interacting with the DNA-recognition loop of the HU protein from the mycoplasma Spiroplasma melliferum was performed. The ability of the initially selected ligands to form stable complexes with the protein target was assessed by molecular dynamics simulation. One compound, which forms an unstable complex, was eliminated by means of a combination of computational methods, resulting in a decrease in the number of compounds that will pass to the experimental test phase. This approach can be used to solve a wide range of problems related to the search for and validation of low-molecular-weight inhibitors specific for a particular protein target.

  12. Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase

    NASA Astrophysics Data System (ADS)

    Folkers, Gerd; Trumpp-Kallmeyer, Susanne; Gutbrod, Oliver; Krickl, Sabine; Fetzer, Jürgen; Keil, Günther M.

    1991-10-01

    Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core β-sheet structure, connected by loops and α-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions. To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site into Asn. First investigations reveal that the enzymatic activity of the mutant protein is destroyed.

  13. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    PubMed

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  14. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

    PubMed

    Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana

    2015-01-01

    REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    PubMed

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles.

  16. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs.

    PubMed

    Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân

    2017-09-20

    Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.

  17. Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain.

    PubMed

    Chen, Chih-Hong; Piraner, Dan; Gorenstein, Nina M; Geahlen, Robert L; Beth Post, Carol

    2013-11-01

    The association of spleen tyrosine kinase (Syk), a central tyrosine kinase in B cell signaling, with Vav SH2 domain is controlled by phosphorylation of two closely spaced tyrosines in Syk linker B: Y342 and Y346. Previous studies established both singly phosphorylated and doubly phosphorylated forms play a role in signaling. The structure of the doubly phosphorylated form identified a new recognition of phosphotyrosine whereby two phosphotyrosines bind simultaneously to the Vav SH2 domain, one in the canonical pTyr pocket and one in the specificity pocket on the opposite side of the central β-sheet. It is unknown if the specificity pocket can bind phosphotyrosine independent of phosphotyrosine binding the pTyr pocket. To address this gap in knowledge, we determined the structure of the complex between Vav1 SH2 and a peptide (SykLB-YpY) modeling the singly phosphorylated-Y346 form of Syk with unphosphorylated Y342. The nuclear magnetic resonance (NMR) data conclusively establish that recognition of phosphotyrosine is swapped between the two pockets; phosphorylated pY346 binds the specificity pocket of Vav1 SH2, and unphosphorylated Y342 occupies what is normally the pTyr binding pocket. Nearly identical changes in chemical shifts occurred upon binding all three forms of singly and doubly phosphorylated peptides; however, somewhat smaller shift perturbations for SykLB-YpY from residues in regions of high internal mobility suggest that internal motions are coupled to binding affinity. The differential recognition that includes this swapped binding of phosphotyrosine to the specificity pocket of Vav SH2 increases the repertoire of possible phosphotyrosine binding by SH2 domains in regulating protein-protein interactions in cellular signaling. Copyright © 2013 Wiley Periodicals, Inc.

  18. Molecular basis of recognition between phytophthora pathogens and their hosts.

    PubMed

    Tyler, Brett M

    2002-01-01

    Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.

  19. Molecular determinants of origin discrimination by Orc1 initiators in archaea.

    PubMed

    Dueber, Erin C; Costa, Alessandro; Corn, Jacob E; Bell, Stephen D; Berger, James M

    2011-05-01

    Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA(+)) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA(+) domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA(+) domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites. © The Author(s) 2011. Published by Oxford University Press.

  20. Promoter mapping of the mouse Tcp-10bt gene in transgenic mice identifies essential male germ cell regulatory sequences.

    PubMed

    Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C

    1996-03-01

    Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.

  1. Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions

    PubMed Central

    Hougland, James L.; Gangopadhyay, Soumyashree A.; Fierke, Carol A.

    2012-01-01

    Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein. PMID:22992747

  2. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease

    PubMed Central

    Robinson, Clifford R.; Sligar, Stephen G.

    1998-01-01

    Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein–DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein–DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility. PMID:9482860

  3. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  4. Electrospray mass spectrometry of NeuAc oligomers associated with the C fragment of the tetanus toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, M C; Whittal, R M; Baldwin, M A

    2005-04-03

    The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a numbermore » of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells.« less

  5. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.

    PubMed

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Bruhn, Laurakay; Dellinger, Douglas J

    2018-01-25

    CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs

    PubMed Central

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Dellinger, Douglas J

    2018-01-01

    Abstract CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence (‘guide sequence’) and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2′-O-methyl-3′-phosphonoacetate, or ‘MP’) incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. PMID:29216382

  7. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pocketsmore » that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.« less

  8. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system.

    PubMed

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika; Nasrallah, June B; Yang, Ziheng; Nielsen, Rasmus

    2005-03-01

    Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.

  10. Amorphous silica as a versatile supermolecular ligand for Ni(II) amine complexes: toward interfacial molecular recognition.

    PubMed

    Boujday, Souhir; Lambert, Jean-François; Che, Michel

    2004-07-19

    Selective adsorption of Ni(II) amine complexes used as precursors for supported catalysts was studied on amorphous silica surfaces. The nature of the adsorption sites was probed by [Ni(en)(dien) (H2O)]2+, [Ni(en)2(H2O)2]2+, and [Ni(dien)(H2O)3]2+ (en = ethylenediamine, dien = diethylenetriamine), which respectively contain one, two, and three labile aqua ligands. The silica surface acts as a mono- or polydentate ligand that can substitute the aqua ligands of the Ni(II) complexes in an inner-sphere adsorption mechanism. Room-temperature adsorption isotherms indicate that each nickel complex selects a limited number of adsorption sites; different sites are recognised by the three complexes, even though they have the same charge and comparable sizes. Several spectroscopic techniques (UV/Vis/NIR, EXAFS, and 29Si NMR) were used to confirm the selective character of the interaction of Ni(II) amine complexes with the silica surface. The specific sites include both silanol/silanolate groups in the same number as the original labile ligands and other surface groups that probably act as hydrogen-bond acceptors. These two types of groups cooperate to result in interfacial molecular-recognition phenomena with interactional complementarity.

  11. Design and Evaluation of a Web-Based Symptom Monitoring Tool for Heart Failure.

    PubMed

    Wakefield, Bonnie J; Alexander, Gregory; Dohrmann, Mary; Richardson, James

    2017-05-01

    Heart failure is a chronic condition where symptom recognition and between-visit communication with providers are critical. Patients are encouraged to track disease-specific data, such as weight and shortness of breath. Use of a Web-based tool that facilitates data display in graph form may help patients recognize exacerbations and more easily communicate out-of-range data to clinicians. The purposes of this study were to (1) design a Web-based tool to facilitate symptom monitoring and symptom recognition in patients with chronic heart failure and (2) conduct a usability evaluation of the Web site. Patient participants generally had a positive view of the Web site and indicated it would support recording their health status and communicating with their doctors. Clinician participants generally had a positive view of the Web site and indicated it would be a potentially useful adjunct to electronic health delivery systems. Participants expressed a need to incorporate decision support within the site and wanted to add other data, for example, blood pressure, and have the ability to adjust font size. A few expressed concerns about data privacy and security. Technologies require careful design and testing to ensure they are useful, usable, and safe for patients and do not add to the burden of busy providers.

  12. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition

    PubMed Central

    Blatter, Markus; Cléry, Antoine; Damberger, Fred F.

    2017-01-01

    Abstract The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes. PMID:28505313

  13. Kinome signaling through regulated protein-protein interactions in normal and cancer cells.

    PubMed

    Pawson, Tony; Kofler, Michael

    2009-04-01

    The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.

  14. Molecularly imprinted silica-silver nanowires for tryptophan recognition

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, T.; Díaz-García, M. E.; Badía-Laíño, R.

    2014-10-01

    We report on silver nanowires (AgNWs) coated with molecularly imprinted silica (MIP SiO2) for recognition of tryptophan (Trp). The use of AgNWs as a template confers an imprinted material with adequate mechanical strength and with a capability of recognizing Trp due to its nanomorphology when compared to spherical microparticles with a similar surface-to-volume ratio. Studies on adsorption isotherms showed the MIP-SiO2-AgNWs to exhibit homogeneous affinity sites with narrow affinity distribution. This suggests that the synthesized material behaves as a 1D nanomaterial with a large area and small thickness with very similar affinity sites. Trp release from MIP-SiO2-AgNWs was demonstrated to be dominated by the diffusion rate of Trp as controlled by the specific interactions with the imprinted silica shell. Considering these results and the lack of toxicity of silica sol-gel materials, the material offers potential in the field of drug or pharmaceutical controlled delivery, but also in optoelectronic devices, electrodes and sensors.

  15. Lectin-Binding Specificity of the Fertilization-Relevant Protein PDC-109 by Means of Surface Plasmon Resonance and Carbohydrate REcognition Domain EXcision-Mass Spectrometry.

    PubMed

    Defaus, Sira; Avilés, Manuel; Andreu, David; Gutiérrez-Gallego, Ricardo

    2018-04-04

    Seminal plasma proteins are relevant for sperm functionality and some appear responsible for establishing sperm interactions with the various environments along the female genital tract towards the oocyte. In recent years, research has focused on characterizing the role of these proteins in the context of reproductive biology, fertility diagnostics and treatment of related problems. Herein, we focus on the main protein of bovine seminal plasma, PDC-109 (BSP-A1/-A2), which by virtue of its lectin properties is involved in fertilization. By means of surface plasmon resonance, the interaction of PDC-109 with a panel of the most relevant glycosidic epitopes of mammals has been qualitatively and quantitatively characterized, and a higher affinity for carbohydrates containing fucose has been observed, in line with previous studies. Additionally, using the orthogonal technique of Carbohydrate REcognition Domain EXcision-Mass Spectrometry (CREDEX-MS), the recognition domain of the interaction complexes between PDC-109 and all fucosylated disaccharides [(Fuc-α1,(3,4,6)-GlcNAc)] has been defined, revealing the specific glycotope and the peptide domain likely to act as the PDC-109 carbohydrate binding site.

  16. Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition.

    PubMed

    Gabor, Christopher S; Phan, Anna; Clipperton-Allen, Amy E; Kavaliers, Martin; Choleris, Elena

    2012-02-01

    Social Recognition is a fundamental skill that forms the basis of behaviors essential to the proper functioning of pair or group living in most social species. We review here various neurobiological and genetic studies that point to an interplay of oxytocin (OT), arginine-vasopressin (AVP), and the gonadal hormones, estrogens and testosterone, in the mediation of social recognition. Results of a number of studies have shown that OT and its actions at the medial amygdala seem to be essential for social recognition in both sexes. Estrogens facilitate social recognition, possibly by regulating OT production in the hypothalamus and the OT receptors at the medial amygdala. Estrogens also affect social recognition on a rapid time scale, likely through nongenomic actions. The mechanisms of these rapid effects are currently unknown but available evidence points at the hippocampus as the possible site of action. Male rodents seem to be more dependent on AVP acting at the level of the lateral septum for social recognition than female rodents. Results of various studies suggest that testosterone and its metabolites (including estradiol) influence social recognition in males primarily through the AVP V1a receptor. Overall, it appears that gonadal hormone modulation of OT and AVP regulates and fine tunes social recognition and those behaviors that depend upon it (e.g., social bonds, social hierarchies) in a sex specific manner. This points at an important role for these neuroendocrine systems in the regulation of the sex differences that are evident in social behavior and of sociality as a whole.

  17. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice

    PubMed Central

    Baibakov, Boris; Boggs, Nathan A.; Yauger, Belinda; Baibakov, Galina

    2012-01-01

    Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1–3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm–egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy. PMID:22734000

  18. Structural Determinants of Substrate Recognition in the HAD Superfamily Member D-glycero-D-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.; Wang, L; Huang, H

    2010-01-01

    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB subfamily, was selected for structure-function analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 {angstrom} resolution), in a complex with Mg{supmore » 2+} and orthophosphate (1.8 {angstrom} resolution), and in a complex with Mg{sup 2+} and D-glycero-D-manno-heptose 1{beta},7-bisphosphate (2.2 {angstrom} resolution) were determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to Mg{sup 2+} and orthophosphate (1.7 {angstrom} resolution). The structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within the HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.« less

  19. Bovine serum albumin surface imprinted polymer fabricated by surface grafting copolymerization on zinc oxide rods and its application for protein recognition.

    PubMed

    Li, Xiangjie; Zhou, Jingjing; Tian, Lei; Li, Wei; Zhang, Baoliang; Zhang, Hepeng; Zhang, Qiuyu

    2015-10-01

    A novel bovine serum albumin (BSA) surface imprinted polymer based on ZnO rods was synthesized by surface grafting copolymerization. It exhibited an excellent recognition performance to bovine serum albumin. The adsorption capacity and imprinting factor of bovine serum albumin could reach 89.27 mg/g and 2.35, respectively. Furthermore, the fluorescence property of ZnO was used for tracing the process of protein imprinting and it implied the excellent optical sensing property of this material. More importantly, the hypothesis that the surface charge of carrier could affect the imprinting process was confirmed. That is, ZnO with positive surface charge could not only improve the recognition specificity of binding sites to template proteins (pI < 7), but also deteriorate the bindings between sites and non-template proteins (pI > 7). It was also important that the reusability of ZnO@BSA molecularly imprinted polymers was satisfactory. This implied that the poor mechanical/chemical stability of traditional zinc oxide sensors could be solved by the introduction of surface grafting copolymerization. These results revealed that the ZnO@BSA molecularly imprinted polymers are a promising optical/electrochemical sensor element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    PubMed

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  1. Intrinsic disorder in scaffold proteins: Getting more from less

    PubMed Central

    Cortese, Marc S.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3β, p53, Ste5, titin, Fus3, BRCA1, Titin, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure. PMID:18619997

  2. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2015-04-01

    A cytochrome P450 active site is buried within the protein molecule and several channels connect the catalytic cavity to the protein surface. Their role in P450 catalysis is still matter of debate. The aim of this study was to understand the possible relations existing between channels and substrate specificity. Time course studies were carried out with a collection of polycyclic substrates of increasing sizes assayed with a library of wild-type and chimeric CYP1A enzymes. This resulted in a matrix of activities sufficiently large to allow statistical analysis. Multivariate statistical tools were used to decipher the correlation between observed activity shifts and sequence segment swaps. The global kinetic behavior of CYP1A enzymes toward polycyclic substrates is significantly different depending on the size of the substrate. Mutations which are close or lining the P450 channels significantly affect this discrimination, whereas mutations distant from the P450 channels do not. Size discrimination is taking place for polycyclic substrates at the entrance of the different P450 access channels. It is thus hypothesized that channels differentiate small from large substrates in CYP1A enzymes, implying that residues located at the surface of the protein may be implied in this differential recognition. Catalysis thus occurs after a two-step recognition process, one at the surface of the protein and the second within the catalytic cavity in enzymes with a buried active site. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ligation site in proteins recognized in silico

    PubMed Central

    Brylinski, Michal; Konieczny, Leszek; Roterman, Irena

    2006-01-01

    Recognition of a ligation site in a protein molecule is important for identifying its biological activity. The model for in silico recognition of ligation sites in proteins is presented. The idealized hydrophobic core stabilizing protein structure is represented by a three-dimensional Gaussian function. The experimentally observed distribution of hydrophobicity compared with the theoretical distribution reveals differences. The area of high differences indicates the ligation site. Availability http://bioinformatics.cm-uj.krakow.pl/activesite PMID:17597871

  4. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  5. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

    PubMed

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H

    2009-01-21

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.

  6. Molecular cloning and analysis of Schizosaccharomyces pombe Reb1p: sequence-specific recognition of two sites in the far upstream rDNA intergenic spacer.

    PubMed Central

    Zhao, A; Guo, A; Liu, Z; Pape, L

    1997-01-01

    The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645

  7. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory

    PubMed Central

    Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.

    2012-01-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990

  8. Toward rules relating zinc finger protein sequences and DNA binding site preferences.

    PubMed

    Desjarlais, J R; Berg, J M

    1992-08-15

    Zinc finger proteins of the Cys2-His2 type consist of tandem arrays of domains, where each domain appears to contact three adjacent base pairs of DNA through three key residues. We have designed and prepared a series of variants of the central zinc finger within the DNA binding domain of Sp1 by using information from an analysis of a large data base of zinc finger protein sequences. Through systematic variations at two of the three contact positions (underlined), relatively specific recognition of sequences of the form 5'-GGGGN(G or T)GGG-3' has been achieved. These results provide the basis for rules that may develop into a code that will allow the design of zinc finger proteins with preselected DNA site specificity.

  9. Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity*S⃞

    PubMed Central

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.

    2008-01-01

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators. PMID:18285338

  10. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity.

    PubMed

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P; Lewis, Timothy A; Maglathin, Rebecca L; McLean, Thomas H; Bochkarev, Alexey; Plotnikov, Alexander N; Vedadi, Masoud; Arrowsmith, Cheryl H

    2008-04-25

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.

  11. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper

    PubMed Central

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  12. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors.

    PubMed

    Di Scala, Coralie; Baier, Carlos J; Evans, Luke S; Williamson, Philip T F; Fantini, Jacques; Barrantes, Francisco J

    2017-01-01

    Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution. © 2017 Elsevier Inc. All rights reserved.

  13. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  14. Quantum origins of molecular recognition and olfaction in Drosophila.

    PubMed

    Bittner, Eric R; Madalan, Adrian; Czader, Arkadiusz; Roman, Gregg

    2012-12-14

    The standard model for molecular recognition of an odorant is that receptor sites discriminate by molecular geometry as evidenced that two chiral molecules may smell very differently. However, recent studies of isotopically labeled olfactants indicate that there may be a molecular vibration-sensing component to olfactory reception, specifically in the spectral region around 2300 cm(-1). Here, we present a donor-bridge-acceptor model for olfaction which attempts to explain this effect. Our model, based upon accurate quantum chemical calculations of the olfactant (bridge) in its neutral and ionized states, posits that internal modes of the olfactant are excited impulsively during hole transfer from a donor to acceptor site on the receptor, specifically those modes that are resonant with the tunneling gap. By projecting the impulsive force onto the internal modes, we can determine which modes are excited at a given value of the donor-acceptor tunneling gap. Only those modes resonant with the tunneling gap and are impulsively excited will give a significant contribution to the inelastic transfer rate. Using acetophenone as a test case, our model and experiments on D. melanogaster suggest that isotopomers of a given olfactant give rise to different odorant qualities. These results support the notion that inelastic scattering effects may play a role in discriminating between isotopomers but that this is not a general spectroscopic effect.

  15. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    PubMed Central

    Wienk, Hans; Slootweg, Jack C.; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition. PMID:23661679

  16. Ring-through-ring molecular shuttling in a saturated [3]rotaxane

    NASA Astrophysics Data System (ADS)

    Zhu, Kelong; Baggi, Giorgio; Loeb, Stephen J.

    2018-06-01

    Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle—shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.

  17. Functional cooperation between exonucleases and endonucleases—basis for the evolution of restriction enzymes

    PubMed Central

    Raghavendra, Nidhanapathi K.; Rao, Desirazu N.

    2003-01-01

    Many types of restriction enzymes cleave DNA away from their recognition site. Using the type III restriction enzyme, EcoP15I, which cleaves DNA 25–27 bp away from its recognition site, we provide evidence to show that an intact recognition site on the cleaved DNA sequesters the restriction enzyme and decreases the effective concentration of the enzyme. EcoP15I restriction enzyme is shown here to perform only a single round of DNA cleavage. Significantly, we show that an exonuclease activity is essential for EcoP15I restriction enzyme to perform multiple rounds of DNA cleavage. This observation may hold true for all restriction enzymes cleaving DNA sufficiently far away from their recognition site. Our results highlight the importance of functional cooperation in the modulation of enzyme activity. Based on results presented here and other data on well-characterised restriction enzymes, a functional evolutionary hierarchy of restriction enzymes is discussed. PMID:12655005

  18. Rapid Assessment of Ecosystem Services Provided by Two Mineral Extraction Sites Restored for Nature Conservation in an Agricultural Landscape in Eastern England

    PubMed Central

    Blaen, Phillip J.; Jia, Li; Peh, Kelvin S.-H.; Field, Rob H.; Balmford, Andrew; MacDonald, Michael A.; Bradbury, Richard B.

    2015-01-01

    Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being. PMID:25894293

  19. Rapid assessment of ecosystem services provided by two mineral extraction sites restored for nature conservation in an agricultural landscape in eastern England.

    PubMed

    Blaen, Phillip J; Jia, Li; Peh, Kelvin S-H; Field, Rob H; Balmford, Andrew; MacDonald, Michael A; Bradbury, Richard B

    2015-01-01

    Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being.

  20. Specificity and multiplicity in the recognition of individuals: implications for the evolution of social behaviour.

    PubMed

    Wiley, R H

    2013-02-01

    Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.

  1. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    PubMed

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  2. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    PubMed

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  3. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5more » lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.« less

  4. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    PubMed Central

    Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2016-01-01

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI: http://dx.doi.org/10.7554/eLife.17096.001 PMID:27482653

  5. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    DOE PAGES

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; ...

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less

  6. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less

  7. Effect of Meaningful Recognition on Critical Care Nurses' Compassion Fatigue.

    PubMed

    Kelly, Lesly A; Lefton, Cindy

    2017-11-01

    As caregivers in high-pressure environments, critical care nurses are at risk for burnout and secondary trauma-components of compassion fatigue. Recent findings have increased understanding of the phenomena, specifically that satisfaction and meaningful recognition may play a role in reducing burnout and raising compassion satisfaction; however, no large multisite studies of compassion fatigue have been conducted. To examine the effect of meaningful recognition and other predictors on compassion fatigue in a multicenter national sample of critical care nurses. A quantitative, descriptive online survey was completed by 726 intensive care unit nurses in 14 hospitals with an established meaningful recognition program and 410 nurses in 10 hospitals without such a program. Site coordinators at each hospital coordinated distribution of the survey to nurses to assess multiple predictors against outcomes, measured by the Professional Quality of Life Scale. Cross-validation and linear regression modeling were conducted to determine significant predictors of burnout, secondary traumatic stress, and compassion satisfaction. Similar levels of burnout, secondary traumatic stress, compassion satisfaction, overall satisfaction, and intent to leave were reported by nurses in hospitals with and without meaningful recognition programs. Meaningful recognition was a significant predictor of decreased burnout and increased compassion satisfaction. Additionally, job satisfaction and job enjoyment were highly predictive of decreased burnout, decreased secondary traumatic stress, and increased compassion satisfaction. In addition to acknowledging and valuing nurses' contributions to care, meaningful recognition could reduce burnout and boost compassion satisfaction. ©2017 American Association of Critical-Care Nurses.

  8. MicroRNA Targeting Specificity in Mammals: Determinants Beyond Seed Pairing

    PubMed Central

    Grimson, Andrew; Farh, Kyle Kai-How; Johnston, Wendy K.; Garrett-Engele, Philip; Lim, Lee P.; Bartel, David P.

    2013-01-01

    Summary Mammalian microRNAs (miRNAs) pair to 3'UTRs of mRNAs to direct their posttranscriptional repression. Important for target recognition are ~7-nt sites that match the seed region of the miRNA. However, these seed matches are not always sufficient for repression, indicating that other characteristics help specify targeting. By combining computational and experimental approaches, we uncovered five general features of site context that boost site efficacy: AU-rich nucleotide composition near the site, proximity to sites for co-expressed miRNAs (which leads to cooperative action), proximity to residues pairing to miRNA nucleotides 13–16, and positioning within the 3'UTR at least 15 nt from the stop codon and away from the center of long UTRs. A model combining these context determinants quantitatively predicts site performance both for exogenously added miRNAs and for endogenous miRNA-message interactions. Because it predicts site efficacy without recourse to evolutionary conservation, the model also identifies effective nonconserved sites and siRNA off-targets. PMID:17612493

  9. Structural analysis of substrate recognition by glucose isomerase in Mn2+ binding mode at M2 site in S. rubiginosus.

    PubMed

    Bae, Ji-Eun; Hwang, Kwang Yeon; Nam, Ki Hyun

    2018-06-16

    Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI from S. rubiginosus (SruGI) complexed with a xylitol inhibitor in one metal binding mode. Although we assessed inhibitor binding at the M1 site, the metal binding at the M2 site and the substrate recognition mechanism for SruGI remains the unclear. Here, we report the crystal structure of the two metal binding modes of SruGI and its complex with glucose. This study provides a snapshot of metal binding at the SruGI M2 site in the presence of Mn 2+ , but not in the presence of Mg 2+ . Metal binding at the M2 site elicits a configuration change at the M1 site. Glucose molecule can only bind to the M1 site in presence of Mn 2+ at the M2 site. Glucose and Mn 2+ at the M2 site were bridged by water molecules using a hydrogen bonding network. The metal binding geometry of the M2 site indicates a distorted octahedral coordination with an angle of 55-110°, whereas the M1 site has a relatively stable octahedral coordination with an angle of 85-95°. We suggest a two-step sequential process for SruGI substrate recognition, in Mn 2+ binding mode, at the M2 site. Our results provide a better understanding of the molecular role of the M2 site in GI substrate recognition. Copyright © 2018. Published by Elsevier Inc.

  10. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and themore » cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.« less

  11. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  12. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  13. Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan

    2012-01-01

    Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951

  14. Interfacial metal and antibody recognition.

    PubMed

    Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D

    2005-10-11

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.

  15. Interfacial metal and antibody recognition

    PubMed Central

    Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.

    2005-01-01

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378

  16. Molecular recognition in protein modification with rhodium metallopeptides

    PubMed Central

    Ball, Zachary T.

    2015-01-01

    Chemical manipulation of natural, unengineered proteins is a daunting challenge which tests the limits of reaction design. By combining transition-metal or other catalysts with molecular recognition ideas, it is possible to achieve site-selective protein reactivity without the need for engineered recognition sequences or reactive sites. Some recent examples in this area have used ruthenium photocatalysis, pyridine organocatalysis, and rhodium(II) metallocarbene catalysis, indicating that the fundamental ideas provide opportunities for using diverse reactivity on complex protein substrates and in complex cell-like environments. PMID:25588960

  17. Computer versus paper system for recognition and management of sepsis in surgical intensive care.

    PubMed

    Croft, Chasen A; Moore, Frederick A; Efron, Philip A; Marker, Peggy S; Gabrielli, Andrea; Westhoff, Lynn S; Lottenberg, Lawrence; Jordan, Janeen; Klink, Victoria; Sailors, R Matthew; McKinley, Bruce A

    2014-02-01

    A system to provide surveillance, diagnosis, and protocolized management of surgical intensive care unit (SICU) sepsis was undertaken as a performance improvement project. A system for sepsis management was implemented for SICU patients using paper followed by a computerized system. The hypothesis was that the computerized system would be associated with improved process and outcomes. A system was designed to provide early recognition and guide patient-specific management of sepsis including (1) modified early warning signs-sepsis recognition score (MEWS-SRS; summative point score of ranges of vital signs, mental status, white blood cell count; after every 4 hours) by bedside nurse; (2) suspected site assessment (vascular access, lung, abdomen, urinary tract, soft tissue, other) at bedside by physician or extender; (3) sepsis management protocol (replicable, point-of-care decisions) at bedside by nurse, physician, and extender. The system was implemented first using paper and then a computerized system. Sepsis severity was defined using standard criteria. In January to May 2012, a paper system was used to manage 77 consecutive sepsis encounters (3.9 ± 0.5 cases per week) in 65 patients (77% male; age, 53 ± 2 years). In June to December 2012, a computerized system was used to manage 132 consecutive sepsis encounters (4.4 ± 0.4 cases per week) in 119 patients (63% male; age, 58 ± 2 years). MEWS-SRS elicited 683 site assessments, and 201 had sepsis diagnosis and protocol management. The predominant site of infection was abdomen (paper, 58%; computer, 53%). Recognition of early sepsis tended to occur more using the computerized system (paper, 23%; computer, 35%). Hospital mortality rate for surgical ICU sepsis (paper, 20%; computer, 14%) was less with the computerized system. A computerized sepsis management system improves care process and outcome. Early sepsis is recognized and managed with greater frequency compared with severe sepsis or septic shock. The system has a beneficial effect as a clinical standard of care for SICU patients. Therapeutic study, level III.

  18. Investigating MUC1/ICAM-1 Binding Induced Signaling in Breast Cancer Metastasis

    DTIC Science & Technology

    2011-05-01

    expected that covalently linked species would remain intact. Reducing (R, + !-mercaptoethanol) and non-reducing (NR, no !-mercaptoethanol) samples were...binding site, containing both proline and arginine residues. We mutated the SH2 and/or putative SH3 binding domains on the MUC1-CFP-Fv plasmid...Structure and regulation of Src family kinases. Oncogene 2004, 23:7918- 7927. 31. Li SSC: Specificity and versatility of SH3 and other proline -recognition

  19. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.

    PubMed

    Liu, Jiaquan; Hanne, Jeungphill; Britton, Brooke M; Shoffner, Matthew; Albers, Aaron E; Bennett, Jared; Zatezalo, Rachel; Barfield, Robyn; Rabuka, David; Lee, Jong-Bong; Fishel, Richard

    2015-11-19

    Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.

  20. Protein unfolding as a switch from self-recognition to high-affinity client binding

    PubMed Central

    Groitl, Bastian; Horowitz, Scott; Makepeace, Karl A. T.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.; Reichmann, Dana; Bardwell, James C. A.; Jakob, Ursula

    2016-01-01

    Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. PMID:26787517

  1. PEG-stabilized core-shell surface-imprinted nanoparticles.

    PubMed

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2013-08-06

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.

  2. Structural aspects of denitrifying enzymes.

    PubMed

    Moura, I; Moura, J J

    2001-04-01

    The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.

  3. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeson, P.D.; Carling, R.W.; James, K.

    1990-05-01

    Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of themore » nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.« less

  5. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion

    PubMed Central

    Schwarz, Friedrich W.; van Aelst, Kara; Tóth, Júlia; Seidel, Ralf; Szczelkun, Mark D.

    2011-01-01

    DNA cleavage by the Type III Restriction–Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision. PMID:21724613

  6. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus

    PubMed Central

    Wang, Yupeng; Khan, Iram F.; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M.; Rawlings, David J.

    2014-01-01

    LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825

  7. Structural Insights into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site AAVS1*

    PubMed Central

    Musayev, Faik N.; Zarate-Perez, Francisco; Bishop, Clayton; Burgner, John W.; Escalante, Carlos R.

    2015-01-01

    Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains. PMID:26370092

  8. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho

    PubMed Central

    Shashni, Rajesh; Qayyum, M. Zuhaib; Vishalini, V.; Dey, Debashish; Sen, Ranjan

    2014-01-01

    The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions. PMID:25081210

  9. Molecular markers: Implications for cytopathology and specimen collection.

    PubMed

    VanderLaan, Paul A

    2015-08-01

    Cytologic specimens obtained through minimally invasive biopsy techniques are increasingly being used as principle diagnostic specimens for tumors arising in multiple sites. The number and scope of ancillary tests performed on these specimens have grown substantially over the past decade, including many molecular markers that not only can aid in formulating accurate and specific diagnoses but also can provide prognostic or therapeutic information to help direct clinical decisions. Thus, the cytopathologist needs to ensure that adequate material is collected and appropriately processed for the study of relevant molecular markers, many of which are specific to tumor site. This brief review covers considerations for effective cytologic specimen collection and processing to ensure diagnostic and testing success. In addition, a general overview is provided of molecular markers pertinent to tumors from a variety of sites. The recognition of these established and emerging molecular markers by cytopathologists is an important step toward realizing the promise of personalized medicine. © 2015 American Cancer Society.

  10. Infants Infected with Respiratory Syncytial Virus Generate Potent Neutralizing Antibodies that Lack Somatic Hypermutation

    PubMed Central

    Goodwin, Eileen; Gilman, Morgan S. A.; Wrapp, Daniel; Chen, Man; Ngwuta, Joan O.; Moin, Syed M.; Bai, Patricia; Sivasubramanian, Arvind; Connor, Ruth I.; Wright, Peter F.; Graham, Barney S.; McLellan, Jason S.; Walker, Laura M.

    2018-01-01

    SUMMARY Respiratory syncytial virus (RSV) is a leading cause of infant mortality, and there are currently no licensed vaccines to protect this vulnerable population. A comprehensive understanding of infant antibody responses to natural RSV infection would facilitate vaccine development. Here, we isolated over 450 RSV fusion glycoprotein (F)-specific antibodies from seven RSV-infected infants and found that half of the antibodies recognized only two antigenic sites. Antibodies targeting both sites showed convergent sequence features, and structural studies revealed the molecular basis for their recognition of RSV F. A subset of antibodies targeting one of these sites displayed potent neutralizing activity despite lacking somatic mutations, and similar antibodies were detected in RSV-naïve B cell repertoires, suggesting that expansion of these B cells in infants may be possible with suitably designed vaccine antigens. Collectively, our results provide fundamental insights into infant antibody responses and a framework for the rational design of age-specific RSV vaccines. PMID:29396163

  11. Attachment site recognition and regulation of directionality by the serine integrases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Karen; Yuan, Peng; Perry, Kay

    Serine integrases catalyze the integration of bacteriophage DNA into a host genome by site-specific recombination between ‘attachment sites’ in the phage ( attP ) and the host ( attB ). The reaction is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded factor, nor does recombination occur between other pairings of attachment sites. A mechanistic understanding of how these enzymes achieve site-selectivity and directionality has been limited by a lack of structural models. Here, we report the structure of the C-terminal domains of a serine integrase boundmore » to an attP DNA half-site. The structure leads directly to models for understanding how the integrase-bound attP and attB sites differ, why these enzymes preferentially form attP × attB synaptic complexes to initiate recombination, and how attL × attR recombination is prevented. In these models, different domain organizations on attP vs. attB half-sites allow attachment-site specific interactions to form between integrase subunits via an unusual protruding coiled-coil motif. These interactions are used to preferentially synapse integrase-bound attP and attB and inhibit synapsis of integrase-bound attL and attR . The results provide a structural framework for understanding, testing and engineering serine integrase function.« less

  12. The Interaction of Integrin αIIbβ3 with Fibrin Occurs through Multiple Binding Sites in the αIIb β-Propeller Domain*

    PubMed Central

    Podolnikova, Nataly P.; Yakovlev, Sergiy; Yakubenko, Valentin P.; Wang, Xu; Gorkun, Oleg V.; Ugarova, Tatiana P.

    2014-01-01

    The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370–381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404–411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen. PMID:24338009

  13. Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors

    PubMed Central

    Wan, Hua; Hu, Jian-ping; Li, Kang-shun; Tian, Xu-hong; Chang, Shan

    2013-01-01

    TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism. PMID:24130757

  14. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    PubMed Central

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-01-01

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids. PMID:18477694

  15. Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved

    DOE PAGES

    Wiehe, Kevin; Easterhoff, David; Luo, Kan; ...

    2014-11-29

    In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognitionmore » prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. In conclusion, these data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.« less

  16. Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehe, Kevin; Easterhoff, David; Luo, Kan

    In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognitionmore » prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. In conclusion, these data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.« less

  17. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  18. Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive

    NASA Astrophysics Data System (ADS)

    Bagchi, Damayanti; Ghosh, Abhijit; Singh, Priya; Dutta, Shreyasi; Polley, Nabarun; Althagafi, Ismail. I.; Jassas, Rabab S.; Ahmed, Saleh A.; Pal, Samir Kumar

    2016-09-01

    The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

  19. Molecular mechanisms of floral organ specification by MADS domain proteins.

    PubMed

    Yan, Wenhao; Chen, Dijun; Kaufmann, Kerstin

    2016-02-01

    Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    PubMed

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  1. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules.

    PubMed Central

    Bouvier, M; Wiley, D C

    1996-01-01

    Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447

  2. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    NASA Astrophysics Data System (ADS)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  3. The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA

    PubMed Central

    Lisbin, Michael J.; Qiu, Jan; White, Kalpana

    2001-01-01

    Drosophila melanogaster neural-specific protein, ELAV, has been shown to regulate the neural-specific splicing of three genes: neuroglian (nrg), erect wing, and armadillo. Alternative splicing of the nrg transcript involves alternative inclusion of a 3′-terminal exon. Here, using a minigene reporter, we show that the nrg alternatively spliced intron (nASI) has all the determinants required to recreate proper neural-specific RNA processing seen with the endogenous nrg transcript, including regulation by ELAV. An in vitro UV cross-linking assay revealed that ELAV from nuclear extracts cross-links to four distinct sites along the 3200 nucleotide long nASI; one EXS is positioned at the polypyrimidine tract of the default 3′ splice site. ELAV cross-linking sites (EXSs) have in common long tracts of (U)-rich sequence rather than a precise consensus; moreover, each tract has at least two 8/10U elements; their importance is validated by mutant transgene reporter analysis. Further, we propose criteria for ELAV target sequence recognition based on the four EXSs, sites within the nASI that are (U) rich but do not cross-link with ELAV, and predicted EXSs from a phylogenetic comparison with Drosophila virilis nASI. These results suggest that ELAV regulates nrg alternative splicing by direct interaction with the nASI. PMID:11581160

  4. The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA.

    PubMed

    Lisbin, M J; Qiu, J; White, K

    2001-10-01

    Drosophila melanogaster neural-specific protein, ELAV, has been shown to regulate the neural-specific splicing of three genes: neuroglian (nrg), erect wing, and armadillo. Alternative splicing of the nrg transcript involves alternative inclusion of a 3'-terminal exon. Here, using a minigene reporter, we show that the nrg alternatively spliced intron (nASI) has all the determinants required to recreate proper neural-specific RNA processing seen with the endogenous nrg transcript, including regulation by ELAV. An in vitro UV cross-linking assay revealed that ELAV from nuclear extracts cross-links to four distinct sites along the 3200 nucleotide long nASI; one EXS is positioned at the polypyrimidine tract of the default 3' splice site. ELAV cross-linking sites (EXSs) have in common long tracts of (U)-rich sequence rather than a precise consensus; moreover, each tract has at least two 8/10U elements; their importance is validated by mutant transgene reporter analysis. Further, we propose criteria for ELAV target sequence recognition based on the four EXSs, sites within the nASI that are (U) rich but do not cross-link with ELAV, and predicted EXSs from a phylogenetic comparison with Drosophila virilis nASI. These results suggest that ELAV regulates nrg alternative splicing by direct interaction with the nASI.

  5. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide

    PubMed Central

    Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2016-01-01

    In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487

  6. Improvement of a yeast self-excising integrative vector by prevention of expression leakage of the intronated Cre recombinase gene during plasmid maintenance in Escherichia coli.

    PubMed

    Agaphonov, Michael O

    2017-12-01

    The use of plasmids possessing a regulatable gene coding for a site-specific recombinase together with its recognition sequences significantly facilitates genome manipulations since it allows self-excision of the portion of the genetic construct integrated into the host genome. Stable maintenance of such plasmids in Escherichia coli, which is used for plasmid preparation, requires prevention of recombinase synthesis in this host, which can be achieved by interrupting the recombinase gene with an intron. Based on this approach, Saccharomyces cerevisiae and Hansenula polymorpha self-excising vectors possessing intronated gene for Cre recombinase and its recognition sites (LoxP) were previously constructed. However, this work shows instability of the H. polymorpha vectors during plasmid maintenance in E. coli cells. This could be due to recombination between the loxP sites caused by residual expression of the cre gene. Prevention of translation reinitiation on an internal methionine codon completely solved this problem. A similar modification was made in a self-excising vector designed for S. cerevisiae. Apart from substantial improvement of yeast self-excising vectors, the obtained results also narrow down the essential part of Cre sequence. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. Electronic supplementary information (ESI) available: Additional circular dichroism data and nanoparticle tracking analysis trace. See DOI: 10.1039/c6nr02009g

  8. Nucleic acid constructs containing orthogonal site selective recombinases (OSSRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Joshua M.; Anderson, J. Christopher; Dueber, John E.

    The present invention provides for a recombinant nucleic acid comprising a nucleotide sequence comprising a plurality of constructs, wherein each construct independently comprises a nucleotide sequence of interest flanked by a pair of recombinase recognition sequences. Each pair of recombinase recognition sequences is recognized by a distinct recombinase. Optionally, each construct can, independently, further comprise one or more genes encoding a recombinase capable of recognizing the pair of recombinase recognition sequences of the construct. The recombinase can be an orthogonal (non-cross reacting), site-selective recombinase (OSSR).

  9. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy.

    PubMed

    Poiroux, Guillaume; Barre, Annick; van Damme, Els J M; Benoist, Hervé; Rougé, Pierre

    2017-06-09

    Aberrant O -glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O -glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola , and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O -glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.

  11. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy

    PubMed Central

    Poiroux, Guillaume; Barre, Annick; van Damme, Els J. M.; Benoist, Hervé; Rougé, Pierre

    2017-01-01

    Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors. PMID:28598369

  12. miREE: miRNA recognition elements ensemble

    PubMed Central

    2011-01-01

    Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078

  13. COBRA-Seq: Sensitive and Quantitative Methylome Profiling

    PubMed Central

    Varinli, Hilal; Statham, Aaron L.; Clark, Susan J.; Molloy, Peter L.; Ross, Jason P.

    2015-01-01

    Combined Bisulfite Restriction Analysis (COBRA) quantifies DNA methylation at a specific locus. It does so via digestion of PCR amplicons produced from bisulfite-treated DNA, using a restriction enzyme that contains a cytosine within its recognition sequence, such as TaqI. Here, we introduce COBRA-seq, a genome wide reduced methylome method that requires minimal DNA input (0.1–1.0 μg) and can either use PCR or linear amplification to amplify the sequencing library. Variants of COBRA-seq can be used to explore CpG-depleted as well as CpG-rich regions in vertebrate DNA. The choice of enzyme influences enrichment for specific genomic features, such as CpG-rich promoters and CpG islands, or enrichment for less CpG dense regions such as enhancers. COBRA-seq coupled with linear amplification has the additional advantage of reduced PCR bias by producing full length fragments at high abundance. Unlike other reduced representative methylome methods, COBRA-seq has great flexibility in the choice of enzyme and can be multiplexed and tuned, to reduce sequencing costs and to interrogate different numbers of sites. Moreover, COBRA-seq is applicable to non-model organisms without the reference genome and compatible with the investigation of non-CpG methylation by using restriction enzymes containing CpA, CpT, and CpC in their recognition site. PMID:26512698

  14. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Huang, S; Zhao, XF

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less

  15. Molecular cloning of a C-type lectin with two CRD domains from the banana shrimp Fenneropenaeus merguiensis: early gene up-regulation after Vibrio harveyi infection.

    PubMed

    Rattanaporn, Onnicha; Utarabhand, Prapaporn

    2011-02-01

    A diverse class of pattern-recognition proteins called lectins play important roles in shrimp innate immunity. A novel C-type lectin gene (FmLC) was cloned from the hepatopancreas of banana shrimp Fenneropenaeus merguiensis by means of PCR and 5' and 3' rapid amplification of cDNA ends (RACE). The full-length cDNA consists of 1118 bp with one 1002 bp open reading frame, encoding 333 amino acids. Its deduced amino acid sequence contains a putative signal peptide of 20 amino acids. FmLC contains two carbohydrate recognition domains, CRD1 and CRD2, that share only 30% identity with each other. The first CRD comprises a QPD motif with specificity for binding galactose and a single Ca(2+) binding site, while the second CRD consists of an EPN motif for a mannose-specific binding site. FmLC had a close evolutionary relationship to other dual-CRD lectins of penaeid shrimp. Expression results showed that transcripts of FmLC were detected only in the hepatopancreas, none was found in other tissues. After challenging either whole shrimp or hepatopancreas tissue fragments with Vibrioharveyi, the expression of FmLC was up-regulated. This indicates that FmLC is inducible and may be involved in a shrimp immune response to recognize potential bacterial pathogens. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent.

    PubMed

    Houser, Josef; Komarek, Jan; Cioci, Gianluca; Varrot, Annabelle; Imberty, Anne; Wimmerova, Michaela

    2015-03-01

    The Aspergillus fumigatus lectin AFL was recently described as a new member of the AAL lectin family. As a lectin from an opportunistic pathogen, it might play an important role in the interaction of the pathogen with the human host. A detailed study of structures of AFL complexed with several monosaccharides and oligosaccharides, including blood-group epitopes, was combined with affinity data from SPR and discussed in the context of previous findings. Its six binding sites are non-equivalent, and owing to minor differences in amino-acid composition they exhibit a marked difference in specific ligand recognition. AFL displays a high affinity in the micromolar range towards oligosaccharides which were detected in plants and also those bound on the human epithelia. All of these results indicate AFL to be a complex member of the lectin family and a challenging target for future medical research and, owing to its binding properties, a potentially useful tool in specific biotechnological applications.

  17. Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

    PubMed Central

    Chu, Xiakun; Wang, Jin

    2014-01-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525

  18. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    PubMed

    Chu, Xiakun; Wang, Jin

    2014-08-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  19. 78 FR 70329 - Modification to the Scopes of Recognition of Several NRTLs; Final Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... determination to delete specific test standards from the scopes of recognition of several Nationally Recognized Testing Laboratories (NRTLs), and to incorporate replacement test standards into the scopes of recognition... proposed to delete specific test standards from the scopes of recognition of several NRTLs, and incorporate...

  20. The role of the peripheral anionic site and cation-pi interactions in the ligand penetration of the human AChE gorge.

    PubMed

    Branduardi, Davide; Gervasio, Francesco Luigi; Cavalli, Andrea; Recanatini, Maurizio; Parrinello, Michele

    2005-06-29

    We study the ligand (tetramethylammonium) recognition by the peripheral anionic site and its penetration of the human AChE gorge by using atomistic molecular dynamics simulations and our recently developed metadynamics method. The role of both the peripheral anionic site and the formation of cation-pi interactions in the ligand entrance are clearly shown. In particular, a simulation with the W286A mutant shows the fundamental role of this residue in anchoring the ligand at the peripheral anionic site of the enzyme and in positioning it prior to the gorge entrance. Once the ligand is properly oriented, the formation of specific and synchronized cation-pi interactions with W86, F295, and Y341 enables the gorge penetration. Eventually, the ligand is stabilized in a free energy basin by means of cation-pi interactions with W86.

  1. Construction of proteins with molecular recognition capabilities using α3β3 de novo protein scaffolds.

    PubMed

    Okura, Hiromichi; Mihara, Hisakazu; Takahashi, Tsuyoshi

    2013-10-01

    The molecular recognition ability of proteins is essential in biological systems, and therefore a considerable amount of effort has been devoted to constructing desired target-binding proteins using a variety of naturally occurring proteins as scaffolds. However, since generating a binding site in a native protein can often affect its structural properties, highly stable de novo protein scaffolds may be more amenable than the native proteins. We previously reported the generation of de novo proteins comprising three α-helices and three β-strands (α3β3) from a genetic library coding simplified amino acid sets. Two α3β3 de novo proteins, vTAJ13 and vTAJ36, fold into a native-like stable and molten globule-like structures, respectively, even though the proteins have similar amino acid compositions. Here, we attempted to create binding sites for the vTAJ13 and vTAJ36 proteins to prove the utility of de novo designed artificial proteins as a molecular recognition tool. Randomization of six amino acids at two linker sites of vTAJ13 and vTAJ36 followed by biopanning generated binding proteins that recognize the target molecules, fluorescein and green fluorescent protein, with affinities of 10(-7)-10(-8) M. Of note, the selected proteins from the vTAJ13-based library tended to recognize the target molecules with high specificity, probably due to the native-like stable structure of vTAJ13. Our studies provide an example of the potential of de novo protein scaffolds, which are composed of a simplified amino acid set, to recognize a variety of target compounds.

  2. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: Involvement of the OprF porin.

    PubMed

    Magro, Massimiliano; Fasolato, Luca; Bonaiuto, Emanuela; Andreani, Nadia Andrea; Baratella, Davide; Corraducci, Vittorino; Miotto, Giovanni; Cardazzo, Barbara; Vianello, Fabio

    2016-10-01

    Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Improving language models for radiology speech recognition.

    PubMed

    Paulett, John M; Langlotz, Curtis P

    2009-02-01

    Speech recognition systems have become increasingly popular as a means to produce radiology reports, for reasons both of efficiency and of cost. However, the suboptimal recognition accuracy of these systems can affect the productivity of the radiologists creating the text reports. We analyzed a database of over two million de-identified radiology reports to determine the strongest determinants of word frequency. Our results showed that body site and imaging modality had a similar influence on the frequency of words and of three-word phrases as did the identity of the speaker. These findings suggest that the accuracy of speech recognition systems could be significantly enhanced by further tailoring their language models to body site and imaging modality, which are readily available at the time of report creation.

  4. L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide.

    PubMed

    Sanders, W J; Katsumoto, T R; Bertozzi, C R; Rosen, S D; Kiessling, L L

    1996-11-26

    Protein-carbohydrate interactions are known to mediate cell-cell recognition and adhesion events. Specifically, three carbohydrate binding proteins termed selectins (E-, P-, and L-selectin) have been shown to be essential for leukocyte rolling along the vascular endothelium, the first step in the recruitment of leukocytes from the blood into inflammatory sites or into secondary lymphoid organs. Although this phenomenon is well-established, little is known about the molecular-level interactions on which it depends. All three selectins recognize sulfated and sialylated derivatives of the Lewis x [Le(x):Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and Lewis a [Le(a): Gal beta 1-->3(Fuc alpha 1-->4)GlcNAc] trisaccharide cores with affinities in the millimolar range, and it is believed that variants of these structures are the carbohydrate determinants of selectin recognition. Recently it was shown that the mucin GlyCAM-1, a secreted physiological ligand for L-selectin, is capped with sulfated derivatives of sialyl Lewis x [sLe(x): Sia alpha 2-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and that sulfation is required for the high-affinity interaction between GlyCAM-1 and L-selectin. To elucidate the important sites of sulfation on Le(x) with respect to L-selectin recognition, we have synthesized six sulfated Le(x) analogs and determined their abilities to block binding of a recombinant L-selectin-Ig chimera to immobilized GlyCAM-1. Our results suggest that 6-sulfo sLe(x) binds to L-selectin with higher affinity than does sLe(x) or 6'-sulfo sLe(x) and that sulfation of sLe(x) capping groups on GlyCAM-1 at the 6-position is important for L-selectin recognition.

  5. One recognition sequence, seven restriction enzymes, five reaction mechanisms

    PubMed Central

    Gowers, Darren M.; Bellamy, Stuart R.W.; Halford, Stephen E.

    2004-01-01

    The diversity of reaction mechanisms employed by Type II restriction enzymes was investigated by analysing the reactions of seven endonucleases at the same DNA sequence. NarI, KasI, Mly113I, SfoI, EgeI, EheI and BbeI cleave DNA at several different positions in the sequence 5′-GGCGCC-3′. Their reactions on plasmids with one or two copies of this sequence revealed five distinct mechanisms. These differ in terms of the number of sites the enzyme binds, and the number of phosphodiester bonds cleaved per turnover. NarI binds two sites, but cleaves only one bond per DNA-binding event. KasI also cuts only one bond per turnover but acts at individual sites, preferring intact to nicked sites. Mly113I cuts both strands of its recognition sites, but shows full activity only when bound to two sites, which are then cleaved concertedly. SfoI, EgeI and EheI cut both strands at individual sites, in the manner historically considered as normal for Type II enzymes. Finally, BbeI displays an absolute requirement for two sites in close physical proximity, which are cleaved concertedly. The range of reaction mechanisms for restriction enzymes is thus larger than commonly imagined, as is the number of enzymes needing two recognition sites. PMID:15226412

  6. DEVELOPMENT OF A SAFETY COMMUNICATION AND RECOGNITION PROGRAM FOR CONSTRUCTION

    PubMed Central

    SPARER, EMILY H.; HERRICK, ROBERT F.; DENNERLEIN, JACK T.

    2017-01-01

    Leading-indicator–based (e.g., hazard recognition) incentive programs provide an alternative to controversial lagging-indicator–based (e.g., injury rates) programs. We designed a leading-indicator–based safety communication and recognition program that incentivized safe working conditions. The program was piloted for two months on a commercial construction worksite, and then redesigned using qualitative interview and focus group data from management and workers. We then ran the redesigned program for six months on the same worksite. Foremen received detailed weekly feedback from safety inspections, and posters displayed worksite and subcontractor safety scores. In the final program design, the whole site, not individual subcontractors, was the unit of analysis and recognition. This received high levels of acceptance from workers, who noted increased levels of site unity and team-building. This pilot program showed that construction workers value solidarity with others on site, demonstrating the importance of health and safety programs that engage all workers through a reliable and consistent communication infrastructure. PMID:25815741

  7. Long-range electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation.

    PubMed

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S

    2013-04-05

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.

  8. An RRM–ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion

    PubMed Central

    Collins, Katherine M.; Kainov, Yaroslav A.; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A.

    2017-01-01

    Abstract RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1–ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. PMID:28379442

  9. An RRM-ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion.

    PubMed

    Collins, Katherine M; Kainov, Yaroslav A; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A; Makeyev, Eugene V; Ramos, Andres

    2017-06-20

    RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1-ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Tissue-specific tumorigenesis – Context matters

    PubMed Central

    Schneider, Günter; Schmidt-Supprian, Marc; Rad, Roland; Saur, Dieter

    2018-01-01

    Preface How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research enabling molecular tumour profiling. The identification and validation of cancer drivers, which are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so called “basket or umbrella trials”, which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumourigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumourigenesis and mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly-guided cancer therapies in the future. PMID:28256574

  11. Retroviral proteases and their roles in virion maturation.

    PubMed

    Konvalinka, Jan; Kräusslich, Hans-Georg; Müller, Barbara

    2015-05-01

    Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Impaired recognition of happy facial expressions in bipolar disorder.

    PubMed

    Lawlor-Savage, Linette; Sponheim, Scott R; Goghari, Vina M

    2014-08-01

    The ability to accurately judge facial expressions is important in social interactions. Individuals with bipolar disorder have been found to be impaired in emotion recognition; however, the specifics of the impairment are unclear. This study investigated whether facial emotion recognition difficulties in bipolar disorder reflect general cognitive, or emotion-specific, impairments. Impairment in the recognition of particular emotions and the role of processing speed in facial emotion recognition were also investigated. Clinically stable bipolar patients (n = 17) and healthy controls (n = 50) judged five facial expressions in two presentation types, time-limited and self-paced. An age recognition condition was used as an experimental control. Bipolar patients' overall facial recognition ability was unimpaired. However, patients' specific ability to judge happy expressions under time constraints was impaired. Findings suggest a deficit in happy emotion recognition impacted by processing speed. Given the limited sample size, further investigation with a larger patient sample is warranted.

  13. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian; Tilloy, Antoine; Prentiss, Mara

    2013-07-01

    Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites.

  14. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA.

    PubMed

    Lam, Kwok-Ho; Sikorra, Stefan; Weisemann, Jasmin; Maatsch, Hannah; Perry, Kay; Rummel, Andreas; Binz, Thomas; Jin, Rongsheng

    2018-04-23

    The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2-recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate-recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.

  15. Evidence for Coordination and Redox Changes of Iron in Shocked Feldspar from Synchrotron MicroXANES

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Dyar, M. D.; Hoerz, F.; Johnson, J. R.

    2003-01-01

    Shock modification of feldspar has been documented and experimentally reproduced in many studies since the recognition of maskelynite in Shergotty. Experimentally shocked feldspar samples have been well studied using chemical and crystallographic techniques. The crystallographic, site-specific characterization of major and minor elements is less well documented. We present early x-ray absorption (XAS) spectral data for a suite of albitite samples that were experimentally shocked at pressures between 17 and 50 Gpa.

  16. Fluoride-selective optical sensor based on the dipyrrolyl-tetrathiafulvalene chromophore.

    PubMed

    Rivadehi, Shadi; Reid, Ellen F; Hogan, Conor F; Bhosale, Sheshanath V; Langford, Steven J

    2012-01-28

    A chemosensor bearing dipyrrolyl motifs as recognition sites and a tetrathiafulvalene redox tag has been evaluated as an optical and redox sensor for a series of anions (F(-), Cl(-), Br(-), HSO(4)(-), CH(3)COO(-), and H(2)PO(4)(-)) in DCM solution. The receptor shows specific optical signaling for fluoride but little electrochemical effect in solution. The solid-state performance of the sensor leads to measurable changes in water. Design implications towards better systems based on these results and other examples are discussed.

  17. Small RNA-mediated repair of UV-induced DNA lesions by the DNA DAMAGE-BINDING PROTEIN 2 and ARGONAUTE 1

    PubMed Central

    Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean

    2017-01-01

    As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872

  18. Capturing specific abilities as a window into human individuality: the example of face recognition.

    PubMed

    Wilmer, Jeremy B; Germine, Laura; Chabris, Christopher F; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken

    2012-01-01

    Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality.

  19. Fluorescence Cross-Correlation Spectroscopy Reveals Mechanistic Insights into the Effect of 2′-O-Methyl Modified siRNAs in Living Cells

    PubMed Central

    Ohrt, Thomas; Staroske, Wolfgang; Mütze, Jörg; Crell, Karin; Landthaler, Markus; Schwille, Petra

    2011-01-01

    RNA interference (RNAi) offers a powerful tool to specifically direct the degradation of complementary RNAs, and thus has great therapeutic potential for targeting diseases. Despite the reported preferences of RNAi, there is still a need for new techniques that will allow for a detailed mechanistic characterization of RNA-induced silencing complex (RISC) assembly and activity to further improve the biocompatibility of modified siRNAs. In contrast to previous reports, we investigated the effects of 2′-O-methyl (2′OMe) modifications introduced at specific positions within the siRNA at the early and late stages of RISC assembly, as well as their influence on target recognition and cleavage directly in living cells. We found that six to 10 2′OMe nucleotides on the 3′-end inhibit passenger-strand release as well as target-RNA cleavage without changing the affinity, strand asymmetry, or target recognition. 2′OMe modifications introduced at the 5′-end reduced activated RISC stability, whereas incorporations at the cleavage site showed only minor effects on passenger-strand release when present on the passenger strand. Our new fluorescence cross-correlation spectroscopy assays resolve different steps and stages of RISC assembly and target recognition with heretofore unresolved detail in living cells, which is needed to develop therapeutic siRNAs with optimized in vivo properties. PMID:21689532

  20. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease*

    PubMed Central

    Galiullina, Raisa A.; Kasperkiewicz, Paulina; Chichkova, Nina V.; Szalek, Aleksandra; Serebryakova, Marina V.; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B.

    2015-01-01

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. PMID:26283788

  1. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.

    2015-02-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less

  2. Interspecific aggression and character displacement of competitor recognition in Hetaerina damselflies.

    PubMed

    Anderson, Christopher N; Grether, Gregory F

    2010-02-22

    In zones of sympatry between closely related species, species recognition errors in a competitive context can cause character displacement in agonistic signals and competitor recognition functions, just as species recognition errors in a mating context can cause character displacement in mating signals and mate recognition. These two processes are difficult to distinguish because the same traits can serve as both agonistic and mating signals. One solution is to test for sympatric shifts in recognition functions. We studied competitor recognition in Hetaerina damselflies by challenging territory holders with live tethered conspecific and heterospecific intruders. Heterospecific intruders elicited less aggression than conspecific intruders in species pairs with dissimilar wing coloration (H. occisa/H. titia, H. americana/H. titia) but not in species pairs with similar wing coloration (H. occisa/H. cruentata, H. americana/H. cruentata). Natural variation in the area of black wing pigmentation on H. titia intruders correlated negatively with heterospecific aggression. To directly examine the role of wing coloration, we blackened the wings of H. occisa or H. americana intruders and measured responses of conspecific territory holders. This treatment reduced territorial aggression at multiple sites where H. titia is present, but not at allopatric sites. These results provide strong evidence for agonistic character displacement.

  3. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.

    PubMed

    Jiang, F; Kumar, R A; Jones, R A; Patel, D J

    1996-07-11

    The catalytic properties of RNA and its well known role in gene expression and regulation are the consequence of its unique solution structures. Identification of the structural determinants of ligand recognition by RNA molecules is of fundamental importance for understanding the biological functions of RNA, as well as for the rational design of RNA Sequences with specific catalytic activities. Towards this latter end, Szostak et al. used in vitro selection techniques to isolate RNA sequences ('aptamers') containing a high-affinity binding site for ATP, the universal currency of cellular energy, and then used this motif to engineer ribozymes with polynucleotide kinase activity. Here we present the solution structure, as determined by multidimensional NMR spectroscopy and molecular dynamics calculations, of both uniformly and specifically 13C-, 15N-labelled 40-mer RNA containing the ATP-binding motif complexed with AMP. The aptamer adopts an L-shaped structure with two nearly orthogonal stems, each capped proximally by a G x G mismatch pair, binding the AMP ligand at their junction in a GNRA-like motif.

  4. PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles

    PubMed Central

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2016-01-01

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging. PMID:23855734

  5. Training a Constitutional Dynamic Network for Effector Recognition: Storage, Recall, and Erasing of Information.

    PubMed

    Holub, Jan; Vantomme, Ghislaine; Lehn, Jean-Marie

    2016-09-14

    Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes.

  6. Dual interaction of agmatine with the rat α2D-adrenoceptor: competitive antagonism and allosteric activation

    PubMed Central

    Molderings, G J; Menzel, S; Kathmann, M; Schlicker, E; Göthert, M

    2000-01-01

    In segments of rat vena cava preincubated with [3H]-noradrenaline and superfused with physiological salt solution, the influence of agmatine on the electrically evoked [3H]-noradrenaline release, the EP3 prostaglandin receptor-mediated and the α2D-adrenoceptor-mediated inhibition of evoked [3H]-noradrenaline release was investigated. Agmatine (0.1–10 μM) by itself was without effect on evoked [3H]-noradrenaline release. In the presence of 10 μM agmatine, the prostaglandin E2(PGE2)-induced EP3-receptor-mediated inhibition of [3H]-noradrenaline release was not modified, whereas the α2D-adrenoceptor-mediated inhibition of [3H]-noradrenaline release induced by noradrenaline, moxonidine or clonidine was more pronounced than in the absence of agmatine. However, 1 mM agmatine antagonized the moxonidine-induced inhibition of [3H]-noradrenaline release. Agmatine concentration-dependently inhibited the binding of [3H]-clonidine and [3H]-rauwolscine to rat brain cortex membranes (Ki values 6 μM and 12 μM, respectively). In addition, 30 and 100 μM agmatine increased the rate of association and decreased the rate of dissociation of [3H]-clonidine resulting in an increased affinity of the radioligand for the α2D-adrenoceptors. [14C]-agmatine labelled specific binding sites on rat brain cortex membranes. In competition experiments. [14C]-agmatine was inhibited from binding to its specific recognition sites by unlabelled agmatine, but not by rauwolscine and moxonidine. In conclusion, the present data indicate that agmatine both acts as an antagonist at the ligand recognition site of the α2D-adrenoceptor and enhances the effects of α2-adrenoceptor agonists probably by binding to an allosteric binding site of the α2D-adrenoceptor which seems to be labelled by [14C]-agmatine. PMID:10928978

  7. XX/XY Sex Chromosomes in the South American Dwarf Gecko (Gonatodes humeralis).

    PubMed

    Gamble, Tony; McKenna, Erin; Meyer, Wyatt; Nielsen, Stuart V; Pinto, Brendan J; Scantlebury, Daniel P; Higham, Timothy E

    2018-05-11

    Sex-specific genetic markers identified using restriction site-associated DNA sequencing, or RADseq, permits the recognition of a species' sex chromosome system in cases where standard cytogenetic methods fail. Thus, species with male-specific RAD markers have an XX/XY sex chromosome system (male heterogamety) while species with female-specific RAD markers have a ZZ/ZW sex chromosome (female heterogamety). Here, we use RADseq data from 5 male and 5 female South American dwarf geckos (Gonatodes humeralis) to identify an XX/XY sex chromosome system. This is the first confidently known sex chromosome system in a Gonatodes species. We used a low-coverage de novo G. humeralis genome assembly to design PCR primers to validate the male-specificity of a subset of the sex-specific RADseq markers and describe how even modest genome assemblies can facilitate the design of sex-specific PCR primers in species with diverse sex chromosome systems.

  8. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho.

    PubMed

    Shashni, Rajesh; Qayyum, M Zuhaib; Vishalini, V; Dey, Debashish; Sen, Ranjan

    2014-09-01

    The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Thermodynamic balance of perylene self-assembly on Ag(110)

    NASA Astrophysics Data System (ADS)

    Bobrov, Kirill; Kalashnyk, Nataliya; Guillemot, Laurent

    2016-10-01

    We present a room temperature STM study of perylene adsorption on Ag(110) at the monolayer coverage regime. We found that structure and symmetry of the perylene monolayer are settled by thermodynamic balance of the three factors: (i) the ability of perylene molecules to recognize specific adsorption sites on the (110) lattice, (ii) the intermolecular interaction, and (iii) the accommodation of thermal motion of the molecules. The moderate strength of the site recognition and the intermolecular interaction, of the same order of magnitude as kT ˜ 25 meV, represents a key feature of the thermodynamic balance. It bestows to this system the unique quality to form the quasi-liquid monolayer of epitaxial as well as self-assembling character. The perylene monolayer accommodates the short-range motion of the molecules instead of quenching it. It precludes the formation of possible solid nuclei and maintains common registry of the included molecules. The surface registry of the quasi-liquid phase is provided by locking of a structure-related fraction of the perylene molecules into specific adsorption sites of the (110) lattice favorable in terms of intermolecular interaction.

  10. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions.

    PubMed

    Shriver, Zachary; Raman, Rahul; Viswanathan, Karthik; Sasisekharan, Ram

    2009-08-28

    Protein-glycan interactions are important regulators of a variety of biological processes, ranging from immune recognition to anticoagulation. An important area of active research is directed toward understanding the role of host cell surface glycans as recognition sites for pathogen protein receptors. Recognition of cell surface glycans is a widely employed strategy for a variety of pathogens, including bacteria, parasites, and viruses. We present here a representative example of such an interaction: the binding of influenza A hemagglutinin (HA) to specific sialylated glycans on the cell surface of human upper airway epithelial cells, which initiates the infection cycle. We detail a generalizable strategy to understand the nature of protein-glycan interactions both structurally and biochemically, using HA as a model system. This strategy combines a top-down approach using available structural information to define important contacts between glycans and HA, with a bottom-up approach using data-mining and informatics approaches to identify the common motifs that distinguish glycan binders from nonbinders. By probing protein-glycan interactions simultaneously through top-down and bottom-up approaches, we can scientifically validate a series of observations. This in turn provides additional confidence and surmounts known challenges in the study of protein-glycan interactions, such as accounting for multivalency, and thus truly defines concepts such as specificity, affinity, and avidity. With the advent of new technologies for glycomics-including glycan arrays, data-mining solutions, and robust algorithms to model protein-glycan interactions-we anticipate that such combination approaches will become tractable for a wide variety of protein-glycan interactions.

  11. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments. Electronic supplementary information (ESI) available: Experimental details, peptide structures, molecular weights, and additional data. See DOI: 10.1039/c5nr03862f

  12. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human melanoma cells due to the presence of alpha-MSH-specific receptors. This mechanism appeared to be both peptide- and cell-type-specific.

  13. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  14. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes

    PubMed Central

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D.

    2015-01-01

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. PMID:26538601

  15. Understanding the mechanisms of protein-DNA interactions

    NASA Astrophysics Data System (ADS)

    Lavery, Richard

    2004-03-01

    Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.

  16. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

    PubMed

    Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A

    2005-08-05

    The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

  17. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice.

    PubMed

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan

    2009-06-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.

  18. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    PubMed Central

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175

  19. Recognition of RNA Editing Sites Is Directed by Unique Proteins in Chloroplasts: Biochemical Identification of cis-Acting Elements and trans-Acting Factors Involved in RNA Editing in Tobacco and Pea Chloroplasts

    PubMed Central

    Miyamoto, Tetsuya; Obokata, Junichi; Sugiura, Masahiro

    2002-01-01

    RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants. PMID:12215530

  20. A novel substance P binding site in bovine adrenal medulla.

    PubMed

    Geraghty, D P; Livett, B G; Rogerson, F M; Burcher, E

    1990-05-04

    Radioligand binding techniques were used to characterize the substance P (SP) binding site on membranes prepared from bovine adrenal medullae. 125I-labelled Bolton-Hunter substance P (BHSP), which recognises the C-terminally directed, SP-preferring NK1 receptor, showed no specific binding. In contrast, binding of [3H]SP was saturable (at 6 nM) and reversible, with an equilibrium dissociation constant (Kd) 1.46 +/- 0.73 nM, Bmax 0.73 +/- 0.06 pmol/g wet weight and Hill coefficient 0.98 +/- 0.01. Specific binding of [3H]SP was displaced by SP greater than neurokinin A (NKA) greater than SP(3-11) approximately SP(1-9) greater than SP(1-7) approximately SP(1-4) approximately SP(1-6), with neurokinin B (NKB) and SP(1-3) very weak competitors and SP(5-11), SP(7-11) and SP(9-11) causing negligible inhibition (up to 10 microM). This potency order is quite distinct from that seen with binding to an NK1 site, a conclusion confirmed by the lack of BHSP binding. It appears that Lys3 and/or Pro4 are critical for binding, suggesting an anionic binding site. These data suggest the existence of an unusual binding site which may represent a novel SP receptor. This site appears to require the entire sequence of the SP molecule for full recognition.

  1. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  2. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    PubMed

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  3. Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity

    PubMed Central

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D.

    2012-01-01

    DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’). PMID:22523084

  4. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion.

    PubMed

    Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind

    2017-06-13

    Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.

  5. The Importance of Being Tyrosine: Lessons in Molecular Recognition from Minimalist Synthetic Binding Proteins

    PubMed Central

    Koide, Shohei; Sidhu, Sachdev S.

    2010-01-01

    Summary Combinatorial libraries built with severely restricted chemical diversity have yielded highly functional synthetic binding proteins. Structural analyses of these minimalist binding sites have revealed the dominant role of large tyrosine residues for mediating molecular contacts and of small serine/glycine residues for providing space and flexibility. The concept of using limited residue types to construct optimized binding proteins mirrors findings in the field of small molecule drug development, where it has been proposed that most drugs are built from a limited set of side chains presented by diverse frameworks. The physicochemical properties of tyrosine make it the amino acid that is most effective for mediating molecular recognition, and protein engineers have taken advantage of these characteristics to build tyrosine-rich protein binding sites that outperform natural proteins in terms of affinity and specificity. Knowledge from preceding studies can be used to improve current designs, and thus, synthetic protein libraries will continue to evolve and improve. In the near future, it seems likely that synthetic binding proteins will supersede natural antibodies for most purposes, and moreover, synthetic proteins will enable many new applications beyond the scope of natural proteins. PMID:19298050

  6. Development of a safety communication and recognition program for construction.

    PubMed

    Sparer, Emily H; Herrick, Robert F; Dennerlein, Jack T

    2015-05-01

    Leading-indicator-based (e.g., hazard recognition) incentive programs provide an alternative to controversial lagging-indicator-based (e.g., injury rates) programs. We designed a leading-indicator-based safety communication and recognition program that incentivized safe working conditions. The program was piloted for two months on a commercial construction worksite and then redesigned using qualitative interview and focus group data from management and workers. We then ran the redesigned program for six months on the same worksite. Foremen received detailed weekly feedback from safety inspections, and posters displayed worksite and subcontractor safety scores. In the final program design, the whole site, not individual subcontractors, was the unit of analysis and recognition. This received high levels of acceptance from workers, who noted increased levels of site unity and team-building. This pilot program showed that construction workers value solidarity with others on site, demonstrating the importance of health and safety programs that engage all workers through a reliable and consistent communication infrastructure. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Molecular recognition principles and stationary-phase characteristics of topoisomer-selective chemoaffinity materials for chromatographic separation of circular plasmid DNA topoisomers.

    PubMed

    Mahut, Marek; Lindner, Wolfgang; Lämmerhofer, Michael

    2012-01-18

    We recently discovered the molecular recognition capability of a quinine carbamate ligand attached to silica as a powerful chemoaffinity material for the chromatographic separation of circular plasmid topoisomers of different linking numbers. In this paper we develop structure-selectivity relationship studies to figure out the essential structural features for topoisomer recognition. By varying different moieties of the original cinchonan-derived selector, it was shown that intercalation by the quinoline moiety of the ligand as assumed initially as the working hypothesis is not an essential feature for topoisomer recognition during chromatography. We found that the key elements for topoisomer selectivity are the presence of a rigid weak anion-exchange site and a H-donor site separated from each other in a defined distance by a 4-atom spacer. Additionally, incorporation of the weak anion-exchange site into a cyclic ring structure provides greater rigidity of the ligand molecule and turned out to be advantageous, if not mandatory, for (close to) baseline separation. © 2011 American Chemical Society

  8. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  9. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome.

    PubMed

    Magro, Massimiliano; Zaccarin, Mattia; Miotto, Giovanni; Da Dalt, Laura; Baratella, Davide; Fariselli, Piero; Gabai, Gianfranco; Vianello, Fabio

    2018-05-01

    Surface active maghemite nanoparticles (SAMNs) are able to recognize and bind selected proteins in complex biological systems, forming a hard protein corona. Upon a 5-min incubation in bovine whey from mastitis-affected cows, a significant enrichment of a single peptide characterized by a molecular weight at 4338 Da originated from the proteolysis of a S1 -casein was observed. Notably, among the large number of macromolecules in bovine milk, the detection of this specific peptide can hardly be accomplished by conventional analytical techniques. The selective formation of a stable binding between the peptide and SAMNs is due to the stability gained by adsorption-induced surface restructuration of the nanomaterial. We attributed the surface recognition properties of SAMNs to the chelation of iron(III) sites on their surface by sterically compatible carboxylic groups of the peptide. The specific peptide recognition by SAMNs allows its easy determination by MALDI-TOF mass spectrometry, and a threshold value of its normalized peak intensity was identified by a logistic regression approach and suggested for the rapid diagnosis of the pathology. Thus, the present report proposes the analysis of hard protein corona on nanomaterials as a perspective for developing fast analytical procedures for the diagnosis of mastitis in cows. Moreover, the huge simplification of proteome complexity by exploiting the selectivity derived by the peculiar SAMN surface topography, due to the iron(III) distribution pattern, could be of general interest, leading to competitive applications in food science and in biomedicine, allowing the rapid determination of hidden biomarkers by a cutting edge diagnostic strategy. Graphical abstract The topography of iron(III) sites on surface active maghemite nanoparticles (SAMNs) allows the recognition of sterically compatible carboxylic groups on proteins and peptides in complex biological matrixes. The analysis of hard protein corona on SAMNs led to the determination of a biomarker for cow mastitis in milk by MALDI-TOF mass spectrometry.

  10. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    PubMed

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  11. Capturing specific abilities as a window into human individuality: The example of face recognition

    PubMed Central

    Wilmer, Jeremy B.; Germine, Laura; Chabris, Christopher F.; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken

    2013-01-01

    Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality. PMID:23428079

  12. Resolution of Site-Specific Conformational Heterogeneity in Proline-Rich Molecular Recognition by Src Homology 3 Domains.

    PubMed

    Horness, Rachel E; Basom, Edward J; Mayer, John P; Thielges, Megan C

    2016-02-03

    Conformational heterogeneity and dynamics are increasingly evoked in models of protein molecular recognition but are challenging to experimentally characterize. Here we combine the inherent temporal resolution of infrared (IR) spectroscopy with the spatial resolution afforded by selective incorporation of carbon-deuterium (C-D) bonds, which provide frequency-resolved absorptions within a protein IR spectrum, to characterize the molecular recognition of the Src homology 3 (SH3) domain of the yeast protein Sho1 with its cognate proline-rich (PR) sequence of Pbs2. The IR absorptions of C-D bonds introduced at residues along a peptide of the Pbs2 PR sequence report on the changes in the local environments upon binding to the SH3 domain. Interestingly, upon forming the complex the IR spectra of the peptides labeled with C-D bonds at either of the two conserved prolines of the PXXP consensus recognition sequence show more absorptions than there are C-D bonds, providing evidence for the population of multiple states. In contrast, the NMR spectra of the peptides labeled with (13)C at the same residues show only single resonances, indicating rapid interconversion on the NMR time scale. Thus, the data suggest that the SH3 domain recognizes its cognate peptide with a component of induced fit molecular recognition involving the adoption of multiples states, which have previously gone undetected due to interconversion between the populated states that is too fast to resolve using conventional methods.

  13. The “gating” residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition

    PubMed Central

    Milczek, Erika M.; Binda, Claudia; Rovida, Stefano; Mattevi, Andrea; Edmondson, Dale E.

    2011-01-01

    Summary The major structural difference between human monoamine oxidases A (MAO A) and B (MAO B) is that MAO A has a monopartite substrate cavity of ~550 Å3 volume and MAO B contains a dipartite cavity structure with volumes of ~290 Å3 (entrance cavity) and ~400 Å3 (substrate cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO B. To probe the function of these gating residues, Ile199Ala and Ile199Ala Tyr326Ala mutant forms of MAO B were investigated. Structural data on the Ile199Ala MAO B mutant show no alterations in active site geometries compared to WT enzyme while the Ile199Ala-Tyr326Ala MAO B mutant exhibits alterations in residues 100–103 which are part of the loop gating the entrance to the active site. Both mutant enzymes exhibit catalytic properties with increased amine KM but unaltered kcat values. The altered KM values on mutation are attributed to the influence of the cavity structure in the binding and subsequent deprotonation of the amine substrate. Both mutant enzymes exhibit weaker binding affinities relative to WT enzyme for small reversible inhibitors. Ile199Ala MAO B exhibits an increase in binding affinity for reversible MAO B specific inhibitors which bridge both cavities. The Ile199Ala-Tyr326Ala double mutant exhibits inhibitor binding properties more similar to those of MAO A than to MAO B. These results demonstrate the bipartite cavity structure in MAO B plays an important role in substrate and inhibitor recognition to distinguish its specificities from those of MAO A and provides insights into specific reversible inhibitor design for these membrane-bound enzymes. PMID:21978362

  14. The immunoglobulin-like genetic predetermination of the brain: the protocadherins, blueprint of the neuronal network

    NASA Astrophysics Data System (ADS)

    Hilschmann, N.; Barnikol, H. U.; Barnikol-Watanabe, S.; Götz, H.; Kratzin, H.; Thinnes, F. P.

    2001-01-01

    The morphogenesis of the brain is governed by synaptogenesis. Synaptogenesis in turn is determined by cell adhesion molecules, which bridge the synaptic cleft and, by homophilic contact, decide which neurons are connected and which are not. Because of their enormous diversification in specificities, protocadherins (pcdhα, pcdhβ, pcdhγ), a new class of cadherins, play a decisive role. Surprisingly, the genetic control of the protocadherins is very similar to that of the immunoglobulins. There are three sets of variable (V) genes followed by a corresponding constant (C) gene. Applying the rules of the immunoglobulin genes to the protocadherin genes leads, despite of this similarity, to quite different results in the central nervous system. The lymphocyte expresses one single receptor molecule specifically directed against an outside stimulus. In contrast, there are three specific recognition sites in each neuron, each expressing a different protocadherin. In this way, 4,950 different neurons arising from one stem cell form a neuronal network, in which homophilic contacts can be formed in 52 layers, permitting an enormous number of different connections and restraints between neurons. This network is one module of the central computer of the brain. Since the V-genes are generated during evolution and V-gene translocation during embryogenesis, outside stimuli have no influence on this network. The network is an inborn property of the protocadherin genes. Every circuit produced, as well as learning and memory, has to be based on this genetically predetermined network. This network is so universal that it can cope with everything, even the unexpected. In this respect the neuronal network resembles the recognition sites of the immunoglobulins.

  15. Novel insights into structure–function mechanism and tissue-specific expression profiling of full-length dxr gene from Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Dehury, Budheswar; Phukon, Munmi; Modi, Mahendra Kumar; Sen, Priyabrata

    2015-01-01

    The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) into MEP. The sheath and leaf of citronella (Cymbopogon winterianus) accumulates large amount of terpenes and sesquiterpenes with proven medicinal value and economic uses. Thus, sequencing of full length dxr gene and its characterization seems to be a valuable resource in metabolic engineering to alter the flux of isoprenoid active ingredients in plants. In this study, full length DXR from citronella was characterized through in silico and tissue-specific expression studies to explain its structure–function mechanism, mode of cofactor recognition and differential expression. The modelled DXR has a three-domain architecture and its active site comprised of a cofactor (NADPH) binding pocket and the substrate-binding pocket. Molecular dynamics simulation studies indicated that DXR model retained most of its secondary structure during 10 ns simulation in aqueous solution. The modelled DXR superimposes well with its closest structural homolog but subtle variations in the charge distribution over the cofactor recognition site were noticed. Molecular docking study revealed critical residues aiding tight anchoring NADPH within the active pocket of DXR. Tissue-specific differential expression analysis using semi-quantitative RT-PCR and qRT-PCR in various tissues of citronella plant revealed distinct differential expression of DXR. To our knowledge, this is the first ever report on DXR from the important medicinal plant citronella and further characterization of this gene will open up better avenues for metabolic engineering of secondary metabolite pathway genes from medicinal plants in the near future. PMID:25941629

  16. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface.

    PubMed

    Moody, Colleen L; Tretyachenko-Ladokhina, Vira; Laue, Thomas M; Senear, Donald F; Cocco, Melanie J

    2011-08-09

    The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties. © 2011 American Chemical Society

  17. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  18. Mechanism of pathogen recognition by human dectin-2.

    PubMed

    Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J; Drickamer, Kurt; Weis, William I; Taylor, Maureen E

    2017-08-11

    Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1-2 or α1-4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1-2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man 9 GlcNAc 2 oligosaccharide exhibited interaction with Manα1-2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca 2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1-2Man structures, whereas dectin-2 can bind Manα1-2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1-2Man disaccharide unit. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  20. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  1. Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation*

    PubMed Central

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.

    2013-01-01

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245

  2. Restoring pollen fertility in transgenic male-sterile eggplant by Cre/loxp-mediated site-specific recombination system.

    PubMed

    Cao, Bihao; Huang, Zhiyin; Chen, Guoju; Lei, Jianjun

    2010-04-01

    This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line ('E-38') was transformed with Cre gene and the inbred/pure line ('E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T(0) -plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T (0) -plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.

  3. A Developmental Study of Semantic Elaboration and Interpretation in Recognition Memory.

    ERIC Educational Resources Information Center

    Perlmutter, Marion

    1980-01-01

    Two experiments examined semantic elaboration and interpretation in recognition memory of 4-year-olds and college students. Subjects were presented pictures of color-specific and non-color-specific items, and then tested for their recognition of the chroma of the items. (Author/MP)

  4. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced, multipoint binding of ubiquitin chains. The structures of the T1 site in its free state and complexed with monoubiquitin or K48-linked diubiquitin were solved, revealing that three neighboring outer helices from the T1 toroid engage two ubiquitins. This binding mode leads to a preference for certain ubiquitin chain types, especially K6- and K48-linked chains, in a distinct configuration that can position substrates close to the entry port of the proteasome. The fate of proteasome-docked ubiquitin conjugates is determined by a competition between deubiquitination and substrate degradation. We find that proximal to the T1 site within the Rpn1 toroid is a second UBL-binding site, T2, that does not assist in ubiquitin chain recognition, but rather in chain disassembly, by binding to the UBL domain of deubiquitinating enzyme Ubp6. Importantly, the UBL interactors at T1 and T2 are distinct, assigning substrate localization to T1 and substrate deubiquitination to T2. CONCLUSION A ligand-binding hotspot was identified in the Rpn1 toroid, consisting of two adjacent receptor sites, T1 and T2. The Rpn1 toroid represents a novel class of binding domains for ubiquitin and UBL proteins. This study thus defines a novel two-site recognition domain intrinsic to the proteasome that uses homologous ubiquitin/UBL-class ligands to assemble substrates, substrate shuttling factors, and a deubiquitinating enzyme in close proximity. A ligand-binding hotspot in the proteasome for assembling substrates and cofactors Schematic (top) and model structure (bottom, left) mapping the UBL-binding Rpn1 T1 (indigo) and T2 (orange) sites. (Bottom, right) Enlarged region of the proteasome to illustrate the Rpn1 T1 and T2 sites bound to a ubiquitin chain (yellow) and deubiquitinating enzyme Ubp6 (green), respectively. PDB 4CR2 and 2B9R were used for this figure. Hundreds of pathways for degradation converge at ubiquitin recognition by proteasome. Here we found that the five known proteasomal ubiquitin receptors are collectively nonessential for ubiquitin recognition, and identified a sixth receptor, Rpn1. A site (T1) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like (UBL) domains of substrate shuttling factors. T1 structures with monoubiquitin or K48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for K48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site (T2) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus a two-site recognition domain intrinsic to the proteasome uses homologous ubiquitin/UBL-class ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme. PMID:26912900

  5. Identification of an Electrostatic Ruler Motif for Sequence-Specific Binding of Collagenase to Collagen.

    PubMed

    Subramanian, Sundar Raman; Singam, Ettayapuram Ramaprasad Azhagiya; Berinski, Michael; Subramanian, Venkatesan; Wade, Rebecca C

    2016-08-25

    Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.

  6. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity.

    PubMed

    Kouno, Takahide; Silvas, Tania V; Hilbert, Brendan J; Shandilya, Shivender M D; Bohn, Markus F; Kelch, Brian A; Royer, William E; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A

    2017-04-28

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.

  7. Role of IUCN WCPA Geoheritage Specialist Group for geoheritage conservation and recognition of World Heritage Sites, Global Geoparks and other protected areas

    NASA Astrophysics Data System (ADS)

    Woo, Kyung Sik

    2017-04-01

    Geoheritage comprises those elements of the Earth's geodiversity that are considered to have significant scientific, educational, cultural/aesthetic, ecological or ecosystem service values. IUCN Resolutions at Barcelona (2008), at Jeju (2012) and at Hawaii (2016) clearly recognised that geodiversity is part of nature and geoheritage is part of natural heritage. Formal recognition of the geodiversity component of protected areas was made in 2008 in the revised 'IUCN Guidelines for Applying Protected Area Management Categories'. All 6 of the IUCN Protected Area Management Categories are applicable to the protection of geosites and the wider landscape values of geodiversity. Recognising the wider values of geodiversity therefore provides opportunities to integrate geoheritage much more closely in protected area networks, as the approach advocated by the Geoheritage Specialist Group (GSG) of the IUCN World Commission on Protected Areas. Although geoparks are not a protected area category as such and only includes some parts of protected areas as geosites, the UNESCO Global Geoparks Network also provides an international framework to conserve and enhance geoheritage values as UNESCO World Heritage sites has provided. GSG will pursue significant roles for geoheritage recognition and conservation as follows: 1) Establish the Best Practice Guideline of geoheritage sites for protected areas in the world, 2) Revise the Thematic Study on volcanic sites of Outstanding Universal Values and International Significance, 3) Revise Criterion (viii) for WH recognition, and 4) Initiate 'Key Geoheritage Site' concept in the future.

  8. Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valley, Cary T.; Porter, Douglas F.; Qiu, Chen

    2012-06-28

    mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less

  9. Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains

    PubMed Central

    Cronin, Thomas C; DiNitto, Jonathan P; Czech, Michael P; Lambright, David G

    2004-01-01

    The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the β1/β2 loop exhibit dual specificity for PtdIns(3,4,5)P3 and PtdIns(4,5)P2. The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Loss of contacts with the β1/β2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P3 affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P2 is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the β1/β2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition. PMID:15359279

  10. DNA Recognition by a σ 54 Transcriptional Activator from Aquifex aeolicus

    DOE PAGES

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; ...

    2014-08-23

    Transcription initiation by bacterial σ 54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ 54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsiblemore » for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ 54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.« less

  11. Conformation-dependent recognition of a protein by T-lymphocytes: apomyoglobin-specific T-cell clone recognizes conformational changes between apomyoglobin and myoglobin

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    A T-cell clone specific to apomyoglobin was generated. It was prepared from a T-cell culture obtained by in vitro driving of lymph node cells with apomyoglobin from SJL mice that have been primed in vivo with apomyoglobin. In proliferative assays, the T-cell clone responded to apomyoglobin but did not recognize native myoglobin or any of the synthetic peptides corresponding to the six T sites of myoglobin. The demonstration that a T-cell clone can be isolated, whose specificity is directed entirely to apomyoglobin and not to its counterpart myoglobin, with an identical amino acid composition, indicates the importance of the three-dimensional structure in the presentation of the protein to T cells.

  12. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  13. Homing endonucleases: from basics to therapeutic applications.

    PubMed

    Marcaida, Maria J; Muñoz, Inés G; Blanco, Francisco J; Prieto, Jesús; Montoya, Guillermo

    2010-03-01

    Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.

  14. The Vanderbilt Expertise Test Reveals Domain-General and Domain-Specific Sex Effects in Object Recognition

    PubMed Central

    McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Gauthier, Isabel

    2012-01-01

    Individual differences in face recognition are often contrasted with differences in object recognition using a single object category. Likewise, individual differences in perceptual expertise for a given object domain have typically been measured relative to only a single category baseline. In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET), which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight different object categories. Principal component analysis reveals that the underlying structure of the VET can be largely explained by two independent factors, which demonstrate good reliability and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show how the VET can be used to separate domain-specific from domain-general contributions to a standard measure of perceptual expertise. While domain-specific contributions are found for car matching for both men and women and for plane matching in men, women in this sample appear to use more domain-general strategies to match planes. In Experiment 3, we use the VET to demonstrate that holistic processing of faces predicts face recognition independently of general object recognition ability, which has a sex-specific contribution to face recognition. Overall, the results suggest that the VET is a reliable and valid measure of object recognition abilities and can measure both domain-general skills and domain-specific expertise, which were both found to depend on the sex of observers. PMID:22877929

  15. Novel DNA packaging recognition in the unusual bacteriophage N15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feiss, Michael; Geyer, Henriette, E-mail: henriettegeyer@gmail.com; Division of Viral Infections, Robert Koch Institute, Berlin

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15more » plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.« less

  16. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC

    NASA Astrophysics Data System (ADS)

    Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; Park, Beomseok; Shim, Yoonjung; Kim, Youngchang; Liu, Lili; van Houten, Bennett; He, Chuan; Ansari, Anjum; Min, Jung-Hyun

    2015-01-01

    The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.

  17. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC

    DOE PAGES

    Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; ...

    2015-01-06

    The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivitymore » arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Lastly, kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.« less

  18. Design and structure of stapled peptides binding to estrogen receptors.

    PubMed

    Phillips, Chris; Roberts, Lee R; Schade, Markus; Bazin, Richard; Bent, Andrew; Davies, Nichola L; Moore, Rob; Pannifer, Andrew D; Pickford, Andrew R; Prior, Stephen H; Read, Christopher M; Scott, Andrew; Brown, David G; Xu, Bin; Irving, Stephen L

    2011-06-29

    Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.

  19. The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

    PubMed

    Postle, Bradley R; Awh, Edward; Serences, John T; Sutterer, David W; D'Esposito, Mark

    2013-01-01

    The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus.

  20. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition.

    PubMed

    Dumais, Kelly M; Alonso, Andrea G; Immormino, Marisa A; Bredewold, Remco; Veenema, Alexa H

    2016-02-01

    Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition

    PubMed Central

    Dumais, Kelly M.; Alonso, Andrea G.; Immormino, Marisa A.; Bredewold, Remco; Veenema, Alexa H.

    2015-01-01

    Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition. PMID:26630388

  2. Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants.

    PubMed

    Nehring, Volker; Dani, Francesca R; Calamai, Luca; Turillazzi, Stefano; Bohn, Horst; Klass, Klaus-Dieter; d'Ettorre, Patrizia

    2016-08-05

    Cockroaches of the genus Attaphila regularly occur in leaf-cutting ant colonies. The ants farm a fungus that the cockroaches also appear to feed on. Cockroaches disperse between colonies horizontally (via foraging trails) and vertically (attached to queens on their mating flights). We analysed the chemical strategies used by the cockroaches to integrate into colonies of Atta colombica and Acromyrmex octospinosus. Analysing cockroaches from nests of two host species further allowed us to test the hypothesis that nestmate recognition is based on an asymmetric mechanism. Specifically, we test the U-present nestmate recognition model, which assumes that detection of undesirable cues (non-nestmate specific substances) leads to strong rejection of the cue-bearers, while absence of desirable cues (nestmate-specific substances) does not necessarily trigger aggression. We found that nests of Atta and Acromyrmex contained cockroaches of two different and not yet described Attaphila species. The cockroaches share the cuticular chemical substances of their specific host species and copy their host nest's colony-specific cuticular profile. Indeed, the cockroaches are accepted by nestmate but attacked by non-nestmate ant workers. Cockroaches from Acromyrmex colonies bear a lower concentration of cuticular substances and are less likely to be attacked by non-nestmate ants than cockroaches from Atta colonies. Nest-specific recognition of Attaphila cockroaches by host workers in combination with nest-specific cuticular chemical profiles suggest that the cockroaches mimic their host's recognition labels, either by synthesizing nest-specific substances or by substance transfer from ants. Our finding that the cockroach species with lower concentration of cuticular substances receives less aggression by both host species fully supports the U-present nestmate recognition model. Leaf-cutting ant nestmate recognition is thus asymmetric, responding more strongly to differences than to similarities.

  3. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE PAGES

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; ...

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  4. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  5. Latency of modality-specific reactivation of auditory and visual information during episodic memory retrieval.

    PubMed

    Ueno, Daisuke; Masumoto, Kouhei; Sutani, Kouichi; Iwaki, Sunao

    2015-04-15

    This study used magnetoencephalography (MEG) to examine the latency of modality-specific reactivation in the visual and auditory cortices during a recognition task to determine the effects of reactivation on episodic memory retrieval. Nine right-handed healthy young adults participated in the experiment. The experiment consisted of a word-encoding phase and two recognition phases. Three encoding conditions were included: encoding words alone (word-only) and encoding words presented with either related pictures (visual) or related sounds (auditory). The recognition task was conducted in the MEG scanner 15 min after the completion of the encoding phase. After the recognition test, a source-recognition task was given, in which participants were required to choose whether each recognition word was not presented or was presented with which information during the encoding phase. Word recognition in the auditory condition was higher than that in the word-only condition. Confidence-of-recognition scores (d') and the source-recognition test showed superior performance in both the visual and the auditory conditions compared with the word-only condition. An equivalent current dipoles analysis of MEG data indicated that higher equivalent current dipole amplitudes in the right fusiform gyrus occurred during the visual condition and in the superior temporal auditory cortices during the auditory condition, both 450-550 ms after onset of the recognition stimuli. Results suggest that reactivation of visual and auditory brain regions during recognition binds language with modality-specific information and that reactivation enhances confidence in one's recognition performance.

  6. Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae▿ ‡

    PubMed Central

    Czurda, Stefan; Jechlinger, Wolfgang; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2010-01-01

    Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery. PMID:20562305

  7. Evolution and variability of Solanum RanGAP2, a cofactor in the incompatible interaction between the resistance protein GPA2 and the Globodera pallida effector Gp-RBP-1.

    PubMed

    Carpentier, Jean; Grenier, Eric; Esquibet, Magalie; Hamel, Louis-Philippe; Moffett, Peter; Manzanares-Dauleux, Maria J; Kerlan, Marie-Claire

    2013-04-19

    The Ran GTPase Activating Protein 2 (RanGAP2) was first described as a regulator of mitosis and nucleocytoplasmic trafficking. It was then found to interact with the Coiled-Coil domain of the Rx and GPA2 resistance proteins, which confer resistance to Potato Virus X (PVX) and potato cyst nematode Globodera pallida, respectively. RanGAP2 is thought to mediate recognition of the avirulence protein GP-RBP-1 by GPA2. However, the Gpa2-induced hypersensitive response appears to be relatively weak and Gpa2 is limited in terms of spectrum of efficiency as it is effective against only two nematode populations. While functional and evolutionary analyses of Gp-Rbp-1 and Gpa2 identified key residues in both the resistance and avirulence proteins that are involved in recognition determination, whether variation in RanGAP2 also plays a role in pathogen recognition has not been investigated. We amplified a total of 147 RanGAP2 sequences from 55 accessions belonging to 18 different di-and tetraploid Solanum species from the section Petota. Among the newly identified sequences, 133 haplotypes were obtained and 19.1% of the nucleotide sites were found to be polymorphic. The observed intra-specific nucleotide diversity ranges from 0.1 to 1.3%. Analysis of the selection pressures acting on RanGAP2 suggests that this gene evolved mainly under purifying selection. Nonetheless, we identified polymorphic positions in the protein sequence at the intra-specific level, which could modulate the activity of RanGAP2. Two polymorphic sites and a three amino-acid deletion in RanGAP2 were found to affect the timing and intensity of the Gpa2-induced hypersensitive response to avirulent GP-RBP-1 variants even though they did not confer any gain of recognition of virulent GP-RBP-1 variants. Our results highlight how a resistance gene co-factor can manage in terms of evolution both an established role as a cell housekeeping gene and an implication in plant parasite interactions. StRanGAP2 gene appears to evolve under purifying selection. Its variability does not seem to influence the specificity of GPA2 recognition but is able to modulate this activity by enhancing the defence response. It seems therefore that the interaction with the plant resistance protein GPA2 (and/or Rx) rather than with the nematode effector was the major force in the evolution of the RanGAP2 locus in potato. From a mechanistic point of view these results are in accordance with a physical interaction of RanGAP2 with GPA2 and suggest that RBP-1 would rather bind the RanGAP2-GPA2 complex than the RanGAP2 protein alone.

  8. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies.

    PubMed

    Rimsa, Vadim; Eadsforth, Thomas C; Joosten, Robbie P; Hunter, William N

    2014-02-01

    A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model-map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1' recognition subsite that suggests specificity towards an acidic substrate.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Yong Kyoung; Center for Biomicrosystems, Korea Institute of Science and Technology, Seoul 136-791; Lee, Sang-Myung

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared tomore » diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.« less

  10. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli.

    PubMed

    Lausberg, Frank; Fleckenstein, Stefan; Kreutzenbeck, Peter; Fröbel, Julia; Rose, Patrick; Müller, Matthias; Freudl, Roland

    2012-01-01

    The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.

  11. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained amore » detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.« less

  12. Auditory Perception and Word Recognition in Cantonese-Chinese Speaking Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Kidd, Joanna C.; Shum, Kathy K.; Wong, Anita M.-Y.; Ho, Connie S.-H.

    2017-01-01

    Auditory processing and spoken word recognition difficulties have been observed in Specific Language Impairment (SLI), raising the possibility that auditory perceptual deficits disrupt word recognition and, in turn, phonological processing and oral language. In this study, fifty-seven kindergarten children with SLI and fifty-three language-typical…

  13. Children's Face Identity Representations Are No More View Specific than Those of Adults

    ERIC Educational Resources Information Center

    Jeffery, Linda; Rathbone, Cameron; Read, Ainsley; Rhodes, Gillian

    2013-01-01

    Face recognition performance improves during childhood, not reaching adult levels until late adolescence, yet the source of this improvement is unclear. Recognition of faces across changes in viewpoint appears particularly slow to develop. Poor cross-view recognition suggests that children's face representations may be more view specific than…

  14. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3

    PubMed Central

    Zhou, Zheng; Feng, Hanqiao; Zhou, Bing-Rui; Ghirlando, Rodolfo; Hu, Kaifeng; Zwolak, Adam; Miller Jenkins, Lisa M.; Xiao, Hua; Tjandra, Nico; Wu, Carl; Bai, Yawen

    2011-01-01

    The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore1. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A2. A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH33, 4. The structural basis of this specification is of outstanding interest. Yeast Scm3 and human HJURP are conserved nonhistone proteins that interact physically with the (CenH3-H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo5, 6, 7, 8, 9, 10, 11, 12, 13. Here we have elucidated the structural basis for recognition of budding yeast CenH3 (Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 complexed with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved N-terminus and a shorter α-helix at the C-terminus of Scm3-CBD wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3-CBD induces major conformational changes and sterically occludes DNA binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome. PMID:21412236

  15. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans

    PubMed Central

    Tan, Benedict G.; Vijgenboom, Erik; Worrall, Jonathan A. R.

    2014-01-01

    Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl–DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. PMID:24121681

  16. Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE)

    PubMed Central

    2013-01-01

    Background In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). Results We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. Conclusions In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands. PMID:24028551

  17. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.

    PubMed Central

    Suh, E R; Waring, R B

    1990-01-01

    It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site. Images PMID:2342465

  18. Structural Basis of Substrate Recognition by Hematopoietic Tyrosine Phosphatase (HePTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critton, D.; Tortajada, A; Stetson, G

    2008-01-01

    Hematopoietic tyrosine phosphatase (HePTP) is one of three members of the kinase interaction motif (KIM) phosphatase family which also includes STEP and PCPTP1. The KIM-PTPs are characterized by a 15 residue sequence, the KIM, which confers specific high-affinity binding to their only known substrates, the MAP kinases Erk and p38, an interaction which is critical for their ability to regulate processes such as T cell differentiation (HePTP) and neuronal signaling (STEP). The KIM-PTPs are also characterized by a unique set of residues in their PTP substrate binding loops, where 4 of the 13 residues are differentially conserved among the KIM-PTPsmore » as compared to more than 30 other class I PTPs. One of these residues, T106 in HePTP, is either an aspartate or asparagine in nearly every other PTP. Using multiple techniques, we investigate the role of these KIM-PTP specific residues in order to elucidate the molecular basis of substrate recognition by HePTP. First, we used NMR spectroscopy to show that Erk2-derived peptides interact specifically with HePTP at the active site. Next, to reveal the molecular details of this interaction, we solved the high-resolution three-dimensional structures of two distinct HePTP-Erk2 peptide complexes. Strikingly, we were only able to obtain crystals of these transient complexes using a KIM-PTP specific substrate-trapping mutant, in which the KIM-PTP specific residue T106 was mutated to an aspartic acid (T106D). The introduced aspartate side chain facilitates the coordination of the bound peptides, thereby stabilizing the active dephosphorylation complex. These structures establish the essential role of HePTP T106 in restricting HePTP specificity to only those substrates which are able to interact with KIM-PTPs via the KIM (e.g., Erk2, p38). Finally, we describe how this interaction of the KIM is sufficient for overcoming the otherwise weak interaction at the active site of KIM-PTPs.« less

  19. Recognition of functional sites in protein structures.

    PubMed

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2004-06-04

    Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.

  20. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy.

    PubMed

    Xu, Yao; Havenith, Martina

    2015-11-07

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  1. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Havenith, Martina

    2015-11-01

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  2. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    PubMed

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  3. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases

    PubMed Central

    Eichman, Brandt F.; O’Rourke, Eyleen J.; Radicella, J.Pablo; Ellenberger, Tom

    2003-01-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix–hairpin–helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  4. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  5. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  6. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease.

    PubMed

    Galiullina, Raisa A; Kasperkiewicz, Paulina; Chichkova, Nina V; Szalek, Aleksandra; Serebryakova, Marina V; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B

    2015-10-09

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships.

    PubMed

    Gold, Nicola D; Jackson, Richard M

    2006-02-03

    The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.

  8. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Gao, Shu-Yan

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  9. Mechanistic insights into phosphoprotein-binding FHA domains.

    PubMed

    Liang, Xiangyang; Van Doren, Steven R

    2008-08-01

    [Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family of FHA domains by a bioinformatics approach. The phosphopeptide-dependent dynamics of an FHA domain, SH2 domain, and PTB domain suggest a common theme: rigid, preformed binding surfaces support van der Waals contacts that provide favorable binding enthalpy. Despite the lack of pronounced conformational changes in FHA domains linked to binding events, more subtle adjustments may be possible. In the one FHA domain tested, phosphothreonine peptide binding is accompanied by increased flexibility just outside the binding site and increased rigidity across the beta-sandwich. The folding of the same FHA domain progresses through near-native intermediates that stabilize the recognition loops in the center of the phosphoprotein-binding surface; this may promote rigidity in the interface and affinity for targets phosphorylated on threonine.

  10. Exploring the specific features of interfacial enzymology based on lipase studies.

    PubMed

    Aloulou, Ahmed; Rodriguez, Jorge A; Fernandez, Sylvie; van Oosterhout, Dirk; Puccinelli, Delphine; Carrière, Frédéric

    2006-09-01

    Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.

  11. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We havemore » solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.« less

  12. Changing concepts of geologic structure and the problem of siting nuclear reactors: Examples from Washington State

    NASA Astrophysics Data System (ADS)

    Tabor, R. W.

    1986-09-01

    The conflict between regulation and healthy evolution of geological science has contributed to the difficulties of siting nuclear reactors. On the Columbia Plateau in Washington, but for conservative design of the Hanford reactor facility, the recognition of the little-understood Olympic-Wallowa lineament as a major, possibly still active structural alinement might have jeopardized the acceptability of the site for nuclear reactors. On the Olympic Peninsula, evolving concepts of compressive structures and their possible recent activity and the current recognition of a subducting Juan de Fuca plate and its potential for generating great earthquakes—both concepts little-considered during initial site selection—may delay final acceptance of the Satsop site. Conflicts of this sort are inevitable but can be accommodated if they are anticipated in the reactor-licensing process. More important, society should be increasing its store of geologic knowledge now, during the current recess in nuclear reactor siting.

  13. Engineering analysis of LANDSAT 1 data for Southeast Asian agriculture

    NASA Technical Reports Server (NTRS)

    Mcnair, A. J.; Heydt, H. L.; Liang, T.; Levine, G. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT spatial resolution was estimated to be adequate, but barely so, for the purpose of detailed assessment of rice or site status. This was due to the spatially fine grain, heterogenous nature of most rice areas. Use of two spectral bands of digital data (MSS 5 and MSS 6 or 7) appeared to be adequate for site recognition and gross site status assessment. Spectral/temporal signatures were found to be more powerful than spectra signatures alone and virtually essential for most analyses of rice growth and rice sites in the Philippine environment. Two band, two date signatures were estimated to be adequate for most purposes, although good results were achieved using one band two- or four-date signatures. A radiometric resolution of 64 levels in each band was found adequate for the analyses of LANDSAT digital data for site recognition and gross site or rice growth assessment.

  14. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    PubMed

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  15. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  16. Impact of vitamin D receptor gene polymorphisms in pathogenesis of Type-1 diabetes mellitus

    PubMed Central

    Kamel, Mahmoud M; Fouad, Shawky A; Salaheldin, Omina; El-Razek, Abd El-Rahman A Abd; El-Fatah, Abeer I Abd

    2014-01-01

    Background: Type 1 diabetes mellitus (TIDM) results from an immune-mediated destruction of insulin-producing-cells in the pancreatic islets of Langerhans. There are clear differences in immunogenetic predisposition to type1 diabetes among countries. Studies have indicated that vitamin D supplementation in early childhood decreases the risk of TIDM. Vitamin D exerts its action via the nuclear vitamin D receptor (VDR), which shows an extensive polymorphism. VDR gene polymorphisms have been associated with altered gene expression or gene function. Four single nucleotide polymorphisms (SNPs) in the VDR gene produce variation in four recognition sites. These recognition sites variants include Fok I, Bsm I, Apa I and Taq I. Aim of the study: TO investigate the relationship between VDR gene polymorphisms (at positions Taq I and Apa I) and the incidence of TIDM in Egyptian peoples. Subjects and methods: This study included 74 patients with type 1 DM in addition to 28 healthy age and sex matched control subjects. All of them were subjected to full history taking and clinical examination. Three ml of venous blood were withdrawn from each patient at fasting and postprandial times and used for genomic DNA extraction, estimation of Hb A1C, as well as, fasting and postprandial C-peptide and blood glucose levels. Results: Apa I recognition site was found in low frequency in diabetic patients (14/74) 18.9% while, its frequency was high (16/28) 57.1% among normal subjects. Taq I has two recognition sites. The first was found at nucleotide number 293 that was found in a frequency of (2/28) 7.1% in normal non-diabetic individuals while it was detected in (14/74) 18.9% in diabetic patients. The second Taq I recognition site was found at nucleotide number 494 without any differences between diabetic and normal individuals. Conclusion: This study indicates that there is an association between VDR genetic polymorphism and incidence of TIDM in Egyptian patients. PMID:25664062

  17. Interdependence of Inhibitor Recognition in HIV-1 Protease

    PubMed Central

    2017-01-01

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1′ and S2′ subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1′ subsite highly influences other subsites: the extension of the hydrophobic P1′ moiety results in 1) reduced van der Waals contacts in the P2′ subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor. PMID:28358514

  18. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    PubMed

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  19. Anorectic activities of serotonin uptake inhibitors: correlation with their potencies at inhibiting serotonin uptake in vivo and /sup 3/H-mazindol binding in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, I.; Taranger, M.A.; Claustre, Y.

    1988-01-01

    The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation was obtained between the ED/sub 50/ values of anorectic action and the ED/sub 50/ values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced (/sup 3/H)-mazindol frommore » its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive. Excluding zimelidine, a good correlation was obtained between the affinities of these drugs for (/sup 3/H)-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with (/sup 3/H)-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.« less

  20. Evaluation of an online partner notification program.

    PubMed

    Rietmeijer, Cornelis A; Westergaard, Benton; Mickiewicz, Theresa A; Richardson, Doug; Ling, Sarah; Sapp, Terri; Jordan, Rebecca; Wilmoth, Ralph; Kachur, Rachel; McFarlane, Mary

    2011-05-01

    Internet-based programs for sexually transmitted infections (STI)/HIV partner notification have generated considerable interest as public health interventions; yet data are lacking to support widespread dissemination. We report on a clinic-based and web-based evaluation of the Colorado inSPOT online partner notification program. Clinic-based surveys were conducted at a large urban STI clinic before and after the implementation of feasible clinic interventions as well as nonclinic campaigns to promote the use of inSPOT Colorado. Questions assessed recognition and use of the site. Website statistics were provided by the inSPOT service, including the number of site hits, e-cards sent, and specific STI exposures identified on the card. Recognition and use of the service among STI clinic patients remained low (<6%) despite the interventions. Site statistics demonstrated an immediate but quickly diminishing response after placement of a banner ad on a popular gay website. Newspaper advertisements and radio public service announcements showed small increases in website use. Analysis of STIs specified on the e-cards, showed scabies and pediculosis as the most-identified STIs, accounting for nearly 30% of all e-cards sent. Clinic survey data indicated that when respondents were faced with the hypothetical situation of being diagnosed with an STI, more than 90% would notify partners in person; only 5% would use e-mail or the Internet. Our data did not support the effectiveness of the inSPOT intervention among a predominantly heterosexual population in a large urban STI clinic.

  1. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana.

    PubMed

    La Verde, Valentina; Trande, Matteo; D'Onofrio, Mariapina; Dominici, Paola; Astegno, Alessandra

    2018-03-01

    Calmodulin-like protein 19 (CML19) is an Arabidopsis centrin that modulates nucleotide excision repair (NER) by binding to RAD4 protein, the Arabidopsis homolog of human Xeroderma pigmentosum complementation group C protein. Although the necessity of CML19 as a part of the RAD4 plant recognition complex for functional NER is known at a cellular level, little is known at a molecular level. Herein, we used a combination of biophysical and biochemical approaches to investigate the structural and ion and target-peptide binding properties of CML19. We found that CML19 possesses four Ca 2+ -specific binding sites, two of high affinity in the N-terminal domain and two of low affinity in the C-terminal domain. Binding of Ca 2+ to CML19 increases its alpha-helix content, stabilizes the tertiary structure, and triggers a conformational change, resulting in the exposure of a hydrophobic patch instrumental for target protein recognition. Using bioinformatics tools we identified a CML19-binding site at the C-terminus of RAD4, and through in vitro binding experiments we analyzed the interaction between a 17-mer peptide representing this site and CML19. We found that the peptide shows a high affinity for CML19 in the presence of Ca 2+ (stoichiometry 1:1) and the interaction primarily involves the C-terminal half of CML19. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine–purine inversion site of an RNA duplex

    PubMed Central

    Toh, Desiree-Faye Kaixin; Devi, Gitali; Patil, Kiran M.; Qu, Qiuyu; Maraswami, Manikantha; Xiao, Yunyun; Loh, Teck Peng; Zhao, Yanli; Chen, Gang

    2016-01-01

    RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson–Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent. PMID:27596599

  3. Centuries of domestication has not impaired oviposition site-selection function in the silkmoth, Bombyx mori

    PubMed Central

    Damodaram, Kamala Jayanthi Pagadala; Kempraj, Vivek; Aurade, Ravindra Mahadappa; Rajasekhar, Sowmya Bandhisara; Venkataramanappa, Ravindra Kothapalli; Nandagopal, Bakthavatsalam; Verghese, Abraham

    2014-01-01

    Oviposition site-selection in insects is mediated through innate recognition templates (IRTs) tuned to specific chemical cues. These cues aid gravid insects in choosing suitable oviposition sites and may even enhance the fitness of their offspring by warding off predators and parasitoids. However, studies on the evolution of oviposition site-selection and cues instigating oviposition in domesticated insects remain elusive. Using the interaction between the silkmoth, Bombyx mori, and its host plant mulberry, Morus alba, as a model system, we demonstrate that centuries of domestication of silkmoth has not impaired its oviposition site-selection function. Silkmoths significantly preferred mulberry leaves to filter paper as oviposition sites. Oviposition assays with filter paper, filter paper treated with leaf volatiles and leaf alone proved that surface texture was not a significant criterion for oviposition site-selection, but volatile cues were. Oviposition assays with electrophysiologically active compounds from mulberry revealed that two of the volatiles, valencene and α-humulene, aided moths in choosing suitable oviposition sites and enhanced egg-laying significantly. Moreover, we show that generalist egg-parasitoids are strongly repelled by valencene and α-humulene. Our results demonstrate that IRTs tuned to cues that aid crucial functions like oviposition site-selection are less likely to be impaired even after centuries of domestication. PMID:25503440

  4. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage

    PubMed Central

    Kitevski-LeBlanc, Julianne; Fradet-Turcotte, Amélie; Portella, Guillem; Yuwen, Tairan; Panier, Stephanie; Duan, Shili; Canny, Marella D; van Ingen, Hugo; Arrowsmith, Cheryl H; Rubinstein, John L; Vendruscolo, Michele; Durocher, Daniel; Kay, Lewis E

    2017-01-01

    Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes. DOI: http://dx.doi.org/10.7554/eLife.23872.001 PMID:28406400

  5. Developments in Molecular Recognition and Sensing at Interfaces

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P.; Endo, Hiroshi

    2007-01-01

    In biological systems, molecular recognition events occur mostly within interfacial environments such as at membrane surfaces, enzyme reaction sites, or at the interior of the DNA double helix. Investigation of molecular recognition at model interfaces provides great insights into biological phenomena. Molecular recognition at interfaces not only has relevance to biological systems but is also important for modern applications such as high sensitivity sensors. Selective binding of guest molecules in solution to host molecules located at solid surfaces is crucial for electronic or photonic detection of analyte substances. In response to these demands, molecular recognition at interfaces has been investigated extensively during the past two decades using Langmuir monolayers, self-assembled monolayers, and lipid assemblies as recognition media. In this review, advances of molecular recognition at interfaces are briefly summarized.

  6. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues.

    PubMed

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S; Heslop, Pauline; Firbank, Susan J; Kool, Eric T; Connolly, Bernard A

    2010-07-13

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.

  7. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria.

    PubMed

    Edera, Alejandro A; Gandini, Carolina L; Sanchez-Puerta, M Virginia

    2018-05-14

    Our understanding of the dynamic and evolution of RNA editing in angiosperms is in part limited by the few editing sites identified to date. This study identified 10,217 editing sites from 17 diverse angiosperms. Our analyses confirmed the universality of certain features of RNA editing, and offer new evidence behind the loss of editing sites in angiosperms. RNA editing is a post-transcriptional process that substitutes cytidines (C) for uridines (U) in organellar transcripts of angiosperms. These substitutions mostly take place in mitochondrial messenger RNAs at specific positions called editing sites. By means of publicly available RNA-seq data, this study identified 10,217 editing sites in mitochondrial protein-coding genes of 17 diverse angiosperms. Even though other types of mismatches were also identified, we did not find evidence of non-canonical editing processes. The results showed an uneven distribution of editing sites among species, genes, and codon positions. The analyses revealed that editing sites were conserved across angiosperms but there were some species-specific sites. Non-synonymous editing sites were particularly highly conserved (~ 80%) across the plant species and were efficiently edited (80% editing extent). In contrast, editing sites at third codon positions were poorly conserved (~ 30%) and only partially edited (~ 40% editing extent). We found that the loss of editing sites along angiosperm evolution is mainly occurring by replacing editing sites with thymidines, instead of a degradation of the editing recognition motif around editing sites. Consecutive and highly conserved editing sites had been replaced by thymidines as result of retroprocessing, by which edited transcripts are reverse transcribed to cDNA and then integrated into the genome by homologous recombination. This phenomenon was more pronounced in eudicots, and in the gene cox1. These results suggest that retroprocessing is a widespread driving force underlying the loss of editing sites in angiosperm mitochondria.

  8. Super-recognition in development: A case study of an adolescent with extraordinary face recognition skills.

    PubMed

    Bennetts, Rachel J; Mole, Joseph; Bate, Sarah

    2017-09-01

    Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.

  9. Development of detection and recognition of orientation of geometric and real figures.

    PubMed

    Stein, N L; Mandler, J M

    1975-06-01

    Black and white kindergarten and second-grade children were tested for accuracy of detection and recognition of orientation and location changes in pictures of real-world and geometric figures. No differences were found in accuracy of recognition between the 2 kinds of pictures, but patterns of verbalization differed on specific transformations. Although differences in accuracy were found between kindergarten and second grade on an initial recognition task, practice on a matching-to-sample task eliminated differences on a second recognition task. Few ethnic differences were found on accuracy of recognition, but significant differences were found in amount of verbal output on specific transformations. For both groups, mention of orientation changes was markedly reduced when location changes were present.

  10. Antibody humanization by molecular dynamics simulations-in-silico guided selection of critical backmutations.

    PubMed

    Margreitter, Christian; Mayrhofer, Patrick; Kunert, Renate; Oostenbrink, Chris

    2016-06-01

    Monoclonal antibodies represent the fastest growing class of biotherapeutic proteins. However, as they are often initially derived from rodent organisms, there is a severe risk of immunogenic reactions, hampering their applicability. The humanization of these antibodies remains a challenging task in the context of rational drug design. "Superhumanization" describes the direct transfer of the complementarity determining regions to a human germline framework, but this humanization approach often results in loss of binding affinity. In this study, we present a new approach for predicting promising backmutation sites using molecular dynamics simulations of the model antibody Ab2/3H6. The simulation method was developed in close conjunction with novel specificity experiments. Binding properties of mAb variants were evaluated directly from crude supernatants and confirmed using established binding affinity assays for purified antibodies. Our approach provides access to the dynamical features of the actual binding sites of an antibody, based solely on the antibody sequence. Thus we do not need structural data on the antibody-antigen complex and circumvent cumbersome methods to assess binding affinities. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.

  11. Lipopolysaccharide-specific binding C-type lectin with one CRD domain from Fenneropenaeus merguiensis (FmLC4) functions as a pattern recognition receptor in shrimp innate immunity.

    PubMed

    Utarabhand, Prapaporn; Thepnarong, Supattra; Runsaeng, Phanthipha

    2017-10-01

    In crustaceans, an innate immune system is solely required because they lack an adaptive immunity. One kind of pattern recognition receptors (PRRs) that plays a particular role in the innate immunity of aquatic shrimp is lectin. A new diverse C-type lectin (FmLC4) was cloned from the hepatopancreas of Fenneropenaeus merguiensis by using RT-PCR and 5' and 3' rapid amplification of cDNA ends approaches. A full-length FmLC4 cDNA comprises 706 bp with an open reading frame of 552 bp, encoding a peptide of 184 amino acids. The predicted primary sequence of FmLC4 consists of a signal peptide of 19 amino acids, a molecular mass of 20.4 kDa, an isoelectric point of 5.13, one carbohydrate recognition domain with a QPD motif and a Ca 2+ binding site as well as a double-loop characteristic supported by two conserved disulfide bonds. The FmLC4 mRNA expression was found only in the hepatopancreas of normal shrimp and significantly up-regulated upon challenge the shrimp with Vibrio harveyi or white spot syndrome virus (WSSV). Recombinant FmLC4 (rFmLC4) could agglutinate various bacterial strains with Ca 2+ -dependence. Lipopolysaccharide (LPS) could specifically inhibit the agglutinating activity and potently bind to rFmLC4, indicating that FmLC4 was LPS-specific binding C-type lectin. Moreover, rFmLC4 itself displayed the in vivo effective clearance of the pathogenic bacterium V. harveyi. Altogether, FmLC4 may serve as LPS-specific PRR to recognize opportunistic bacterial and viral pathogens, and thus to play a role in the immune defense of aquatic shrimp via the binding and agglutination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Region-specific RNA m6A methylation represents a new layer of control in the gene regulatory network in the mouse brain.

    PubMed

    Chang, Mengqi; Lv, Hongyi; Zhang, Weilong; Ma, Chunhui; He, Xue; Zhao, Shunli; Zhang, Zhi-Wei; Zeng, Yi-Xin; Song, Shuhui; Niu, Yamei; Tong, Wei-Min

    2017-09-01

    N 6 -methyladenosine (m 6 A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m 6 A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m 6 A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m 6 A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m 6 A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain. © 2017 The Authors.

  13. A novel mammal-specific three partite enhancer element regulates node and notochord-specific Noto expression.

    PubMed

    Alten, Leonie; Schuster-Gossler, Karin; Eichenlaub, Michael P; Wittbrodt, Beate; Wittbrodt, Joachim; Gossler, Achim

    2012-01-01

    The vertebrate organizer and notochord have conserved, essential functions for embryonic development and patterning. The restricted expression of developmental regulators in these tissues is directed by specific cis-regulatory modules (CRMs) whose sequence conservation varies considerably. Some CRMs have been conserved throughout vertebrates and likely represent ancestral regulatory networks, while others have diverged beyond recognition but still function over a wide evolutionary range. Here we identify and characterize a mammalian-specific CRM required for node and notochord specific (NNC) expression of NOTO, a transcription factor essential for node morphogenesis, nodal cilia movement and establishment of laterality in mouse. A 523 bp enhancer region (NOCE) upstream the Noto promoter was necessary and sufficient for NNC expression from the endogenous Noto locus. Three subregions in NOCE together mediated full activity in vivo. Binding sites for known transcription factors in NOCE were functional in vitro but dispensable for NOCE activity in vivo. A FOXA2 site in combination with a novel motif was necessary for NOCE activity in vivo. Strikingly, syntenic regions in non-mammalian vertebrates showed no recognizable sequence similarities. In contrast to its activity in mouse NOCE did not drive NNC expression in transgenic fish. NOCE represents a novel, mammal-specific CRM required for the highly restricted Noto expression in the node and nascent notochord and thus regulates normal node development and function.

  14. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    PubMed

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  15. Comparison of Methods of Detection of Exceptional Sequences in Prokaryotic Genomes.

    PubMed

    Rusinov, I S; Ershova, A S; Karyagina, A S; Spirin, S A; Alexeevski, A V

    2018-02-01

    Many proteins need recognition of specific DNA sequences for functioning. The number of recognition sites and their distribution along the DNA might be of biological importance. For example, the number of restriction sites is often reduced in prokaryotic and phage genomes to decrease the probability of DNA cleavage by restriction endonucleases. We call a sequence an exceptional one if its frequency in a genome significantly differs from one predicted by some mathematical model. An exceptional sequence could be either under- or over-represented, depending on its frequency in comparison with the predicted one. Exceptional sequences could be considered biologically meaningful, for example, as targets of DNA-binding proteins or as parts of abundant repetitive elements. Several methods to predict frequency of a short sequence in a genome, based on actual frequencies of certain its subsequences, are used. The most popular are methods based on Markov chain models. But any rigorous comparison of the methods has not previously been performed. We compared three methods for the prediction of short sequence frequencies: the maximum-order Markov chain model-based method, the method that uses geometric mean of extended Markovian estimates, and the method that utilizes frequencies of all subsequences including discontiguous ones. We applied them to restriction sites in complete genomes of 2500 prokaryotic species and demonstrated that the results depend greatly on the method used: lists of 5% of the most under-represented sites differed by up to 50%. The method designed by Burge and coauthors in 1992, which utilizes all subsequences of the sequence, showed a higher precision than the other two methods both on prokaryotic genomes and randomly generated sequences after computational imitation of selective pressure. We propose this method as the first choice for detection of exceptional sequences in prokaryotic genomes.

  16. Location of Dual Sites in E. coli FtsZ Important for Degradation by ClpXP; One at the C-Terminus and One in the Disordered Linker

    PubMed Central

    Camberg, Jodi L.; Viola, Marissa G.; Rea, Leslie; Hoskins, Joel R.; Wickner, Sue

    2014-01-01

    ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC. PMID:24722340

  17. It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres

    PubMed Central

    Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang

    2011-01-01

    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683

  18. Insights into the functionality of the putative residues involved in enterocin AS-48 maturation.

    PubMed

    Cebrián, Rubén; Maqueda, Mercedes; Neira, José Luis; Valdivia, Eva; Martínez-Bueno, Manuel; Montalbán-López, Manuel

    2010-11-01

    AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81(His-1Ile)) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.

  19. Structural basis of RND-type multidrug exporters

    PubMed Central

    Yamaguchi, Akihito; Nakashima, Ryosuke; Sakurai, Keisuke

    2015-01-01

    Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient ejection of drugs from the cell. Substrates are transported through dual multidrug-binding pockets via the peristaltic motion of the substrate translocation channel. Although there are no clinically available inhibitors of bacterial multidrug exporters, efforts to develop inhibitors based on structural information are underway. PMID:25941524

  20. Structural basis of RND-type multidrug exporters.

    PubMed

    Yamaguchi, Akihito; Nakashima, Ryosuke; Sakurai, Keisuke

    2015-01-01

    Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient ejection of drugs from the cell. Substrates are transported through dual multidrug-binding pockets via the peristaltic motion of the substrate translocation channel. Although there are no clinically available inhibitors of bacterial multidrug exporters, efforts to develop inhibitors based on structural information are underway.

  1. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations

    PubMed Central

    Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.

    2012-01-01

    Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745

  2. Amnesiacs might get the gist: reduced false recognition in amnesia may be the result of impaired item-specific memory.

    PubMed

    Nissan, Jack; Abrahams, Sharon; Sala, Sergio Della

    2013-01-01

    It is a common finding in tests of false recognition that amnesic patients recognize fewer related lures than healthy controls, and this has led to assumptions that gist memory is damaged in these patients (Schacter, Verfaellie, & Anes, 1997, Neuropsychology, 11; Schacter, Verfaellie, Anes, & Racine, 1998, Journal of Cognitive Neuroscience, 10; Schacter, Verfaellie, & Pradere, 1996, Journal of Memory and Language, 35). However, clinical observations find that amnesic patients typically hold meaningful conversations and make relevant remarks, and there is some experimental evidence highlighting preserved immediate recall of prose (Baddeley & Wilson, 2002, Neuropsychologia, 40; Gooding, Isaac, & Mayes, 2005, Neuropsychologia, 43; Rosenbaum, Gilboa, Levine, Winocur, & Moscovitch, 2009, Neuropsychologia, 47), which suggests that amnesiacs can get the gist. The present experiment used false recognition paradigms to assess whether the reduced rate of false recognition found in amnesic patients may be a consequence of their impaired item-specific memory. It examined the effect of increasing the item-specific memory of amnesic patient DA by bringing her to criterion on relevant study-lists and compared her performance on a false recognition paradigm with a group of 32 healthy young adults. Results indicated that when DA's item-specific memory was increased she was more able to gist and her performance was no different to the healthy young adults. Previous assumptions that gist memory is necessarily damaged in amnesia might therefore be revisited, since the reduced rate of false recognition could be caused by impaired item-specific memory. The experiment also highlights a positive relationship between item-specific and gist memory which has not previously been accounted for in false-recognition experiments.

  3. Recognition of Emotions in Mexican Spanish Speech: An Approach Based on Acoustic Modelling of Emotion-Specific Vowels

    PubMed Central

    Caballero-Morales, Santiago-Omar

    2013-01-01

    An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR's output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech. PMID:23935410

  4. The Protein-DNA Interface database

    PubMed Central

    2010-01-01

    The Protein-DNA Interface database (PDIdb) is a repository containing relevant structural information of Protein-DNA complexes solved by X-ray crystallography and available at the Protein Data Bank. The database includes a simple functional classification of the protein-DNA complexes that consists of three hierarchical levels: Class, Type and Subtype. This classification has been defined and manually curated by humans based on the information gathered from several sources that include PDB, PubMed, CATH, SCOP and COPS. The current version of the database contains only structures with resolution of 2.5 Å or higher, accounting for a total of 922 entries. The major aim of this database is to contribute to the understanding of the main rules that underlie the molecular recognition process between DNA and proteins. To this end, the database is focused on each specific atomic interface rather than on the separated binding partners. Therefore, each entry in this database consists of a single and independent protein-DNA interface. We hope that PDIdb will be useful to many researchers working in fields such as the prediction of transcription factor binding sites in DNA, the study of specificity determinants that mediate enzyme recognition events, engineering and design of new DNA binding proteins with distinct binding specificity and affinity, among others. Finally, due to its friendly and easy-to-use web interface, we hope that PDIdb will also serve educational and teaching purposes. PMID:20482798

  5. The Protein-DNA Interface database.

    PubMed

    Norambuena, Tomás; Melo, Francisco

    2010-05-18

    The Protein-DNA Interface database (PDIdb) is a repository containing relevant structural information of Protein-DNA complexes solved by X-ray crystallography and available at the Protein Data Bank. The database includes a simple functional classification of the protein-DNA complexes that consists of three hierarchical levels: Class, Type and Subtype. This classification has been defined and manually curated by humans based on the information gathered from several sources that include PDB, PubMed, CATH, SCOP and COPS. The current version of the database contains only structures with resolution of 2.5 A or higher, accounting for a total of 922 entries. The major aim of this database is to contribute to the understanding of the main rules that underlie the molecular recognition process between DNA and proteins. To this end, the database is focused on each specific atomic interface rather than on the separated binding partners. Therefore, each entry in this database consists of a single and independent protein-DNA interface.We hope that PDIdb will be useful to many researchers working in fields such as the prediction of transcription factor binding sites in DNA, the study of specificity determinants that mediate enzyme recognition events, engineering and design of new DNA binding proteins with distinct binding specificity and affinity, among others. Finally, due to its friendly and easy-to-use web interface, we hope that PDIdb will also serve educational and teaching purposes.

  6. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247.

    PubMed

    Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G

    2015-01-01

    Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target. © FASEB.

  7. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1

    PubMed Central

    Sasnauskas, Giedrius; Kauneckaitė, Kotryna; Siksnys, Virginijus

    2018-01-01

    Abstract Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5′-CATGCA-3′/5′-TGCATG-3′. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5′-TGCATG-3′ sequence. The VAL1-B3–DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences. PMID:29660015

  8. Recognition Imaging of Acetylated Chromatin Using a DNA Aptamer

    PubMed Central

    Lin, Liyun; Fu, Qiang; Williams, Berea A.R.; Azzaz, Abdelhamid M.; Shogren-Knaak, Michael A.; Chaput, John C.; Lindsay, Stuart

    2009-01-01

    Histone acetylation plays an important role in the regulation of gene expression. A DNA aptamer generated by in vitro selection to be highly specific for histone H4 protein acetylated at lysine 16 was used as a recognition element for atomic force microscopy-based recognition imaging of synthetic nucleosomal arrays with precisely controlled acetylation. The aptamer proved to be reasonably specific at recognizing acetylated histones, with recognition efficiencies of 60% on-target and 12% off-target. Though this selectivity is much poorer than the >2000:1 equilibrium specificity of the aptamer, it is a large improvement on the performance of a ChIP-quality antibody, which is not selective at all in this application, and it should permit high-fidelity recognition with repeated imaging. The ability to image the precise location of posttranslational modifications may permit nanometer-scale investigation of their effect on chromatin structure. PMID:19751687

  9. Genetic specificity of face recognition.

    PubMed

    Shakeshaft, Nicholas G; Plomin, Robert

    2015-10-13

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.

  10. Genetic specificity of face recognition

    PubMed Central

    Shakeshaft, Nicholas G.; Plomin, Robert

    2015-01-01

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086

  11. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhancement of GABAergic transmission by zolpidem, an imidazopyridine with preferential affinity for type I benzodiazepine receptors.

    PubMed

    Biggio, G; Concas, A; Corda, M G; Serra, M

    1989-02-28

    The effect of zolpidem, an imidazopyridine derivative with high affinity at the type I benzodiazepine recognition site, on the function of the GABAA/ionophore receptor complex was studied in vitro. Zolpidem, mimicking the action of diazepam, increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced [35S]TBPS binding in rat cortical membrane preparations. Zolpidem was less effective than diazepam on the above parameters. Zolpidem induced a lower increase of [3H]GABA binding (23 vs. 35%) and muscimol-stimulated 36Cl- uptake (22 vs. 40%) and a smaller decrease of [35S]TBPS binding (47 vs. 77%) than diazepam. The finding that zolpidem enhanced the function of GABAergic synapses with an efficacy qualitatively and quantitatively different from that of diazepam suggests that this compound is a partial agonist at the benzodiazepine recognition site. Thus, our results are consistent with the view that the biochemical and pharmacological profile of a benzodiazepine recognition site ligand reflects its efficacy to enhance GABAergic transmission. Whether the preferential affinity of zolpidem at the type I site is involved in its atypical biochemical and pharmacological profile remains to be clarified.

  13. General object recognition is specific: Evidence from novel and familiar objects.

    PubMed

    Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel

    2017-09-01

    In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study object recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity

    PubMed Central

    Kouno, Takahide; Silvas, Tania V.; Hilbert, Brendan J.; Shandilya, Shivender M. D.; Bohn, Markus F.; Kelch, Brian A.; Royer, William E.; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A.

    2017-01-01

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A–ssDNA complex defines the 5′–3′ directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics. PMID:28452355

  15. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation

    PubMed Central

    Pleiner, Tino; Bates, Mark; Trakhanov, Sergei; Lee, Chung-Tien; Schliep, Jan Erik; Chug, Hema; Böhning, Marc; Stark, Holger; Urlaub, Henning; Görlich, Dirk

    2015-01-01

    Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target. DOI: http://dx.doi.org/10.7554/eLife.11349.001 PMID:26633879

  16. The Epidemiology and Diagnosis of Invasive Candidiasis Among Premature Infants

    PubMed Central

    Kelly, Matthew S.; Benjamin, Daniel K.; Smith, P. Brian

    2015-01-01

    Invasive candidiasis is a leading infectious cause of morbidity and mortality in premature infants. Improved recognition of modifiable risk factors and antifungal prophylaxis have contributed to the recent decline in the incidence of this infection among infants. Invasive candidiasis typically occurs in the first six weeks of life and presents with non-specific signs of sepsis. Definitive diagnosis relies on growth of Candida in blood culture or cultures from other normally sterile sites, but this may identify fewer than half of cases. Improved diagnostics are needed to guide initiation of antifungal therapy in premature infants. PMID:25677999

  17. 46 CFR 8.240 - Application for recognition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ALTERNATIVES Recognition of a Classification Society § 8.240 Application for recognition. (a) A classification society must apply for recognition in writing to the Commandant (CG-521). (b) An application must indicate which specific authority the classification society seeks to have delegated. (c) Upon verification from...

  18. 46 CFR 8.240 - Application for recognition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ALTERNATIVES Recognition of a Classification Society § 8.240 Application for recognition. (a) A classification society must apply for recognition in writing to the Commandant (CG-521). (b) An application must indicate which specific authority the classification society seeks to have delegated. (c) Upon verification from...

  19. TAL effector-DNA specificity.

    PubMed

    Scholze, Heidi; Boch, Jens

    2010-01-01

    TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.

  20. Recall and recognition of verbal paired associates in early Alzheimer's disease.

    PubMed

    Lowndes, G J; Saling, M M; Ames, D; Chiu, E; Gonzalez, L M; Savage, G R

    2008-07-01

    The primary impairment in early Alzheimer's disease (AD) is encoding/consolidation, resulting from medial temporal lobe (MTL) pathology. AD patients perform poorly on cued-recall paired associate learning (PAL) tasks, which assess the ability of the MTLs to encode relational memory. Since encoding and retrieval processes are confounded within performance indexes on cued-recall PAL, its specificity for AD is limited. Recognition paradigms tend to show good specificity for AD, and are well tolerated, but are typically less sensitive than recall tasks. Associate-recognition is a novel PAL task requiring a combination of recall and recognition processes. We administered a verbal associate-recognition test and cued-recall analogue to 22 early AD patients and 55 elderly controls to compare their ability to discriminate these groups. Both paradigms used eight arbitrarily related word pairs (e.g., pool-teeth) with varying degrees of imageability. Associate-recognition was equally effective as the cued-recall analogue in discriminating the groups, and logistic regression demonstrated classification rates by both tasks were equivalent. These preliminary findings provide support for the clinical value of this recognition tool. Conceptually it has potential for greater specificity in informing neuropsychological diagnosis of AD in clinical samples but this requires further empirical support.

  1. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    PubMed

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence. © FASEB.

  2. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape of binding sites between concave and convex further, we discover that patterns {arg, glu, asp} and {arg, ser, asp} on the concave shape of binding sites in a protein more frequently (i.e. higher probability) make contact with {lys} or {arg} on the convex shape of binding sites in another protein. Thus, we can confidently achieve a rate of at least 78%. On the other hand {val, gly, lys} on the convex surface of binding sites in proteins is more frequently in contact with {asp} on the concave site of another protein, and the confidence achieved is over 81%. Applying data mining in biology can reveal more facts that may otherwise be ignored or not easily discovered by the naked eye. Furthermore, we can discover more relationships among AAs on binding sites by appropriately rotating these residues on binding sites from a three-dimension to two-dimension perspective. We designed a circular grid to deposit the data, which total to 463 records consisting of AAs. Then we used the association rules to mine these records for discovering relationships. The proposed method in this paper provides an insight into the characteristics of binding sites for recognition complexes. PMID:21464838

  3. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previouslymore » only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.« less

  4. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.

    PubMed

    Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E

    2011-07-15

    Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.

  5. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix® vaccination

    PubMed Central

    Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus

    2015-01-01

    A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813

  6. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver.

    PubMed

    Bijsterbosch, M K; Van Berkel, T J

    1990-08-15

    The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.

  7. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.

    PubMed

    Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John

    2003-09-26

    The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.

  8. Genetic Evidence for a Tight Cooperation of TatB and TatC during Productive Recognition of Twin-Arginine (Tat) Signal Peptides in Escherichia coli

    PubMed Central

    Lausberg, Frank; Fleckenstein, Stefan; Kreutzenbeck, Peter; Fröbel, Julia; Rose, Patrick; Müller, Matthias; Freudl, Roland

    2012-01-01

    The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D+2)-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D+2) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D+2)-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment. PMID:22761916

  9. Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach.

    PubMed

    Çorman, Mehmet Emin; Armutcu, Canan; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-11-01

    Molecular imprinting is a polymerization technique that provides synthetic analogs for template molecules. Molecularly imprinted polymers (MIPs) have gained much attention due to their unique properties such as selectivity and specificity for target molecules. In this study, we focused on the development of polymeric materials with molecular recognition ability, so molecular imprinting was combined with miniemulsion polymerization to synthesize self-orienting nanoparticles through the use of an epitope imprinting approach. Thus, L-lysine imprinted nanoparticles (LMIP) were synthesized via miniemulsion polymerization technique. Immunoglobulin G (IgG) was then bound to the cavities that specifically formed for L-lysine molecules that are typically found at the C-terminus of the Fc region of antibody molecules. The resulting nanoparticles makes it possible to minimize the nonspecific interaction between monomer and template molecules. In addition, the orientation of the entire IgG molecule was controlled, and random imprinting of the IgG was prevented. The optimum conditions were determined for IgG recognition using the imprinted nanoparticles. The selectivity of the nanoparticles against IgG molecules was also evaluated using albumin and hemoglobin as competitor molecules. In order to show the self-orientation capability of imprinted nanoparticles, human serum albumin (HSA) adsorption onto both the plain nanoparticles and immobilized nanoparticles by anti-human serum albumin antibody (anti-HSA antibody) was also carried out. Due to anti-HSA antibody immobilization on the imprinted nanoparticles, the adsorption capability of nanoparticles against HSA molecules vigorously enhanced. It is proved that the oriented immobilization of antibodies was appropriately succeeded. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecularly imprinted polymer for glutathione by modified precipitation polymerization and its application to determination of glutathione in supplements.

    PubMed

    Nakamura, Yukari; Masumoto, Shizuka; Matsunaga, Hisami; Haginaka, Jun

    2017-09-10

    Molecularly imprinted polymers (MIP) particles for glutathione (GSH) with a narrow particle size distribution were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and water as a co-solvent. The particle diameters of the MIP and non-imprinted polymer (NIP) prepared under the optimum conditions were 3.81±0.95 (average±standard deviation) and 3.39±1.22μm, respectively. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of acetonitrile and water as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of GSH was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of GSH on the MIP. The MIP had a specific molecular-recognition ability for GSH, while glutathione disulfide, l-Glu, l-Cys, Gly-Gly and l-Cys-Gly could not be retained or recognized on the MIP. The effect of column temperature revealed that the separation of GSH on the MIP was entropically driven. Binding experiments and Scatchard analyses revealed that one binding sites were formed on both the MIP and NIP, while the MIP gave higher affinity and capacity for GSH than the NIP. Furthermore, the MIP was successfully applied for determination of GSH in the supplements. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. High-Density IgE Recognition of the Major Grass Pollen Allergen Phl p 1 Revealed with Single-Chain IgE Antibody Fragments Obtained by Combinatorial Cloning

    PubMed Central

    Madritsch, Christoph; Gadermaier, Elisabeth; Roder, Uwe W.; Lupinek, Christian; Valenta, Rudolf; Flicker, Sabine

    2015-01-01

    The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ~25–30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific IgE-derived single-chain variable Ab fragments (IgE-ScFvs) isolated from a combinatorial library constructed from PBMCs of a grass pollen–allergic patient. IgE-ScFvs reacted with recombinant Phl p 1 and natural group 1 grass pollen allergens. Using synthetic Phl p 1–derived peptides, the binding sites of two ScFvs were mapped to the N terminus of the allergen. In surface plasmon resonance experiments they showed comparable high-affinity binding to Phl p 1 as a complete human IgE-derived Ab recognizing the allergens’ C terminus. In a set of surface plasmon resonance experiments simultaneous allergen recognition of all three binders was demonstrated. Even in the presence of the three binders, allergic patients’ polyclonal IgE reacted with Phl p 1, indicating high-density IgE recognition of the Phl p 1 allergen. Our results show that multiple IgE Abs can bind with high density to Phl p 1, which may explain the high allergenic activity and sensitizing capacity of this allergen. PMID:25637023

  12. Large-Scale, Lineage-Specific Expansion of a Bric-a-Brac/Tramtrack/Broad Complex Ubiquitin-Ligase Gene Family in Rice[W

    PubMed Central

    Gingerich, Derek J.; Hanada, Kousuke; Shiu, Shin-Han; Vierstra, Richard D.

    2007-01-01

    Selective ubiquitination of proteins is directed by diverse families of ubiquitin-protein ligases (or E3s) in plants. One important type uses Cullin-3 as a scaffold to assemble multisubunit E3 complexes containing one of a multitude of bric-a-brac/tramtrack/broad complex (BTB) proteins that function as substrate recognition factors. We previously described the 80-member BTB gene superfamily in Arabidopsis thaliana. Here, we describe the complete BTB superfamily in rice (Oryza sativa spp japonica cv Nipponbare) that contains 149 BTB domain–encoding genes and 43 putative pseudogenes. Amino acid sequence comparisons of the rice and Arabidopsis superfamilies revealed a near equal repertoire of putative substrate recognition module types. However, phylogenetic comparisons detected numerous gene duplication and/or loss events since the rice and Arabidopsis BTB lineages split, suggesting possible functional specialization within individual BTB families. In particular, a major expansion and diversification of a subset of BTB proteins containing Meprin and TRAF homology (MATH) substrate recognition sites was evident in rice and other monocots that likely occurred following the monocot/dicot split. The MATH domain of a subset appears to have evolved significantly faster than those in a smaller core subset that predates flowering plants, suggesting that the substrate recognition module in many monocot MATH-BTB E3s are diversifying to ubiquitinate a set of substrates that are themselves rapidly changing. Intriguing possibilities include pathogen proteins attempting to avoid inactivation by the monocot host. PMID:17720868

  13. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively.

  14. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    PubMed Central

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-01-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA–protein conjugation still limit true emulation of natural host–guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA–protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host–guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging. PMID:28205515

  15. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    NASA Astrophysics Data System (ADS)

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-02-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.

  16. Discovering latent commercial networks from online financial news articles

    NASA Astrophysics Data System (ADS)

    Xia, Yunqing; Su, Weifeng; Lau, Raymond Y. K.; Liu, Yi

    2013-08-01

    Unlike most online social networks where explicit links among individual users are defined, the relations among commercial entities (e.g. firms) may not be explicitly declared in commercial Web sites. One main contribution of this article is the development of a novel computational model for the discovery of the latent relations among commercial entities from online financial news. More specifically, a CRF model which can exploit both structural and contextual features is applied to commercial entity recognition. In addition, a point-wise mutual information (PMI)-based unsupervised learning method is developed for commercial relation identification. To evaluate the effectiveness of the proposed computational methods, a prototype system called CoNet has been developed. Based on the financial news articles crawled from Google finance, the CoNet system achieves average F-scores of 0.681 and 0.754 in commercial entity recognition and commercial relation identification, respectively. Our experimental results confirm that the proposed shallow natural language processing methods are effective for the discovery of latent commercial networks from online financial news.

  17. Network analysis of brain activations in working memory: behavior and age relationships.

    PubMed

    Mencl, W E; Pugh, K R; Shaywitz, S E; Shaywitz, B A; Fulbright, R K; Constable, R T; Skudlarski, P; Katz, L; Marchione, K E; Lacadie, C; Gore, J C

    2000-10-01

    Forty-six middle-aged female subjects were scanned using functional Magnetic Resonance Imaging (fMRI) during performance of three distinct stages of a working memory task-encoding, rehearsal, and recognition-for both printed pseudowords and visual forms. An expanse of areas, involving the inferior frontal, parietal, and extrastriate cortex, was active in response to stimuli during both the encoding and recognition periods. Additional increases during memory recognition were seen in right prefrontal regions, replicating a now-common finding [for reviews, see Fletcher et al. (1997) Trends Neurosci 20:213-218; MacLeod et al. (1998) NeuroImage 7:41-48], and broadly supporting the Hemispheric Encoding/Retrieval Asymmetry hypothesis [Tulving et al. (1994) Proc Natl Acad Sci USA 91:2016-2020]. Notably, this asymmetry was not qualified by the type of material being processed. A few sites demonstrated higher activity levels during the rehearsal period, in the absence of any new stimuli, including the medial extrastriate, precuneus, and the medial temporal lobe. Further analyses examined relationships among subjects' brain activations, age, and behavioral scores on working memory tests, acquired outside the scanner. Correlations between brain scores and behavior scores indicated that activations in a number of areas, mainly frontal, were associated with performance. A multivariate analysis, Partial Least Squares [McIntosh et al. (1996) NeuroImage 3:143-157, (1997) Hum Brain Map 5:323-327], was then used to extract component effects from this large set of univariate correlations. Results indicated that better memory performance outside the scanner was associated with higher activity at specific sites within the frontal and, additionally, the medial temporal lobes. Analysis of age effects revealed that younger subjects tended to activate more than older subjects in areas of extrastriate cortex, medial frontal cortex, and the right medial temporal lobe; older subjects tended to activate more than younger subjects in the insular cortex, right inferior temporal lobe, and right inferior frontal gyrus. These results extend recent reports indicating that these regions are specifically involved in the memory impairments seen with aging. Copyright 2000 Wiley-Liss, Inc.

  18. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    PubMed Central

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Bo; Rodriguez, Ben; Yang, Yanu

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved bymore » the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.« less

  20. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor

    PubMed Central

    Leavitt, Justin C.; Gilcrease, Eddie B.; Wilson, Kassandra; Casjens, Sherwood R.

    2013-01-01

    Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2 kbp region. Our in vivo studies that show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful. PMID:23562538

Top