Scientists' Prioritization of Communication Objectives for Public Engagement.
Dudo, Anthony; Besley, John C
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
Scientists’ Prioritization of Communication Objectives for Public Engagement
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists’ report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public’s trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869
Teaching Efficacy of Universiti Putra Malaysia Science Student Teachers
ERIC Educational Resources Information Center
Bakar, Abd. Rahim; Konting, Mohd. Majid; Jamian, Rashid; Lyndon, Novel
2008-01-01
The objective of the study was to access teaching efficacy of Universiti Putra Malaysia Science student teachers. The specific objectives were to determine teaching efficacy of Science student teachers in terms of student engagement; instructional strategies; classroom management and teaching with computers in classroom; their satisfaction with…
Breininger, David; Duncan, Brean; Eaton, Mitchell J.; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process, where science informs how management alternatives can influence resources, and then, decision makers can use this information to make decisions. A more efficient process is to directly integrate science and decision-making, where science allows us to learn in order to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by the specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuel monitoring with decision-making focused on the dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy; other conditions require tradeoffs between objectives. Knowledge about system responses to actions can be informed by developing hypotheses based on ideas about fire behavior and then applying competing management actions to different land units in the same system state. Monitoring and management integration is important to optimize state-specific management decisions and to increase knowledge about system responses. We believe this approach has broad utility and identifies a clear role for land cover modeling programs intended to inform decision-making.
NASA Technical Reports Server (NTRS)
Breininger, David; Duncan, Brean; Eaton, Mitchell; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process where science informs how management alternatives can influence resources and then decision makers can use this to make decisions. A more efficient process is to directly integrate science and decision making, where science allows us to learn to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuels monitoring with decision making focused on dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy, but habitat trajectories suggest tradeoffs. Knowledge about system responses to actions can be informed by applying competing management actions to different land units in the same system state and by ideas about fire behavior. Monitoring and management integration is important to optimize state-specific management decisions and increase knowledge about system responses. We believe this approach has broad utility for and cover modeling programs intended to inform decision making.
Cell Science-02 Payload Overview
NASA Technical Reports Server (NTRS)
Mitchell, Sarah Diane
2014-01-01
The presentation provides an general overview of the Cell Science-02 science and payload operations to the NASA Payload Operations Integrated Working Group. The overview includes a description of the science objectives and specific aims, manifest status, and operations concept.
Matrix evaluation of science objectives
NASA Technical Reports Server (NTRS)
Wessen, Randii R.
1994-01-01
The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.
ERIC Educational Resources Information Center
Geesaman, Donald P.; Abrahamson, Dean E.
1973-01-01
Forensic science is an approach to study desirability of specific technologies in the context of value objectives and biological imperatives of society. Such groups should be formed with people from various physical and social sciences. (PS)
The value of public health research and the division between basic vs. applied science.
Almeida-Filho, Namoar; Goldbaum, Moisés
2003-02-01
We question the movement towards exclusion of population and social health research from the field of science. The background under analysis is contemporary Brazil, where the scientific field that hosts this kind of research is known as Collective Health. First, the problem is formalized on logical grounds, evaluating the pertinence of considering unscientific the many objects and methods of public health research. Secondly, the cases of pulmonary tuberculosis and external causes are brought in as illustrations of the kind of scientific problem faced in health research today. The logical and epistemological basis of different forms of "scientific segregation" based on biomedical reductionism is analyzed, departing from three theses: (i) the ethics of the general application of science; (ii) the inappropriateness of monopolies for objectivity in the sciences; (iii) the specificity of scientific fields. In the current panorama of health research in Brazil, a residual hegemonic position that defends a narrow and specific definition of the object of knowledge was found. The denial of validity and specificity to objects, methods and research techniques that constitute social and population research in health is linked to elements of irrationality in reductionism approaches. Nevertheless, efforts should be directed to overcome this scientific division, in order to develop a pluralist and interdisciplinary national science, committed to the health care realities of our country.
ERIC Educational Resources Information Center
Georgantaki, Stavroula C.; Retalis, Symeon D.
2007-01-01
"Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…
NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.
ERIC Educational Resources Information Center
CAMAREN, JAMES
ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…
Grade 3 Science Curriculum Specifications.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Curriculum Branch.
The specific content areas and objectives from which the Alberta, Canada, Grade 3 Science Achievement Test questions were derived are outlined in this bulletin. The document contains: (1) curriculum summary (providing a general listing of the process skills, psychomotor skills, attitudes, and subject matter covered at the grade 3 level); (2) a…
ERIC Educational Resources Information Center
Ritz-Salminen, Dianne; Ely, Patricia; Asire, Marty
2000-01-01
Presents four fully developed library media activities that are designed for use with specific curriculum units in music and art, reading and language arts, science, and social studies. Each activity identifies library media skills objectives, curriculum objectives, grade levels, resources, librarian and teacher instructional roles, procedures,…
Space Research and Technology Program: Program and specific objectives, document approval
NASA Technical Reports Server (NTRS)
1982-01-01
A detailed view of the Space Research and Technology program work breakdown structure is provided down to the specific objective level. Goals or objectives at each of these levels are set forth. The specific objective narratives are structured into several parts. First, a short paragraph statement of the specific objective is given. This is followed by a list of subobjectives. A list of targets is then provided for those areas of the specific objective that are amenable to a quantitative description of technical accomplishment and schedule. Fluid and thermal physics, materials and structures, computer science and electronics, space energy conversion, multidisciplinary research, controls and human factors, chemical propulsion, spacecraft systems, transportation systems, platform systems, and spacecraft systems technology comprise the principal research programs.
ERIC Educational Resources Information Center
Awkerman, Gary L.
This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations to impart ocean science understanding, specifically, aspects of marine ecology, to high school students. The course objectives include the ability of…
Introduction: Reengaging with instruments.
Taub, Liba
2011-12-01
Over the past twenty years or so, historians of science have become increasingly sensitized to issues involved in studying and interpreting scientific and medical instruments. The contributors to this Focus section are historians of science who have worked closely with museum objects and collections, specifically instruments used in scientific and medical contexts. Such close engagement by historians of science is somewhat rare, provoking distinctive questions as to how we define and understand instruments, opening up issues regarding the value of broken or incomplete objects, and raising concerns about which scientific and medical artifacts are displayed and interpreted in museums and in what manner. It is hoped that these essays point historians of science in new directions for reengaging with scientific objects and collections.
ERIC Educational Resources Information Center
Wingenbach, Gary J.; White, Judith McIntosh; Degenhart, Shannon; Pannkuk, Tim; Kujawski, Jenna
2007-01-01
Self-efficacy beliefs are defined as context-specific assessments of one's competence to perform specific tasks, influence one's efforts, persistence, and resilience to succeed in a given task. Such beliefs are important determinants when considering agricultural science teachers' subject matter knowledge, teaching comfort levels, and their…
NASA Technical Reports Server (NTRS)
Aaron, Kim
1991-01-01
The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.
ERIC Educational Resources Information Center
Cherry, Carolyn; Louk, Cathy; Barwick, Martha; Kidd, Gentry E.
2001-01-01
Provides five fully developed school library media activities that are designed for use with specific curriculum units in reading/language arts, science, and social studies. Library media skills objectives, curriculum (subject area) objectives, grade levels, resources, instructional roles, activity and procedures for completion, evaluation, and…
Everyday objects of learning about health and healing and implications for science education
NASA Astrophysics Data System (ADS)
Gitari, Wanja
2006-02-01
The role of science education in rural development is of great interest to science educators. In this study I investigated how residents of rural Kirumi, Kenya, approach health and healing, through discussions and semistructured and in-depth interviews with 150 residents, 3 local herbalists, and 2 medical researchers over a period of 6 months. I constructed objects of learning by looking for similarities and differences within interpretive themes. Objects of learning found comprise four types of personal learning tools, three types of relational learning tools, three genres of moral obligation, and five genres of knowledge guarding. Findings show that rural people use (among other learning tools) inner sensing to engage thought processes that lead to health and healing knowledge. The sociocultural context is also an important component in learning. Inner sensing and residents' sociocultural context are not presently emphasized in Kenyan science teaching. I discuss the potential use of rural objects of learning in school science, with specific reference to a health topic in the Kenyan science curriculum. In addition, the findings add to the literature in the Science, Technology, Society, and Environment (STSE) approach to science education, and cross-cultural and global science education.
Evaluation of the Howard Hughes Science Grant Project, Year One
ERIC Educational Resources Information Center
Wolanin, Natalie; Wade, Julie
2015-01-01
The goal of the Howard Hughes Science Institute (HHMI) supported science program is to train one staff member to become a science lead within each of the elementary schools in the Montgomery County (Maryland) Public Schools (MCPS) district. The specific objectives of the first year of HHMI grant project were to: (1) provide approximately 20…
Magnet Coil Test Facility for Researching Magnetic Activity of Pico/Nano/Micro Satellites (PNMSats)
2017-05-16
research involving the College of Agriculture was initiated as a major activity of this research. Specific Objectives: The specific objectives...from the College of Agriculture and another form College of Arts and Science - may be benefitted by it. It is an asset to showcase to visitors and
34 CFR 637.32 - What selection criteria does the Secretary use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM How Does... project; (iii) A clear description of how the objectives of the project relate to the purpose of the... specific needs in science; and (iii) Involvement of appropriate individuals, especially science faculty, in...
Science aspects of a 1980 flyby of Comet Encke with a Pioneer spacecraft
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Elachi, C.; Giffin, C. E.; Huntress, W.; Newburn, R. L.; Parker, R. H.; Taylor, F. W.; Thorpe, T. E.
1974-01-01
Results are presented of an investigation of the feasibility of a 1980 flyby of Comet Encke using a Pioneer class spacecraft. Specific areas studied include: science objectives and rationale; science observables; effects of encounter velocity; science encounter and targeting requirements; selection and description of science instruments; definition of a candidate science payload; engineering characteristics of suggested payload; value of a separable probe; science instruments for a separable probe; science payload integration problems; and science operations profile.
If an antelope is a document, then a rock is data: preserving earth science samples for the future
NASA Astrophysics Data System (ADS)
Ramdeen, S.
2015-12-01
As discussed in seminal works by Briet (1951) and Buckland (1998), physical objects can be considered documents when given specific context. In the case of an antelope, in the wild it's an animal, in a zoo it's a document. It is the primary source of information, specifically when it is made an object of study. When discussing earth science data, we may think about numbers in a spreadsheet or verbal descriptions of a rock. But what about physical materials such as cores, cuttings, fossils, and other tangible objects? The most recent version of the American Geophysical Union's data position statement states data preservation and management policies should apply to both "digital data and physical objects"[1]. If an antelope is a document, than isn't a rock a form of data? Like books in a library or items in a museum, these objects require surrogates (digital or analog) that allow researchers to access and retrieve them. Once these scientific objects are acquired, researchers can process the information they contain. Unlike books, and some museum materials, most earth science objects cannot yet be completely replaced by digital surrogates. A fossil may be scanned, but the original is needed for chemical testing and ultimately for 'not yet developed' processes of scientific analysis. These objects along with their metadata or other documentation become scientific data when they are used in research. Without documentation of key information (i.e. the location where it was collected) these objects may lose their scientific value. This creates a complex situation where we must preserve the object, its metadata, and the connection between them. These factors are important as we consider the future of earth science data, our definitions of what constitutes scientific data, as well as our data preservation and management practices. This talk will discuss current initiatives within the earth science communities (EarthCube's EC3 and iSamples; USGS's data preservation program; etc.) and within the communities of information science. As practitioners, these librarians, information scientists, and archivists work on similar issues and can offer practices and theories that might help us 'future proof' physical earth science records. [1] http://sciencepolicy.agu.org/draft-data-position-statement-comment
ERIC Educational Resources Information Center
Alabi, Olugbenga Omotayo
2016-01-01
This study examined adoption of Information and Communication Technologies (ICTs) by agricultural science and extension teachers in Abuja, Nigeria. Specifically, the objectives are to: identify the background and demographic characteristics of agricultural science and extension teachers in the study area; examine the factors influencing adoption…
Interactive Whiteboards for Teaching and Learning Science: Ascertaining Research
ERIC Educational Resources Information Center
Mata, Liliana; Lazar, Gabriel; Lazar, Iuliana
2016-01-01
The purpose of this paper is to analyze of latest research focused on the investigation of interactive whiteboards used in teaching and learning Science. In the theoretical framework the main objectives are: a) the identification of specific research regarding the integration of interactive whiteboards in teaching and learning Science and b) the…
A Time for Change: Advocating for STSE Education through Professional Learning Communities
ERIC Educational Resources Information Center
Pedretti, Erminia; Bellomo, Katherine
2013-01-01
New science curricula in Ontario position science, technology, society, and environment (STSE) objectives at the fore of all science courses. A professional learning community (PLC) consisting of 24 elementary teachers and a facilitation team was established to assist teachers in meeting the challenges of STSE education. Specifically, we examine…
Evans, Michael S
2009-01-01
In this paper, I examine how scientific disciplines define their boundaries by defining the publics with whom they engage. The case study is an episode in the development of early American sociology. In response to the dual challenge of credibility set up by the conflict between religious Baconian science and secular positivist science, key actors engaged in specific strategies of boundary-work to create their desired "sociological public"--a hybrid form of science-public relations that appealed to hostile university scientists while excluding a supportive religious audience from participation in the production of scientific knowledge. Using this case, I offer two specific insights. First I illustrate how, in the pursuit of scientific credibility, actors engage in boundary-work to differentiate audiences, not just practitioners. Such defining of publics is constitutive of scientific disciplines in their formative stage. Second, I demonstrate how audience boundaries can be redefined through the capture of existing boundary objects. Specifically, the removal of informational content in key boundary objects creates durable boundaries that are difficult to overcome.
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis
2016-02-01
Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.
[Managing Community Colleges by Objectives.
ERIC Educational Resources Information Center
Connellan, Thomas K.; Lahti, Robert E.
These two speeches deal with management by objectives (MBO). The first explains the rationale for such a system based on systems theory, surveys and research projects, and research in the field of behavioral sciences. It is a system of organizational leadership that translates organizational goals into specific objectives for organization members…
Bender, Andrea; Schlimm, Dirk; Beller, Sieghard
2015-10-01
The domain of numbers provides a paradigmatic case for investigating interactions of culture, language, and cognition: Numerical competencies are considered a core domain of knowledge, and yet the development of specifically human abilities presupposes cultural and linguistic input by way of counting sequences. These sequences constitute systems with distinct structural properties, the cross-linguistic variability of which has implications for number representation and processing. Such representational effects are scrutinized for two types of verbal numeration systems-general and object-specific ones-that were in parallel use in several Oceanic languages (English with its general system is included for comparison). The analysis indicates that the object-specific systems outperform the general systems with respect to counting and mental arithmetic, largely due to their regular and more compact representation. What these findings reveal on cognitive diversity, how the conjectures involved speak to more general issues in cognitive science, and how the approach taken here might help to bridge the gap between anthropology and other cognitive sciences is discussed in the conclusion. Copyright © 2015 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Conner, Nathan William
2013-01-01
The purpose of this study was to explore how undergraduate students in a college of agricultural and life sciences experienced cultural adaptation during short-term study abroad programs. The specific objectives of this study were to describe how undergraduate students in the college of agricultural and life sciences experienced culture throughout…
ERIC Educational Resources Information Center
Simmons, Robin
2013-01-01
The objective of this study was to determine if Learning-Focused Strategies (LFS) implemented in high school science courses would affect student achievement and the pass rate of biology and physical science Common District Assessments (CDAs). The LFS, specific teaching strategies contained in the Learning-Focused Strategies Model (LFSM) Program…
New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert J.; /SLAC; Amini, Rashied
Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving themmore » unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.« less
GEWEX America Prediction Project (GAPP) Science and Implementation Plan
NASA Technical Reports Server (NTRS)
2004-01-01
The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.
ERIC Educational Resources Information Center
Reed-Mundell, Charlie
2001-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)
Aeronautics research and technology program and specific objectives
NASA Technical Reports Server (NTRS)
1981-01-01
Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia Needham
2008-06-30
The primary objective of this project was to engage members of the public in an active and balanced deliberative discussion about the social, ethical, legal, environmental, and policy issues arising from nanotechnologies. A second but equally important objective was to interest members of the public in learning more about science and technology and nanotechnology specifically by understanding how it will affect their lives. The objectives were met through a series of electronic and face-to-face citizen forums conducted in conjunction with three Fred Friendly Seminars being taped on the University of California, Berkeley campus in partnership with Lawrence Hall of Sciencemore » (this forum was conducted in partnership with the St. Louis Science Center); the Boston Museum of Science in Boston, MA; and the State Museum of South Carolina in Columbia, South Carolina. The topical area for each forum paralleled the content of the Fred Friendly Seminars series being taped at each location, but specific topics/issues were drawn from the concerns and interests of the communities. The three topical areas included Environmental Impact (St. Louis), Privacy vs. Security (Boston), and Health and Enhancement (Columbia). The PI and project leader worked with the local science centers to identify stakeholder groups, such as academic, corporate and government scientists; environmental advocates; business leaders; science and technology journalists; and public policy makers within each community. Representatives from each group along with members of the general public were invited to participate in a series of on line and in person deliberations that were designed to provide basic information about the science, its potential benefits and risks, and avenues for public participation in policy formulation. On line resources were designed and managed by ScienceVIEW at Lawrence Hall of Science and Earth & Sky, Inc. The activities at each site were evaluated by Inverness Research Associates to assess whether they have achieved the objectives.« less
Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L
The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.
System design of the Pioneer Venus spacecraft. Volume 2: Science
NASA Technical Reports Server (NTRS)
Acheson, L. K.
1973-01-01
The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included.
Teaching Toxicology as a Basic Medical Science
ERIC Educational Resources Information Center
Gralla, Edward J.
1976-01-01
A 4-year effort at Yale University School of Medicine to teach toxicology as an elective basic science from the standpoint of organ-specific toxic effects is described. The objective of the successful multidisciplinary program is to prepare physicians to understand, recognize, and manage adverse effects from drugs and other environmental…
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 2003
2003-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in dramatics, reading, language arts, science, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are describes for each…
American Science Advocacy Organizations: Examining Their Strategies and Engagements with Religion
NASA Astrophysics Data System (ADS)
Rodriguez, Jason T.
Over the past several decades, science advocacy organizations have increasingly participated in discussions of the relationship between science and religion to the public, mainly to counteract the resurgence of anti-evolution activities across the country, to address misconceptions and misunderstandings about science and religion, and to help make science more palatable and less threatening to religious believers. These engagements with religion have primarily involved four organizations: the American Association for the Advancement of Science (AAAS), the National Academy of Sciences (NAS), the National Center for Science Education (NCSE), and the Smithsonian National Museum of Natural History (SNMNH). In their engagements with religion, each of these organizations has simultaneously employed two distinct lines of operation: (1) defending science against anti-science religions and movements and (2) engaging science-friendly religions and the religious public. These lines of operation are driven by key objectives and supported by specific strategies and tactics to achieve those objectives, which this paper seeks to explore and analyze. Key findings and recommendations for science advocacy organizations' ongoing and future engagements with religion are provided.
Item Specifications, Science Grade 8. Blue Prints for Testing Minimum Performance Test.
ERIC Educational Resources Information Center
Arkansas State Dept. of Education, Little Rock.
These item specifications were developed as a part of the Arkansas "Minimum Performance Testing Program" (MPT). There is one item specification for each instructional objective included in the MPT. The purpose of an item specification is to provide an overview of the general content and format of test items used to measure an…
Item Specifications, Science Grade 6. Blue Prints for Testing Minimum Performance Test.
ERIC Educational Resources Information Center
Arkansas State Dept. of Education, Little Rock.
These item specifications were developed as a part of the Arkansas "Minimum Performance Testing Program" (MPT). There is one item specification for each instructional objective included in the MPT. The purpose of an item specification is to provide an overview of the general content and format of test items used to measure an…
Science Experience Unit: Conservation.
ERIC Educational Resources Information Center
Ferguson-Florissant School District, Ferguson, MO.
GRADES OR AGES: Intermediate grades. SUBJECT MATTER: Conservation. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 24 experiments. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: A specific skill or knowledge objective is stated at the beginning of each experiment. Detailed procedures are listed…
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 1996
1996-01-01
Provides five fully developed library media activities designed for use with specific curriculum units in art, health and nutrition, mathematics, science, and social studies. Library media skills, objectives, grade levels, instructional roles, procedures, evaluation, and follow-up are described for each activity. Specific topics include aardvarks,…
Optimizing regional collaborative efforts to achieve long-term discipline-specific objectives
USDA-ARS?s Scientific Manuscript database
Current funding programs focused on multi-disciplinary, multi-agency approaches to regional issues can provide opportunities to address discipline-specific advancements in scientific knowledge. Projects funded through the Agricultural Research Service, Joint Fire Science Program, and the Natural Re...
ERIC Educational Resources Information Center
Dmitrenko, ?amara ?.; Lavryk, Tatjana V.; Yaresko, Ekaterina V.
2015-01-01
Changes in the various fields of knowledge influenced the pedagogical science. The article explains the structure of the foundations of modern pedagogy through paradigmal and methodological aspects. Bases of modern pedagogy include complex of paradigms, object and subject of science, general and specific principles, methods and technologies.…
ERIC Educational Resources Information Center
Robinson, Alice A.
2003-01-01
Provides six library media activities that are designed for use with specific curriculum units in health, science, language arts, and social studies. Each activity identifies library media skills and curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation guidelines, and follow-up activities. (AEF)
Revision and Evaluation of a Course in Behavioral Sciences for Undergraduate Medical Students.
ERIC Educational Resources Information Center
McGuire, Frederick L.; Friedmann, Claude T. H.
1981-01-01
The new teaching format of a behavioral science course at the University of California, Irvine, College of Medicine is described. Specific objectives were to present an introduction of life's developmental cycles, the nature of mind-body relationships, and dynamics of the doctor-patient relationship, and to develop interviewing skills. (MLW)
A Systematic Review: The Next Generation Science Standards and the Increased Cultural Diversity
ERIC Educational Resources Information Center
Asowayan, Alaa A.; Ashreef, Samaar Y.; Omar, Sozan H.
2017-01-01
This systematic review aims to explore the effect of NGSS on students' academic excellence. Specifically, considering increased cultural diversity, it is appropriate to identify student's science-related values, respectful features of teachers' cultural competence, and underlying challenges and detect in what ways these objectives are addressed by…
ERIC Educational Resources Information Center
Ramani, Esther; And Others
1988-01-01
Argues for an ethnographic reorientation to needs analysis and syllabus design in English for specific purposes in advanced postgraduate centers of science and technology. The seven-stage framework (specify learners, analyze needs, specify enabling objectives, select materials, identify teaching/learning activities, evaluate, and revise) used to…
Science exploration opportunities for manned missions to the Moon, Mars, Phobos, and an asteroid
NASA Technical Reports Server (NTRS)
Nash, Douglas B.; Plescia, Jeffrey; Cintala, Mark; Levine, Joel; Lowman, Paul; Mancinelli, Rocco; Mendell, Wendell; Stoker, Carol; Suess, Steven
1989-01-01
Scientific exploration opportunities for human missions to the Moon, Phobos, Mars, and an asteroid are addressed. These planetary objects are of prime interest to scientists because they are the accessible, terresterial-like bodies most likely to be the next destinations for human missions beyond Earth orbit. Three categories of science opportunities are defined and discussed: target science, platform science, and cruise science. Target science is the study of the planetary object and its surroundings (including geological, biological, atmospheric, and fields and particle sciences) to determine the object's natural physical characteristics, planetological history, mode of origin, relation to possible extant or extinct like forms, surface environmental properties, resource potential, and suitability for human bases or outposts. Platform science takes advantage of the target body using it as a site for establishing laboratory facilities and observatories; and cruise science consists of studies conducted by the crew during the voyage to and from a target body. Generic and specific science opportunities for each target are summarized along with listings of strawman payloads, desired or required precursor information, priorities for initial scientific objectives, and candidate landing sites. An appendix details the potential use of the Moon for astronomical observatories and specialized observatories, and a bibliography compiles recent work on topics relating to human scientific exploration of the Moon, Phobos, Mars, and asteroids. It is concluded that there are a wide variety of scientific exploration opportunities that can be pursued during human missions to planetary targets but that more detailed studies and precursor unmanned missions should be carried out first.
Earth Science Missions Engineering Challenges
NASA Technical Reports Server (NTRS)
Marius, Julio L.
2009-01-01
This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.
Addressing Teachers' Feelings of Lack of Control over Policy Issues
ERIC Educational Resources Information Center
Judson, Eugene
2014-01-01
This study reports on how an American Education System course, traditionally taught with broad objectives, was contextualized for science teachers. Using pre-assessment data, specific policy issues were targeted with the objective of increasing teachers' feelings of influence over issues. The approach used was adapted from exposure therapy, a…
The Geospace Mission Definition Team report
NASA Astrophysics Data System (ADS)
Kintner, P.; Spann, J.
The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.
Gómez, Silvia; Tapia, María Jesús; Rueda, Laura
2017-01-01
Background The progression of occupational science in Chile is documented in the main scientific publication of the field, the Chilean Journal of Occupational Therapy (RChTO). Objective Identify approaches to understanding and applying occupation and occupational science as elucidated in the RChTO. Methodology A systematic qualitative review of the journal (2001–2012) identified articles elucidating an approach to understanding and application operationally defined as references to specific authors, theories, models/paradigms, definitions, and other fields that support approaches to O/OS. Results The study identified two main approaches. The first considers occupation/occupational science from a practical perspective or as a means to explain human behavior; the second considers occupation/occupational science as an object of study. Each approach is further divided into categories. Conclusion This study provides a novel perspective on regional use of occupational science concepts. These findings contribute to our understanding of this science in context and to recognition of the cultural relevance of these scientific concepts. PMID:29097971
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
The Jupiter System Observer Mission Concept: Scientific Investigation of the Jovian System
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; Sdt, J.
2007-12-01
NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." This JPL-led study's final report is now complete and was submitted in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. The study's NASA-appointed, multi-institutional Science Definition Team (SDT) identified a rich set of science objectives that JSO can address quite well. The highly capable science payload (including ~50-cm optics), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the SDT evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts, and some options available for emphasizing specific science objectives. This work was performed at JPL, APL, and other institutions under contract to NASA.
ERIC Educational Resources Information Center
Liu, Shuyan; Oakland, Thomas
2016-01-01
The objective of this current study is to identify the growth and development of scholarly literature that specifically references the term "school psychology" in the Science Citation Index from 1907 through 2014. Documents from Web of Science were accessed and analyzed through the use of scientometric analyses, including HistCite and…
SCDC Spanish Curricula Units. Science/Math, Unit 10, Grade 3, Teacher's Guide.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Unit 10 of a Spanish science/math curriculum for grade three, composed of kits 37-40, has as its theme "communities around the world". The unit's teacher's guide contains both learning and assessment activities, with the focus, objective, and materials needed for each activity listed. Specific attention is placed on four spiraling questions…
Moving Science off the "Back Burner": Meaning Making within an Action Research Community of Practice
ERIC Educational Resources Information Center
Goodnough, Karen
2008-01-01
In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers' beliefs about…
ERIC Educational Resources Information Center
City Univ. of New York, NY. Hunter Coll.
Intended to extend the existing science and health education curriculum at junior and senior high school levels, the curriculum presents four mini-units on specific disabilities. The first section provides lesson plans about hearing impairments, and includes four lesson plans listing themes, objectives, and discussion guidelines for such topics as…
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
The impact of Life Science Identifier on informatics data.
Martin, Sean; Hohman, Moses M; Liefeld, Ted
2005-11-15
Since the Life Science Identifier (LSID) data identification and access standard made its official debut in late 2004, several organizations have begun to use LSIDs to simplify the methods used to uniquely name, reference and retrieve distributed data objects and concepts. In this review, the authors build on introductory work that describes the LSID standard by documenting how five early adopters have incorporated the standard into their technology infrastructure and by outlining several common misconceptions and difficulties related to LSID use, including the impact of the byte identity requirement for LSID-identified objects and the opacity recommendation for use of the LSID syntax. The review describes several shortcomings of the LSID standard, such as the lack of a specific metadata standard, along with solutions that could be addressed in future revisions of the specification.
Mars 2020 Science Rover: Science Goals and Mission Concept
NASA Astrophysics Data System (ADS)
Mustard, John F.; Beaty, D.; Bass, D.
2013-10-01
The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses the requirements specified by NASA in the SDT charter while also ensuring alignment with the recommendations of the National Academy of Sciences Decadal Survey for Planetary Exploration (Visions and Voyages, 2011).
ERIC Educational Resources Information Center
Ministerio de Educacion, Guatemala City (Guatemala). Direccion de Bienestar Estudiantil y Educacion Especial.
This booklet presents specification tables illustrating the relative importance given to topics on tests within a particular subject area. The general subject areas are social studies, Spanish, mathematics, and natural sciences. Tables are provided for final exams in each of these areas for several primary grades, illustrating the importance of…
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.
A Case Study of Periodical Use by Library and Information Science Students
ERIC Educational Resources Information Center
Ivins, Tammy
2013-01-01
There is a lack of information in the literature about the sources used for research by modern Master of Library and Information Science students in the United States, and so the objective of this project is to understand the use of periodical articles by these students. Specifically: do articles play a major role in student research, how current…
ERIC Educational Resources Information Center
Schroeder, Carolyn M.; Scott, Timothy P.; Tolson, Homer; Huang, Tse-Yang; Lee, Yi-Hsuan
2007-01-01
This project consisted of a meta-analysis of U.S. research published from 1980 to 2004 on the effect of specific science teaching strategies on student achievement. The six phases of the project included study acquisition, study coding, determination of intercoder objectivity, establishing criteria for inclusion of studies, computation of effect…
ERIC Educational Resources Information Center
Rouhol-Amin, Irandokht
The grade 6 social studies curriculum on Africa for French immersion is outlined. The syllabus consists of seven units. Each contains an instructional objective (in English); a number of specific performance objectives; and for each performance objective, required and optional vocabulary, a list of related activities, and exercises for classroom…
ERIC Educational Resources Information Center
Seifert, Mel
Covering the period between July 1 to December 31, 1976, this third semi-annual report on the Applied Fishery Science Program operative at Sheldon Jackson College in Sitka, Alaska deals primarily with the first quarter of hatchery and educational program operation. Specifically, this report addresses the following: Program Objectives; Advisory…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
The Washington grade 4-6 mathematics curriculum is organized according to the Small Schools Materials format which lists the sequence of learning objectives related to a specific curriculum area, recommends a teaching and mastery grade placement, and identifies activities, monitoring procedures and possible resources used in teaching to the…
Schroeder, R.L.
2006-01-01
It is widely accepted that plans for restoration projects should contain specific, measurable, and science-based objectives to guide restoration efforts. The United States Fish and Wildlife Service (USFWS) is in the process of developing Comprehensive Conservation Plans (CCPs) for more than 500 units in the National Wildlife Refuge System (NWRS). These plans contain objectives for biological and ecosystem restoration efforts on the refuges. Based on USFWS policy, a system was developed to evaluate the scientific quality of such objectives based on three critical factors: (1) Is the objective specific, measurable, achievable, results-oriented, and time-fixed? (2) What is the extent of the rationale that explains the assumptions, logic, and reasoning for the objective? (3) How well was available science used in the development of the objective? The evaluation system scores each factor on a scale of 1 (poor) to 4 (excellent) according to detailed criteria. The biological and restoration objectives from CCPs published as of September 2004 (60 total) were evaluated. The overall average score for all biological and restoration objectives was 1.73. Average scores for each factor were: Factor 1-1.97; Factor 2-1.86; Factor 3-1.38. The overall scores increased from 1997 to 2004. Future restoration efforts may benefit by using this evaluation system during the process of plan development, to ensure that biological and restoration objectives are of the highest scientific quality possible prior to the implementation of restoration plans, and to allow for improved monitoring and adaptive management.
Learner factors associated with radical conceptual change among undergraduates
NASA Astrophysics Data System (ADS)
Olson, Joanne Kay
Students frequently enter learning situations with knowledge inconsistent with scientific views. One goal of science instruction is to enable students to construct scientifically accepted ideas while rejecting inaccurate constructs. This process is called conceptual change. This study examined factors associated with students at three levels of conceptual change to elucidate possible influences on the conceptual change process. Factors studied included motivation (including utility value, interest, attainment value, mood, self efficacy, and task difficulty), prior experiences with science, perceptions of the nature of science, connections to objects or events outside the classroom, and specific activities that helped students learn. Four science classes for undergraduate preservice elementary teachers participated in the study, conducted during a three week unit on electricity. Data sources included concept maps, drawings, reflective journal entries, quizzes, a science autobiography assignment, and interviews. Concept maps, drawings, and quizzes were analyzed, and students were placed into high, moderate, and low conceptual change groups. Of the ninety-eight students in the study, fifty-seven were interviewed. Perhaps the most important finding of this study relates to the assessment of conceptual change. Interviews were conducted two months after the unit, and many items on the concept maps had decayed from students' memories. This indicates that time is an important factor. In addition, interview-derived data demonstrated conceptual change levels; concept maps were insufficient to indicate the depth of students' understanding. Factors associated with conceptual change include self efficacy and interest in topic. In addition, moderate conceptual change students cited specific activities as having helped them learn. Low and high students focused on the method of instruction rather than specific activities. Factors not found to be associated with conceptual change include: utility value, mood, task difficulty, and prior experiences with science, and connections to objects and events outside the classroom. Attainment value, perceptions of the nature of science, and mood cannot be ruled out as possible factors due to the problematic nature of assessing them within the context of this study.
The Shuttle Imaging Radar B (SIR-B) experiment report
NASA Technical Reports Server (NTRS)
Cimino, Jo Bea; Holt, Benjamin; Richardson, Annie
1988-01-01
The primary objective of the SIR-B experiment was to acquire multiple-incidence-angle radar imagery of a variety of Earth's surfaces to better understand the effects of imaging geometry on radar backscatter. A complementary objective was to map extensive regions of particular interest. Under these broad objectives, many specific scientific experiments were defined by the 43 SIR-B Science Team members, including studies in the area of geology, vegetation, radar penetration, oceanography, image analysis, and calibration technique development. Approximately 20 percent of the planned digital data were collected, meeting 40 percent of the scientific objectives. This report is an overview of the SIR-B experiment and includes the science investigations, hardware design, mission scenario, mission operations, events of the actual missions, astronaut participation, data products (including auxiliary data), calibrations, and a summary of the actual coverage. Also included are several image samples.
History, philosophy, and science teaching: The present rapprochement
NASA Astrophysics Data System (ADS)
Matthews, Michael R.
1992-03-01
This paper traces the use of, and arguments for, the history and philosophy of science in school science courses. Specific attention is paid to the British National Curriculum proposals and to the recommendations of the US Project 2061 curriculum guidelines. Some objections to the inclusion of historical material in science courses are outlined and answered. Mention is made of the Piagetian thesis that individual psychological development mirrors the development of concepts in the history of science. This introduces the topic of idealisation in science. Some significant instances are itemised where science education has, at its considerable cost, ignored work in philosophy of science. Arguments for the inclusion of the history and philosophy of science in science teacher education programmes are given. The paper finishes with a list of topical issues in present science education where collaboration between science teachers, historians, philosophers, and sociologists would be of considerable benefit.
NASA Astrophysics Data System (ADS)
Papadouris, Nicos; Constantinou, Constantinos P.
2017-04-01
Promoting facility with content knowledge is one of the most important objectives of science teaching. Conventionally, the focus for this objective is placed on the substantive side of content knowledge (e.g. science concepts/laws), whereas its epistemic or ontological aspects (e.g. why do we construct concepts?) rarely receive explicit attention. In this article, we develop a theoretical argument for the value of elevating the attention paid to the epistemic/ontological aspects of content knowledge and integrating them with its substantive side. Our argument is structured in two parts. The first unpacks the epistemic/ontological aspects of content knowledge and their role in science. For this, we focus on two specific aspects (i.e. ontological status and epistemic value of science concepts), which we elaborate in the context of two particular content domains, namely magnetism and energy. The second part of the argument highlights the potential of discourse on epistemic/ontological aspects to facilitate learning in science. We delineate how such discourse could (a) promote coherent conceptual understanding, (b) foster a productive epistemological stance towards science learning, and (c) enhance students' appreciation of ideas associated with the nature of science. The article concludes with a discussion of ensuing implications for science education.
ERIC Educational Resources Information Center
Germain, Claudia; Mayo, Jeanne B.; Hart, Lisa
2000-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in reading and language arts, science, social studies, and music. Library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each activity. (LRW)
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 1996
1996-01-01
Provides seven library media activities that are designed for use with specific curriculum units in art, health, reading and language arts, science, and social studies. Library media skills, objectives, grade levels, instructional roles, procedures, evaluations, and follow-up are described for each activity. (LRW)
Engineering Specifications derived from Science Requirements
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc
2013-01-01
Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.
NASA Astrophysics Data System (ADS)
Hendrick, Alan W.
The vision presented by the National Academy of Science Standards is for all students to spend more time 'doing' science in order to develop science literacy and be better prepared not only for college but also in understanding and participation in global current events. A course in observational Astronomy is just that, an opportunity for student to "do 'science by collaborating with actual scientists in real research. The course follows a path in which students learn foundational knowledge and apply this knowledge to complete a successful celestial observation, interpreting the results by making inferences and predictions. This paper begins with a statement of need followed by specific learning objectives in a Texas Essential Knowledge and Skills format. Resources and activities follow along with specific directions on how to plan and operate the Observatory at Las Palms State Park in Olmito Texas. Participation in this course will give students confidence to pursue science related subjects in higher education.
Curriculum in aerospace science and technology in cooperation with NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Garner-Gilchrist, Cathine
1988-01-01
A curriculum was written to show teachers how to best use the many resources that are available at the Teacher Resource Center (TRC). This curriculum packet was written using teaching units that teachers in both the elementary and middle schools can use to help students better understand some of the research that has been conducted at NASA and will be conducted in the future. The units are written with certain standards. Each unit contains: (1) specific objectives, using the Virginia standards of learning; (2) the materials that are available from the TRC; (3) many activities that teachers can use in a variety of ways; and (4) specific strategies for measuring the objectives to determine if the students mastered the knowledge, concepts or skills that were taught. The curriculum packet contains specific units on several topics. They are: (1) Careers in Aerospece Science and Technology; (2) The History of Flight; (3) The History of Satellites; (4) The History of the Manned Space Projects and the Future of the Future of the Space Program; (5) The Solar System; and (6) The History of Rockets.
Structure, processing, and properties of potatoes
NASA Astrophysics Data System (ADS)
Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.
1992-06-01
The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.
Structure, processing, and properties of potatoes
NASA Technical Reports Server (NTRS)
Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.
1992-01-01
The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.
DOT National Transportation Integrated Search
2010-04-01
The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...
ERIC Educational Resources Information Center
Dana, Richard H.; Leech, Shirley
1974-01-01
Present psychological assessment stems from a philosophy of science that values objectivity but fails to comprehend the existence of the person being evaluated. A humanistic-existential model shifts the focus from omnipotence to encounter and encourages client responsibility. Some pertinent assessment issues are formulated and specific instruments…
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 2003
2003-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in reading, language arts, science, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are described for each activity. (LRW)
NASA Technical Reports Server (NTRS)
Sobeck, Charlie (Editor)
1987-01-01
The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.
The policy chicken and the science egg. Has applied ecology failed the transgenic crops debate?
Gray, A J
2014-12-01
Ecology has a long history of research relevant to and impacting on real-world issues. Nonetheless problems of communication remain between policy-makers and scientists because they tend to work at different levels of generality (policy deals with broad issues, science prefers specific questions), and complexity (policy-makers want simple answers, ecologists tend to offer multi-factorial solutions) and to different timescales (policy-makers want answers tomorrow, ecologists always seem to want more time). These differences are not unique to the debate about the cultivation of transgenic crops. Research on gene flow is used to illustrate how science and policy are intimately bound together in a value-laden, iterative and messy process unlike that characterised by the 'encounter problem-do science-make policy' model. It also demonstrates how the gap between science and policy is often characterised by value-laden language. Scientists involved in ERA for transgenic crops may find their engagement with policy- and decision-makers clouded by misunderstanding about what one should expect from the other. Not the least of these, that science can define harm, is explored in a discussion of the U.K. Farm Scale Evaluations of herbicide-tolerant GM crops. The varied responses to these extensive trials highlight the problems of linking specific scientific experiments with broad policy objectives. The problems of applied ecology in the transgenic crops debate are not unique but may differ from other areas of environmental policy in the intense politicisation of the debate, the emphasis on assessment of risk and the particularly broad policy objectives.
Applying gene flow science to environmental policy needs: a boundary work perspective.
Ridley, Caroline E; Alexander, Laurie C
2016-08-01
One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.
Survey of Sea Strait Data Around Japan.
1981-07-01
study was financially supported by the Office of Naval Research, Coastal Sciences Program, under contract N00014-809-C-0039, Project No. NR 388-159/9...Objective The principal objective of this study is to review and consolidate existing oceanographic information relating to three major sea straits...these sea straits are shown in Figure 1-1. More specifically, the study called for ccmpiling the following products: 1. Data Inventory System o Search
NEEMO 20: Science Training, Operations, and Tool Development
NASA Technical Reports Server (NTRS)
Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.
2016-01-01
The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 1986
1986-01-01
Provides six library media activities designed for use in connection with specific curriculum units in art, science, and social studies. The activities focus on appreciating Georgia O'Keefe, sound travel, rock identification, Thanksgiving customs, state road maps, and world religions. The descriptions include objectives, grade levels,…
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
This collection of lessons deals with nutrition in health and medicine and specifically the digestive system and its functions. The primary objective of this collection of lessons is to provide information on what constitutes good nutrition. Among the problems treated in these lessons are heart disease, peptic ulcer, hepatitis, vitamin deficiency…
Science Objectives and Design of the European Seas Observatory NETwork (ESONET)
NASA Astrophysics Data System (ADS)
Ruhl, H.; Géli, L.; Karstensen, J.; Colaço, A.; Lampitt, R.; Greinert, J.; Phannkuche, O.; Auffret, Y.
2009-04-01
The needs for a network of ocean observing systems cross many applied and research areas of earth and marine science. Many of the science areas that can be examined using such systems have direct impacts on societal health and well being and our understanding of ocean function in a shifting climate. The European Seas Observatory NETwork (ESONET) Network of Excellence has been evaluating ocean observatory design requirements, data management needs, standardization and interoperability concerns, social implications, outreach and education, as well as financial and legal aspects of developing such a system. ESONET has great potential to address a growing set of Earth science questions that require a broad and integrated network of ocean and seafloor observations. ESONET activities are also importantly integrating researchers in the European Community, as well as internationally. There is now wide recognition that research addressing science questions of international priority, such as understanding the potential impacts of climate change or geohazards like earthquakes and tsunamis should be conducted in a framework that can address questions across adequate temporal and spatial scales. We will present the relevant science priorities in the four interconnected fields of geoscience, physical oceanography, biogeochemistry, and marine ecology, and some of the practical ways in which these questions can be addressed using ESONET. Several key questions persist that will require comprehensive interdisciplinary approaches including: How can monitoring of factors such as seismic activity, fluid pore chemistry and pressure, improve seismic, slope failure, and tsunami warning? To what extent do seabed processes influence ocean physics, biogeochemistry, and marine ecosystems? How are physical and biogeochemical processes that occur at differing scales related? What aspects of physical oceanography and biogeochemical cycling will be most sensitive to climate change? What will the important feedbacks of potential ecological change be on biogeochemical cycles? What are the factors that control the distribution and abundance of marine life and what will the influence of anthropogenic change be? We will outline a set of science objectives and observation parameters to be collected at all ESONET sites, as well as a set of rather specific objectives and thus parameters that might only be measured at some sites. We will also present the preliminary module specifications now being considered by ESONET. In a practical sense the observatory design has been divided into those that will be included in a so called ‘generic' module and those that will be part of science-specific modules. Outlining preliminary module specifications is required to move forward with studies of observatory design and operation. These specifications are importantly provisional and can be updated as science needs and feasibility change. A functional cleavage not only comes between aspects that are considered generic or specific, but also the settings in which those systems will be used. For example, some modules will be on the seabed and some will be moored in the water column. In order to address many of the questions posed above ESONET users will require other supporting data from other programs from local to international levels. Examples of these other data sources include satellite oceanographic data, climatic data, air-sea interface data, and the known distribution and abundances of marine fauna. Thus the connection of ESONET to other programs is integral to its success. The development of ESONET provides a substantial opportunity for ocean science to evolve in Europe. Furthermore, ESONET and several other developing ocean observatory programs are integrating into larger science frameworks including the Global Earth Observation System of Systems (GEOSS) and Global Monitoring of Environment and Security (GMES) programs. It is only in a greater integrated framework that the full potential of the component systems will be realized.
Halliday, Drew W R; MacDonald, Stuart W S; Scherf, K Suzanne; Sherf, Suzanne K; Tanaka, James W
2014-01-01
Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals.
Halliday, Drew W. R.; MacDonald, Stuart W. S.; Sherf, Suzanne K.; Tanaka, James W.
2014-01-01
Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals. PMID:24853862
7 CFR 3402.3 - Institutional eligibility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... colleges and universities, by colleges and universities having significant minority enrollments and a... universities having a demonstrable capacity to carry out the teaching of food and agricultural sciences. All... specific subject area for which a grant application is made. It is the objective to award grants to...
7 CFR 3402.3 - Institutional eligibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... colleges and universities, by colleges and universities having significant minority enrollments and a... universities having a demonstrable capacity to carry out the teaching of food and agricultural sciences. All... specific subject area for which a grant application is made. It is the objective to award grants to...
7 CFR 3402.3 - Institutional eligibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... colleges and universities, by colleges and universities having significant minority enrollments and a... universities having a demonstrable capacity to carry out the teaching of food and agricultural sciences. All... specific subject area for which a grant application is made. It is the objective to award grants to...
Erectable space platform for space sciences and applications
NASA Technical Reports Server (NTRS)
1979-01-01
The specific objectives of the study were to: (1) identify a viable conceptual design for the service module/platform; (2) assess the technology issues that must be faced in planning development; and (3) prepare an initial plan for bringing critical technologies up to acceptable levels.
Social Constructivism and Case-Writing for an Integrated Curriculum
ERIC Educational Resources Information Center
Doubleday, Alison F.; Brown, Blase; Patston, Philip A.; Jurgens-Toepke, Pamela; Strotman, Meaghan Driscoll; Koerber, Anne; Haley, Colin; Briggs, Charlotte; Knight, G. William
2015-01-01
Case-writing within an integrated, systems-based health professions education curriculum presents many unique challenges. Specifically, case-writing in this context must consider integration of multidisciplinary learning objectives and synthesis of biomedical and clinical sciences. Establishing an effective process for content integration and…
Recommendations relative to the scientific missions of a Mars Automated Roving Vehicle (MARV)
NASA Technical Reports Server (NTRS)
Spencer, R. L. (Editor)
1973-01-01
Scientific objectives of the MARV mission are outlined and specific science systems requirements and experimental payloads defined. All aspects of the Martian surface relative to biotic and geologic elements and those relating to geophysical and geochemical properties are explored.
Bio-objects and the media: the role of communication in bio-objectification processes.
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-06-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.
NASA Technical Reports Server (NTRS)
Beauchamp, P. M.; Brown, R. H.; Capps, R. W.; Rodgers, D. H.; Sercel, J.; Vane, G.; Soderblom, L. A.; Yelle, R. V.
1994-01-01
The technological capabilities are now at hand to design an integrated system that combines science instruments, spacecraft, and propulsion elements into a single system. The authors have called this a sciencecraft since it is intended to provide automatic scientific observations of planetary and astrophysical objects. Integration of function allows lower mass and cost and supports a short development cycle. A specific science mission is described in this paper, a flyby of Neptune, Triton, and an object in the Kuiper belt. The SCIENCECRAFT system is described. It has electric propulsion and is capable of measuring the surface constituents and morphology of objects visited and characterizing their atmospheres both in emission and adsorption (against the Sun). Miniature fields and particles experiments are incorporated that will provide interplanetary information together with details of the magnetic and electric attributes of each object. The Sciencecraft is Delta launched and has a flight time to the Kuiper belt of 7 years. The design is such that the craft functions in a largely autonomous mode to provide low cost mission operations.
NASA Astrophysics Data System (ADS)
Furbish, Dean Russel
The purpose of this study is to examine pragmatist constructivism as a science education referent for adult learners. Specifically, this study seeks to determine whether George Herbert Mead's doctrine, which conflates pragmatist learning theory and philosophy of natural science, might facilitate (a) scientific concept acquisition, (b) learning scientific methods, and (c) preparation of learners for careers in science and science-related areas. A philosophical examination of Mead's doctrine in light of these three criteria has determined that pragmatist constructivism is not a viable science education referent for adult learners. Mead's pragmatist constructivism does not portray scientific knowledge or scientific methods as they are understood by practicing scientists themselves, that is, according to scientific realism. Thus, employment of pragmatist constructivism does not adequately prepare future practitioners for careers in science-related areas. Mead's metaphysics does not allow him to commit to the existence of the unobservable objects of science such as molecular cellulose or mosquito-borne malarial parasites. Mead's anti-realist metaphysics also affects his conception of scientific methods. Because Mead does not commit existentially to the unobservable objects of realist science, Mead's science does not seek to determine what causal role if any the hypothetical objects that scientists routinely posit while theorizing might play in observable phenomena. Instead, constructivist pragmatism promotes subjective epistemology and instrumental methods. The implication for learning science is that students are encouraged to derive scientific concepts based on a combination of personal experience and personal meaningfulness. Contrary to pragmatist constructivism, however, scientific concepts do not arise inductively from subjective experience driven by personal interests. The broader implication of this study for adult education is that the philosophically laden claims of constructivist learning theories need to be identified and assessed independently of any empirical support that these learning theories might enjoy. This in turn calls for educational experiences for graduate students of education that incorporate philosophical understanding such that future educators might be able to recognize and weigh the philosophically laden claims of adult learning theories.
Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire
2006-01-01
In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and efficiency and reducing costs of instruments and networks. Encourage a breadth of scientific capabilities in Menlo Park to foster interdisciplinary science. Communicate USGS science to a diverse audience.
ESIP Earth Sciences Data Analytics (ESDA) Cluster - Work in Progress
NASA Technical Reports Server (NTRS)
Kempler, Steven
2015-01-01
The purpose of this poster is to promote a common understanding of the usefulness of, and activities that pertain to, Data Analytics and more broadly, the Data Scientist; Facilitate collaborations to better understand the cross usage of heterogeneous datasets and to provide accommodating data analytics expertise, now and as the needs evolve into the future; Identify gaps that, once filled, will further collaborative activities. Objectives Provide a forum for Academic discussions that provides ESIP members a better understanding of the various aspects of Earth Science Data Analytics Bring in guest speakers to describe external efforts, and further teach us about the broader use of Data Analytics. Perform activities that:- Compile use cases generated from specific community needs to cross analyze heterogeneous data- Compile sources of analytics tools, in particular, to satisfy the needs of the above data users- Examine gaps between needs and sources- Examine gaps between needs and community expertise- Document specific data analytics expertise needed to perform Earth science data analytics Seek graduate data analytics Data Science student internship opportunities.
Basing Science Ethics on Respect for Human Dignity.
Aközer, Mehmet; Aközer, Emel
2016-12-01
A "no ethics" principle has long been prevalent in science and has demotivated deliberation on scientific ethics. This paper argues the following: (1) An understanding of a scientific "ethos" based on actual "value preferences" and "value repugnances" prevalent in the scientific community permits and demands critical accounts of the "no ethics" principle in science. (2) The roots of this principle may be traced to a repugnance of human dignity, which was instilled at a historical breaking point in the interrelation between science and ethics. This breaking point involved granting science the exclusive mandate to pass judgment on the life worth living. (3) By contrast, respect for human dignity, in its Kantian definition as "the absolute inner worth of being human," should be adopted as the basis to ground science ethics. (4) The pathway from this foundation to the articulation of an ethical duty specific to scientific practice, i.e., respect for objective truth, is charted by Karl Popper's discussion of the ethical principles that form the basis of science. This also permits an integrated account of the "external" and "internal" ethical problems in science. (5) Principles of the respect for human dignity and the respect for objective truth are also safeguards of epistemic integrity. Plain defiance of human dignity by genetic determinism has compromised integrity of claims to knowledge in behavioral genetics and other behavioral sciences. Disregard of the ethical principles that form the basis of science threatens epistemic integrity.
Seeing beyond Computer Science and Software Engineering
NASA Astrophysics Data System (ADS)
Nori, Kesav Vithal
The boundaries of computer science are defined by what symbolic computation can accomplish. Software Engineering is concerned with effective use of computing technology to support automatic computation on a large scale so as to construct desirable solutions to worthwhile problems. Both focus on what happens within the machine. In contrast, most practical applications of computing support end-users in realizing (often unsaid) objectives. It is often said that such objectives cannot be even specified, e.g., what is the specification of MS Word, or for that matter, any flavour of UNIX? This situation points to the need for architecting what people do with computers. Based on Systems Thinking and Cybernetics, we present such a viewpoint which hinges on Human Responsibility and means of living up to it.
Astronomical activities of the Apollo orbital science photographic team
NASA Technical Reports Server (NTRS)
Mercer, R. D.
1974-01-01
A partial accounting of Apollo Orbital Science Photographic Team (APST) work is presented as reported by one of its members who provided scientific recommendations for, guidance in, and reviews of photography in astronomy. Background on the formation of the team and its functions and management are discussed. It is concluded that the APST clearly performed the overall objective for which it was established - to improve the scientific value of the Apollo lunar missions. Specific reasons for this success are given.
ERIC Educational Resources Information Center
Mayo, Jeanne B. Pilgrim; Bautz, Kim
2001-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in guidance, reading, language arts, science, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each activity. (LRW)
Conversations: with Carl Pilcher [interview by Johan Benson].
Pilcher, C
1998-11-01
An interview with Carl Pilcher, science program director for solar system exploration at NASA, examines NASA's past, present, and planned missions to explore the solar system. Specific questions relate to the status of current and planned missions, science results of the Pathfinder mission to Mars, cooperation with the Japanese space agency, the status of the search for extraterrestrial life in solar system meteoroids and asteroids, mission size for more in-depth exploration, reports of water on the moon, and the exploration of near-Earth objects.
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 2001
2001-01-01
Provides six fully developed library media activities that are designed for use with specific curriculum units in guidance, health, mathematics, science, reading, language arts, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each…
ERIC Educational Resources Information Center
Barbour, Jeffrey Paul; Ward, Lisa M.
2001-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in art, home economics, social studies, reading, language arts, and science. Library Media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each…
NEEMO 15: Evaluation of Human Exploration Systems for Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Gernhardt, Michael L.
2011-01-01
The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on near-Earth Asteroid (NEA) exploration techniques evaluation. It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of "far field survey" approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of scientific objectives developed by the science team based on review and discussion of previous related marine science research including previous marine science saturation missions conducted at the Aquarius habitat. AUV data was used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the "near field survey" approach that is expected to be performed by a multi mission space exploration vehicle (MMSEV) during a human mission to a NEA before conducting extravehicular activities (EVA)s. In addition to the science objectives that were pursued, the NEEMO 15 science traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the "near field survey" in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crewmembers, tools, and equipment that could be used to perform these tasks on a NEA. Specifically, the productivity and acceptability of simulated NEA exploration activities were systematically quantified and compared when operating with different combinations of crew sizes and exploration systems including MMSEVs, EVA jet packs, and EVA translation devices.
The naphthalene state of the science symposium: objectives, organization, structure, and charge.
Belzer, Richard B; Bus, James S; Cavalieri, Ercole L; Lewis, Steven C; North, D Warner; Pleus, Richard C
2008-07-01
This report provides a summary of the objectives, organization, structure and charge for the naphthalene state of the science symposium (NS(3)), Monterey, CA, October 9-12, 2006. A 1-day preliminary conference was held followed by a 3-day state of the science symposium covering four topics judged by the Planning Committee to be crucial for developing valid and reliable scientific estimates of low-dose human cancer risk from naphthalene. The Planning Committee reviewed the relevant scientific literature to identify singularly knowledgeable researchers and a pool of scientists qualified to serve as expert panelists. In two cases, independent scientists were commissioned to develop comprehensive reviews of the relevant science in a specific area for which no leading researcher could be identified. Researchers and expert panelists alike were screened for conflicts of interest. All policy issues related to risk assessment practices and risk management were scrupulously excluded. NS(3) was novel in several ways and provides an innovative model for the effective use of peer review to identify scientific uncertainties and propose research strategies for reducing or eliminating them prior to the conduct of risk assessment.
Gifted Education in the Netherlands
ERIC Educational Resources Information Center
De Boer, Greet C.; Minnaert, Alexander E. M. G.; Kamphof, Gert
2013-01-01
In the summer of 2011, the Dutch Minister of Education, Culture, and Science presented a letter to the Cabinet, containing the policy objectives for the education of talented, gifted, and highly gifted students. In action plans for primary, secondary, and higher education, in addition to the development of teacher skills, specific measures were…
Teaching Quality Object-Oriented Programming
ERIC Educational Resources Information Center
Feldman, Yishai A.
2005-01-01
Computer science students need to learn how to write high-quality software. An important methodology for achieving quality is design-by-contract, in which code is developed together with its specification, which is given as class invariants and method pre- and postconditions. This paper describes practical experience in teaching design-by-contract…
Know Nukes: A Nuclear Power Issues Curriculum Project.
ERIC Educational Resources Information Center
Butterfield, Charlie; McCandless, Marjorie
Classroom activities are presented to help teachers introduce general controversial issues and specific issues on nuclear power in their high school science, social studies, and English classes. Objectives are to help students understand the various techniques of persuasion; the relationship between bias, persuasion, and fact; how these techniques…
ERIC Educational Resources Information Center
Wood, Eve; Maggi, Barbara Hall; Napier, Marion; Troisi, Andrea; Heiser, Pam; Rinehart, Sharon
1998-01-01
Provides six fully developed library media activities that are designed for use with specific curriculum units in reading and language arts, art, mathematics, science, and social studies. Library media skills, objectives, grade levels, instructional roles, evaluation, and follow-up are described for each activity. (LRW)
Toward a Climate OSSE for NASA Earth Sciences
NASA Astrophysics Data System (ADS)
Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.
2016-12-01
In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth Sciences will require answers from the climate research community to basic questions, such as whether a COSSE capability should be centralized or de-centralized. Most importantly, the quantified scientific objective of a proposed mission must be defined with extreme specificity for a COSSE to be applied.
EVER-EST: a virtual research environment for Earth Sciences
NASA Astrophysics Data System (ADS)
Marelli, Fulvio; Albani, Mirko; Glaves, Helen
2016-04-01
There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST data processing infrastructure will be based on a Cloud Computing approach, in which new applications can be integrated using "virtual machines" that have their own specifications (disk size, processor speed, operating system etc.) and run on shared private (physical deployment over local hardware) or commercial Cloud infrastructures. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains including: ocean monitoring, natural hazards, land monitoring and risk management (volcanoes and seismicity). Each VRC will use the virtual research environment according to its own specific requirements for data, software, best practice and community engagement. This user-centric approach will allow an assessment to be made of the capability for the proposed solution to satisfy the heterogeneous needs of a variety of Earth Science communities for more effective collaboration, and higher efficiency and creativity in research. EVER-EST is funded by the European Commission's H2020 for three years starting in October 2015. The project is led by the European Space Agency (ESA), involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.
ERIC Educational Resources Information Center
Hampp, Constanze; Schwan, Stephan
2015-01-01
One characteristic of science centers and science museums is that they communicate scientific findings by presenting real scientific objects. In particular, science museums focus on the historical context of scientific discoveries by displaying authentic objects, defined as original objects that once served a science-related, real-world purpose…
The SE role in establishing, verifying and controlling top-level program requirements
NASA Technical Reports Server (NTRS)
Mathews, Charles W.
1993-01-01
The program objectives and requirements described in the preceding paragraphs emphasize mission demonstrations. Obtaining desired science or applications information is another type of program objective. The program requirements then state the need for specific data, usually specifying a particular instrument or instrument set; the operating conditions under which the data is to be obtained (e.g., orbit altitude, field of view, and pointing accuracy); and the data handling and use. Conversely, a new instrument may be conceived or created with the program objective to establish its use potential. The Multispectral Scanner employed in the Landsat program is an example.
Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.
Tohkin, Masahiro
2017-01-01
I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.
STENCIL: Science Teaching European Network for Creativity and Innovation in Learning
NASA Astrophysics Data System (ADS)
Cattadori, M.; Magrefi, F.
2013-12-01
STENCIL is an european educational project funded with support of the European Commission within the framework of LLP7 (Lifelong Learning Programme) for a period of 3 years (2011 - 2013). STENCIL includes 21 members from 9 European countries (Bulgaria, Germany, Greece, France, Italy, Malta, Portugal, Slovenia, Turkey.) working together to contribute to the general objective of improving science teaching, by promoting innovative methodologies and creative solutions. Among the innovative methods adept a particolar interest is a joint partnership between a wide spectrum of type of institutions such as schools, school authorities, research centres, universities, science museums, and other organizations, representing differing perspectives on science education. STENCIL offers to practitioners in science education from all over Europe, a platform; the web portal - www.stencil-science.eu - that provides high visibility to schools and institutions involved in Comenius and other similar European funded projects in science education. STENCIL takes advantage of the positive results achieved by the former European projects STELLA - Science Teaching in a Lifelong Learning Approach (2007 - 2009) and GRID - Growing interest in the development of teaching science (2004-2006). The specific objectives of the project are : 1) to identify and promote innovative practices in science teaching through the publication of Annual Reports on Science Education; 2) to bring together science education practitioners to share different experiences and learn from each other through the organisation of periodical study visits and workshops; 3) to disseminate materials and outcomes coming from previous EU funded projects and from isolated science education initiatives through the STENCIL web portal, as well as through international conferences and national events. This contribution aims at explaining the main features of the project together with the achieved results during the project's 3 year lifetime-span.
Constitutions of Nature by Teacher Practice and Discourse in Ontario Grade 9 and 10 Academic Science
NASA Astrophysics Data System (ADS)
Hoeg, Darren Glen
This thesis presents an ethnographic study, based broadly on principles and methods of institutional ethnography, on the constitution of nature by nine Ontario Grade 9 and 10 Academic Science teachers. The intent of this methodological approach is to examine how the daily practice of participants works toward constituting nature in specific ways that are coordinated by the institution (Ontario public school and/or school science). Critical Discourse Analysis and general inductive analysis were performed on interview transcripts, texts related to teaching science selected by participants, and policy documents (i.e. curriculum; assessment policy) that coordinate science teacher practice. Findings indicate specific, dominant, and relatively uniform ontological and epistemological constitutions of nature. Nature was frequently constituted as a remote object, distant from and different than students studying it. More complex representations included constituting nature as a model, machine, or mathematical algorithm. Epistemological constitutions of nature were enacted through practices that engaged students in manipulating nature; controlling nature, and dominating nature. Relatively few practices that allow students to construct different constitutions of nature than those prioritized by the institution were observed. Dominant constitutions generally assume nature is simply the material to study, from which scientific knowledge can be obtained, with little ethical or moral consideration about nature itself, or how these constitutions produce discourse and relationships that may be detrimental to nature. Dominant constitutions of nature represent a type of objective knowledge that is prioritized, and made accessible to students, through science activities that attain a position of privilege in local science teacher cultures. The activities that allow students to attain the requisite knowledge of nature are collected, collated, and shared among existing science teachers. Activities are adapted to meet the knowledge requirements of the curriculum, which is institutionally coordinated by a system of management, based on accountability and performance. Thus, teachers come to see teaching practice that 'works' as contained in those science activities that engage students in learning nature as a specific representation (model/machine) or through science methods that control students learning so that they arrive at the correct knowledge. This allows teachers to assess and evaluate students' acquisition of the institutionally valued knowledge of nature. This system of coordination is sustained through discourse that enables teaching practices that aligns with institutional priorities of measuring performance, while at the same time, limiting teachers from being able to conceive of other teaching practices that might enable different constitutions of nature.
Common foundations of optimal control across the sciences: evidence of a free lunch
NASA Astrophysics Data System (ADS)
Russell, Benjamin; Rabitz, Herschel
2017-03-01
A common goal in the sciences is optimization of an objective function by selecting control variables such that a desired outcome is achieved. This scenario can be expressed in terms of a control landscape of an objective considered as a function of the control variables. At the most basic level, it is known that the vast majority of quantum control landscapes possess no traps, whose presence would hinder reaching the objective. This paper reviews and extends the quantum control landscape assessment, presenting evidence that the same highly favourable landscape features exist in many other domains of science. The implications of this broader evidence are discussed. Specifically, control landscape examples from quantum mechanics, chemistry and evolutionary biology are presented. Despite the obvious differences, commonalities between these areas are highlighted within a unified mathematical framework. This mathematical framework is driven by the wide-ranging experimental evidence on the ease of finding optimal controls (in terms of the required algorithmic search effort beyond the laboratory set-up overhead). The full scope and implications of this observed common control behaviour pose an open question for assessment in further work. This article is part of the themed issue 'Horizons of cybernetical physics'.
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
NASA Astrophysics Data System (ADS)
Dufoe, A.; Guertin, L. A.
2012-12-01
This project looks to help teachers utilize iPad technology in their classrooms as an instructional tool for Earth system science and connections to the Big Ideas in Earth Science. The project is part of Penn State University's National Science Foundation (NSF) Targeted Math Science Partnership grant, with one goal of the grant to help current middle school teachers across Pennsylvania engage students with significant and complex questions of Earth science. The free Apple software iBooks Author was used to create an electronic book for the iPad, focusing on a variety of controversial issues impacting the hydrosphere. The iBook includes image slideshows, embedded videos, interactive images and quizzes, and critical thinking questions along Bloom's Taxonomic Scale of Learning Objectives. Outlined in the introductory iBook chapters are the Big Ideas of Earth System Science and an overview of Earth's spheres. Since the book targets the hydrosphere, each subsequent chapter focuses on specific water issues, including glacial melts, aquifer depletion, coastal oil pollution, marine debris, and fresh-water chemical contamination. Each chapter is presented in a case study format that highlights the history of the issue, the development and current status of the issue, and some solutions that have been generated. The next section includes critical thinking questions in an open-ended discussion format that focus on the Big Ideas, proposing solutions for rectifying the situation, and/or assignments specifically targeting an idea presented in the case study chapter. Short, comprehensive multiple-choice quizzes are also in each chapter. Throughout the iBook, students are free to watch videos, explore the content and form their own opinions. As a result, this iBook fulfills the grant objective by engaging teachers and students with an innovative technological presentation that incorporates Earth system science with current case studies regarding global water issues.
Solving the "Hidden Line" Problem
NASA Technical Reports Server (NTRS)
1984-01-01
David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Leslie A.
The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advancesmore » in science and technology.« less
Cola, Philip A.; Rosenblum, Daniel
2013-01-01
Abstract Emphasis has been placed on assessing the efficiency of clinical and translational research as part of the National Institutes of Health (NIH) goal to “improve human health.” Improvements identified and implemented by individual organizations cannot address the research infrastructure needs of all clinical and translational research conducted. NIH's National Center for Advancing Translational Sciences (NCATS) has brought together 61 Clinical and Translational Science Award (CTSA) sites creating a virtual national laboratory that reflects the diversity and breadth of academic medical centers to collectively improve clinical and translational science. The annual Clinical Research Management workshop is organized by the CTSA consortium with participation from CTSA awardees, NIH, and others with an interest in clinical research management. The primary objective of the workshop is to disseminate information that improves clinical research management although the specific objectives of each workshop evolve within the consortium. The fifth annual workshop entitled “Learning by doing; applying evidence‐based tools to re‐engineer clinical research management” took place in June 2012. The primary objective of the 2012 workshop was to utilize data to evaluate, modify, and improve clinical research management. This report provides a brief summary of the workshop proceedings and the major themes discussed among the participants. PMID:23919369
Strasser, Jane E; Cola, Philip A; Rosenblum, Daniel
2013-08-01
Emphasis has been placed on assessing the efficiency of clinical and translational research as part of the National Institutes of Health (NIH) goal to "improve human health." Improvements identified and implemented by individual organizations cannot address the research infrastructure needs of all clinical and translational research conducted. NIH's National Center for Advancing Translational Sciences (NCATS) has brought together 61 Clinical and Translational Science Award (CTSA) sites creating a virtual national laboratory that reflects the diversity and breadth of academic medical centers to collectively improve clinical and translational science. The annual Clinical Research Management workshop is organized by the CTSA consortium with participation from CTSA awardees, NIH, and others with an interest in clinical research management. The primary objective of the workshop is to disseminate information that improves clinical research management although the specific objectives of each workshop evolve within the consortium. The fifth annual workshop entitled "Learning by doing; applying evidence-based tools to re-engineer clinical research management" took place in June 2012. The primary objective of the 2012 workshop was to utilize data to evaluate, modify, and improve clinical research management. This report provides a brief summary of the workshop proceedings and the major themes discussed among the participants. © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.
2016-01-01
The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.
Influencing the Future: Special Considerations for IPY Education and Outreach
NASA Astrophysics Data System (ADS)
Beitler, J.
2004-12-01
The International Geophysical Year (IGY) of 1957-1958 created a valuable legacy, by not only advancing the sciences involved, but by also stimulating interest in and support for science, and by inspiring many to enter science careers. Successful education and outreach efforts in conjunction with IGY transmitted this energy to the public and helped researchers to create this legacy. The International Polar Year (IPY) for 2007-2008 again holds promise to generate new scientific insights and leave a similar legacy -- if the sciences are once again successful in connecting with the public. Despite the fine example of the IGY of 1958 -1959, the way forward for meaningful education and outreach for IPY isn't entirely clear. Every element affecting science education and outreach today is considerably more complex, and the distinct challenges and opportunities of today may not always be addressed by simply extending what has been helpful in the past. Whether a large research group or an individual researcher, whether working with a dedicated outreach staff or conducting outreach more informally, whether already operating successful outreach programs or starting from scratch, any project intending an education and outreach effort will significantly increase its relevance and effectiveness by taking pause to formulate specific goals and objectives for IPY. Such thinking shouldn't be entirely delegated to non-researchers. The engagement of the scientists themselves in setting objectives for education and outreach will provide the strongest outcome. This discussion analyzes the communication setting for IPY as it affects outreach and education efforts, and proposes a model for discussing and formulating outreach and education objectives. It poses the key questions that should be asked and answered in order to ensure that researchers take full advantage of education and outreach opportunities with IPY, whatever the scope of their efforts. Education and outreach programs that are thus informed by thoughtful objective-setting will have the best chance to be a valuable investment in the future of science and society.
ERIC Educational Resources Information Center
Medlin, Dorene
2017-01-01
The purpose of this study was to determine the impact of internationalizing a curricular component of the class on preservice teachers. By realigning course objectives and including a content specific Albany State University internationalization initiative framework, the project evaluated the impact on preservice teacher knowledge of culturally…
ERIC Educational Resources Information Center
Jeeroburkhan, M. Fazal
This study evaluated the Agricultural Curriculum Project which is being implemented in 16 secondary schools in Mauritius. Specific areas examined included: (1) the relevance, appropriateness, and practicability of the project's general objectives; (2) the relevance, balance, and organization of the course content; (3) the effectiveness and…
Linear Multimedia Benefits To Enhance Students' Ability To Comprehend Complex Subjects.
ERIC Educational Resources Information Center
Handal, Gilbert A.; Leiner, Marie A.; Gonzalez, Carlos; Rogel, Erika
The main objective of this program was to produce animated educational material to stimulate students' interest and learning process related to the sciences and to measure their impact. The program material was designed to support middle school educators with an effective, accessible, and novel didactic tool produced specifically to enhance and…
Proceedings of the Mars Global Network Mission Workshop
NASA Technical Reports Server (NTRS)
Sturms, Francis M., Jr. (Editor)
1990-01-01
A workshop on the Mars Global Network Mission held at the Jet Propulsion Laboratory (JPL) on February 6 and 7, 1990, was attended by 68 people from JPL, National Aeronautics and Space Administration centers, universities, national laboratories, and industry. Three working sessions on science and exploration objectives, mission and system design concepts, and subsystem technology readiness each addressed three specific questions on implementation concepts for the mission. The workshop generated conclusions for each of the nine questions and also recommended several important science and engineering issues to be studied subsequent to the workshop.
ERIC Educational Resources Information Center
Shugar, Candace; Robinson, Alice A.
2003-01-01
Provides six fully developed library media activities that are designed for use with specific curriculum units in creative dramatics, language arts, social studies, reading, and science. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are described for…
How Things Work: The Physics of Everyday Life, 2nd Edition
NASA Astrophysics Data System (ADS)
Bloomfield, Louis A.
2000-12-01
Written primarily for a one-term, undergraduate level course, this book attempts to convey an understanding and appreciation for the concepts and principles of Physics by finding them within specific objects of everyday experience. It's primary market are liberal arts students who are seeking a connection between science and the world they live in; among its many secondary markets are the growing number of institutions offering courses with scientific real-world context. These courses may also be offered to students from the Sciences, Engineering, Architecture, and other technical fields.
The Aeronomy of Ice in the Mesosphere Mission: Overview and Early Results
NASA Astrophysics Data System (ADS)
Russell, J. M.; Bailey, S. M.; Thomas, G.; Rusch, D.; Gordley, L. L.; Hervig, M.; Horanyi, M.; Randall, C.; McClintock, W.; Siskind, D. E.; Stevens, M.; Englert, C.; Taylor, M.; Summeers, M.; Merkel, A.
2007-12-01
The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and in-situ cosmic dust detectors - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. Brief descriptions of the science, instruments and observation scenario will be presented along with early science results.
Simonton, Dean Keith
2009-09-01
Prior research supports the inference that scientific disciplines can be ordered into a hierarchy ranging from the "hard" natural sciences to the "soft" social sciences. This ordering corresponds with such objective criteria as disciplinary consensus, knowledge obsolescence rate, anticipation frequency, theories-to-laws ratio, lecture disfluency, and age at recognition. It is then argued that this hierarchy can be extrapolated to encompass the humanities and arts and interpolated within specific domains to accommodate contrasts in subdomains (e.g., revolutionary versus normal science). This expanded and more finely differentiated hierarchy is then shown to have a partial psychological basis in terms of dispositional traits (e.g., psychopathology) and developmental experiences (e.g., family background). This demonstration then leads to three hypotheses about how a creator's domain-specific impact depends on his or her disposition and development: the domain-progressive, domain-typical, and domain-regressive creator hypotheses. Studies published thus far lend the most support to the domain-regressive creator hypothesis. In particular, major contributors to a domain are more likely to have dispositional traits and developmental experiences most similar to those that prevail in a domain lower in the disciplinary hierarchy. However, some complications to this generalization suggest the need for more research on the proposed hierarchical model. © 2009 Association for Psychological Science.
Bio-objects and the media: the role of communication in bio-objectification processes
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-01-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763
Morrison, Rodolfo; Gómez, Silvia; Henny, Enrique; Tapia, María Jesús; Rueda, Laura
2017-01-01
The progression of occupational science in Chile is documented in the main scientific publication of the field, the Chilean Journal of Occupational Therapy (RChTO). Identify approaches to understanding and applying occupation and occupational science as elucidated in the RChTO. A systematic qualitative review of the journal (2001-2012) identified articles elucidating an approach to understanding and application operationally defined as references to specific authors, theories, models/paradigms, definitions, and other fields that support approaches to O/OS. The study identified two main approaches. The first considers occupation/occupational science from a practical perspective or as a means to explain human behavior; the second considers occupation/occupational science as an object of study. Each approach is further divided into categories. This study provides a novel perspective on regional use of occupational science concepts. These findings contribute to our understanding of this science in context and to recognition of the cultural relevance of these scientific concepts.
From Witnessing to Recording--Material Objects and the Epistemic Configuration of Science Classes
ERIC Educational Resources Information Center
Roehl, Tobias
2012-01-01
Drawing on concepts developed in actor-network theory and postphenomenology this article shows how material objects in the science classroom become part of epistemic configurations and thus co-shape science education. An ethnographic study on epistemic objects in science education is the basis for the analysis of two of these objects: experimental…
NASA Astrophysics Data System (ADS)
Richardson Bruna, Katherine
2010-06-01
In this article, I return to the interactions of Augusto and his teacher in an "English Learner Science" classroom in a demographically-transitioning US Midwest community (Richardson Bruna and Vann in Cult Stud Sci Educ 2:19-59, 2007) and further engage a class-first perspective to achieve two main conceptual objectives. First, I examine Augusto's science education experience as a way of understanding processes Rouse (Towards a transnational perspective on migration: Race, class, ethnicity, and nationalism reconsidered. The New York Academy of Sciences, New York, 1992) refers to as "the disciplinary production of class-specific subjects" (p. 31). Coming from a subsistence farming community in rural Mexico to an industrialized meatpacking community in semi-rural Iowa, I describe how Augusto undergoes a change in his class identity (experiences a Class Transformation) that is not just reflected but, in fact, produced in his science class. Second, I examine the work Augusto does to resist these processes of disciplinary production as he reshapes his teacher's instruction (promotes a class transformation) through specific transnational social capital he leverages as peer mediation. My overall goals in the article are to demonstrate the immediate relevance of a socio-historical, situated perspective to science teaching and learning and to outline domains of action for an insurgent, class-cognizant, science education practice informed by transnational social capital, like Augusto's.
Astrobiology: A Roadmap for Charting Life in the Universe
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincezi, D. (Technical Monitor)
2002-01-01
Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.
NASA Astrophysics Data System (ADS)
Jung, Karl G.; Brown, Julie C.
2016-12-01
To engage in the practices of science, students must have a strong command of science academic language. However, content area teachers often make academic language an incidental part of their lesson planning, which leads to missed opportunities to enhance students' language development. To support pre-service elementary science teachers (PSTs) in making language planning an explicit part of their science lessons, we created the Academic Language Planning Organizer (ALPO). The purpose of this study was to determine the effectiveness of the ALPO on two levels: first, by examining participants' interactions with the ALPO as they identified academic language features, objectives and supports; and second, by exploring the ways that participants translated identified language supports to planned science activities. Findings indicated that, when using the ALPO, PSTs identified clear language functions and relevant vocabulary terms, and also frequently developed clear, observable and measurable language objectives. When lesson planning, PSTs were largely successful in translating previously identified language supports to their lesson plans, and often planned additional language supports beyond what was required. We also found, however, that the ALPO did not meet its intended use in supporting PSTs in identifying discourse and syntax demands associated with specific academic language functions, suggesting that revisions to the ALPO could better support PSTs in identifying these academic language demands. Implications for supporting PSTs' planning for and scaffolding of science academic language use are presented.
Science potential from a Europa lander.
Pappalardo, R T; Vance, S; Bagenal, F; Bills, B G; Blaney, D L; Blankenship, D D; Brinckerhoff, W B; Connerney, J E P; Hand, K P; Hoehler, T M; Leisner, J S; Kurth, W S; McGrath, M A; Mellon, M T; Moore, J M; Patterson, G W; Prockter, L M; Senske, D A; Schmidt, B E; Shock, E L; Smith, D E; Soderlund, K M
2013-08-01
The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.
NASA Astrophysics Data System (ADS)
Abualrob, Marwan M. A.; Gnanamalar Sarojini Daniel, Esther
2013-10-01
This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second, using this list, ninth grade science textbooks and curriculum document contents were analyzed. Third, based on this content analysis, a possible list of 71 learning objectives for the integration of STS elements was prepared. This list of learning objectives was refined by using a two-round Delphi technique. The Delphi study was used to rate and to determine the consensus regarding which items (i.e. learning objectives for STS in the ninth grade science textbooks in Palestine) are to be accepted for inclusion. The results revealed that of the initial 71 objectives in round one, 59 objectives within round two had a mean score of 5.683 or higher, which indicated that the learning objectives could be included in the development of STS modules for ninth grade science in Palestine.
ERIC Educational Resources Information Center
Borsky, Amanda E.
2014-01-01
The objective of this dissertation was to evaluate a bystander behavior program at the Jefferson College of Health Sciences (JCHS) in Roanoke, Virginia. Specifically, this dissertation examined the: (1) preliminary measurement properties of a newly developed bystander behavior intention scale; (2) impact of the bystander intervention at JCHS; and…
ERIC Educational Resources Information Center
Williams, Twyman G., Jr.
The effectiveness of visible recorded feedback responses in teaching scientific theory and principles to vocational agriculture students was studied. Specific objectives were to determine the value of group feedback to the teacher, the difference in learning retention between students with and without feedback, and the difference in efficient use…
Using Blogs to Enhance Student Engagement and Learning in the Health Sciences
ERIC Educational Resources Information Center
Zinger, Lana; Sinclair, Alicia
2013-01-01
Teaching in a diverse, urban community college, it has become apparent that students spend most of their free (and classroom) time participating in social media. In response, we decided to incorporate social media, blogs specifically, as a way to increase student engagement, retention and achievement. The learning objective was for our students to…
ERIC Educational Resources Information Center
Mitchell, Sidney Kirk
2011-01-01
The objective of this research was to identify specific factors that contribute to underrepresented minority (African American, Hispanic, Native American) undergraduate students' success in STEM disciplines at a regional university during the 2007-2010 timeframe. As more underrepresented minority (URM) students complete STEM degrees, many will…
Science-based requirements and operations development for the Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
McConnachie, Alan W.; Flagey, Nicolas; Murowinski, Rick; Szeto, Kei; Salmon, Derrick; Withington, Kanoa; Mignot, Shan
2016-07-01
MSE is a wide field telescope (1.5 square degree field of view) with an aperture of 11.25m. It is dedicated to multi-object spectroscopy at several different spectral resolutions in the range R 2500 - 40000 over a broad wavelength range (0:36 - 1:8μm). MSE enables transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. Here, we summarize the Observatory and describe the development of the top level science requirements and operational concepts. Specifically, we describe the definition of the Science Requirements to be the set of capabilities that allow certain high impact science programs to be conducted. We cross reference these science cases to the science requirements to illustrate the traceability of this approach. We further discuss the operations model for MSE and describe the development of the Operations Concept Document, one of the foundational documents for the project. We also discuss the next stage in the science based development of MSE, specifically the development of the initial Legacy Survey that will occupy a majority of time on the telescope over the first few years of operation.
Europa Explorer - An Exceptional Mission Using Existing Technology
NASA Technical Reports Server (NTRS)
Clark, Karla B.
2007-01-01
A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.
Concepts and Categories: A Cognitive Neuropsychological Perspective
Mahon, Bradford Z.; Caramazza, Alfonso
2010-01-01
One of the most provocative and exciting issues in cognitive science is how neural specificity for semantic categories of common objects arises in the functional architecture of the brain. More than two decades of research on the neuropsychological phenomenon of category-specific semantic deficits has generated detailed claims about the organization and representation of conceptual knowledge. More recently, researchers have sought to test hypotheses developed on the basis of neuropsychological evidence with functional imaging. From those two fields, the empirical generalization emerges that object domain and sensory modality jointly constrain the organization of knowledge in the brain. At the same time, research within the embodied cognition framework has highlighted the need to articulate how information is communicated between the sensory and motor systems, and processes that represent and generalize abstract information. Those developments point toward a new approach for understanding category specificity in terms of the coordinated influences of diverse regions and cognitive systems. PMID:18767921
Complementary competencies: public health and health sciences librarianship
Banks, Marcus A.; Cogdill, Keith W.; Selden, Catherine R.; Cahn, Marjorie A.
2005-01-01
Objectives: The authors sought to identify opportunities for partnership between the communities of public health workers and health sciences librarians. Methods: The authors review competencies in public health and health sciences librarianship. They highlight previously identified public health informatics competencies and the Medical Library Association's essential areas of knowledge. Based on points of correspondence between the two domains, the authors identify specific opportunities for partnership. Results: The points of correspondence between public health and health sciences librarianship are reflected in several past projects involving both communities. These previous collaborations and the services provided by health sciences librarians at many public health organizations suggest that some health sciences librarians may be considered full members of the public health workforce. Opportunities remain for productive collaboration between public health workers and health sciences librarians. Conclusions: Drawing on historical and contemporary experience, this paper presents an initial framework for forming collaborations between health sciences librarians and members of the public health workforce. This framework may stimulate thinking about how to form additional partnerships between members of these two communities. PMID:16059423
An Overview of Environmental Education in Middle School Natural Science Courses
ERIC Educational Resources Information Center
Zhanbao, Shu
2004-01-01
Environmental education in middle school natural science courses is based on integrating environmental knowledge into natural science education. Therefore, environmental education objectives should be set as an extension of the objectives for natural science education. However, in order to reach the objectives laid out for environmental education…
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 1997
1997-01-01
Provides seven fully developed library media activities that are designed for use with specific curriculum units in mathematics, reading and language arts, science, and social studies for elementary and secondary education. Library media skills, objectives, grade levels, resources, instructional roles, evaluation, and follow-up are described for…
The PDS4 Information Model and its Role in Agile Science Data Curation
NASA Astrophysics Data System (ADS)
Hughes, J. S.; Crichton, D.
2017-12-01
PDS4 is an information model-driven service architecture supporting the capture, management, distribution and integration of massive planetary science data captured in distributed data archives world-wide. The PDS4 Information Model (IM), the core element of the architecture, was developed using lessons learned from 20 years of archiving Planetary Science Data and best practices for information model development. The foundational principles were adopted from the Open Archival Information System (OAIS) Reference Model (ISO 14721), the Metadata Registry Specification (ISO/IEC 11179), and W3C XML (Extensible Markup Language) specifications. These provided respectively an object oriented model for archive information systems, a comprehensive schema for data dictionaries and hierarchical governance, and rules for rules for encoding documents electronically. The PDS4 Information model is unique in that it drives the PDS4 infrastructure by providing the representation of concepts and their relationships, constraints, rules, and operations; a sharable, stable, and organized set of information requirements; and machine parsable definitions that are suitable for configuring and generating code. This presentation will provide an over of the PDS4 Information Model and how it is being leveraged to develop and evolve the PDS4 infrastructure and enable agile curation of over 30 years of science data collected by the international Planetary Science community.
NASA Technical Reports Server (NTRS)
Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.;
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M
2008-08-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.
Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review
Jin, Jun
2014-01-01
Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education. Positive outcomes for student learning included providing rich, authentic problems and/or case contexts for learning; supporting student development of medical expertise through the accessing and structuring of expert knowledge and skills; making disciplinary thinking and strategies explicit; providing a platform to elicit articulation, collaboration, and reflection; and reducing perceived cognitive load. Limitations included cumbersome scenarios, infrastructure requirements, and the need for staff and student support in light of the technological demands of new affordances. Conclusions This literature review demonstrates the generally positive effect of educational technologies in PBL. Further research into the various applications of educational technology in PBL curricula is needed to fully realize its potential to enhance problem-based approaches in health sciences education. PMID:25498126
Counting, accounting, and accountability: Helen Verran's relational empiricism.
Kenney, Martha
2015-10-01
Helen Verran uses the term 'relational empiricism' to describe situated empirical inquiry that is attentive to the relations that constitute its objects of study, including the investigator's own practices. Relational empiricism draws on and reconfigures Science and Technology Studies' traditional concerns with reflexivity and relationality, casting empirical inquiry as an important and non-innocent world-making practice. Through a reading of Verran's postcolonial projects in Nigeria and Australia, this article develops a concept of empirical and political 'accountability' to complement her relational empiricism. In Science and an African Logic, Verran provides accounts of the relations that materialize her empirical objects. These accounts work to decompose her original objects, generating new objects that are more promising for the specific postcolonial contexts of her work. The process of decomposition is part of remaining accountable for her research methods and accountable to the worlds she is working in and writing about. This is a practice of narrating relations and learning to tell better technoscientific stories. What counts as better, however, is not given, but is always contextual and at stake. In this way, Verran acts not as participant-observer, but as participant-storyteller, telling stories to facilitate epistemic flourishing within and as part of a historically located community of practice. The understanding of accountability that emerges from this discussion is designed as a contribution, both practical and evocative, to the theoretical toolkit of Science and Technology Studies scholars who are interested in thinking concretely about how we can be more accountable to the worlds we study.
Jones, Nancy L.; Peiffer, Ann M.; Lambros, Ann; Eldridge, J. Charles
2013-01-01
Purpose A process evaluation was conducted to assess whether the newly developed Problem-Based Learning (PBL) curriculum designed to teach professionalism and ethics to biomedical graduate students was achieving its objectives. The curriculum was chosen to present realistic cases and issues in the practice of science, to promote skill development and to acculturate students to professional norms of science. Method The perception to which the objectives for the curriculum and courses were being reached was assessed using 5-step Likert-scaled questions, open-ended questions and interviews of students and facilitators. Results Process evaluation indicated that both facilitators and students perceived course objectives were being met. For example, active learning was preferred over lectures; both faculty and students percieved that the curriculum increased their understanding of norms, role obligations, and responsibilities of professional scientists; their ability to identify ethical situations was increased; skills in moral reasoning and effective group work were developed. Conclusions Information gathered was used to improve course implementation and instructional material. For example, a negative perception as an “ethics” course was addressed by redesigning case debriefing activities that reinforced learning objectives and important skills. Cases were refined to be more engaging and relevant for students, and facilitators were given more specific training and resources for each case. The PBL small group strategy can stimulate an environment more aware of ethical implications of science and increase socialization and open communication about professional behavior. PMID:20663754
The oblique perspective: philosophical diagnostics of contemporary life sciences research.
Zwart, Hub
2017-12-01
This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.
The struggle of translating science into action: Foundational concepts of implementation science
Clay‐Williams, Robyn; Churruca, Kate; Shih, Patti; Hogden, Anne; Braithwaite, Jeffrey
2017-01-01
Abstract Rationale, aims, and objectives “Implementation science,” the scientific study of methods translating research findings into practical, useful outcomes, is contested and complex, with unpredictable use of results from routine clinical practice and different levels of continuing assessment of implementable interventions. The authors aim to reveal how implementation science is presented and understood in health services research contexts and clarify the foundational concepts: diffusion, dissemination, implementation, adoption, and sustainability, to progress knowledge in the field. Method Implementation science models, theories, and frameworks are critiqued, and their value for laying the groundwork from which to implement a study's findings is emphasised. The paper highlights the challenges of turning research findings into practical outcomes that can be successfully implemented and the need for support from change agents, to ensure improvements to health care provision, health systems, and policy. The paper examines how researchers create implementation plans and what needs to be considered for study outputs to lead to sustainable interventions. This aspect needs clear planning, underpinned by appropriate theoretical paradigms that rigorously respond to a study's aims and objectives. Conclusion Researchers might benefit from a return to first principles in implementation science, whereby applications that result from research endeavours are both effective and readily disseminated and where interventions can be supported by appropriate health care personnel. These should be people specifically identified to promote change in service organisation, delivery, and policy that can be systematically evaluated over time, to ensure high‐quality, long‐term improvements to patients' health. PMID:28371050
ERIC Educational Resources Information Center
Levinson, Ralph; Kent, Phillip; Pratt, David; Kapadia, Ramesh; Yogui, Cristina
2012-01-01
Risk has now become a feature of science curricula in many industrialized countries. While risk is conceptualized within a number of different theoretical frameworks, the predominant model used in examination specifications is a utility model in which risk calculations are deemed to be objective through technical expert assessment and where the…
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Although the use of prescribed fire as a management tool is widespread, there is great variability and uncertainty in the treatment costs. Given specific site variables and management objectives, how much will it cost to use prescribed fire? This paper describes the FASTRACS database, a tool that has been developed to aid managers in addressing this question.
ERIC Educational Resources Information Center
Geller, Elaine; Foley, Gilbert M.
2009-01-01
Purpose: To outline an expanded framework for clinical practice in speech-language pathology. This framework broadens the focus on discipline-specific knowledge and infuses mental health constructs within the study of communication sciences and disorders, with the objective of expanding the potential "ports or points of entry" (D. Stern, 1995) for…
Understanding geological processes: Visualization of rigid and non-rigid transformations
NASA Astrophysics Data System (ADS)
Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.
2012-12-01
Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid reasoning within the panels of science experts. In a second study, individual differences in reasoning about brittle deformations were correlated with reasoning about ductile deformations (e.g., what a bent plastic sheet would look like when unbent). Students who were good at visualizing what something looked like before it was broken were also good at visualizing what something looked like before it was bent, and this skill was not correlated to reasoning about rigid rotations. These findings suggest the cognitive processes that support reasoning about rigid and non-rigid events may differ and thus may require different types of support and training. We do not know if differences between experts and novices result from experience or self-selection, or both. Nevertheless, the range of spatial skill evinced by novices and experts strongly argues for designing visualizations to support a variety of users.
Scientific progress specific to biology: an epistemological overview.
Durrive, Barthélemy
2012-09-01
Progresses in leading edge life sciences are undeniable, but there is more to it: from an epistemological perspective, they rest on a paradox vitalizing the very project of biology. Making our understanding of organic functioning all the more objective, life sciences yet exploit a paradigm which structurally rules out any opportunity to explain why biological phenomena are explainable the way we claim they are. As such a blind spot is constitutive of the disciplinary boundaries that condition and permit objective modelling, evolutions in scientists' mode of thought (i.e. paradigm shifts) may require at crucial points some interaction with epistemologists or historians of sciences. The model case of ontophylogenesis thus shows not only how such cooperation can be useful (both in normal science and in transitional contexts), but mostly why it plays a role in helping biology to get out of its intrinsic paradox. The most innovative feature of ontophylogenesis would thus be the following: to give account for the mode of intelligibility it chose by explaining it - in a truly Darwinian manner -in the core of the theory. Though this epistemic move definitely confirms biology to be an autonomous science as long as it faces its constitutive paradox, the methodological detour such realization implied would go through occasional interplay with "exclusively reflexive approaches" - that is to say, humanities. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pisa, Carlos Cabañero; López, Enric Serradell
Teamwork is considered one of the most important professional skills in today's business environment. More specifically, the collaborative work between professionals and information technology managers from various functional areas is a strategic key in competitive business. Several university-level programs are focusing on developing these skills. This article presents the case of the course Computer Science Applied to Management (hereafter CSAM) that has been designed with the objective to develop the ability to work cooperatively in interdisciplinary teams. For their design and development have been addressed to the key elements of efficiency that appear in the literature, most notably the establishment of shared objectives and a feedback system, the management of the harmony of the team, their level of autonomy, independence, diversity and level of supervision. The final result is a subject in which, through a working virtual platform, interdisciplinary teams solve a problem raised by a case study.
Mentoring for Success in Tobacco Regulatory Science: A Qualitative Study
Russo, Abigail R.; Solis, Amy C.; Villanti, Andrea C.; Wipfli, Heather L.; Kern, Teresa T.; Lawley, Rachel K.; Collins, Lauren K.; Abudayyeh, Haneen S.; Chansky, Melanie C.; Glantz, Stanton A.; Samet, Jonathan M.; Benjamin, Emelia J.
2017-01-01
Objectives Our study explores the experiences of early career and senior scientists regarding mentorship and career trajectories in tobacco regulatory science (TRS). Methods We conducted 22 phone interviews with early career and senior tobacco regulatory scientists from July 2015 to January 2016. All interviews were conducted using a structured interview guide and analyzed using a thematic approach by 2 independent coders. Results TRS presents specific opportunities and challenges to scientists due to its focused goal of informing tobacco regulation. An understanding of US Food and Drug Administration (FDA) research priorities and how science can inform tobacco regulation are essential for effective mentorship in TRS. Careers in TRS can be pursued in various academic and non-academic professional roles; both offer the distinct ability to conduct science that impacts public policy. Early career and senior scientists identified the importance and challenge of providing broad training across the diverse disciplines of TRS. Conclusions Effective mentorship in TRS requires that mentors possess an in-depth understanding of the scientific, regulatory, and legislative processes inherent to tobacco regulatory policy-making. A training program for mentors specific to TRS has the potential to meet diverse professional needs of mentors and mentees aiming to impact tobacco policy. PMID:28758143
The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team
2017-10-01
A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.
Vibration Isolation Technology (VIT) ATD Project
NASA Technical Reports Server (NTRS)
Lubomski, Joseph F.; Grodsinsky, Carlos M.; Logsdon, Kirk A.; Rohn, Douglas A.; Ramachandran, N.
1994-01-01
A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of protein crystals to a realistic orbital environment. The other two thrusts of the ATD were performed at the Lewis Research Center. The first was to develop technology in the area of reactionless mechanisms and robotics to support the eventual development of robotics for servicing microgravity science experiments. This activity was completed in 1990. The second was to develop vibration isolation and damping technology providing protection for sensitive science experiments. In conjunction with the this activity, two workshops were held. The results of these were summarized and are included in this report.
Effects of electrons and protons on science instruments
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The radiation effects on typical science instruments according to the Jupiter trapped radiation design restraint model are described, and specific aspects of the model where an improved understanding would be beneficial are suggested. The spacecraft design used is the TOPS 12L configuration. Ionization and displacement damage are considered, and damage criteria are placed on the most sensitive components. Possible protective measures are mentioned: selecting components as radiation resistant as possible, using a difference in desired and undesired signal shapes for electronic shielding, orienting and locating the component on the spacecraft for better shielding, and adding passive shields to protect specific components. Available options are listed in decreasing order of attractiveness: attempt to lower the design restraints without compromising the success of the missions, trade off experiment objectives for increased reliability, alter the trajectory, and remove sensitive instruments from the payload.
Gadow's romanticism: science, poetry and embodiment in postmodern nursing.
Paley, John
2004-07-01
Sally Gadow's work is a sophisticated version of a familiar line of thought in nursing. She creates a chain of distinctions which is intended to differentiate cultural narratives, and particularly the 'science narrative', from imaginative narratives, especially poetry. Cultural narratives regulate and restrict; imaginative narratives are creative, liberating and potentially transcendent. These ideological effects are (supposedly) achieved through different structures of language. Scientific language, for example, is abstract and literal, while poetry is sensuous and metaphorical. In this paper, I argue that Gadow's way of discriminating between science and poetry fails. In the first place, the ideological valence she assigns to each of them is unwarranted. Science and poetry can both be harnessed to the project of emancipation, just as both can be incorporated in a strategy of oppression. In the second place, the claim that poetry and science are distinguished by their respective linguistic features--specifically, that one is metaphorical and the other literal--cannot be sustained. I illustrate this argument, as Gadow illustrates hers, by reference to the concept of embodiment, and consider whether Gadow is correct in thinking that poetry, not science, makes it possible for individuals (especially women) to 'reclaim the body'. I also suggest that Gadow's brand of postmodernism echoes Romanticism, whose defining characteristic was an insistent contrast between poetry and science. This is 'flip side' postmodernism, which merely opposes modernist values, preferring subjectivity to objectivity, feeling to rationality, and multiple realities to truth. It is less radical, and far less interesting, than 'remix' postmodernism, whose objective is not to reverse the polarities, but to reconfigure the entire circuit.
ERIC Educational Resources Information Center
Cole, Henry P.
This paper examines the sequence and hierarchy of objectives in the American Association for the Advancement of Science (AAAS) "Science--A Process Approach" curriculum. The work of Piaget, Bruner forms a framework from which the learning objectives and tasks in the AAAS science curriculum are examined. The points of correspondence…
Politics of prevention: The emergence of prevention science.
Roumeliotis, Filip
2015-08-01
This article critically examines the political dimension of prevention science by asking how it constructs the problems for which prevention is seen as the solution and how it enables the monitoring and control of these problems. It also seeks to examine how prevention science has established a sphere for legitimate political deliberation and which kinds of statements are accepted as legitimate within this sphere. The material consists of 14 publications describing and discussing the goals, concepts, promises and problems of prevention science. The analysis covers the period from 1993 to 2012. The analysis shows that prevention science has established a narrow definition of "prevention", including only interventions aimed at the reduction of risks for clinical disorders. In publications from the U.S. National Institute of Drug Abuse, the principles of prevention science have enabled a commitment to a zero-tolerance policy on drugs. The drug using subject has been constructed as a rational choice actor lacking in skills in exerting self-control in regard to drug use. Prevention science has also enabled the monitoring and control of expertise, risk groups and individuals through specific forms of data gathering. Through the juxtaposition of the concepts of "objectivity" and "morality", prevention science has constituted a principle of delineation, disqualifying statements not adhering to the principles of prevention science from the political field, rendering ethical and conflictual dimensions of problem representations invisible. The valorisation of scientific accounts of drugs has acted to naturalise specific political ideals. It simultaneously marginalises the public from the public policy process, giving precedence to experts who are able to provide information that policy-makers are demanding. Alternative accounts, such as those based on marginalisation, poverty or discrimination are silenced within prevention science. Copyright © 2015 Elsevier B.V. All rights reserved.
Science educators' perceptions of problems facing science education: A report of five surveys
NASA Astrophysics Data System (ADS)
Gallagher, James Joseph; Yager, Robert E.
Five groups of science educators representing faculty at graduate institutions, graduate students, teachers, supervisors, and leadership conferees were surveyed concerning their perceptions of current problems facing science education. A total of 144 participants provided an average of 4.7 responses. The responses were tabulated using an emergent set of categories that resulted in six major groupings, i.e. conceptual, organizational, teacher; related, student-related, university, and societal. The category with the most problems identified was in the area of conceptual problems. University related problems and organizational problems were the next two most frequently mentioned categories for problems. Specific problems in all categories most often cited include the following:1confusion and uncertainty in goals and objectives;2lack of vision and leadership in schools and universities;3absence of a theoretical base for science education;4poor quality teacher education programs;5inappropriate avenues for continuing education of teachers; limited dialogue between researchers and practitioners; declining enrollments; poor quality teaching and counseling; insufficient programs in science for the wide spectrum of students; and public and parental apathy towards science.
Recent Electric Propulsion Development Activities for NASA Science Missions
NASA Technical Reports Server (NTRS)
Pencil, Eric J.
2009-01-01
(The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated valve concept, as well as a pressure control module, which will regulate pressure from the propellant tank. Cross-platform component standardization and simplification are being investigated through the Standard Architecture task to reduce first user costs for implementing electric propulsion systems. Progress on current hardware development, recent test activities and future plans are discussed.
Hierarchy, determinism, and specificity in theories of development and evolution.
Deichmann, Ute
2017-10-16
The concepts of hierarchical organization, genetic determinism and biological specificity (for example of species, biologically relevant macromolecules, or genes) have played a crucial role in biology as a modern experimental science since its beginnings in the nineteenth century. The idea of genetic information (specificity) and genetic determination was at the basis of molecular biology that developed in the 1940s with macromolecules, viruses and prokaryotes as major objects of research often labelled "reductionist". However, the concepts have been marginalized or rejected in some of the research that in the late 1960s began to focus additionally on the molecularization of complex biological structures and functions using systems approaches. This paper challenges the view that 'molecular reductionism' has been successfully replaced by holism and a focus on the collective behaviour of cellular entities. It argues instead that there are more fertile replacements for molecular 'reductionism', in which genomics, embryology, biochemistry, and computer science intertwine and result in research that is as exact and causally predictive as earlier molecular biology.
Energy Decision Science and Informatics | Integrated Energy Solutions |
Science Advanced decision science methods include multi-objective and multi-criteria decision support. Our decision science methods, including multi-objective and multi-criteria decision support. For example, we
ERIC Educational Resources Information Center
Utica City School District, NY.
Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science, earth science) and grade level. In grades K-6, objectives for topics of science study include conditions for plants and animals to live, adaptation, conservation,…
NASA Technical Reports Server (NTRS)
Knight, Russell; Donnellan, Andrea; Green, Joseph J.
2013-01-01
A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).
Automating Stowage Operations for the International Space Station
NASA Technical Reports Server (NTRS)
Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young
2013-01-01
A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).
A Scientist's Guide to Achieving Broader Impacts through K-12 STEM Collaboration.
Komoroske, Lisa M; Hameed, Sarah O; Szoboszlai, Amber I; Newsom, Amanda J; Williams, Susan L
2015-03-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.
NASA Astrophysics Data System (ADS)
Gascó, Gabriel; Méndez, Ana; Antón, José Manuel; Grau, Juan; Sánchez, María Elena; Moratiel, Rubén; María Tarquis, Ana
2013-04-01
The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM,Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the importance of Soil Science and Mathematics in the study of carbon sequestration in a soil treated by biochar. The objective of this paper is to explain the followed steps to the design of the practice.
Test and Validation of the Mars Science Laboratory Robotic Arm
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Kim, W.; Carsten, J.; Tompkins, V.; Trebi-Ollennu, A.; Florow, B.
2013-01-01
The Mars Science Laboratory Robotic Arm (RA) is a key component for achieving the primary scientific goals of the mission. The RA supports sample acquisition by precisely positioning a scoop above loose regolith or accurately preloading a percussive drill on Martian rocks or rover-mounted organic check materials. It assists sample processing by orienting a sample processing unit called CHIMRA through a series of gravity-relative orientations and sample delivery by positioning the sample portion door above an instrument inlet or the observation tray. In addition the RA facilitates contact science by accurately positioning the dust removal tool, Alpha Particle X-Ray Spectrometer (APXS) and the Mars Hand Lens Imager (MAHLI) relative to surface targets. In order to fulfill these seemingly disparate science objectives the RA must satisfy a variety of accuracy and performance requirements. This paper describes the necessary arm requirement specification and the test campaign to demonstrate these requirements were satisfied.
Technology assessment of human spaceflight - Combining philosophical and technical issues
NASA Astrophysics Data System (ADS)
Fromm, J.; Hoevelmann, G. H.
1992-08-01
A transutilitarian rationale is proposed for assessing human spaceflight that is based on objectives for these endeavors and ethical norms of conduct. Specific attention is given to: presupposed/tacit reasons for including man in spaceflight and the restricted notion of rational/justifiable activity. It is shown that economic rationale is insufficient and unsuitable as a means for assessing manned spaceflight, and transutilitarian objectives are compiled that contribute to the motivation for manned flight. The transutilitarian motivations include: pioneering uncharted territory, enhancing national prestige, establishing space-related autonomy, promoting international cooperation, and enhancing science and the quality of human life.
A history of the concept of the stimulus and the role it played in the neurosciences.
Cassedy, Steven
2008-01-01
The term stimulus, as it was used in science from its earliest appearance in the sixteenth century up to the beginning of the nineteenth century, shows a gradual progress in denotation from the physical object designed to produce nervous and muscular excitation to the generically conceived event or object that initiates sensory or motor activity. To this shift corresponds a shift in the understanding of sensory experience. Johannes Muller's law of specific energy of sensory nerves played a major role in the shift, and Hermann von Helmholtz gave the shift its most thorough philosophical explanation.
[Insert Your Science Here] Week: Creating science-driven public awareness campaigns
NASA Astrophysics Data System (ADS)
Mattson, Barbara; Mitchell, Sara; McElvery, Raleigh; Reddy, Francis; Wiessinger, Scott; Skelly, Clare; Saravia, Claire; Straughn, Amber N.; Washington, Dewayne
2018-01-01
NASA Goddard’s in-house Astrophysics Communications Team is responsible for facilitating the production of traditional and social media products to provide understanding and inspiration about NASA’s astrophysics missions and discoveries. Our team is largely driven by the scientific news cycle of launches, mission milestones, anniversaries, and discoveries, which can leave a number of topics behind, waiting for a discovery to be highlighted. These overlooked topics include compelling stories about ongoing research, underlying science, and science not tied to a specific mission. In looking for a way to boost coverage of these unsung topics, we struck upon an idea of creating “theme weeks” which bring together the broader scientific community around a topic, object, or scientific concept. This poster will present the first two of our Goddard-led theme weeks: Pulsar Week and Dark Energy Week. We will describe the efforts involved, our metrics, and the benefits and challenges we encountered. We will also suggest a template for doing this for your own science based on our successes.
Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program
NASA Technical Reports Server (NTRS)
Peri, Frank; Law, Richard C.; Wells, James E.
2014-01-01
NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.
Borlawsky, Tara B.; Dhaval, Rakesh; Hastings, Shannon L.; Payne, Philip R. O.
2009-01-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative. PMID:21347164
Borlawsky, Tara B; Dhaval, Rakesh; Hastings, Shannon L; Payne, Philip R O
2009-03-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative.
Resource management plan for the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, P.D.; Evans, J.W.
1992-06-01
A plan for management of the wildlife resources on the US Department of Energy's Oak Ridge Reservation is outlined in this document. Management includes wildlife population control (hunts, trapping, and removal), handling specific problems with wildlife, restoration of species, coordination with researchers on wildlife studies, preservation and management of habitats, and law enforcement. Wildlife resources are divided into five categories, each with a specific set of objectives and procedures for obtaining these objectives. These categories are (1) species-richness management to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species management to produce selectedmore » species in desired numbers on designated land units; (3) management of game species for research, education, recreation, and public safety, (4) endangered species management designed to preserve and protect both the species and habitats critical to the survival of those species; and (5) pest management. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency and the Oak Ridge National Laboratory's Environmental Sciences Division.« less
How CubeSats contribute to Science and Technology in Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian
2017-01-01
CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.
Educational NASA Computational and Scientific Studies (enCOMPASS)
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2013-01-01
Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.
Science Objectives and Rationale for the Radiation Belt Storm Probes Mission
NASA Technical Reports Server (NTRS)
Mauk, B.H.; Fox, Nicola J.; Kanekal, S. G.; Kessel, R. L.; Sibek, D. G.; Ukhorskiy, A.
2012-01-01
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populationsof high energy charged particles are created, vary, and evolve in space environments,and specifically within Earths magnetically trapped radiation belts. RBSP, with a nominallaunch date of August 2012, comprises two spacecraft making in situ measurements for atleast 2 years in nearly the same highly elliptical, low inclination orbits (1.1 5.8 RE, 10).The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every2.5 months, allowing separation of spatial from temporal effects over spatial scales rangingfrom 0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the twospacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B),and wave distributions (dE and dB) that are needed to resolve the most critical science questions.Here we summarize the high level science objectives for the RBSP mission, providehistorical background on studies of Earth and planetary radiation belts, present examples ofthe most compelling scientific mysteries of the radiation belts, present the mission design ofthe RBSP mission that targets these mysteries and objectives, present the observation andmeasurement requirements for the mission, and introduce the instrumentation that will deliverthese measurements. This paper references and is followed by a number of companionpapers that describe the details of the RBSP mission, spacecraft, and instruments.
Franssen, Catherine L.; Lowry, George S.; Franssen, R. Adam
2017-01-01
With its ability to address questions about how decisions are made and why, neuroeconomics is an excellent topic of study for college students at a variety of levels. In this paper we detail a neuroeconomics course specifically modified for undecided First-year students. One particularly daunting challenge was defining clear outcomes and delivering instruction at an appropriate level. We used Action-Mapping to achieve the course objectives of teaching collegiate skills applicable to any path of study or career while also delivering content suitable for credits in both a social science and natural science. PMID:29371842
Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program
NASA Technical Reports Server (NTRS)
Peri, Frank; Volz, Stephen
2013-01-01
NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.
Education in Soil Science: the Italian approach
NASA Astrophysics Data System (ADS)
Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe
2017-04-01
The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.
Transport processes in biomedical systems: a roadmap for future research directions.
Schmid-Schönbein, Geert W; Diller, Kenneth R
2005-09-01
A workshop was convened at Bethesda, Maryland on May 5 and 6, 2004 under the sponsorship of the NSF and NIH with the objectives of identifying emerging intellectual opportunities and applications in biotransport sciences and of guiding future research in the field. Approximately 50 leading researchers in the fields of fluid, heat, and mass biotransport were presented forward-looking perspectives and discussed how to synthesize broad cross-disciplinary areas: this defined guidelines for a roadmap document. Applications were presented in the context of disease analysis and diagnosis, therapy and prevention, and for physiologic and engineered living systems. The roadmap prioritizes specific research thrusts that reflect projected impacts on intellectuals, medical, and biological advances. Several overarching themes emerged. Most central is the expanded integration of fundamental transport sciences into the understanding of living systems and the great potential of patient specific modeling in designing a broad array of medical procedures.
Mon Océan & Moi : Network and Teamwork to Better Connect People, Science and Education
NASA Astrophysics Data System (ADS)
Scheurle, C.
2016-02-01
The project « mon océan & moi » can be described as a platform hosting several outreach activities. Some of these address non-scientific audiences in an international/national context and are specifically developed to reach out into school environments. The multidisciplinary team composed of senior and early-career scientists, science communicators and facilitators, school teachers and educators etc. shares common objectives based on (net-)work in a participatory way, so as to propose science-based dissemination with a long-term vision as well as to stimulate critical thinking, ideas and exchanges. Within this context, Internet is certainly an extremely useful tool accompanying the manifold efforts to "best" inform and communicate with the targeted audiences. However, it remains challenging to create opportunities for dialogue at the interface of science and education … and to encourage this dialogue to carry on. « mon océan & moi » covers a few successful outreach activities ("adopt a float" and "MEDITES") that involve scientists and teachers as well as students from universities and schools. Encouraged by the local school authority, these activities aim at different educational levels and suggest a continuous "workflow" combined with specific events (such as training courses, science fairs) during which particular contributions are highlighted. As their approach principally favors teamwork, the most positive outcome observed has been the creation of partnerships truly connecting the people …
The Early Years: Science Tickets
ERIC Educational Resources Information Center
Ashbrook, Peggy
2007-01-01
Teachers can spark interest in a science topic by using "science tickets"--special objects offered to children as a way to transition to the science room or into a small group to do a science activity. Objects ranging from ordinary (shells, leaves, or sticks) to unusual (photos, crystals, or plastic worms) appeal to young children's curiosity and…
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2015-01-01
During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.
Advanced Technologies for Space Life Science Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Hines, John W.; Connolly, John P. (Technical Monitor)
1997-01-01
SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.
NASA Astrophysics Data System (ADS)
Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.
2015-12-01
Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included all three perspectives. The best projects are being compiled so they can be shared with the University of San Diego's planning committee.
NASA Technical Reports Server (NTRS)
Schulbach, Catherine H. (Editor)
2000-01-01
The purpose of the CAS workshop is to bring together NASA's scientists and engineers and their counterparts in industry, other government agencies, and academia working in the Computational Aerosciences and related fields. This workshop is part of the technology transfer plan of the NASA High Performance Computing and Communications (HPCC) Program. Specific objectives of the CAS workshop are to: (1) communicate the goals and objectives of HPCC and CAS, (2) promote and disseminate CAS technology within the appropriate technical communities, including NASA, industry, academia, and other government labs, (3) help promote synergy among CAS and other HPCC scientists, and (4) permit feedback from peer researchers on issues facing High Performance Computing in general and the CAS project in particular. This year we had a number of exciting presentations in the traditional aeronautics, aerospace sciences, and high-end computing areas and in the less familiar (to many of us affiliated with CAS) earth science, space science, and revolutionary computing areas. Presentations of more than 40 high quality papers were organized into ten sessions and presented over the three-day workshop. The proceedings are organized here for easy access: by author, title and topic.
Teaching Cell Biology to Nonscience Majors Through Forensics, or How to Design a Killer Course
Arwood, Laura
2004-01-01
Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose. Another goal was to maximize the hands-on experience of the nonscience major students. This objective was fulfilled by specific activities such as fingerprinting and DNA typing. One particularly effective teaching tool was a mock murder mystery complete with a Grand Jury trial. Another objective was to improve students' attitudes toward science. This was successful in that students felt more confident in their own scientific abilities after taking the course. In pre/post tests, students answered four questions about their ability to conduct science. All four statements showed a positive shift after the course (p values ranging from .001 to .036, df = 23; n = 24). The emphasis on experiential pedagogy was also shown to increase critical thinking skills. In pre/post testing, students in this course significantly increased their performance on critical thinking assessment tests from 33.3% correct to 45.3% (p = .008, df = 4; n = 24). PMID:15257341
Environmental Influences on Adult Motivation for Career Choice in Science Professions
NASA Astrophysics Data System (ADS)
Fawcett-Adams, Victoria Joan
Science, technology, engineering and math (STEM) education is an issue of great concern for the country with implications for sustaining a skilled workforce in science-based professions. This empirical study explored adults' science career choice and explored the environmental influences that motivated, influenced and shaped these choices. This qualitative study used the analytical lens of narrative inquiry storytelling and thick description. Participants lived in medium-sized rural towns and a small city, and they were adults who had been in science careers for a minimum of ten years in the fields of health care, education and agriculture. Interviews were semi-structured with open-ended questions and were recorded and transcribed verbatim. Observations took place at the workplace site. The interview transcripts were reviewed with each participant in person for authenticity and additional specific questions were designed to further explore their responses, meaning and provide accurate interpretations of the data. Themes and subthemes emerged from coding the data and suggested four dominant themes: people, identity, beliefs and attitudes, and feelings. Findings showed that people such as parents, grandparents, siblings and teachers were most influential in forming identity as well as shaping beliefs and attitudes, and feelings in science career choice. Participants did not remember educational experiences as influential; however, they did remember some teachers and advisors as influential, especially during college. The researcher recommends that parents and other adults build relationships with students specifically to discuss career opportunities. Parents and teachers should increase their knowledge and awareness of science careers. This knowledge can then contribute to a more informed conversation when discussing career objectives with students. Industry should partner with K-16 education to help develop a scientific workforce and participate in further career-related research. Workplaces should provide training for the soft skills necessary for a sustained science career.
ERIC Educational Resources Information Center
Fazarro, Dominick E.; Pannkuk, Tim; Pavelock, Dwayne; Hubbard, Darcy
2009-01-01
This study was conducted to research learning style preferences of agriculture students. Specifically, the objectives which guided the study were: (1) to determine the learning style preferences of undergraduate agricultural students enrolled in a given Soil Science course and (2) to ascertain if there were differences in the students' course…
1997-11-01
of Computer Science and Information Systems. Membership American University is an independent, coeducational university with more than 11,000...The entire community profits as AIM members achieve common objectives. Corporate contribution is evolving into a benefit -based membership, providing...direct value or service to CMU/SEI-97-SR-018 the member, while strengthening the Nebraska information technology environment. Specific benefits to
NASA Astrophysics Data System (ADS)
Soe, Kumi; Motohashi, Mitsuya; Niwa, Masaaki; Tamaki, Akira
Abstract Our research group engages in activities for promoting science education among children. A characteristic of our science curriculum is that it comprises two parts. To elaborate, a requirement of our science curriculum is that before proceeding to a handcrafting activity, students take part in experiments and observe the physical phenomena related to the object that they construct in the second part. We believe that our science class, which comprises two phases of education, can further stimulate students' interest in science because they not only engage in handcrafting of objects, but also learn the underlying principles and structures of these objects.
Computational Exposure Science: An Emerging Discipline to ...
Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source
What Effects Do Didactic Interventions Have on Students' Attitudes Towards Science? A Meta-Analysis
NASA Astrophysics Data System (ADS)
Aguilera, David; Perales-Palacios, F. Javier
2018-03-01
Improving the attitudes of students towards science is one of the main challenges facing the teaching of the subject. The main objective of this study is to analyze the effect of students' attitudes towards science through different didactic interventions. The bibliographic search was carried out via the Web of Science database, specifically in the Education and Educational Research category, obtaining a population of 374 articles published between 2006 and 2016. We included studies with pre-experimental or quasi-experimental design that used pretest and posttest phases. Following the application of the inclusion criteria, 24 articles were selected with which a random effects meta-analysis was adopted, obtaining an average effect size of 0.54. Three moderating variables were analyzed, with a significant correlation between the type of teaching strategy and the effect of the attitude towards Science (Q = 23.17; df = 8; p < .01; R 2 = 0.05). The educational implications are mainly due to the importance of the teaching/learning strategy used in science education in the development of positive attitudes towards the subject, and the need to increase the number of Didactic Interventions that contemplate students' attitudes towards science as a study variable is also advocated.
Low Noise Camera for Suborbital Science Applications
NASA Technical Reports Server (NTRS)
Hyde, David; Robertson, Bryan; Holloway, Todd
2015-01-01
Low-cost, commercial-off-the-shelf- (COTS-) based science cameras are intended for lab use only and are not suitable for flight deployment as they are difficult to ruggedize and repackage into instruments. Also, COTS implementation may not be suitable since mission science objectives are tied to specific measurement requirements, and often require performance beyond that required by the commercial market. Custom camera development for each application is cost prohibitive for the International Space Station (ISS) or midrange science payloads due to nonrecurring expenses ($2,000 K) for ground-up camera electronics design. While each new science mission has a different suite of requirements for camera performance (detector noise, speed of image acquisition, charge-coupled device (CCD) size, operation temperature, packaging, etc.), the analog-to-digital conversion, power supply, and communications can be standardized to accommodate many different applications. The low noise camera for suborbital applications is a rugged standard camera platform that can accommodate a range of detector types and science requirements for use in inexpensive to mid range payloads supporting Earth science, solar physics, robotic vision, or astronomy experiments. Cameras developed on this platform have demonstrated the performance found in custom flight cameras at a price per camera more than an order of magnitude lower.
Stone, Mark H; Stenner, A Jackson
2014-01-01
Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.
NASA SMD Science Education and Public Outreach Forums: A Five-Year Retrospective
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie
2014-06-01
NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The objective is to enhance the overall coherence of SMD education and public outreach (E/PO), leading to more effective, efficient, and sustainable use of SMD science discoveries and learning experiences. We summarize progress and next steps towards achieving this goal with examples drawn from Astrophysics and cross-Forum efforts. Over the past five years, the Forums have enabled leaders of individual SMD mission and grant-funded E/PO programs to work together to place individual science discoveries and learning resources into context for audiences, conveying the big picture of scientific discovery based on audience needs. Forum-organized collaborations and partnerships extend the impact of individual programs to new audiences and provide resources and opportunities for educators to engage their audiences in NASA science. Similarly, Forum resources support scientists and faculty in utilizing SMD E/PO resources. Through Forum activities, mission E/PO teams and grantees have worked together to define common goals and provide unified professional development for educators (NASA’s Multiwavelength Universe); build partnerships with libraries to engage underserved/underrepresented audiences (NASA Science4Girls and Their Families); strengthen use of best practices; provide thematic, audience-based entry points to SMD learning experiences; support scientists in participating in E/PO; and, convey the impact of the SMD E/PO program. The Forums have created a single online digital library (NASA Wavelength, http://nasawavelength.org) that hosts all peer-reviewed SMD-funded education materials and worked with the SMD E/PO community to compile E/PO program metrics (http://nasamissionepometrics.org/). External evaluation shows the Forums are meeting their objectives. Specific examples of Forum-organized resources for use by scientists, faculty, and informal educators are discussed in related presentations (Meinke et al.; Manning et al.).
Goodman, Matthew
2016-01-01
For several decades now, many histories of science have sought to emphasize the important role of instruments and other material objects in the operation of science. Many, too, have been attentive to ideas of space and place and the different geographies which are visible in the historical practice of science. This paper draws on both traditions in its interpretation of a heretofore neglected aspect of Britain's nineteenth-century geomagnetic story: that of the British Magnetic Survey, 1833–38. Far from being a footnote to the more expansive geomagnetic projects then taking place in mainland Europe or to the later British worldwide magnetic scheme, this paper argues that the British Magnetic Survey represents an important instance in which magnetic instruments, their users and their makers, were tested, developed and ultimately proved credible.
NASA Astrophysics Data System (ADS)
Murray, Cara
Environmental journalists and science writers express a strong desire for professional development opportunities. These groups often identify inadequate training in science and science writing as their biggest obstacles to accurate reporting. To fill these training gaps, science immersion workshops for journalists, focused on a particular specialization such as marine reporting, offer both practical and pedagogical advantages. However, few efforts have been made to evaluate the efficacy of these workshops in a quantitative way. This case study of the Annual Science Immersion Workshop for Journalists, offered by the Metcalf Institute for Marine and Environmental Reporting, aimed to determine whether journalists' reporting is more accurate as a result of program participation. Survey data, collected from 11 years of workshop alumni, indicate neutral to positive responses on all measures of change. Using an exploratory approach, this study analyzed survey results by five categories---year of attendance, education level and type, media format, and years of journalism experience---to investigate the role of demographic variables in participants' learning experience. Some results of these comparative analyses correlate with programmatic changes made during the 11 years surveyed. The presence or absence of specific workshop activities coincides with higher and lower levels of reported change for specific learning objectives targeted by those activities. Other results have possible implications for program design or participant eligibility to maximize program impact. Journalists with more formal education report more change on multiple learning objectives, such as data use, understanding of scientific uncertainty, desire to report on environmental topics, and communication with scientists. At the same time, journalists with less formal education and less professional experience are more likely to have recommended the program to others. Some confounding results suggest a need for different group divisions based on media format in future analysis. The data analysis of survey participants disaggregated by media type generated few statistically significant differences of note. This case study relates to larger trends, questions and changes in today's media landscape. Because information flows from the media to the public and into policy, the quality and quantity of marine reporting impacts the quality and quantity of marine policy. In a media environment that has become increasingly interactive, where information flow is less hierarchical, now more than ever environmental journalists must be equipped to filter, interpret and evaluate information in order to communicate effectively.
ERIC Educational Resources Information Center
Utica City School District, NY.
Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, health, general science, physical science) and grade level. Concepts regarding characteristics of living things are stressed in objectives for the primary grades (K-5), and reproductive biology is covered…
The Challenge to Create the Space Drive
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1999-01-01
To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electromagnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electromagnetics that leads to using electromagnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or reformulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.
Challenge to Create the Space Drive
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1997-01-01
To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electromagnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of space-time as a function of electromagnetics that leads to using electromagnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's principle or reformulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.
The challenge to create the space drive
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1996-01-01
To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electro-magnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electro-magnetics that leads to using electro-magnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or re-formulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.
NASA Astrophysics Data System (ADS)
Hilsenbeck-Fajardo, Jacqueline L.
2009-08-01
The research described herein is a multi-dimensional attempt to measure student's abilities to recall, conceptualize, and transfer fundamental and dynamic protein structure concepts as revealed by their own diagrammatic (pictorial) representations and written self-explanations. A total of 120 participants enrolled in a 'Fundamentals of Biochemistry' course contributed to this mixed-methodological study. The population of interest consisted primarily of pre-nursing and sport and exercise science majors. This course is typically associated with a high (<30%) combined drop/failure rate, thus the course provided the researcher with an ideal context in which to apply novel transfer assessment strategies. In the past, students within this population have reported very little chemistry background. In the following study, student-generated diagrammatic representations and written explanations were coded thematically using a highly objective rubric that was designed specifically for this study. Responses provided by the students were characterized on the macroscopic, microscopic, molecular-level, and integrated scales. Recall knowledge gain (i.e., knowledge that was gained through multiple-choice questioning techniques) was quantitatively correlated to learning style preferences (i.e., high-object, low-object, and non-object). Quantitative measures revealed that participants tended toward an object (i.e., snapshot) -based visualization preference, a potentially limiting factor in their desire to consider dynamic properties of fundamental biochemical contexts such as heat-induced protein denaturation. When knowledge transfer was carefully assessed within the predefined context, numerous misconceptions pertaining to the fundamental and dynamic nature of protein structure were revealed. Misconceptions tended to increase as the transfer model shifted away from the context presented in the original learning material. Ultimately, a fundamentally new, novel, and unique measure of knowledge transfer was developed as a main result of this study. It is envisioned by the researcher that this new measure of learning is applicable specifically to physical and chemical science education-based research in the form of deep transfer on the atomic-level scale.
User interfaces for computational science: A domain specific language for OOMMF embedded in Python
NASA Astrophysics Data System (ADS)
Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans
2017-05-01
Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.
Conceptual definition of a 50-100 kWe NEP system for planetary science missions
NASA Technical Reports Server (NTRS)
Friedlander, Alan
1993-01-01
The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.
[Earth and Space Sciences Project Services for NASA HPCC
NASA Technical Reports Server (NTRS)
Merkey, Phillip
2002-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
[Earth Science Technology Office's Computational Technologies Project
NASA Technical Reports Server (NTRS)
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics
NASA Technical Reports Server (NTRS)
Chappell, C. R.
1985-01-01
A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.
[The gender debate from the pedagogic perspective].
Forster, Johanna
2004-09-01
The question of form and extent of biological and/or cultural influences on female and male behaviour and performance is marking a major focus in present scientific research. Accordingly, a broad spectrum of approaches in research and interpretations of results is available. The recent debate on sex and gender is offering two basic objectives for research in education science: First, the critical review of the data and results on sex specifics presented in respect to the articulation of educational aims, topics and methods. Second, the intensified research focus on the developmental consequences of gender and gender roles for boys and girls, women and men. The pedagogical focus is discussed regarding the following three objectives: 1. developmental conditions in early ontogeny, 2. the question of sex specific differences in cognitive abilities in respect to school performance of adolescents, and 3. teaching knowledge on "sex" and "gender" in schools.
Beyond Objectivity and Subjectivity: The Intersubjective Foundations of Psychological Science.
Mascolo, Michael F
2016-12-01
The question of whether psychology can properly be regarded as a science has long been debated (Smedslund in Integrative Psychological & Behavioral Science, 50, 185-195, 2016). Science is typically understood as a method for producing reliable knowledge by testing falsifiable claims against objective evidence. Psychological phenomena, however, are traditionally taken to be "subjective" and hidden from view. To the extent that science relies upon objective observation, is a scientific psychology possible? In this paper, I argue that scientific psychology does not much fail to meet the requirements of objectivity as much as the concept of objectivity fails as a methodological principle for psychological science. The traditional notion of objectivity relies upon the distinction between a public, observable exterior and a private, subjective interior. There are good reasons, however, to reject this dichotomy. Scholarship suggests that psychological knowledge arises neither from the "inside out" (subjectively) nor from the outside-in (objectively), but instead intersubjective processes that occur between people. If this is so, then objectivist methodology may do more to obscure than illuminate our understanding of psychological functioning. From this view, we face a dilemma: Do we, in the name of science, cling to an objective epistemology that cuts us off from the richness of psychological activity? Or do we seek to develop a rigorous intersubjective psychology that exploits the processes through which we gain psychological knowledge in the first place? If such a psychology can produce systematic, reliable and useful knowledge, then the question of whether its practices are "scientific" in the traditional sense would become irrelevant.
NASA Astrophysics Data System (ADS)
Oluwoye, J.
2017-12-01
The American Meteorological Society (AMS) reported that our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, technology, engineering, and mathematics (STEM) and is especially acute in the small number of minority college students majoring in the geosciences. The purpose of this paper is to report on how the author engages Alabama A&M University (AAMU) students in STEM transportation science. Specifically, the objective is to develop a conceptual framework of engaging minority students in transportation concentration in the department of community and regional planning. The students were involved in writing a research paper on direct and indirect climate change impacts on transportation and also involved in classroom discussions during a wk14 module on overview of transportation suitability: climate change and environment. The paper concludes with minority needs to gain access to STEM and participation of minority students in field and site analysis.
Psychoanalysis, science, and art: aesthetics in the making of a psychoanalyst.
Frayze-Pereira, João A
2007-04-01
This paper critically examines the relationship of psychoanalysis to science and art. Its point of departure is Michael Rustin's theorizing. Specifically, in considering the possibility of a psychoanalyst's having an aesthetic orientation, the author analyses: 1) the difficulty of there being any connection between psychoanalysis and science because science's necessarily presupposed subject-object dichotomy is incompatible with transference, which, beginning with Freud, is basic to psychoanalysis; 2) the complex relationship between psychoanalysis and aesthetics using Maurice Merleau-Ponty's philosophical perspective as well as Luigi Pareyson's theory of aesthetics; 3) the Kantian foundations of the psychoanalytic notion of art as the 'containing form of subjective experience'; 4) intersubjectivity, without which clinical practice would not be possible, especially considering matters of identity, difference, the body, and of sensory experience such as 'expressive form'; 5) the relationship of psychoanalysis and art, keeping in mind their possible convergence and divergence as well as some psychoanalysts' conceptual commitment to classicism and the need for contact with art in a psychoanalyst's mind set.
A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration
Komoroske, Lisa M.; Hameed, Sarah O.; Szoboszlai, Amber I.; Newsom, Amanda J.; Williams, Susan L.
2015-01-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K–12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists’ research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach. PMID:26955078
NASA Astrophysics Data System (ADS)
Stevenson, Alma R.
2013-12-01
This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a fifth grade science class entirely comprised of language minority students transitioning out of bilingual education. Therefore, English was the means of instruction in science, supported by informal peer-to-peer Spanish-language communication. This study is grounded in a social constructivist paradigm. From this standpoint, learning science is a social process where social, cultural, and linguistic factors are all considered crucial to the process of acquiring scientific knowledge. The study was descriptive in nature, examining specific linguistic behaviors with the purpose of identifying and analyzing the linguistic functions of students' utterances while participating in science learning. The results suggest that students purposefully adapt their use of linguistic resources in order to facilitate their participation in science leaning. What is underscored in this study is the importance of explicitly acknowledging, supporting, and incorporating bilingual students' linguistic resources both in Spanish and English into the science classroom in order to optimize students' participation and facilitate their understanding.
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science
NASA Astrophysics Data System (ADS)
Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA
2015-08-01
For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, instructors, students and the public.
Global Change Data Center: Mission, Organization, Major Activities, and 2001 Highlights
NASA Technical Reports Server (NTRS)
Wharton, Stephen W. (Technical Monitor)
2002-01-01
Rapid efficient access to Earth sciences data is fundamental to the Nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase further and missions with constellations of satellites start to appear. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink. The Global Change Data Center's (GCDC) mission is to provide systems, data products, and information management services to maximize the availability and utility of NASA's Earth science data. The specific objectives are (1) support Earth science missions be developing and operating systems to generate, archive, and distribute data products and information; (2) develop innovative information systems for processing, archiving, accessing, visualizing, and communicating Earth science data; and (3) develop value-added products and services to promote broader utilization of NASA Earth Sciences Enterprise (ESE) data and information. The ultimate product of GCDC activities is access to data and information to support research, education, and public policy.
ERIC Educational Resources Information Center
Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini
2013-01-01
This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…
Social Media in Health Science Education: An International Survey
Cutts, Emily; Kavikondala, Sushma; Salcedo, Alejandra; D'Souza, Karan; Hernandez-Torre, Martin; Anderson, Claire; Tiwari, Agnes; Ho, Kendall; Last, Jason
2017-01-01
Background Social media is an asset that higher education students can use for an array of purposes. Studies have shown the merits of social media use in educational settings; however, its adoption in health science education has been slow, and the contributing reasons remain unclear. Objective This multidisciplinary study aimed to examine health science students’ opinions on the use of social media in health science education and identify factors that may discourage its use. Methods Data were collected from the Universitas 21 “Use of social media in health education” survey, distributed electronically among the health science staff and students from 8 universities in 7 countries. The 1640 student respondents were grouped as users or nonusers based on their reported frequency of social media use in their education. Results Of the 1640 respondents, 1343 (81.89%) use social media in their education. Only 462 of the 1320 (35.00%) respondents have received specific social media training, and of those who have not, the majority (64.9%, 608/936) would like the opportunity. Users and nonusers reported the same 3 factors as the top barriers to their use of social media: uncertainty on policies, concerns about professionalism, and lack of support from the department. Nonusers reported all the barriers more frequently and almost half of nonusers reported not knowing how to incorporate social media into their learning. Among users, more than one fifth (20.5%, 50/243) of students who use social media “almost always” reported sharing clinical images without explicit permission. Conclusions Our global, interdisciplinary study demonstrates that a significant number of students across all health science disciplines self-reported sharing clinical images inappropriately, and thus request the need for policies and training specific to social media use in health science education. PMID:28052842
The development of a high-capacity instrument module heat transport system, appendixes
NASA Technical Reports Server (NTRS)
1981-01-01
Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.
NASA Astrophysics Data System (ADS)
Colon, Erica L.
Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation programs hold promise for teacher candidates by providing them knowledge and strategies for implementing innovative technologies to teach science inquiry when designing curriculum. By identifying specific implications for methods course design and implementation, as well as future research, this study contributes to teacher education improvement efforts, and therefore supports changing learning styles of their future students, so-called the iGeneration.
Resource management plan for the Oak Ridge Reservation. Volume 27, Wildlife Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, P.D.; Evans, J.W.
1992-06-01
A plan for management of the wildlife resources on the US Department of Energy`s Oak Ridge Reservation is outlined in this document. Management includes wildlife population control (hunts, trapping, and removal), handling specific problems with wildlife, restoration of species, coordination with researchers on wildlife studies, preservation and management of habitats, and law enforcement. Wildlife resources are divided into five categories, each with a specific set of objectives and procedures for obtaining these objectives. These categories are (1) species-richness management to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species management to produce selectedmore » species in desired numbers on designated land units; (3) management of game species for research, education, recreation, and public safety, (4) endangered species management designed to preserve and protect both the species and habitats critical to the survival of those species; and (5) pest management. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency and the Oak Ridge National Laboratory`s Environmental Sciences Division.« less
Integrating the history of science into a middle school science curriculum
NASA Astrophysics Data System (ADS)
Huybrechts, Jeanne Marie
This study examined the effect of incorporating the history of science into a middle school physical science curriculum on student attitudes toward science and the work of scientists. While there is wide support for including some science history in middle school science lessons within both the science and science-education communities, there is little curriculum designed to meet that objective. A series of five lessons was written specifically for the study. Each lesson included a brief biography of a scientist whose work was of historical significance, and a set of directions for duplicating one or more of the experiments done by that scientist. A thirty-question, Likert scale survey of the attitudes of middle school students toward science and the work of scientists was also written for this study. The survey was administered to two groups of students in a single middle school: One group---the experimental group---subsequently used the science history curriculum; the second (control) group did not. The same attitude survey was readministered to both groups of students after study of the science-history curriculum was completed. The results of the study indicate that there was no statistically significant difference between the pretest and posttest scores of either the experimental or control group students. Further analysis was done to determine whether there were differences between the pretest and posttest scores of boys and girls, or between "regular" or "honors" students. In both cases no statistically significant difference was found.
Tetro, Jason A.
2018-01-01
For effective science communication, three general objectives should be taken into consideration: 1) accurate conveyance of the scientific evidence; 2) warm public reception of the communicator; and 3) alignment of the information with social values. An examination of both successful and failed science communication efforts over the course of history can reveal strategies to better meet these objectives. This article looks back at influential moments of science communication over the past two millennia in the context of the objectives and, using lessons learned from these events as a guide, introduces a five-element approach to improve the potential for attaining the objectives. PMID:29904548
NASA's Space Launch System (SLS) Program: Mars Program Utilization
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2012-01-01
NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.
NASA Astrophysics Data System (ADS)
Goodnough, Karen
2008-02-01
In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers’ beliefs about science teaching and learning transformed? and (c) How does teachers’ knowledge of curriculum, instruction, assessment, and student learning change as a result of learning within a community of practice? In this instrumental case study (Stake 2000, In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435-454). Thousand Oaks, CA: Sage), a range of data collection sources and methods were adopted. Outcomes focus on how the design principles for cultivating a community of practice emerged in the action research group, as well as the types of teacher learning that occurred by engaging in action research.
Coal Combustion Science quarterly progress report, April--June 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
NASA Astrophysics Data System (ADS)
Gascó, Gabriel; Cely, Paola; Saa-Requejo, Antonio; Mendez, Ana; Antón, Jose Manuel; Sánchez, Elena; Moratiel, Ruben; Tarquis, Ana M.
2014-05-01
The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM, Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this paper is to explain the followed steps to the design of the practice. Acknowledgement to Universidad Politécnica de Madrid for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012.
Kanani, Nisha; Hahn, Erin; Gould, Michael; Brunisholz, Kimberly; Savitz, Lucy; Holve, Erin
2017-07-01
AcademyHealth's Delivery System Science Fellowship (DSSF) provides a paid postdoctoral pragmatic learning experience to build capacity within learning healthcare systems to conduct research in applied settings. The fellowship provides hands-on training and professional leadership opportunities for researchers. Since its inception in 2012, the program has grown rapidly, with 16 health systems participating in the DSSF to date. In addition to specific projects conducted within health systems (and numerous publications associated with those initiatives), the DSSF has made several broader contributions to the field, including defining delivery system science, identifying a set of training objectives for researchers working in delivery systems, and developing a national collaborative network of care delivery organizations, operational leaders, and trainees. The DSSF is one promising approach to support higher-value care by promoting continuous learning and improvement in health systems. © 2017 Society of Hospital Medicine.
Overview of Mars Science Laboratory (MSL) Environmental Program
NASA Technical Reports Server (NTRS)
Forgave, John C.; Man, Kin F.; Hoffman, Alan R.
2006-01-01
This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is capable of surviving all the environments throughout its mission life time, including ground, transportation, launch, cruise, entry decent and landing (EDL) and surface operation environments. (2) Verify environmental testing and analysis have adequately validated the flight hardware's ability to withstand all natural, self-induced, and mission-activity-induced environments. The planned tests to ascertain the capability of the MSL to perform as desired are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-03-19
The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less
NASA Technical Reports Server (NTRS)
Tiscareno, Matthew S.; Showalter, Mark R.; French, Richard G.; Burns, Joseph A.; Cuzzi, Jeffrey N.; de Pater, Imke; Hamilton, Douglas P.; Hedman, Matthew M.; Nicholson, Philip D.; Tamayo, Daniel;
2016-01-01
The James Webb Space Telescope (JWST) will provide unprecedented opportunities to observe the rings and small satellites in our Solar System, accomplishing three primary objectives: (1) discovering new rings and moons, (2) unprecedented spectroscopy, and (3) time-domain observations. We give details on these science objectives and describe requirements that JWST must fulfill in order to accomplish the science objectives.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...-Haudenosaunee consultants, the museum has determined that the medicine faces are both sacred objects and objects...
Blencowe, Claire; Brigstocke, Julian; Noorani, Tehseen
2018-05-01
Through two case studies, the Hearing Voices Movement and Stepping Out Theatre Company, we demonstrate how successful participatory organisations can be seen as 'engines of alternative objectivity' rather than as the subjective other to objective, biomedical science. With the term 'alternative objectivity', we point to collectivisations of experience that are different to biomedical science but are nonetheless forms of objectivity. Taking inspiration from feminist theory, science studies and sociology of culture, we argue that participatory mental health organisations generate their own forms of objectivity through novel modes of collectivising experience. The Hearing Voices Movement cultivates an 'activist science' that generates an alternative objective knowledge through a commitment to experimentation, controlling, testing, recording and sharing experience. Stepping Out distinguishes itself from drama therapy by cultivating an alternative objective culture through its embrace of high production values, material culture, aesthetic standards. A crucial aspect of participatory practice is overcoming alienation, enabling people to get outside of themselves, encounter material worlds and join forces with others.
NASA Technical Reports Server (NTRS)
Stehura, Aaron; Rozek, Matthew
2013-01-01
The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Karis J.
The overall goal of my Early Career research is to constrain belowground carbon turnover times for tropical forests across a broad range in moisture regimes. My group is using 14C analysis and modeling to address two major objectives: quantify age and belowground carbon turnover times across tropical forests spanning a moisture gradient from wetlands to dry forest; and identify specific areas for focused model improvement and data needs through site-specific model-data comparison and belowground carbon modeling for tropic forests.
The application of geography markup language (GML) to the geological sciences
NASA Astrophysics Data System (ADS)
Lake, Ron
2005-11-01
GML 3.0 became an adopted specification of the Open Geospatial Consortium (OGC) in January 2003, and is rapidly emerging as the world standard for the encoding, transport and storage of all forms of geographic information. This paper looks at the application of GML to one of the more challenging areas of automated geography, namely the geological sciences. Specific features of GML of interest to geologists are discussed and then illustrated through a series of geological case studies. We conclude the paper with a discussion of anticipated geological web services that GML will enable. GML is written in XML and makes use of XML Schema for extensibility. It can be used both to represent or model geographic objects and to transport them across the Internet. In this way it serves as the foundation for all manner of geographic web services. Unlike vertical application grammars such as LandXML, GML was intended to define geographic application languages, and hence is applicable to any geographic domain including forestry, environmental sciences, geology and oceanography. This paper provides a review of the basic features of GML that are fundamental to the geological sciences including geometry, coverages, observations, reference systems and temporality. These constructs are then employed in a series of simple geological case studies including structural geological description, surficial geology, representation of geological time scales, mineral occurrences, geohazards and geochemical reconnaissance.
The PACA Project Ecology: Observing Campaigns, Outreach and Citizen Science
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2016-12-01
The PACA Project has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanding to include polarimetric exploration of solar system objects with small apertures and collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The use of social media is becoming prevalent in citizen science projects due to these factors. The final stage of the PACA ecosystem is the integration of these components into a publication. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects in all three categories with new partnerships and collaborations.
NASA Astrophysics Data System (ADS)
Mansour, Nasser
2010-03-01
The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first and science comes next. I will argue that teachers' personal religious beliefs are among the major constructs that drive teachers' ways of thinking and interpretation of scientific issues related with religion. Then, I discuss how teachers' personal religious beliefs have been formed and influenced their pedagogical beliefs related to science and religion issues. Finally, I will argue, how we use the personal religious beliefs model as a framework of teaching/learning scientific issues related with religion within sociocultural (Islamic) context. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.
Developmental Programming: State-of-the-Science and Future Directions
Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric
2016-01-01
Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645
ERIC Educational Resources Information Center
Utica City School District, NY.
Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, physical science), and grade level. Choices of environmental topics such as weather, conservation of natural resources, and the interdependence of organisms and environment dominate objectives written for grades…
An ontology of scientific experiments
Soldatova, Larisa N; King, Ross D
2006-01-01
The formal description of experiments for efficient analysis, annotation and sharing of results is a fundamental part of the practice of science. Ontologies are required to achieve this objective. A few subject-specific ontologies of experiments currently exist. However, despite the unity of scientific experimentation, no general ontology of experiments exists. We propose the ontology EXPO to meet this need. EXPO links the SUMO (the Suggested Upper Merged Ontology) with subject-specific ontologies of experiments by formalizing the generic concepts of experimental design, methodology and results representation. EXPO is expressed in the W3C standard ontology language OWL-DL. We demonstrate the utility of EXPO and its ability to describe different experimental domains, by applying it to two experiments: one in high-energy physics and the other in phylogenetics. The use of EXPO made the goals and structure of these experiments more explicit, revealed ambiguities, and highlighted an unexpected similarity. We conclude that, EXPO is of general value in describing experiments and a step towards the formalization of science. PMID:17015305
Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Young, K. E.; Lim, D. S.
2015-01-01
This paper is intended to evaluate the sample collection process with respect to sample characterization and decision making. In some cases, it may be sufficient to know whether a given outcrop or hand sample is the same as or different from previous sampling localities or samples. In other cases, it may be important to have more in-depth characterization of the sample, such as basic composition, mineralogy, and petrology, in order to effectively identify the best sample. Contextual field observations, in situ/handheld analysis, and backroom evaluation may all play a role in understanding field lithologies and their importance for return. For example, whether a rock is a breccia or a clast-laden impact melt may be difficult based on a single sample, but becomes clear as exploration of a field site puts it into context. The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is a new activity focused on a science and exploration field based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused, and moreover, is sampling-focused, with the explicit intent to return the best samples for geochronology studies in the laboratory. This specific objective effectively reduces the number of variables in the goals of the field test and enables a more controlled investigation of the role of the crewmember in selecting samples. We formulated one hypothesis to test: that providing details regarding the analytical fate of the samples (e.g. geochronology, XRF/XRD, etc.) to the crew prior to their traverse will result in samples that are more likely to meet specific analytical objectives than samples collected in the absence of this premission information. We conducted three tests of this hypothesis. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This is not meant to be a blind, controlled test of crew efficacy, but rather an effort to recognize the relevant variables that enter into sampling protocol and to develop recommendations for crew and backroom training in future endeavors. Methods: One of the primary FINESSE field deployment objectives was to collect impact melt rocks and impact melt-bearing breccias from a number of locations around the WCIS structure to enable high precision geochronology of the crater to be performed [1]. We conducted three tests at WCIS after two full days of team participation in field site activities, including using remote sensing data and geologic maps, hiking overland to become familiar with the terrain, and examining previously-collected samples from other islands. In addition, the team members shared their projects and techniques with the entire team. We chose our "crew members" as volunteers from the team, all of whom had had moderate training in geologic fieldwork and became familiar with the general field setting. The first two tests were short, focused tests of our hypothesis. Test A was to obtain hydrothermal vugs; Test B was to obtain impact melt and intrusive rock as well as the contact between the two to check for contact metamorphism and age differences. In both cases, the test director had prior knowledge of the site geology and had developed a study-specific objective for sampling prior to deployment. Prior to the field deployment, the crewmember was briefed on the sampling objective and the laboratory techniques that would be used on the samples. At the field sites (Fig. 2), the crewmember was given 30 minutes to survey a small section of outcrop (10-15 m) and acquire a suite of three samples. The crewmember talked through his process and the test director kept track of the timeline in verbal cues to the crewmember. At the conclusion, the team member conducting the scientific study appraised the samples and train of thought. Test C was a 90-minute EVA simulation using two crewmembers working out of line-of-sight in communication with a science backroom. The science objectives were determined by the science backroom team in advance using a Gigapan image of the outcrop (Fig. 1). The science team formulated hypotheses for the outcrop units and created sampling objectives for impact-melt lithologies; the science team turned these into a science plan, which they communicated to the crew in camp prior to crew deployment. As part of the science plan, the science team also discussed their sample needs in depth with the crewmembers, including laboratory methods, objectives, and samples sizes needed. During the deployment, the two crewmembers relayed real-time information to the science backroom by radio with no time delay. Both the crew and science team re-evaluated their hypotheses and science plans in real-time. Discussion: Upon evaluation, we found that the focused tests (Tests A and B) were successful in meeting their scientific objectives. The crewmember used their knowledge of how the samples were to be used in further study (technique, sample size, and scientific need) to focus on the sampling task. The crewmember was comfortable spending minimal time describing and mapping the outcrop. The crewmember used all available time to get a good sample. The larger test was unsuccessful in meeting the sampling objectives. When the crewmembers began describing the lithologies, it was quickly apparent that the lithologies were not as the backroom expected and had communicated to the crew. When the outcrop wasn't as expected, the crew members instinctively switched to field characterization mode, taking significant time to characterize and map the outcrop. One crew member admitted that he "kind of lost track" of the sampling strategy as he focused on the basic outcrop characterization. This is the logical first step in a field geology campaign, that a significant amount of time must be spent by the crew and backroom to understand the outcrop and its significance. Basic field characterization of an outcrop is a focused activity that takes significant time and training [2, 3]. Sampling of representational lithologies can be added to this activity for little cost [4]. However, we have shown that identification of unusual or specific samples for laboratory study also takes significant time and knowledge. We suggest that sampling of this type be considered a separate activity from field characterization, and that crewmembers be trained in sampling needs for different kinds of studies (representative lithologies vs. specialized samples) to acquire a mindset for sampling similar to field mapping. Sampling activities should be given a significant amount of specifically allocated time in scheduling EVA activities; and in the better case, that sampling be done as a second activity to a previously studied outcrop where both crew and backroom are comfortable with its context and characteristics. Our hypothesis posited that crewmember knowledge of how the samples would be used upon return would aid them in choosing relevant samples. Our testing bore this hypothesis out to some extent. We therefore recommend that crewmember training should include exposure to the laboratory techniques and analyses that will be used on the samples to foster this knowledge. There is also the potential for increasing crewmember contextual knowledge real-time in the field through the introduction of in situ geochemical technologies such as field portable XRF. The presence of field portable geochemical technology could enable the astronauts to interrogate the samples for K abundance real-time, ensuring they could collect valuable and dateable samples [5]. Though simulations such as these can teach us a fair bit about decision making processes and timeline building, one EVA participant noted that when he wasn't collecting "real" samples, he wasn't at his best. This effect suggests that higher-fidelity studies involving truly remote participants conducting actual scientific studies merit further attention to capture lessons for application to future crew situations.
Evaluation of Different Features for Face Recognition in Video
2014-09-01
and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre for Security Science, in partnership with Public ...Minister of National Defence, 2014 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014...deployment of innovative technologies for public safety and security practitioners to achieve specific objectives; 4. Threats/Hazards F – Major trans-border
NASA Astrophysics Data System (ADS)
Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin
2016-10-01
Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.
STS-47 Payload Specialist Mohri tosses an apple during SLJ demonstration
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Payload Specialist Mamoru Mohri tosses an apple in the weightless environment of the Spacelab Japan (SLJ) science module aboard the Earth-orbitng Endeavour, Orbiter Vehicle (OV) 105. Mohri was handling the space end of a space-to-Earth youth Conference with students in his home country (Japan) in which he gave a brief demonstration on the specifics of his mission as well as general information on space travel and space physics. Mohri conducts his demonstration in front of the NASDA Material Sciences Rack 10. In the background is the SLJ end cone with Detailed Test Objective (DTO), Foot restraint evaluation, base plate, a banner from Auburn University, and portraits of the backup payload specialists. Mohri represents Japan's National Space Development Agency (NASDA).
Creating new opportunities for communicating about space science
NASA Technical Reports Server (NTRS)
Treise, Debbie
1996-01-01
With the political and economic atmosphere changing so drastically, NASA has found it necessary to change its mission from one of exploration to that of accountability and application. These changes have made it difficult for NASA to access how its roles and constituency groups have changed in response. Specifically, at the MSFC Space Sciences Lab, management must now decide the most appropriate communication objectives, strategies and target market to direct messages reflecting these changes. Complicating the issue is that MSFC, must walk a fine line between looking as though it is spending too much money and 'marketing' themselves, which it is strictly prohibited from doing, and imparting the information in an exciting enough form to be picked up by the media.
The depth of fields: Managing focus in the epistemic subcultures of mind and brain science.
Peterson, David
2017-02-01
The 'psy' sciences emerged from the tangled roots of philosophy, physiology, biology and medicine, and these origins have produced heterogeneous fields. Scientists in these areas work in a complex, overlapping ecology of fields that results in the constant co-presence of dissonant theories, methods and research objects. This raises questions regarding how conceptual clarity is maintained. Using the optical metaphor 'depth of field', I show how researchers in all fields marginalize potential threats to routine scientific work by framing them as either too broad and imprecise or too narrow and technical. The appearance of this defocusing and devaluing across sites suggests a general aspect of scientific cognition, rather than a by-product of any specific scientific dispute.
Bodies of science and law: forensic DNA profiling, biological bodies, and biopower.
Toom, Victor
2012-01-01
How is jurisdiction transferred from an individual's biological body to agents of power such as the police, public prosecutors, and the judiciary, and what happens to these biological bodies when transformed from private into public objects? These questions are examined by analysing bodies situated at the intersection of science and law. More specifically, the transformation of ‘private bodies’ into ‘public bodies’ is analysed by going into the details of forensic DNA profiling in the Dutch jurisdiction. It will be argued that various ‘forensic genetic practices’ enact different forensic genetic bodies'. These enacted forensic genetic bodies are connected with various infringements of civil rights, which become articulated in exploring these forensic genetic bodies’‘normative registers’.
Kulkarni, Anil D; Sundaresan, Alamelu; Rashid, Muhammad J; Yamamoto, Shigeru; Karkow, Francisco
2014-01-01
The principal objective of this paper is to demonstrate the role of taste and flavor in health from the ancient science of Ayurveda to modern medicine; specifically their mechanisms and roles in space medicine and their clinical relevance in modern heath care. It also describes the brief history of the use of the monosodium glutamate or flavor enhancers ("Umami substance") that improve the quality of food intake by stimulating chemosensory perception. In addition, the dietary nucleotides are known to be the components of "Umami substance" and the benefit of their use has been proposed in various types of patients with cancer, radiation therapy, organ transplantation, and for application in space medicine.
Science communication in the field of fundamental biomedical research (editorial).
Illingworth, Sam; Prokop, Andreas
2017-10-01
The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Scientific Investigations Associated with the Human Exploration of Mars in the Next 35 Years
NASA Astrophysics Data System (ADS)
Niles, P. B.; Beaty, D.; Hays, L.; Bass, D.; Bell, M. S.; Bleacher, J.; Cabrol, N. A.; Conrad, P.; Eppler, D.; Hamilton, V.; Head, J.; Kahre, M.; Levy, J.; Lyons, T.; Rafkin, S.; Rice, J.; Rice, M.
2017-02-01
We present a summary of the findings of the Human Science Objectives Science Analysis Group (HSO-SAG) chartered by MEPAG in 2015 to address science objectives and landing site criteria for future human missions to Mars which could provide incredible scientific discovery.
Tire Crumb Research Study Literature Review / Gap ...
In order to more fully understand data gaps in human exposure and toxicity to tire crumb materials, ATSDR, CPSC and EPA undertook a collaborative effort in the form of a scientific literature review and subsequent gaps analysis. The first objective of the Literature Review and Gap Analysis (LRGA) collaboration was to identify the existing body of literature related specifically to human exposure to tire crumb materials through the use of synthetic turf athletic fields and playgrounds. The second objective was to characterize and summarize the relevant data from the scientific literature. The final objective was to review the summary information and identify data gaps to build on the current understanding of the state-of-the-science and inform the development of specific research efforts that would be most impactful in the near-term. Because of the need for additional information, the U.S. Environmental Protection Agency (EPA), the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Consumer Product Safety Commission (CPSC) launched a multi-agency action plan to study key environmental human health questions. The Federal Research Action Plan includes numerous activities, including research studies (U.S. EPA, 2016). A key objective of the Action Plan is to identify key knowledge gaps.
An outline of object-oriented philosophy.
Harman, Graham
2013-01-01
This article summarises the principles of object-oriented philosophy and explains its similarities with, and differences from, the outlook of the natural sciences. Like science, the object-oriented position avoids the notion (quite common in philosophy) that the human-world relation is the ground of all others, such that scientific statements about the world would only be statements about the world as it is for humans. But unlike science, object-oriented metaphysics treats artificial, social, and fictional entities in the same way as natural ones, and also holds that the world can only be known allusively rather than directly.
How we developed a bioethics theme in an undergraduate medical curriculum.
Ghias, Kulsoom; Ali, Syeda Kauser; Khan, Kausar S; Khan, Robyna; Khan, Murad M; Farooqui, Arshi; Nayani, Parvez
2011-01-01
The 5-year undergraduate medical curriculum at Aga Khan University integrates basic sciences with clinical and community health sciences. Multimodal strategies of teaching and learning, with an emphasis on problem-based learning, are utilized to equip students with knowledge, skills, behaviours, attitudes and values necessary for a high-calibre medical graduate. Bioethics teaching was introduced in the medical curriculum in 1988 and has since undergone several changes. In 2009, a multidisciplinary voluntary group began review of undergraduate bioethics teaching and invested over 350 man-hours in curricular revision. This involved formulating terminal objectives, delineating specific objectives and identifying instructional methodologies and assessment strategies appropriate for the contents of each objective. Innovative strategies were specially devised to work within the time constraints of the existing medical curriculum and importantly, to increase student interest and engagement. The new bioethics curriculum is designed to be comprehensive and robust, and strives to develop graduates who, in addition to being technically skilled and competent, are well-versed in the history and philosophy of ethics and bioethics and are ethical in their thinking and practice, especially in the context of a developing country like Pakistan where health indicators are among the worst in the region, and clinical practices are not effectively regulated to ensure quality of care.
SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, L
Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed basedmore » on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.« less
Program Objectives for Science. Revised.
ERIC Educational Resources Information Center
Bednarczyk, Angela; And Others
The guide lists program objectives for science instruction of hearing impaired students at Kendall Demonstration Elementary School. The curriculum, it is explained, is based on theories of J. Piaget. Objectives are stated in terms of process skills within four Piagetian stages of development: pre-operational, transition to concrete, concrete, and…
Accommodating life sciences on the Space Station
NASA Technical Reports Server (NTRS)
Arno, Roger D.
1987-01-01
The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.
Making UFOs make sense: Ufology, science, and the history of their mutual mistrust.
Eghigian, Greg
2017-07-01
Reports of unidentified flying objects and alien encounters have sparked amateur research (ufology), government investigations, and popular interest in the subject. Historically, however, scientists have generally greeted the topic with skepticism, most often dismissing ufology as pseudoscience and believers in unidentified flying objects and aliens as irrational or abnormal. Believers, in turn, have expressed doubts about the accuracy of academic science. This study examines the historical sources of the mutual mistrust between ufologists and scientists. It demonstrates that any science doubt surrounding unidentified flying objects and aliens was not primarily due to the ignorance of ufologists about science, but rather a product of the respective research practices of and relations between ufology, the sciences, and government investigative bodies.
Interdisciplinary Study on Artificial Intelligence.
1983-07-01
systems, uiophysics of information processing, cognitive science, and traditional artificial intelligence. The objective behi d this objective was to...information processing, cognitive science, and traditional * artificial intelligence. The objective behind this objective was to provide a vehicle for reviewing...Another departure from ’classical’ neurodynamics must be sought in the strong coupling between the micro and macroscopic scales. No other physical mechanism
Development of a dedicated peptide tandem mass spectral library for conservation science.
Fremout, Wim; Dhaenens, Maarten; Saverwyns, Steven; Sanyova, Jana; Vandenabeele, Peter; Deforce, Dieter; Moens, Luc
2012-05-30
In recent years, the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) on tryptic digests of cultural heritage objects has attracted much attention. It allows for unambiguous identification of peptides and proteins, and even in complex mixtures species-specific identification becomes feasible with minimal sample consumption. Determination of the peptides is commonly based on theoretical cleavage of known protein sequences and on comparison of the expected peptide fragments with those found in the MS/MS spectra. In this approach, complex computer programs, such as Mascot, perform well identifying known proteins, but fail when protein sequences are unknown or incomplete. Often, when trying to distinguish evolutionarily well preserved collagens of different species, Mascot lacks the required specificity. Complementary and often more accurate information on the proteins can be obtained using a reference library of MS/MS spectra of species-specific peptides. Therefore, a library dedicated to various sources of proteins in works of art was set up, with an initial focus on collagen rich materials. This paper discusses the construction and the advantages of this spectral library for conservation science, and its application on a number of samples from historical works of art. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pearson, Meghan Jeanne
The first grade curriculum for science in Colorado requires students be able to use describing words to depict and compare objects and people; however, first graders struggle with using specific enough language to create strong descriptions. With science education research encouraging teachers to use alternative teaching methods to approach these challenging topics, it is important to provide teachers with resources appropriate to their students. One such alternative learning method is a reading partner. Reading partners have been shown to increase vocabulary, boost school performance, and improve self-esteem in children. This study analyzed the effectiveness of using a science-based peer reading assignment about describing words on increasing a first grader's understanding of the topic. The book required the class to work together to help the characters describe different images and characters in the book with the intent that students were engaged during the reading. In pre-interview and post-interview, students described pictures, and their responses were analyzed for quality of the describing words provided and the number of strong (specific and not opinion) describing words provided. In the post-interview, students had an overall increase in the number of strong describing words provided. The quantitative data was analyzed by comparing strong describing words used pre-reading and post-reading, and the effect size was very large. The results indicate reading the book explaining describing words that asked for student participation did increase students understanding and use of describing words.
Jin, Jun; Bridges, Susan M
2014-12-10
As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education. Positive outcomes for student learning included providing rich, authentic problems and/or case contexts for learning; supporting student development of medical expertise through the accessing and structuring of expert knowledge and skills; making disciplinary thinking and strategies explicit; providing a platform to elicit articulation, collaboration, and reflection; and reducing perceived cognitive load. Limitations included cumbersome scenarios, infrastructure requirements, and the need for staff and student support in light of the technological demands of new affordances. This literature review demonstrates the generally positive effect of educational technologies in PBL. Further research into the various applications of educational technology in PBL curricula is needed to fully realize its potential to enhance problem-based approaches in health sciences education.
Science& Technology Review October 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D H
2003-10-01
The October 2003 issue of Science & Technology Review consists of the following articles: (1) Award-Winning Technologies from Collaborative Efforts--Commentary by Hal Graboske; (2) BASIS Counters Airborne Bioterrorism--The Biological Aerosol Sentry and Information System is the first integrated biodefense system; (3) In the Chips for the Coming Decade--A new system is the first full-field lithography tool for use at extreme ultraviolet wavelengths; (4) Smoothing the Way to Print the Next Generation of Computer Chips--With ion-beam thin-film planarization, the reticles and projection optics made for extreme ultraviolet lithography are nearly defect-free; (5) Eyes Can See Clearly Now--The MEMS-based adaptive optics phoroptermore » improves the process of measuring and correcting eyesight aberrations; (6) This Switch Takes the Heat--A thermally compensated Q-switch reduces the light leakage on high-average-power lasers; (7) Laser Process Forms Thick, Curved Metal Parts--A new process shapes parts to exact specifications, improving their resistance to fatigue and corrosion cracking; and (8) Characterizing Tiny Objects without Damaging Them--Livermore researchers are developing nondestructive techniques to probe the Lilliputian world of mesoscale objects.« less
NASA Astrophysics Data System (ADS)
Moore, John W.
2001-10-01
Science and art diverge in that art usually represents a single individual's conception and viewpoint, even when many others are involved in bringing a work to fruition, whereas science progresses by extending consensus among those knowledgeable in a field. Art usually communicates at an emotional level. It values individual expression and impact on the emotions at the expense of objectivity. Science, especially in its archival record, values objectivity and reproducibility and does not express the imagination and joy of discovery inherent in its practice. This is too bad, because it does not give a realistic picture of how science is really done and because individuality and emotion are inherently more interesting than consensus. Leaving out the personal, emotional side can make science seem boring and pedestrian, when exactly the opposite is true. In teaching science we need to remember that communication always benefits from imagination and esthetic sense. If we present science artistically and imaginatively, as well as objectively and precisely, students will develop a more complete understanding of what science and scientists are about--one that is likely to capture their imaginations, emotions, and best efforts.
NASA Astrophysics Data System (ADS)
Hill, Sharon A.
21st century television and the Internet are awash in content regarding amateur paranormal investigators and research groups. These groups proliferated after reality investigation programs appeared on television. Exactly how many groups are active in the U.S. at any time is not known. The Internet provides an ideal means for people with niche interests to find each other and organize activities. This study collected information from 1000 websites of amateur research and investigation groups (ARIGs) to determine their location, area of inquiry, methodology and, particularly, to determine if they state that they use science as part of their mission, methods or goals. 57.3% of the ARIGs examined specifically noted or suggested use of science as part of the groups' approach to investigation and research. Even when not explicit, ARIGs often used science-like language, symbols and methods to describe their groups' views or activities. Yet, non-scientific and subjective methods were described as employed in conjunction with objective methods. Furthermore, what were considered scientific processes by ARIGs did not match with established methods and the ethos of the scientific research community or scientific processes of investigation. ARIGs failed to display fundamental understanding regarding objectivity, methodological naturalism, peer review, critical thought and theoretical plausibility. The processes of science appear to be mimicked to present a serious and credible reputation to the non-scientific public. These processes are also actively promoted in the media and directly to the local public as "scientific". These results highlight the gap between the scientific community and the lay public regarding the understanding of what it means to do science and what criteria are necessary to establish reliable knowledge about the world.
NASA Astrophysics Data System (ADS)
Teixeira, Carlos; Paulo, Gallo; Nogueira, Maria Inês
2015-04-01
Communication's Purpose: Identify the artistic expression that uses the language of cartoons and comics for public communication, having as reference the Earth Education for a better planet sustainability. Object/Theme: Cartoons and comics published in newspapers, on five continents, made available in online version. Theoretical: This study is related to the assumption that the public communication of science by cartoons and comics constitute a textual genre, by the fact that they report scientific and complex themes presented in playful language, using humor and artistic traces accessible to the lay public. The scientific cartoons and comics aim to call public attention to scientific discoveries and science themes using illustrative chart features and short texts, both contextualized in a humorous structure. There are in the cartoons and comics, which are created to the public communication of science, an unintentionally pedagogical approach/formal, while transmitting information by unpretentious way and using graphic/artistic communication By the fact that in this specific format of communication there is knowledge being informed, the scientific cartoons and comics can contribute to the scientific empowerment of the society, in addition to being instruments that can also arouse scientific curiosity. The scientific cartoons and comics use objective language and short sentences, also employ words that may have a double meaning. It can be considered as an incentive for people's reflection. Method: It was analyzed cartoons and comics published in newspapers, made available in online version, published on five continents, in English, Portuguese and Spanish. Palavras-chave: science communication, public communication of science and technology; cartoons; comics
NASA Astrophysics Data System (ADS)
Duley, A. R.; Sullivan, D.; Fladeland, M. M.; Myers, J.; Craig, M.; Enomoto, F.; Van Gilst, D. P.; Johan, S.
2011-12-01
The Common Operations and Management Portal for Airborne Science Systems (COMPASS) project is a multi-center collaborative effort to advance and extend the research capabilities of the National Aeronautics and Space Administration's (NASA) Airborne Science Program (ASP). At its most basic, COMPASS provides tools for visualizing the position of aircraft and instrument observations during the course of a mission, and facilitates dissemination, discussion, and analysis and of multiple disparate data sources in order to more efficiently plan and execute airborne science missions. COMPASS targets a number of key objectives. First, deliver a common operating picture for improved shared situational awareness to all participants in NASA's Airborne Science missions. These participants include scientists, engineers, managers, and the general public. Second, encourage more responsive and collaborative measurements between instruments on multiple aircraft, satellites, and on the surface in order to increase the scientific value of these measurements. Fourth, provide flexible entry points for data providers to supply model and advanced analysis products to mission team members. Fifth, provide data consumers with a mechanism to ingest, search and display data products. Finally, embrace an open and transparent platform where common data products, services, and end user components can be shared with the broader scientific community. In pursuit of these objectives, and in concert with requirements solicited by the airborne science research community, the COMPASS project team has delivered a suite of core tools intended to represent the next generation toolset for airborne research. This toolset includes a collection of loosely coupled RESTful web-services, a system to curate, register, and search, commonly used data sources, end-user tools which leverage web socket and other next generation HTML5 technologies to aid real time aircraft position and data visualization, and an extensible a framework to rapidly accommodate mission specific requirements and mission tools.
ERIC Educational Resources Information Center
Morse, Margaret; And Others
The appendix to the report of the minimum objective system of the Hinesburg Elementary School (Vermont) includes objectives for science, physical education, music, and library skills, from the kindergarten through grade 6 levels. Most objectives are presented in the format of condition (or task), student behavior, and criteria. Also included are…
ERIC Educational Resources Information Center
Love, Robert Alden
The purpose of this research was to develop hierarchies of behavioral objectives for the chemistry content of a one-semester course in physical science for preservice associate degree nursing students. Each of three content objectives was expressed by a series of behaviorally stated objectives which included a terminal objective for a unit of…
Tallacchini, Mariachiara
2014-01-01
Science and law can be seen as the main creators of orders and rules in knowledge-based societies. These relations are particularly delicate in domains where scientific uncertainty and probabilistic causality are more frequently involved, such as environment and health. The decision of the Court of Florence (Tuscany Region, Northern Italy) (Second Criminal Division, 3217/2010, 17th May 2010) - here analysed - deals with the uncertain correlations between PM10 and health. The criminal law case involved some public officers in Tuscany, indicted for having failed to adopt the adequate measures to keep PM10 levels within the limits set by European Directive 2008/50/EC on air quality. In arguing that accusations were ill-founded, the Court, while invoking the validity of science, deliberately chose the scientific evidence relevant to drawing specific legal consequences. Meteorological phenomena are considered as the single determinant of high levels of PM10; their uncertainty is framed as absolute unpredictability and ungovernability, and from these flaws non-responsibility. The concept of coproduction is applied as a useful critical tool to open up the complex relationships between science and law by showing how scientific and legal concepts generate and influence each other even when legal regulations claims to be neutrally and objectively science-based.
ERIC Educational Resources Information Center
Anderson, Elaine J.; And Others
Investigated was the effect of systematically combined high and low level cognitive objectives upon the acquisition of science learning. An instructional unit based on a Biological Sciences Curriculum Study (BSCS) Inquiry Slide Set (structure and function, control of blood sugar, a homeostatic mechanism) was chosen because it included stimuli for…
ERIC Educational Resources Information Center
Rule, Audrey C.; Crisafulli, Sherry; DeCare, Heather; DeLeo, Tonya; Eastman, Keri; Farrell, Liz; Geblein, Jennifer; Gioia, Chelsea; Joyce, Ashley; Killian, Kali; Knoop, Kelly; LaRocca, Alison; Meyer, Katie; Miller, Julianne; Roth, Vicki; Throo, Julie; Van Arsdale, Jim; Walker, Malissa
2007-01-01
Descriptive vocabulary is needed for communication and mental processing of science observations. Elementary preservice teachers in a science methods class at a mid-sized public college in central New York State increased their descriptive vocabularies through a course assignment of making a descriptive adjective object box. This teaching material…
Persistent Identifiers as Boundary Objects
NASA Astrophysics Data System (ADS)
Parsons, M. A.; Fox, P. A.
2017-12-01
In 1989, Leigh Star and Jim Griesemer defined the seminal concept of `boundary objects'. These `objects' are what Latour calls `immutable mobiles' that enable communication and collaboration across difference by helping meaning to be understood in different contexts. As Star notes, they are a sort of arrangement that allow different groups to work together without (a priori) consensus. Part of the idea is to recognize and allow for the `interpretive flexibility' that is central to much of the `constructivist' approach in the sociology of science. Persistent Identifiers (PIDs) can clearly act as boundary objects, but people do not usually assume that they enable interpretive flexibility. After all, they are meant to be unambiguous, machine-interpretable identifiers of defined artifacts. In this paper, we argue that PIDs can fill at least two roles: 1) That of the standardized form, where there is strong agreement on what is being represented and how and 2) that of the idealized type, a more conceptual concept that allows many different representations. We further argue that these seemingly abstract conceptions actually help us implement PIDs more effectively to link data, publications, various other artifacts, and especially people. Considering PIDs as boundary objects can help us address issues such as what level of granularity is necessary for PIDs, what metadata should be directly associated with PIDs, and what purpose is the PID serving (reference, provenance, credit, etc.). In short, sociological theory can improve data sharing standards and their implementation in a way that enables broad interdisciplinary data sharing and reuse. We will illustrate this with several specific examples of Earth science data.
Science information systems: Archive, access, and retrieval
NASA Technical Reports Server (NTRS)
Campbell, William J.
1991-01-01
The objective of this research is to develop technology for the automated characterization and interactive retrieval and visualization of very large, complex scientific data sets. Technologies will be developed for the following specific areas: (1) rapidly archiving data sets; (2) automatically characterizing and labeling data in near real-time; (3) providing users with the ability to browse contents of databases efficiently and effectively; (4) providing users with the ability to access and retrieve system independent data sets electronically; and (5) automatically alerting scientists to anomalies detected in data.
International Research on ISS - The Benefits of Working Together
NASA Technical Reports Server (NTRS)
Uri, John J.; Thomas, Donald A.
2005-01-01
International Space Station is the most complex multinational cooperative space endeavor in history. Interagency agreements define utilization accommodations and resources available to each partner. Based on these arrangements, the partners select and implement research to meet agency goals and objectives. But to optimize the limited resources available to utilization, cooperation among the partners is essential. This paper describes various avenues available for partner cooperation and provides specific examples to demonstrate the value of such cooperation to accelerate and enhance science return.
3D Face Generation Tool Candide for Better Face Matching in Surveillance Video
2014-07-01
Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre for Security Science, in partnership with Public ...by the Minister of National Defence, 2014 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale... public safety and security practitioners to achieve specific objectives; 4. Threats/Hazards F – Major trans-border criminal activity – e.g. smuggling
Facing the grand challenges through heuristics and mindfulness
NASA Astrophysics Data System (ADS)
Powietrzynska, Malgorzata; Tobin, Kenneth; Alexakos, Konstantinos
2015-03-01
We address the nature of mindfulness and its salience to education generally and to science education specifically. In a context of the historical embeddedness of mindfulness in Buddhism we discuss research in social neuroscience, presenting evidence for neuronal plasticity of the brain and six emotional styles, which are not biologically predetermined, but are responsive to adaptation through life experiences. We raise questions about the role of science education in mediating the structure and function of the brain. Also, we discuss interventions to increase Mindfulness in Education, including meditation and heuristics, that act as reflexive objects to heighten awareness of characteristics of mindfulness and increase the likelihood of changes in the conduct of social life—increasing the mindfulness of those who engage the characteristics included in the heuristic. We present mindfulness and the development of a toolkit for ameliorating emotions when and as necessary as a component of a science curriculum that orientates toward wellness and sustainability. We advocate for changes in the nature of science education to reflect the priorities of the twenty first century that relate to sustainability of the living and nonliving universe and wellness of sentient beings.
Trends in Social Science: The Impact of Computational and Simulative Models
NASA Astrophysics Data System (ADS)
Conte, Rosaria; Paolucci, Mario; Cecconi, Federico
This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.
Going deeper: teaching more than the mechanics
NASA Astrophysics Data System (ADS)
Bruck, R. A.
2013-02-01
What follows is a description of an introductory holography course titled "Lasers and Holography," taught by the author at Columbia College Chicago since 1997. Because this is a science class at an arts college with an open admissions policy, these students have many different levels of education, dissimilar backgrounds, and varied fields of interest. There are few science majors. Therefore, specific learning objectives are developed. The author contends that for many of these students it is not enough to teach the physics of making holograms. To inspire and instill a lifelong appreciation for science and physics, one must go still deeper. Students need to be touched on more than just an intellectual level. Consequently, a broader approach is used. Ultimately, it may stir students to want to learn more, and to be confident they can. The paper addresses: 1) Becoming aware of one's individual state of seeing 2) Perceptual illusions: their impact on the advancement of science 3) Promoting artistic applications and exposing students to fine art holography 4) Teaching holography as an information processing, as well as an image-making technology 5) Introducing and exploring philosophical implications of holographic principles.
NASA Astrophysics Data System (ADS)
Sakon, I.; Onaka, T.; Kataza, H.; Wada, T.; Sarugaku, Y.; Matsuhara, H.; Nakagawa, T.; Kobayashi, N.; Kemper, C.; Ohyama, Y.; Matsumoto, T.; Seok, J. Y.
Mid-Infrared Camera and Spectrometers (MCS) is one of the Focal-Plane Instruments proposed for the SPICA mission in the pre-project phase. SPICA MCS is equipped with two spectrometers with different spectral resolution powers (R=λ /δ λ ); medium-resolution spectrometer (MRS) which covers 12-38µ m with R≃1100-3000, and high-resolution spectrometer (HRS) which covers either 12-18µ m with R≃30000. MCS is also equipped with Wide Field Camera (WFC), which is capable of performing multi-objects grism spectroscopy in addition to the imaging observation. A small slit aperture for low-resolution slit spectroscopy is planned to be placed just next to the field of view (FOV) aperture for imaging and slit-less spectroscopic observation. MCS covers an important part of the core spectral range of SPICA and, complementary with SAFARI (SpicA FAR-infrared Instrument), can do crucial observations for a number of key science cases to revolutionize our understanding of the lifecycle of dust in the universe. In this article, the latest design specification and the expected performance of the SPICA/MCS are introduced. Key science cases that should be targetted by SPICA/MCS have been discussed by the MCS science working group. Among such science cases, some of those related to dust science are briefly introduced.
From Tattoos to Paintings: An Overview of Where Art and Science Intersect in the Anthropocene
NASA Astrophysics Data System (ADS)
Kahn, B.
2017-12-01
The relationship between art and science spans centuries from daVinci's Vitruvian Man to the pointilism of Suerat's "A Sunday Afternoon on the Island of La Grande Jatte." The connection is so strong because both art and science help us make sense of the world. Climate change is a global problem and art and science are playing a role in making it more personal and local. Artists in particular have transformed climate science from data into a universal language, playing on themes of loss, change and spectacle. This presentation will cover climate-related art in a variety of mediums from pastels to oil paints to digital graphics to apps to music to objects made to survive the anthropocene. As a journalist, I've had the chance to engage with both scientists and artists and will explain how these projects came about and concrete steps both sides can take to foster more science and art collaborations. In addition, I'll specifically highlight how Climate Central has worked with artists to translate our sea level rise data from maps into artwork on the web to reach audiences beyond gallery walls. This collaboration has helped make climate change more tangible for tens of millions of viewers.
Fighting for life: Religion and science in the work of fish and wildlife biologists
NASA Astrophysics Data System (ADS)
Geffen, Joel Phillip
Philosophers, historians, and sociologists of science have argued that it is impossible to separate fact from value. Even so, Americans generally demand that scientists be "objective." No bias is permitted in their work. Religious motivations in particular are widely considered anathema within the halls of science. My dissertation addresses both theoretical and practical aspects concerning objectivity in science through an examination of fish and wildlife biologists. I hypothesized that they use the language of objective science as a tool to convince others to protect habitats and species. Further, I claimed that this "rhetoric of science" is employed either consciously or unconsciously on behalf of personal values, and that religious and/or spiritual values figure significantly among these. Regarding the issue's practical applications, I argued in support of Susan Longino's assertion that while subjective influences exist in science, they do not necessarily indicate that objectivity has been sacrificed. My primary methodology is ethnographic. Thirty-five biologists working in the Pacific Northwest were interviewed during the course of summer 2001. Participant ages ranged from 23 to 78. Both genders were represented, as were various ethnic and cultural backgrounds, including Native American. I used a questionnaire to guide respondents through a consistent set of open-ended queries. I organized their answers under four categories: the true, the good, the beautiful, and the holy. The first three were borrowed from the theoretical writings of philosopher Immanuel Kant. The last came from Rudolf Otto's theological work. These categories provided an excellent analytical framework. I found that the great majority of fish and wildlife biologists strive for objectivity. However, they are also informed by powerful contextual values. These are derived from environmental ethics, aesthetic preferences pertaining to ecosystem appearance and function, and visceral experiences of connection with nature. These were blended into their practice of science to varying degrees. My hypothesis was affirmed. Science is not value-free, and nor can it be. Yet, contextual values do not necessarily undermine scientific objectivity.
Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.
Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi
2016-04-01
This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Pappa, Richard S.
2003-01-01
Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Developed by primary teachers and elementary principals from small districts in Snohomish and Island counties in Washington, this handbook contains sequenced student learning objectives for grades K-3 in the curriculum areas of reading, language arts, mathematics, science, and social studies. Each student learning objective is correlated to the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Museum & Science Center, Rochester, NY, that meets the definitions of ``sacred object'' and object of... responsibility within the Haudenosaunee Confederacy to bring back national cultural patrimony and sacred objects... not have the authority to do so. Furthermore, Onondaga Nation traditional religious leaders have...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Museum & Science Center, Rochester, NY, that meets the definitions of ``sacred object'' and object of... responsibility within the Haudenosaunee Confederacy to bring back national cultural patrimony and sacred objects... not have the authority to do so. Furthermore, Onondaga Nation traditional religious leaders have...
Reversing the Objective: Adding Guinea Pig Pedagogies
ERIC Educational Resources Information Center
Weinstein, Matthew
2004-01-01
This article explores objectification in science and science education, i.e., the way material is turned into an object of interest to scientists. Drawing on sociological and anthropological drama theory, it examines how objectification does and does not occur in classrooms and schools. To understand the role and relationship of the object to the…
Medical Student Use of Objectives in Basic Science and Clinical Instruction.
ERIC Educational Resources Information Center
And Others; Mast, Terrill A.
1980-01-01
A study that investigated the long-term use of instructional objectives by medical students taking basic science and clinical courses is reported. Focus is on the extent and manner in which the objectives were used and factors that influenced their use. Students reported heavier usage earlier in the curriculum. (Author/JMD)
Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne
NASA Technical Reports Server (NTRS)
Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis
2006-01-01
This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.
A Cooperative Learning Group Procedure for Improving CTE and Science Integration
ERIC Educational Resources Information Center
Spindler, Matt
2016-01-01
The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…
ERIC Educational Resources Information Center
Castejon, Juan Luis; Cantero, Ma. Pilar; Perez, Nelida
2008-01-01
Introduction: The main objective of this paper is to establish a profile of socio-emotional competencies characteristic of a sample of students from each of the big academic areas in higher education: legal sciences, social sciences, education, humanities, science and technology, and health. An additional objective was to analyse differences…
ERIC Educational Resources Information Center
Papadouris, Nicos; Constantinou, Constantinos P.
2017-01-01
Promoting facility with content knowledge is one of the most important objectives of science teaching. Conventionally, the focus for this objective is placed on the substantive side of content knowledge (e.g. science concepts/laws), whereas its epistemic or ontological aspects (e.g. why do we construct concepts?) rarely receive explicit attention.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
This document supersedes the previous one, taking into account changes that have taken place in the CFS Science and Technology (S and T) program structure and organization, and in the structure of the Program of Energy Research and Development, the source of funding for CFS bioenergy research. It explains the rationale and overall objective for the bioenergy research program and briefly reviews the accomplishments to date. It indicates the planning context within which the program operates, states the specific objectives for the period of the plan, and details the strategic priorities developed for this period. Finally, it outlines the implementationmore » process for the plan.« less
Measuring Drag Force in Newtonian Liquids
NASA Astrophysics Data System (ADS)
Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr
2012-03-01
The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at higher object speeds. Moreover, they can qualitatively study fluid patterns at various object speeds (Reynolds numbers). The second goal is to help students make connections between physics and other sciences. Specifically, the results of these experiments can be used to help students understand the role of fluid motion in determining the shape of an organism, or where it lives. At Saint Josephs University we have developed these experiments as part of a newly developed course in biomechanics where both physics and biology undergraduate students bring their ideas and expertise to enrich a shared learning environment.
NASA Technical Reports Server (NTRS)
Elrad, Tzilla (Editor); Filman, Robert E. (Editor); Bader, Atef (Editor)
2001-01-01
Computer science has experienced an evolution in programming languages and systems from the crude assembly and machine codes of the earliest computers through concepts such as formula translation, procedural programming, structured programming, functional programming, logic programming, and programming with abstract data types. Each of these steps in programming technology has advanced our ability to achieve clear separation of concerns at the source code level. Currently, the dominant programming paradigm is object-oriented programming - the idea that one builds a software system by decomposing a problem into objects and then writing the code of those objects. Such objects abstract together behavior and data into a single conceptual and physical entity. Object-orientation is reflected in the entire spectrum of current software development methodologies and tools - we have OO methodologies, analysis and design tools, and OO programming languages. Writing complex applications such as graphical user interfaces, operating systems, and distributed applications while maintaining comprehensible source code has been made possible with OOP. Success at developing simpler systems leads to aspirations for greater complexity. Object orientation is a clever idea, but has certain limitations. We are now seeing that many requirements do not decompose neatly into behavior centered on a single locus. Object technology has difficulty localizing concerns invoking global constraints and pandemic behaviors, appropriately segregating concerns, and applying domain-specific knowledge. Post-object programming (POP) mechanisms that look to increase the expressiveness of the OO paradigm are a fertile arena for current research. Examples of POP technologies include domain-specific languages, generative programming, generic programming, constraint languages, reflection and metaprogramming, feature-oriented development, views/viewpoints, and asynchronous message brokering. (Czarneclu and Eisenecker s book includes a good survey of many of these technologies).
The Specificity Principle in Acculturation Science.
Bornstein, Marc H
2017-01-01
The specificity principle in acculturation science asserts that specific setting conditions of specific people at specific times moderate specific domains in acculturation by specific processes. Our understanding of acculturation depends critically on what is studied where, in whom, how, and when. This article defines, explains, and illustrates the specificity principle in acculturation science. Research hypotheses about acculturation can be more adequately tested, inconsistencies and discrepancies in the acculturation literature can be satisfactorily resolved, acculturation interventions can be tailored to be more successful, and acculturation policies can be brought to new levels of effectiveness if the specificity principle that governs acculturation science is more widely recognized.
Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis
NASA Technical Reports Server (NTRS)
Deobald, Lyle R.; Mabson, Gerald E.; Engelstad, Steve; Prabhakar, M.; Gurvich, Mark; Seneviratne, Waruna; Perera, Shenal; O'Brien, T. Kevin; Murri, Gretchen; Ratcliffe, James;
2017-01-01
This document is intended to detail the theoretical basis, equations, references and data that are necessary to enhance the functionality of commercially available Finite Element codes, with the objective of having functionality better suited for the aerospace industry in the area of composite structural analysis. The specific area of focus will be improvements to composite interlaminar fatigue and progressive interlaminar failure. Suggestions are biased towards codes that perform interlaminar Linear Elastic Fracture Mechanics (LEFM) using Virtual Crack Closure Technique (VCCT)-based algorithms [1,2]. All aspects of the science associated with composite interlaminar crack growth are not fully developed and the codes developed to predict this mode of failure must be programmed with sufficient flexibility to accommodate new functional relationships as the science matures.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra
2013-06-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra
2013-01-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627
Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program
NASA Astrophysics Data System (ADS)
Cooper, John
2004-11-01
NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.
Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters
NASA Technical Reports Server (NTRS)
1989-01-01
Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.
Foundations of translational ecology
Enquist, Carolyn A. F.; Jackson, Stephen T.; Garfin, Gregg M.; Davis, Frank W.; Gerber, Leah R.; Littell, Jeremy; Tank, Jennifer L.; Terando, Adam; Wall, Tamara U.; Halpern, Benjamin S.; Morelli, Toni L.; Hiers, J. Kevin; McNie, Elizabeth; Stephenson, Nathan L.; Williamson, Matthew A.; Woodhouse, Connie A.; Yung, Laurie; Brunson, Mark W.; Hall, Kimberly R.; Hallett, Lauren M.; Lawson, Dawn M.; Moritz, Max A.; Nydick, Koren R.; Pairis, Amber; Ray, Andrea J.; Regan, Claudia M.; Safford, Hugh D.; Schwartz, Mark W.; Shaw, M. Rebecca
2017-01-01
Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context‐specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use‐driven, actionable science. Moreover, addressing research questions that arise from on‐the‐ground management issues – as opposed to the top‐down or expert‐oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long‐term, sustained engagement between partners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
Oriol, Nancy E; Hayden, Emily M; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A
2011-09-01
In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and graduate school science class work. Our experience is based on work with hundreds of high school, college, and graduate students enrolled in traditional science classes in which mannequin simulators were used to teach physiological principles. Specific case scenarios were integrated into the curriculum as problem-solving exercises chosen to accentuate the basic science objectives of the course. This report also highlights the historic and theoretical basis for the use of mannequin simulators as an important physiology education tool and outlines how the authors' experience in healthcare education has been effectively translated to nonclinical student populations. Particular areas of focus include critical-thinking and problem-solving behaviors and student reflections on the impact of the teaching approach.
The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather
NASA Technical Reports Server (NTRS)
2002-01-01
The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.
Kuiper Belt Objects Along the Pluto-Express Path
NASA Technical Reports Server (NTRS)
Jewitt, David (Principal Investigator)
1997-01-01
The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.
NASA Astrophysics Data System (ADS)
Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena
2017-08-01
Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Learning objectives and suggested activities, monitoring procedures and resources for the Washington K-3 Small Schools Science Curriculum are based on the rationale that "young children need the opportunity to observe, classify, predict, test ideas again and again in a variety of contexts, ask questions, explain, discuss ideas, fail, and succeed.…
War Termination: Dreaming of the End and the Ultimate Triumph
2004-05-17
and unstructured, art and science . To realize national strategic objectives and develop a triumphant peace, operational commanders must shun the...itself, war termination is both political and military, structured and unstructured, art and science . To realize national strategic objectives and...termination is political and military, structured and unstructured, art and science . By applying elements of operational art to war termination and
Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.
ERIC Educational Resources Information Center
Del Mod System, Dover, DE.
This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and objects of cultural.... Traditional religious leaders of the Seneca Nation of New York have identified these medicine faces as being...
Secondary school science teaching, 1970--1992: Objectives as stated in periodical literature
NASA Astrophysics Data System (ADS)
Hemby, Brian Franklin
Purpose of the study. The major purpose of this study was to identify and classify objectives for teaching science in secondary schools in the United States during the period 1970--1992. These objectives were identified by objective statements in articles from selected professional periodicals. Procedure. The 1970--1992 period was divided into two subperiods on the basis of major historical events. Selected professional periodicals were searched for statements of objectives of secondary school science teaching. These statements were catalogued into Knowledge, Process, Attitude and Interest, or Cultural Awareness categories. The resulting data were classified within and across the two subperiods according to frequency of occurrence, category, authorship, and year. Findings. The major findings of this investigation included the following: (1) Authors in Higher Education produced the most articles, both research-oriented and nonresearch-oriented, and the most statements in each subperiod. Miscellaneous authors produced the least articles and statements. (2) Statements in the Process category were most frequent in the two subperiods. (3) The "most important" objectives for secondary school science teaching were Philosophical, sociological, and political aspects (from the Cultural Awareness category), Processes, skills, and techniques (from the Process category), and Major facts, principles, or fundamentals (from the Knowledge category). (4) Attitude and Interest objectives were consistently ranked as least important throughout the study. (5) The ranking of "most important" objectives in research-oriented articles generally agreed with the ranking in articles as a whole. Conclusions. Based on the findings of this investigation, the following conclusions were made: (1) The objectives for teaching secondary school science were influenced by historical events, especially the Vietnam War, the Cold War, the AIDS pandemic, and the publication of A Nation at Risk: The Imperative for Educational Reform. (2) Authors in Higher Education wrote more articles about the objectives for the teaching of secondary school science than those in the other categories. This was probably a reflection of the "publish or perish" environment in many colleges and universities. (3) The most important objectives for secondary school science teaching were Philosophical, sociological, and political aspects, Processes, skills, and techniques, and Major facts, principles, or fundamentals. The preponderance of these objectives is most likely a result of cultural and social unrest during this period. (4) The number of research-oriented articles, as a percentage of all articles, doubled from the first subperiod to the second subperiod. There appears to be a trend during the second subperiod toward more data-based articles.
Science Curriculum Guide, Level 3.
ERIC Educational Resources Information Center
Newark School District, DE.
The third of four levels in a K-12 science curriculum is outlined. In Level 3 (grades 6-8), science areas include life science, earth science, and physical science (physics and chemistry). Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area (i.e., life science, animals, genetics)…
The Specificity Principle in Acculturation Science
Bornstein, Marc H.
2016-01-01
The Specificity Principle in Acculturation Science asserts that specific setting conditions of specific people at specific times moderate specific domains in acculturation by specific processes. Our understanding of acculturation depends critically on what is studied where, in whom, how, and when. This article defines, explains, and illustrates the Specificity Principle in Acculturation Science. Research hypotheses about acculturation can be more adequately tested, inconsistencies and discrepancies in the acculturation literature can be satisfactorily resolved, acculturation interventions can be tailored to be more successful, and acculturation policies can be brought to new levels of effectiveness if the specificity principle that governs acculturation science is more widely recognized. PMID:28073331
[Beauty judgment: review of the literature].
Faure, Jacques; Bolender, Yves
2014-03-01
Esthetic judgments are surely subjective, but as surely, that does not preclude them being studied objectively through rigorous scientific methods. The factual basis of a science of esthetics is not to settle whether some person or image is "objectively beautiful" but rather to determine whether some representative set or sets of individuals judge or experience him/her/it as beautiful or unattractive. The aim of this paper is to review the definitional, theoretical and methodological aspects pertaining to the perception of facial/dental attractiveness by a group of representative individuals. The first part lays down the basic principles of the perception of facial/dental attractiveness: the perception involves a jury, a field of investigation and a test providing quantitative data; the following general determinants of beauty perception are reviewed: the average morphology, the judge's cultural background, the numerology, the judge's ethnical origin. Indirect determinants are the dentition, the osseous architecture and the muscular envelope. Some disruptive factors might alter the judges' facial perception. They might be qualified as either peripheral to the face or psycho-social factors. Peripheral factors include hair style and color, skin hue, wrinkles, lips color... Psycho-social factors cover the personality of the subject being evaluated, his/her intelligence or behavior. The second part deals specifically with the methodology used to determine facial attractiveness and to correlate this latter with a specific morphology. Typically such a study aims to determine average esthetic preferences for some set of visual displays among a particular jury, given a specific task to judge esthetic quality or qualities. The sample being studied, the displays, the jury or jurys, the rating procedure must all be specified prior to collecting data. A specific emphasis will be given to the rating process and the associated morphometrics, the ultimate goal being to discriminate morphologies judged as attractive among our patients. © EDP Sciences, SFODF, 2014.
Does object view influence the scene consistency effect?
Sastyin, Gergo; Niimi, Ryosuke; Yokosawa, Kazuhiko
2015-04-01
Traditional research on the scene consistency effect only used clearly recognizable object stimuli to show mutually interactive context effects for both the object and background components on scene perception (Davenport & Potter in Psychological Science, 15, 559-564, 2004). However, in real environments, objects are viewed from multiple viewpoints, including an accidental, hard-to-recognize one. When the observers named target objects in scenes (Experiments 1a and 1b, object recognition task), we replicated the scene consistency effect (i.e., there was higher accuracy for the objects with consistent backgrounds). However, there was a significant interaction effect between consistency and object viewpoint, which indicated that the scene consistency effect was more important for identifying objects in the accidental view condition than in the canonical view condition. Therefore, the object recognition system may rely more on the scene context when the object is difficult to recognize. In Experiment 2, the observers identified the background (background recognition task) while the scene consistency and object views were manipulated. The results showed that object viewpoint had no effect, while the scene consistency effect was observed. More specifically, the canonical and accidental views both equally provided contextual information for scene perception. These findings suggested that the mechanism for conscious recognition of objects could be dissociated from the mechanism for visual analysis of object images that were part of a scene. The "context" that the object images provided may have been derived from its view-invariant, relatively low-level visual features (e.g., color), rather than its semantic information.
O'Connor, A; Anthony, R; Bergamasco, L; Coetzee, J F; Dzikamunhenga, R S; Johnson, A K; Karriker, L A; Marchant-Forde, J N; Martineau, G P; Millman, S T; Pajor, E A; Rutherford, K; Sprague, M; Sutherland, M A; von Borell, E; Webb, S R
2016-04-01
Accurate and complete reporting of study methods, results and interpretation are essential components for any scientific process, allowing end-users to evaluate the internal and external validity of a study. When animals are used in research, excellence in reporting is expected as a matter of continued ethical acceptability of animal use in the sciences. Our primary objective was to assess completeness of reporting for a series of studies relevant to mitigation of pain in neonatal piglets undergoing routine management procedures. Our second objective was to illustrate how authors can report the items in the Reporting guidElines For randomized controLled trials for livEstoCk and food safety (REFLECT) statement using examples from the animal welfare science literature. A total of 52 studies from 40 articles were evaluated using a modified REFLECT statement. No single study reported all REFLECT checklist items. Seven studies reported specific objectives with testable hypotheses. Six studies identified primary or secondary outcomes. Randomization and blinding were considered to be partially reported in 21 and 18 studies, respectively. No studies reported the rationale for sample sizes. Several studies failed to report key design features such as units for measurement, means, standard deviations, standard errors for continuous outcomes or comparative characteristics for categorical outcomes expressed as either rates or proportions. In the discipline of animal welfare science, authors, reviewers and editors are encouraged to use available reporting guidelines to ensure that scientific methods and results are adequately described and free of misrepresentations and inaccuracies. Complete and accurate reporting increases the ability to apply the results of studies to the decision-making process and prevent wastage of financial and animal resources.
Using Primary Literature to Teach Science Literacy to Introductory Biology Students
Krontiris-Litowitz, Johanna
2013-01-01
Undergraduate students struggle to read the scientific literature and educators have suggested that this may reflect deficiencies in their science literacy skills. In this two-year study we develop and test a strategy for using the scientific literature to teach science literacy skills to novice life science majors. The first year of the project served as a preliminary investigation in which we evaluated student science literacy skills, created a set of science literacy learning objectives aligned with Bloom’s taxonomy, and developed a set of homework assignments that used peer-reviewed articles to teach science literacy. In the second year of the project the effectiveness of the assignments and the learning objectives were evaluated. Summative student learning was evaluated in the second year on a final exam. The mean score was 83.5% (±20.3%) and there were significant learning gains (p < 0.05) in seven of nine of science literacy skills. Project data indicated that even though students achieved course-targeted lower-order science literacy objectives, many were deficient in higher-order literacy skills. Results of this project suggest that building scientific literacy is a continuing process which begins in first-year science courses with a set of fundamental skills that can serve the progressive development of literacy skills throughout the undergraduate curriculum. PMID:23858355
Examining techniques for measuring the effects of nutrients on mental performance and mood state.
Hamer, Mark; Dye, Louise; Siobhan Mitchell, E; Layé, Sophie; Saunders, Caroline; Boyle, Neil; Schuermans, Jeroen; Sijben, John
2016-09-01
Intake of specific nutrients has been linked to mental states and various indices of cognitive performance although the effects are often subtle and difficult to interpret. Measurement of so-called objective variables (e.g. reaction times) is often considered to be the gold standard for assessing outcomes in this field of research. It can, however, be argued that data on subjective experience (e.g. mood) are also important and may enrich existing objective data. The aim of this review is to evaluate methods for measuring mental performance and mood, considering the definition of subjective mood and the validity of measures of subjective experience. A multi-stakeholder expert group was invited by ILSI Europe to come to a consensus around the utility of objective and subjective measurement in this field, which forms the basis of the paper. Therefore, the present review reflects a succinct overview of the science but is not intended to be a systematic review. The proposed approach extends the traditional methodology using standard 'objective' measurements to also include the consumers' subjective experiences in relation to food. Specific recommendations include 1) using contemporary methods to capture transient mood states; 2) using sufficiently sensitive measures to capture effects of nutritional intervention; 3) considering the possibility that subjective and objective responses will occur over different time frames; and 4) recognition of the importance of expectancy and placebo effects for subjective measures. The consensus reached was that the most informative approach should involve collection and consideration of both objective and subjective data.
Composing, Analyzing and Validating Software Models
NASA Astrophysics Data System (ADS)
Sheldon, Frederick T.
1998-10-01
This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.
Composing, Analyzing and Validating Software Models
NASA Technical Reports Server (NTRS)
Sheldon, Frederick T.
1998-01-01
This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.
JWST Mirror Technology Development
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and [[Page 19700
A concept for performance management for Federal science programs
Whalen, Kevin G.
2017-11-06
The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Berglund, Judith; Spruce, Joseph P.; McKellip, Rodney; Jasinski, Michael; Borak, Jordan; Lundquist, Julie
2007-01-01
NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).
Onboard Science Data Analysis: Opportunities, Benefits, and Effects on Mission Design
NASA Technical Reports Server (NTRS)
Stolorz, P.; Cheeseman, P.
1998-01-01
Much of the initial focus for spacecraft autonomy has been on developing new software and systems concepts to automate engineering functions of the spacecraft: guidance, navigation and control, fault protection, and resources management. However, the ultimate objectives of NASA missions are science objectives, which implies that we need a new framework for perfoming science data evaluation and observation planning autonomously onboard spacecraft.
Science objectives in the lunar base advocacy
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1988-01-01
The author considers the potential function of astronomy in planning for a lunar base during the 21st century. He is one of the leading advocates for a permanent settlement on the Moon and has given considerable thought to the possible impact of such a station on science. He considers the rationale for a lunar base, research on the Moon, and the definition of science objectives.
ERIC Educational Resources Information Center
Balatsoukas, Panos; O'Brien, Ann; Morris, Anne
2011-01-01
Introduction: This paper reports on the findings of a study investigating the potential effects of discipline (sciences and engineering versus humanities and social sciences) on the application of the Institute of Electrical and Electronic Engineers learning object metadata elements for the description of learning objects in the Jorum learning…
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A Java wrapper around the library allows parts of it to be used from Java code (via a native JNI interface). Future conversions of all or part of the library to Java are contemplated.
Using the World Wide WEB to promote science education in nuclear energy and RWM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, M.
1996-12-31
A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that themore » federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.« less
Nassar, Dalia
2016-08-01
In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. Copyright © 2016. Published by Elsevier Ltd.
Portsmouth Atmospheric Science School (PASS) Project
NASA Technical Reports Server (NTRS)
Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)
2002-01-01
The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).
Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars
NASA Astrophysics Data System (ADS)
Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick
2016-07-01
In December 2015, the "Third Community Workshop on Affording and Sustaining Human Mars Exploration" (AM III) was held, which was designed to provide community recommendations on the potential human exploration of Mars. To facilitate the workshop, we focused on two key questions: 1) From the dual and interrelated perspectives of affordability and sustainability, what are the strengths/challenges of Mars exploration scenarios?; and 2) From the perspective of prioritized scientific objectives for the martian system (the planet's surface or its moons), what are the most enabling capabilities of the different exploration architecture(s) and why? Group discussion over three days resulted in the following findings and observations: 1. NASA's incremental approach to deep-space exploration defines the so-called "Proving Ground," specifically in cis-lunar space, generally occurring in the 2020s and prior to human journeys to Mars. We concluded that there are capabilities directly related to, and on the critical path to, human exploration of Mars that could be developed in cis-lunar space. However, we also concluded that the Proving Ground should best be viewed as a campaign that occurs within a certain timeframe (including activities at Mars), rather than merely occurring at a specific location. 2. The workshop participants agreed that the most valuable purposes of sending humans to the martian system would be accomplished only by surface operations. We concluded that specific benefits, both technical and cost, of sending humans to the Mars system without landing on the martian surface should be assessed in depth. We discussed - although were unable to conclude - whether Mars orbit or Phobos/Deimos as a destination would make sufficient contributions towards humans landing on the martian surface or to answering high-priority science questions (as identified by the Decadal Survey) to justify their associated costs and possible risks. Further study on the value of an orbital mission prior to a Mars surface mission should be initiated. 3. A well-planned set of science objectives for a future human-landed mission to Mars is essential in order to sustain coordination among the science and human spaceflight communities. In particular, while it is clear how humans on the surface of Mars would significantly accelerate the pace of the search for past life, it is unclear how humans would play a role in (and not serve as a hindrance to) the search for extant life. Further study should be supported. 4. Sustained formal collaboration among Mars scientists, engineers, technologists, and teams developing scenarios for Mars exploration should be supported. The human and robotic sides of the Mars exploration community need to become further engaged with each other, particularly as we enter a potential period of dual-purpose (science + human precursor) missions. Central to this era is generating mutual support for a Mars sample return architecture as a goal that has crucial value to both the human preparatory program and planetary science.
ERIC Educational Resources Information Center
Koksal, Mustafa Serdar; Ertekin, Pelin
2016-01-01
The study is focusing on development of an instrument to determine science-specific epistemological beliefs of prospective science teachers. The study involved 364 (male = 82, female = 282) prospective science teachers enrolled in a science teacher education program. The confirmatory factor analysis, reliability analysis and correlation analysis…
International Space Station Research and Facilities for Life Sciences
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Ruttley, Tara M.
2009-01-01
Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
Children and their 4-H animal projects: How children use science in agricultural activity
NASA Astrophysics Data System (ADS)
Emo, Kenneth Roy
Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.
The current state of implementation science in genomic medicine: opportunities for improvement.
Roberts, Megan C; Kennedy, Amy E; Chambers, David A; Khoury, Muin J
2017-08-01
The objective of this study was to identify trends and gaps in the field of implementation science in genomic medicine. We conducted a literature review using the Centers for Disease Control and Prevention's Public Health Genomics Knowledge Base to examine the current literature in the field of implementation science in genomic medicine. We selected original research articles based on specific inclusion criteria and then abstracted information about study design, genomic medicine, and implementation outcomes. Data were aggregated, and trends and gaps in the literature were discussed. Our final review encompassed 283 articles published in 2014, the majority of which described uptake (35.7%, n = 101) and preferences (36.4%, n = 103) regarding genomic technologies, particularly oncology (35%, n = 99). Key study design elements, such as racial/ethnic composition of study populations, were underreported in studies. Few studies incorporated implementation science theoretical frameworks, sustainability measures, or capacity building. Although genomic discovery provides the potential for population health benefit, the current knowledge base around implementation to turn this promise into a reality is severely limited. Current gaps in the literature demonstrate a need to apply implementation science principles to genomic medicine in order to deliver on the promise of precision medicine.Genet Med advance online publication 12 January 2017.
NASA Astrophysics Data System (ADS)
Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.
2015-12-01
This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.
NASA Astrophysics Data System (ADS)
Peleg, R.; Baram-Tsabari, A.
2016-10-01
Science museums often introduce plays to liven up exhibits, attract visitors to specific exhibitions, and help visitors to "digest" difficult content. Most previous research has concentrated on viewers' learning outcomes. This study uses performance and spectator analyses from the field of theater studies to explore the link between producers' intended aims, the written script, and the learning outcomes. We also use the conflict of didactics and aesthetics, common to the design of both educational plays and science museum exhibits, as a lens for understanding our data. "Darwin's journey," a play about evolution, was produced by a major science museum in Israel. The producers' objectives were collected through in-depth interviews. A structural analysis was conducted on the script. Viewer ( n = 103) and nonviewer ( n = 90) data were collected via a questionnaire. The results show strong evidence for the encoding of all of the producers' aims in the script. Explicit and cognitive aims were decoded as intended by the viewers. The evidence was weak for the decoding of implicit and affective aims. While the producers were concerned with the conflict of didactics and aesthetics, this conflict was not apparent in the script. The conflict is discussed within the broader context of science education in informal settings.
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce
2016-01-01
A long-standing "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time-varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long-time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed "data rods," are pre-generated or generated on-the-fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on "data curtains." The on-the-fly generation of data rods uses "data cubes," NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.
Fleck and the social constitution of scientific objectivity.
Fagan, Melinda B
2009-12-01
Ludwik Fleck's theory of thought-styles has been hailed as a pioneer of constructivist science studies and sociology of scientific knowledge. But this consensus ignores an important feature of Fleck's epistemology. At the core of his account is the ideal of 'objective truth, clarity, and accuracy'. I begin with Fleck's account of modern natural science, locating the ideal of scientific objectivity within his general social epistemology. I then draw on Fleck's view of scientific objectivity to improve upon reflexive accounts of the origin and development of the theory of thought-styles, and reply to objections that Fleck's epistemological stance is self-undermining or inconsistent. Explicating the role of scientific objectivity in Fleck's epistemology reveals his view to be an internally consistent alternative to recent social accounts of scientific objectivity by Harding, Daston and Galison. I use these contrasts to indicate the strengths and weaknesses of Fleck's innovative social epistemology, and propose modifications to address the latter. The result is a renewed version of Fleck's social epistemology, which reconciles commitment to scientific objectivity with integrated sociology, history and philosophy of science.
NASA Astrophysics Data System (ADS)
Rillero, Peter
1993-03-01
The impact of Pestalozzian theory as embodied in object teaching was only significantly felt in America when teacher-education institutions began teaching the spirit and techniques of this method. Sheldon and his colleagues helped spread object teaching across America by utilizing inservice teacher education, preservice teacher education, a Practice School, and education of teacher educators. This enlightenment in education shifted the instructional focus to the child, stressing activity and concrete experiences, rather than dull rote memorization. Elementary school science evolved from object teaching, and methods of science instruction were influenced by the object teaching movement. Educational reform may never again occur as swiftly or as dramatically; however, the message is clear: Significant, meaningful change can occur in schools through teacher education.
Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report
NASA Technical Reports Server (NTRS)
Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.
2015-01-01
This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.
Space station analysis study. Part 2, Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Objectives of the space station program requiring the support of man in space, either in the shuttle sortie mode or in extended duration facilities are identified and analyzed. A set of functional requirements was derived to identify specific technology advancement needs, tests to be conducted, and processes to be developed. Program options are summarized for: (1) satellite power system; (2) earth services; (3) space cosmological research and development; (4) space processing and manufacturing; (5) multidiscipline science laboratory; (6) sensor development facility; (7) living and working in space; and (8) orbital depot.
Scientific Assessment of NASA's Solar System Exploration Roadmap
NASA Technical Reports Server (NTRS)
1996-01-01
At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.
Schmidt, Roman; Engelhardt, Johann; Lang, Marion
2013-01-01
Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.
NASA Technical Reports Server (NTRS)
1973-01-01
Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.
OLES : Online Laboratory for Environmental Sciences
NASA Astrophysics Data System (ADS)
Anquetin, Sandrine; Beaufil, Xavier; Chaffard, Véronique; Juen, Patrick
2015-04-01
One of the major scientific challenges in the 21st century is to improve our understanding on the evolution of the water cycle associated with the climate variability. Main issues concern the prediction of i) the water resource and the access to drinkable water and ii) the extreme events, both droughts and floods. Observation strategies covering a wide range of space and time scales must therefore be set up, while continuing advanced research on the involved mechanisms and developing integrated modeling approaches. Within this general context, the present work relies on three natural observatories, located in West Africa, Worldwide Glaciers, and in Mediterranean region, managed at LTHE (Laboratoire d'étude des Transferts en Hydrologie et Environnement; Grenoble, France) and gathered at OSUG (Observatoire des Sciences de l'Univers; Grenoble, France). Their scientific objectives aim at improving the understanding of the water cycle functioning, providing water and mass balances for multi-scale basin sizes, and evaluating the hydrological impacts of the evolving climate. Water cycle variables (precipitation; soil moisture; snow cover; discharge; air and river temperatures; suspended material; etc …) are observed and recorded in 3 different databases built under specific technical constraints linked to the respective partnerships of the natural observatories. Each of the observatories has its own database, and modeling tools were developed separately leading to important efforts often duplicated. Therefore, there was a need to build an integrated cyber-infrastructure to provide access to data, and to shared tools and models that enable the understanding of the water cycle. This is the project called OLES, for Online Laboratory for Environmental Sciences. Focused on the understanding of the water cycle under contrasted climates, OLES facilitates the work of the scientific community and then, help interactions between the research community and water agencies or diverse stakeholders. OLES aims at i) extracting the required data from a GIS server, based on OGC web services (CSW, SOS, …), ii) building a specific process chain based on modules that use NETcdf for data interoperability, iii) running the process in chosen computing facilities, OLES can connect outside on a private LAN and iv) visualizing the result of the process. Based on J2EE, the MMI of OLES is a web interface and interacts with EJB objects. OLES uses web services to communicate with a sequencer developed in C++. Long-term objective is to promote education centered in water science strongly connected with climatic issues. This work has been supported by a grant from Labex OSUG@2020 (Investissements d'avenir - ANR10 LABX56). Sandrine Anquetin, Véronique Chaffard and Patrick Juen (LTHE, Grenoble, France) and Xavier Beaufils (OSUG, Grenoble, France) are part of Labex OSUG@2020 (ANR10 LABX56). Moreover the authors deeply thank the contribution of the OLES user's committee that helps to precise the specifications required for OLES.
Building a balanced scorecard for a burn center.
Wachtel, T L; Hartford, C E; Hughes, J A
1999-08-01
The Balanced Scorecard provides a model that can be adapted to the management of any burn center, burn service or burn program. This model enables an organization to translate its mission and vision into specific strategic objectives across the four perspective: (1) the financial perspective; (2) the customer service perspective; (3) the internal business perspective; and (4) the growth and learning perspective. Once the appropriate objectives are identified, the Balanced Scorecard guides the organization to develop reasonable performance measures and establishes targets, initiatives and alternatives to meet programmatic goals and pursue longer-term visionary improvements. We used the burn center at the University of Colorado Health Sciences Center to test whether the Balanced Scorecard methodology was appropriate for the core business plan of a healthcare strategic business unit (i.e. a burn center).
Historicizing transcultural psychiatry: people, epistemic objects, networks, and practices.
Delille, Emmanuel; Crozier, Ivan
2018-05-01
The history of transcultural psychiatry has recently attracted much historical attention, including a workshop in March 2016 in which an international panel of scholars met at the Maison de Sciences de l'Homme Paris-Nord (MSH-PN). Papers from this workshop are presented here. By conceiving of transcultural psychiatry as a dynamic social field that frames its knowledge claims around epistemic objects that are specific to the field, and by focusing on the ways that concepts within this field are used to organize intellectual work, several themes are explored that draw this field into the historiography of psychiatry. Attention is paid to the organization of networks and publications, and to important actors within the field who brought about significant developments in the colonial and post-colonial conceptions of mental illness.
Book review: Advances in 40Ar/39Ar dating: From archaeology to planetary sciences
Cosca, Michael A.
2015-01-01
The recently published book Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences is a collection of 24 chapters authored by international scientists on topics ranging from decay constants to 40Ar/39Ar dating of extraterrestrial objects. As stated by the editors in their introduction, these chapters were assembled with the goal of providing technique-specific examples highlighting recent advances in the field of 40Ar/39Ar dating. As this is the first book truly dedicated to 40Ar/39Ar dating since the second edition printing of the argon geochronologist’s handbook Geochronology and Thermochronology by the 40Ar/39Ar Method (McDougall and Harrison 1999), a new collection of chapters highlighting recent advances in 40Ar/39Ar geochronology offers much to the interested reader.
Talking after school: Parents' conversational styles and children's memory for a science lesson.
Leichtman, Michelle D; Camilleri, Kaitlin A; Pillemer, David B; Amato-Wierda, Carmela C; Hogan, Jennifer E; Dongo, Melissa D
2017-04-01
A scientist taught 40 4- to 6-year-old children an interactive science lesson at school. The same day, children talked about the lesson at home with a parent who was naive to the details of what had transpired at school. Six days later, a researcher interviewed children about objects, activities, and concepts that were part of the lesson. Aspects of parents' conversational style (e.g., open-ended memory questions, descriptive language) predicted how much information children provided in talking with them, which in turn predicted children's memory performance 6days later. The findings suggest that elaborative parent-child conversations at home could boost children's retention of academic information acquired at school even when parents have no specific knowledge of what children have experienced there. Copyright © 2016 Elsevier Inc. All rights reserved.
Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University
NASA Astrophysics Data System (ADS)
Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.
2006-12-01
Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.
Ada in Introductory Computer Science Courses
1993-01-01
Ada by Daniel F. Stubbs and Neil W. Webre Course Objective: To introduce the students to the basic classical data structures of computer science...Introduction to Ada, Chapman & Hall, 1993, London Dale/Weems/McCormick, Programming and Problem Solving with Ada, D. C. Heath and Company, 1994, MA Feldman...Daniel F. Stubbs and Neil W. Webre - Course Objective: To introduce the students to the basic classical data structures of computer science
Science Process Skills in Science Curricula Applied in Turkey
ERIC Educational Resources Information Center
Yumusak, Güngör Keskinkiliç
2016-01-01
One of the most important objectives of the science curricula is to bring in science process skills. The science process skills are skills that lie under scientific thinking and decision-making. Thus it is important for a science curricula to be rationalized in such a way that it brings in science process skills. New science curricula were…
Unintended knowledge learnt in primary science practical lessons
NASA Astrophysics Data System (ADS)
Park, Jisun; Abrahams, Ian; Song, Jinwoong
2016-11-01
This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt.
NASA Technical Reports Server (NTRS)
Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.;
2011-01-01
In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.
NASA Technical Reports Server (NTRS)
Clifford, S. M.; George, J. A.; Stoker, C. R.; Briggs, G.
2003-01-01
Since the mid-1990's, the stated strategy of the Mars Exploration Program has been to Follow the Water. Although this strategy has been widely publicized, its degree of influence -- and the logic behind its current implementation (as reflected in mission planning, platform and instrument selection, and allocation of spacecraft resources) remains unclear. In response to this concern, we propose an integrated strategy for the post-2009 exploration of Mars that identifies the scientific objectives, rationale, sequence of missions, and specific investigations, that we believe provides the maximum possible science return by pursuing the most direct, cost-effective, and technically capable approach to following the water. This strategy is based on the orbital identification, high-resolution surface investigation, and ultimate sampling of the highest priority targets: near-surface liquid water and massive ground ice (potentially associated with the discharge of the outlflow channels or the relic of a former ocean). The analysis of such samples, in conjunction with the data acquired by the necessary precursor investigations (to identify the locations and characterize the environments of the optimum sampling sites), is expected to address a majority of the goals and high priority science objectives identified by MEPAG.
Career education attitudes and practices of K-12 science educators
NASA Astrophysics Data System (ADS)
Smith, Walter S.
A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.
Temporal Properties of Liquid Crystal Displays: Implications for Vision Science Experiments
Elze, Tobias; Tanner, Thomas G.
2012-01-01
Liquid crystal displays (LCD) are currently replacing the previously dominant cathode ray tubes (CRT) in most vision science applications. While the properties of the CRT technology are widely known among vision scientists, the photometric and temporal properties of LCDs are unfamiliar to many practitioners. We provide the essential theory, present measurements to assess the temporal properties of different LCD panel types, and identify the main determinants of the photometric output. Our measurements demonstrate that the specifications of the manufacturers are insufficient for proper display selection and control for most purposes. Furthermore, we show how several novel display technologies developed to improve fast transitions or the appearance of moving objects may be accompanied by side–effects in some areas of vision research. Finally, we unveil a number of surprising technical deficiencies. The use of LCDs may cause problems in several areas in vision science. Aside from the well–known issue of motion blur, the main problems are the lack of reliable and precise onsets and offsets of displayed stimuli, several undesirable and uncontrolled components of the photometric output, and input lags which make LCDs problematic for real–time applications. As a result, LCDs require extensive individual measurements prior to applications in vision science. PMID:22984458
Solar System Planetary Science Decadal Survey and Missions in the Next Decade, 2013-2022
NASA Technical Reports Server (NTRS)
Reh, Kim
2011-01-01
In 2010, the National Research Council Space Studies Board established a decadal survey committee to develop a comprehensive science, mission, and technology strategy for planetary science that updates and extends the Board's 2003 Solar System Exploration Decadal Survey, "New Frontiers in the Solar System: An Integrated Exploration Strategy." The scope of the survey encompasses the inner planets (Mercury, Venus, and Mars), the Earth's Moon, the giant planets (Jupiter, Saturn, Uranus, and Neptune), the moons of the giant planets, dwarf planets and small bodies, primitive bodies including comets and Kuiper Belt objects, and astrobiology. Over this past year, the decadal survey committee has interacted with the broad solar system science community to determine the current state of knowledge and to identify the most important scientific questions expected to face the community during the interval 2013-2022. The survey has identified candidate missions that address the most important science questions and has conducted, through NASA sponsorship, concept studies to assess the cost of such missions as well as technology needs. The purpose of this paper is to provide an overview of the 2012 Solar System Planetary Science Decadal Survey study approach and missions that were studied for implementation in the upcoming decade. Final results of the decadal survey, including studies that were completed and the specific science, programmatic, and technology recommendations will be disclosed publically in the spring of 2011 and are not the subject of this paper.
Using Scavenger Hunts to Familiarize Students with Scientific Journal Articles.
Lijek, Rebeccah S; Fankhauser, Sarah C
2016-03-01
Primary scientific literature can be difficult to navigate for anyone unfamiliar with its foreign, formal structure. We sought to create a fun, easy learning tool to help familiarize students of all ages with the structure of a scientific article. Our main learning objective was for the student to realize that science writing is formulaic-that specific information is found in predictable locations within an article-and that, with an understanding of the formula, anyone can comfortably navigate any journal article and accurately predict what to expect to find in each section. To this end, we designed a Journal Article Scavenger Hunt that requires the user to find and identify a series of commonplace features of a primary research article. The scavenger hunt activity is quick and easy to implement, and is adaptable to various ages and settings, including the classroom, lab, and at outreach events. The questions in the scavenger hunt can be scaled in difficulty and specificity to suit the instructor's needs. Over many years of using this activity, we have received positive feedback from students of all ages, from elementary school students to lay adult-learners as well as science teachers themselves. By making the unknown seem predictable and approachable, the scavenger hunt helps a variety of audiences feel more comfortable with science and more confident in their ability to engage directly with the scientific literature. Journal of Microbiology & Biology Education.
McKenzie, Briar; Santos, Joseph Alvin; Trieu, Kathy; Thout, Sudhir Raj; Johnson, Claire; Arcand, JoAnne; Webster, Jacqui; McLean, Rachael
2018-05-01
The aim of the current review was to examine the scope of studies published in the Science of Salt Weekly that contained a measure of self-reported knowledge, attitudes, and behavior (KAB) concerning salt. Specific objectives were to examine how KAB measures are used to evaluate salt reduction intervention studies, the questionnaires used, and whether any gender differences exist in self-reported KAB. Studies were reviewed from the commencement of Science of Salt Weekly, June 2013 to the end of August 2017. Seventy-five studies had relevant measures of KAB and were included in this review, 13 of these were salt-reduction intervention-evaluation studies, with the remainder (62) being descriptive KAB studies. The KAB questionnaires used were specific to the populations studied, without evidence of a best practice measure. 40% of studies used KAB alone as the primary outcome measure; the remaining studies used more quantitative measures of salt intake such as 24-hour urine. Only half of the descriptive studies showed KAB outcomes disaggregated by gender, and of those, 73% showed women had more favorable KAB related to salt. None of the salt intervention-evaluation studies showed disaggregated KAB data. Therefore, it is likely important that evaluation studies disaggregate, and are appropriately powered to disaggregate all outcomes by gender to address potential disparities. ©2018 Wiley Periodicals, Inc.
State of the Science Review: Potential for Beneficial Use of ...
Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major economic and environmental advantages on both a site-specific and national scale. These waste by-products can also reduce our need to mine virgin materials or produce synthetic materials for amendments. Waste by-products must not be hazardous or pose unacceptable risk to human health and the environment, and should be a suitable replacement for virgin and synthetic materials. This review serves to present the state of science on in-situ remediation of metal-contaminated soil and sediment and the potential for beneficial usage of waste by-product materials. Not all unintended consequences can be fully understood or predicted prior to implementing a treatment option, however some realized, and potentially unrealized, benefits and unintended consequences are explored. The objectives of this review article are to: (1) summarize the current state of the science on in-situ treatment of metal-contaminated soils and sediments; (2) review the more recent use of non-municipal and non-hazardous waste by-products for use as soil and sediment amendments; and (3) identify physical and chemical properties that are indicative of the success or effectiveness of using a specific amendment to treat metal
Geophysicists' views about public engagement
NASA Astrophysics Data System (ADS)
Besley, J. C.; Dudo, A.; Yuan, S.
2016-12-01
The proposed talk would present the results of 2016 survey of American Geophysical Union members (n = 2040) about public engagement. This survey took place as part of a broader, NSF funded, study of engagement views across eight different U.S.-based scientific societies. The presentation would include data about geophysicists' past engagement behavior and willingness to engage alongside data about engagement attitudes, perceived norms (i.e. beliefs about whether peers engage and value engagement), and perceived efficacy (i.e., scientists' beliefs about their own communication skills and the impact of engagement). The presentation would also include results that describe scientists' overall goals for engagement (e.g., increasing support for specific policy positions, changing citizen behavior, etc.), as well as their communication-specific objectives (e.g., increasing knowledge, increase excitement, etc.). All of the results would be put in the context of equivalent results from scientists from seven other societies across a variety of fields, including chemistry, biology, and the social sciences. Three themes that would be emphasized in the presentation include (1) the fact that there are substantial commonalities in engagement views across scientific fields, (2) the important role that perceived engagement skill (efficacy) appears to play in predicting engagement willingness, and (3) a lack of evidence that scientists are thinking about engagement in strategic ways. Strategic engagement, in this regard, would involve setting clear goals and then choosing activities that the social science of science communication suggests might allow one to achieve those goals. The presentation would conclude with thoughts about what might be done to improve the effectiveness of science communication training.
Armed and attentive: holding a weapon can bias attentional priorities in scene viewing.
Biggs, Adam T; Brockmole, James R; Witt, Jessica K
2013-11-01
The action-specific perception hypothesis (Witt, Current Directions in Psychological Science 20: 201-206, 2011) claims that the environment is represented with respect to potential interactions for objects present within said environment. This investigation sought to extend the hypothesis beyond perceptual mechanisms and assess whether action-specific potential could alter attentional allocation. To do so, we examined a well-replicated attention bias in the weapon focus effect (Loftus, Loftus, & Messo, Law and Human Behaviour 1, 55-62, 1987), which represents the tendency for observers to attend more to weapons than to neutral objects. Our key manipulation altered the anticipated action-specific potential of observers by providing them a firearm while they freely viewed scenes with and without weapons present. We replicated the original weapon focus effect using modern eye tracking and confirmed that the increase in time looking at weapons comes at a cost of less time spent looking at faces. Additionally, observers who held firearms while viewing the various scenes showed a general bias to look at faces over objects, but only if the firearm was in a readily usable position (i.e., pointed at the scenes rather than holstered at one's side). These two effects, weapon focus and the newly found bias to look more at faces when armed, canceled out one another without interacting. This evidence confirms that the action capabilities of the observer alter more than just perceptual mechanisms and that holding a weapon can change attentional priorities. Theoretical and real-world implications are discussed.
NASA Propulsion Investments for Exploration and Science
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.
2008-01-01
The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science.
Byford, Andy
2016-01-01
In the early 20(th) century the child population became a major focus of scientific, professional and public interest. This led to the crystallization of a dynamic field of child science, encompassing developmental and educational psychology, child psychiatry and special education, school hygiene and mental testing, juvenile criminology and the anthropology of childhood. This article discusses the role played in child science by the eminent Russian neurologist and psychiatrist Vladimir Mikhailovich Bekhterev. The latter's name is associated with a distinctive program for transforming the human sciences in general and psychology in particular that he in the 1900s labelled "objective psychology" and from the 1910s renamed "reflexology." The article examines the equivocal place that Bekhterev's "objective psychology" and "reflexology" occupied in Russian/Soviet child science in the first three decades of the 20(th) century. While Bekhterev's prominence in this field is beyond doubt, analysis shows that "objective psychology" and "reflexology" had much less success in mobilizing support within it than certain other movements in this arena (for example, "experimental pedagogy" in the pre-revolutionary era); it also found it difficult to compete with the variety of rival programs that arose within Soviet "pedology" during the 1920s. However, this article also demonstrates that the study of child development played a pivotal role in Bekhterev's program for the transformation of the human sciences: it was especially important to his efforts to ground in empirical phenomena and in concrete research practices a new ontology of the psychological, which, the article argues, underpinned "objective psychology"/"reflexology" as a transformative scientific movement. © 2016 The Authors. Journal of the History of the Behavioral Sciences Published by Wiley Periodicals, Inc.
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
NASA Technical Reports Server (NTRS)
Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.
1990-01-01
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.
32 CFR 2400.39 - Responsibility and objectives.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Responsibility and objectives. 2400.39 Section 2400.39 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.39 - Responsibility and objectives.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Responsibility and objectives. 2400.39 Section 2400.39 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.39 - Responsibility and objectives.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Responsibility and objectives. 2400.39 Section 2400.39 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.39 - Responsibility and objectives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Responsibility and objectives. 2400.39 Section 2400.39 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
32 CFR 2400.39 - Responsibility and objectives.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Responsibility and objectives. 2400.39 Section 2400.39 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION...
Rationality, perception, and the all-seeing eye.
Felin, Teppo; Koenderink, Jan; Krueger, Joachim I
2017-08-01
Seeing-perception and vision-is implicitly the fundamental building block of the literature on rationality and cognition. Herbert Simon and Daniel Kahneman's arguments against the omniscience of economic agents-and the concept of bounded rationality-depend critically on a particular view of the nature of perception and vision. We propose that this framework of rationality merely replaces economic omniscience with perceptual omniscience. We show how the cognitive and social sciences feature a pervasive but problematic meta-assumption that is characterized by an "all-seeing eye." We raise concerns about this assumption and discuss different ways in which the all-seeing eye manifests itself in existing research on (bounded) rationality. We first consider the centrality of vision and perception in Simon's pioneering work. We then point to Kahneman's work-particularly his article "Maps of Bounded Rationality"-to illustrate the pervasiveness of an all-seeing view of perception, as manifested in the extensive use of visual examples and illusions. Similar assumptions about perception can be found across a large literature in the cognitive sciences. The central problem is the present emphasis on inverse optics-the objective nature of objects and environments, e.g., size, contrast, and color. This framework ignores the nature of the organism and perceiver. We argue instead that reality is constructed and expressed, and we discuss the species-specificity of perception, as well as perception as a user interface. We draw on vision science as well as the arts to develop an alternative understanding of rationality in the cognitive and social sciences. We conclude with a discussion of the implications of our arguments for the rationality and decision-making literature in cognitive psychology and behavioral economics, along with suggesting some ways forward.
Robotic lunar exploration: Architectures, issues and options
NASA Astrophysics Data System (ADS)
Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto
2007-06-01
The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long-range transport on the Moon.
Collecting, Managing, and Visualizing Data during Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.
2017-12-01
While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.
NASA Astrophysics Data System (ADS)
Areljung, Sofie; Ottander, Christina; Due, Karin
2017-12-01
This study explores if and how teachers combine practices of science and of preschool (children 1-5 years old) into preschool science practice. Views of knowing may differ between science practices, traditionally associated with masculinity and rationality, and preschool practices, traditionally associated with femininity and caring. Recognising this, we have chosen to focus on how teachers' talk constructs and relates to possible ways of gaining knowledge and reaching explanations of phenomena in preschool science. The analysis builds on two concept pairs often associated with gender as well as knowing: objective-subjective and logical-intuitive. The analysed material consists of 11 group interviews where preschool teachers talk about activities concerning science content. Our results show that several ways of knowing are possible in work with science content in preschool. These include ways of knowing more associated with subjectivity, such as `individual liking' and `whole-body perception', as well as more associated with objectivity, such as `noticing differences and similarities'. Furthermore, the results show that the teachers' talk moves readily between possibilities associated with femininity (subjective and intuitive) and masculinity (objective and logical). This indicates that the teachers in this study have found ways to handle science in preschool that goes against presumed tensions between science and preschool practices. The results contribute to more nuanced ways of describing and thinking about science in preschool and pave the way for further development of science education in early childhood education.
OLIVER: an online library of images for veterinary education and research.
McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick
2007-01-01
As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.
How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?
ERIC Educational Resources Information Center
Aslan, Oktay
2015-01-01
An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…
Advanced X-ray Astrophysics Facility (AXAF) science instruments
NASA Technical Reports Server (NTRS)
Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.
1991-01-01
The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.
A taste of science: Making the subjective objective in the California wine world.
Shapin, Steven
2016-06-01
This article is about the relationship between the categories of the subjective and the objective in the late 20th-century California wine world, about attempts to transform 'soft' subjective judgments into 'hard' objective descriptions and evaluations, and about the role of both sensory science and chemistry in such attempts. It focuses on research done at the University of California, Davis, from about the 1950s to the 1980s by the enologist Maynard Amerine, his co-workers, and successors. It suggests ways in which these materials might prompt attention to the role of subjective judgment and the marketplace in other forms of late modern science.
Analyzing forensic evidence based on density with magnetic levitation.
Lockett, Matthew R; Mirica, Katherine A; Mace, Charles R; Blackledge, Robert D; Whitesides, George M
2013-01-01
This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (± 0.0002 g/cm(3) ) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and verifiable and provides numerical values--independent of the specific apparatus or analyst--that correspond to the absolute density of the sample that may be entered into a searchable database. We discuss the feasibility of MagLev as a possible means of characterizing forensic-related evidence and demonstrate the ability of MagLev to (i) determine the density of samples of glitter and gunpowder, (ii) separate glitter particles of different densities, and (iii) determine the density of a glitter sample that was removed from a complex sample matrix. © 2012 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Marelli, Fulvio; Glaves, Helen; Albani, Mirko
2017-04-01
Advances in technologies and measuring techniques in the Earth science and Earth observation domains have resulted in huge amounts of data about our Planet having been acquired. By making this data readily discoverable and accessible, and providing researchers with the necessary processing power, tools, and technologies to work collaboratively and share the results with their peers, will create new opportunities and innovative approaches for cross-disciplinary research. The EVER-EST project aims to support these advancements in scientific research by developing a generic Virtual Research Environment (VRE) which is tailored to the needs of the Earth Science domain. It will provide scientists with the means to manage, share and preserve the data and methodologies applied in their research, and lead to results that are validated, attributable and can be shared within and beyond their often geographically dispersed communities e.g. in the form of scholarly communications. The EVER-EST VRE is being implemented as a Service Oriented Architecture (SOA) that is based on loosely coupled services which can be differentiated as being either generic or specific to the requirements of the Earth Science domain. Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although the concept of Research Objects has previously been validated by other experimental disciplines this application in the Earth Sciences represents its first implementation in observational research. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRCs represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907. The project is led by the European Space Agency (ESA), and involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.
NASA Astrophysics Data System (ADS)
Baker, D.
2006-12-01
As part of the NASA-supported undergraduate Earth System Science Education (ESSE) program, fifty-seven institutions have developed and implemented a wide range of Earth system science (ESS) courses, pedagogies, and evaluation tools. The Teaching, Learning, and Evaluation section of USRA's online ESSE Design Guide showcases these ESS learning environments. This Design Guide section also provides resources for faculty who wish to develop ESS courses. It addresses important course design issues including prior student knowledge and interests, student learning objectives, learning resources, pedagogical approaches, and assessments tied to student learning objectives. The ESSE Design Guide provides links to over 130 ESS course syllabi at introductory, senior, and graduate levels. ESS courses over the past 15 years exhibit common student learning objectives and unique pedagogical approaches. From analysis of ESS course syllabi, seven common student learning objectives emerged: 1) demonstrate systems thinking, 2) develop an ESS knowledge base, 3) apply ESS to the human dimension, 4) expand and apply analytical skills, 5) improve critical thinking skills, 6) build professional/career skills, and 7) acquire an enjoyment and appreciation for science. To meet these objectives, ESSE often requires different ways of teaching than in traditional scientific disciplines. This presentation will highlight some especially successful pedagogical approaches for creating positive and engaging ESS learning environments.
Fit for purpose quality management system for military forensic exploitation.
Wilson, Lauren Elizabeth; Gahan, Michelle Elizabeth; Robertson, James; Lennard, Chris
2018-03-01
In a previous publication we described a systems approach to forensic science applied in the military domain. The forensic science 'system of systems' describes forensic science as a sub-system in the larger criminal justice, law enforcement, intelligence, and military systems, with quality management being an important supporting system. Quality management systems help to ensure that organisations achieve their objective and continually improve their capability. Components of forensic science quality management systems can include standardisation of processes, accreditation of facilities to national/international standards, and certification of personnel. A fit for purpose quality management system should be balanced to allow organisations to meet objectives, provide continuous improvement; mitigate risk; and impart a positive quality culture. Considerable attention over the last decades has been given to the need for forensic science quality management systems to meet criminal justice and law enforcement objectives. More recently, the need for the forensic quality management systems to meet forensic intelligence objectives has been considered. This paper, for the first time, discusses the need for a fit for purpose quality management system for military forensic exploitation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Identifying potential dropouts from college physics classes
NASA Astrophysics Data System (ADS)
Wollman, Warren; Lawrenz, Frances
Hudson and Rottman (1981) established that mathematics ability is probably a secondary factor influencing dropout from college physics courses. Other factors remain to be found for predicting who will drop out or at least have difficulty with the course. When mathematics ability is coupled with general indicators of performance (total GPA and ACT natural science), prediction of performance for those who complete the course is substantially improved. Moreover, discriminant analyses reveal who will have at least some difficulty, but not who will drop out. The problem of isolating specific weaknesses of students who have difficulty persists. Physics achievement appears to depend on mathematics ability only to the extent that students possess the ability to utilize mathematics knowledge for solving physics problems. Identification of the specific aspects of this ability as well as the specific deficiencies leading to dropout should be the object of future research. For the present, interviews might be more revealing than group testing methods.
Biomaterials Made from Coiled-Coil Peptides.
Conticello, Vincent; Hughes, Spencer; Modlin, Charles
The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.
Ambient belonging: how stereotypical cues impact gender participation in computer science.
Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M
2009-12-01
People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
Nanotechnology and health: From boundary object to bodily intervention
NASA Astrophysics Data System (ADS)
Perry, Karen-Marie Elah
Nanotechnology is commonly understood to involve the manipulation of individual molecules and atoms. Increasingly, healthcare practices in British Columbia are articulated through the nanotechnological in relationship to the body. The hope for better treatment and diagnosis of disease is located in the specificity of nanotechnological applications -- the finely tuned targeting of cells and treatments geared towards individual molecular profiles. However, this same specificity also alarms regulators, activists and consumer groups in the potential for increased toxicity. Drawing from participant observation, ethnographic interviews, and theoretical orientations adopted by Susan Leigh Star and Jeffrey Bowker, this thesis explores three questions: 1) How can nanotechnology inhabit multiple contexts at once and have both local and shared meaning; 2) How can people who live in one community draw their meanings from people and objects situated there and communicate with those inhabiting another; and 3) What moral and political consequences attend each of these questions? Keywords: nanotechnology; medical anthropology; anthropology of the body; science studies; critical theory; feminist theory; ethnography; qualitative research; biomedicine; nanotoxicology; bionanotechnology; British Columbia; Canada; nanomedicine; medical nanotechnology.
Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calyam, Prasad
2014-09-15
The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less
Nature of Science or Nature of the Sciences?
ERIC Educational Resources Information Center
Schizas, Dimitrios; Psillos, Dimitris; Stamou, George
2016-01-01
The present essay examines the emerging issue of domain-general versus domain-specific nature of science (NOS) understandings from a perspective that illuminates the value of domain-specific philosophies of science for the growth and development of the NOS educational field. Under the assumption that individual sciences do have their own…
Science Laboratory Exercises for Vocational Agriculture Students.
ERIC Educational Resources Information Center
Thompson, Dale E.
This manual provides learning activities for use in two vocational agriculture courses--ornamental horticulture I and agricultural technology I. These activities are intended as aids in the teaching of application of science principles. An introductory chart gives a summary of how vocational agriculture objectives match objectives of specific…
Earth and Life Science: Eighth Grade. Curriculum Guide.
ERIC Educational Resources Information Center
Harlandale Independent School District, San Antonio, TX. Career Education Center.
The guide is arranged in vertical columns relating curriculum concepts in earth science to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and resource materials. The course for eighth graders attempts to place the curriculum concepts in order of increasing difficulty. Occupational…
NASA Astrophysics Data System (ADS)
Bourassa, M.; Osinski, G. R.; Cross, M.; Hill, P.; King, D.; Morse, Z.; Pilles, E.; Tolometti, G.; Tornabene, L. L.; Zanetti, M.
2018-02-01
Canadian contributions to the science goals and objectives of a lunar precursor rover for HERACLES, an international mission concept, are discussed. Enabled by the Deep Space Gateway, this rover is a technical demonstrator for robotic sample return.
Science News Stories as Boundary Objects Affecting Engagement with Science
ERIC Educational Resources Information Center
Polman, Joseph L.; Hope, Jennifer M. G.
2014-01-01
This paper explores how participating in a program spanning an informal science institution and multiple school sites engaged youth with science in a different way. In particular, teens in the program selected and researched science topics of personal interest, and then authored, revised, and published science news stories about those topics in an…
Issues in Science Education: Changing Purposes of Science Education.
ERIC Educational Resources Information Center
Williamson, Stan
This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…
The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise.
Sokolowska, Joanna; Sleboda, Patrycja
2015-07-01
Although risk and benefits of risky activities are positively correlated in the real world, empirical results indicate that people perceive them as negatively correlated. The common explanation is that confounding benefits and losses stems from affect. In this article, we address the issue that has not been clearly established in studies on the affect heuristic: to what extent boundary conditions, such as judgments' generality and expertise, influence the presence of the inverse relation in judgments of hazards. These conditions were examined in four studies in which respondents evaluated general or specific benefits and risks of "affect-rich" and "affect-poor" hazards (ranging from investments to applications of stem cell research). In line with previous research, affect is defined as good or bad feelings integral to a stimulus. In contrast to previous research, affect is considered as related both to personal feelings and to social controversies associated with a hazard. Expertise is related to personal knowledge (laypersons vs. experts) as well as to objective knowledge (targets well vs. poorly known to science). The direct comparison of the input from personal and objective ignorance into the inverse relation has not been investigated previously. It was found that affect invoked by a hazard guides general but not specific judgments of its benefits and risks. Technical expertise helps to avoid simplified evaluations of consequences as long as they are well known to science. For new, poorly understood hazards (e.g., stem cell research), expertise does not protect from the perception of the inverse relation between benefits and risks. © 2015 Society for Risk Analysis.
Schmiedel, Ute; Araya, Yoseph; Bortolotto, Maria Ieda; Boeckenhoff, Linda; Hallwachs, Winnie; Janzen, Daniel; Kolipaka, Shekhar S; Novotny, Vojtech; Palm, Matilda; Parfondry, Marc; Smanis, Athanasios; Toko, Pagi
2016-06-01
Citizen science has been gaining momentum in the United States and Europe, where citizens are literate and often interested in science. However, in developing countries, which have a dire need for environmental data, such programs are slow to emerge, despite the large and untapped human resources in close proximity to areas of high biodiversity and poorly known floras and faunas. Thus, we propose that the parataxonomist and paraecologist approach, which originates from citizen-based science, is well suited to rural areas in developing countries. Being a paraecologist or a parataxonomist is a vocation and entails full-time employment underpinned by extensive training, whereas citizen science involves the temporary engagement of volunteers. Both approaches have their merits depending on the context and objectives of the research. We examined 4 ongoing paraecologist or parataxonomist programs in Costa Rica, India, Papua New Guinea, and southern Africa and compared their origins, long-term objectives, implementation strategies, activities, key challenges, achievements, and implications for resident communities. The programs supported ongoing research on biodiversity assessment, monitoring, and management, and participants engaged in non-academic capacity development in these fields. The programs in Southern Africa related to specific projects, whereas the programs in Costa Rica, India, and Papua New Guinea were designed for the long term, provided sufficient funding was available. The main focus of the paraecologists' and parataxonomists' activities ranged from collection and processing of specimens (Costa Rica and Papua New Guinea) or of socioeconomic and natural science data (India and Southern Africa) to communication between scientists and residents (India and Southern Africa). As members of both the local land user and research communities, paraecologists and parataxonomists can greatly improve the flow of biodiversity information to all users, from local stakeholders to international academia. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
A Reconstructed Vision of Environmental Science Literacy: The case of Qatar
NASA Astrophysics Data System (ADS)
Khishfe, Rola
2014-12-01
The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and socioscientific issues (SSI). A conceptual understanding of these pillars as interconnected was presented and justified. Then the developed framework was used to examine the potential of the Qatari science standards to prepare environmentally literate citizens. Results showed that the secondary Qatari science standards generally take up the pillars of science content and scientific inquiry in an explicit manner. The NOS pillar is rarely addressed, while the SSI pillar is not addressed in the objectives and activities in a way that aligns with the heavy emphasis given in the overall aims. Moreover, the connections among pillars are mostly manifested within the activities and between the science content and scientific inquiry. The objectives and activities targeting the environment were less frequent among the four pillars across the Qatari standards. Again, the connections related to the environment were less frequent in conformity with the limited environmental objectives and activities. Implications from this study relate to the need for the distribution of the four pillars across the standards as well as the presentation of the different pillars as interconnected.
Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A
2009-03-01
In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.
The influence of role-specific self-concept and sex-role identity on career choices in science
NASA Astrophysics Data System (ADS)
Baker, Dale R.
Despite much effort on the part of educators the number of females who choose science careers remains low. This research focuses on two factors which may be influencing females in their choice of careers. These factors are role-specific self-concept in science and self perception in terms of stereotypical masculine and feminine characteristics. In addition logical ability and mathematics and science courses were also examined as factors in career choice. Females preferring science related careers and females preferring nontraditional careers such as police, military and trades were found to have a positive role-specific self-concept and a masculine perception of themselves. Females preferring traditional careers such as teacher or hairdresser had a poor role-specific self-concept and a more feminine perception of themselves. Males as a group were found to have a more positive role-specific self-concept than females. Logical ability was also related to a science career preference for both males and females. Males expected to take more higher level math courses than females, while females preferring science careers expected to take the most higher level science courses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
Scientists working in a particular domain often adhere to conventional data analysis and presentation methods and this leads to familiarity with these methods over time. But does high familiarity always lead to better analytical judgment? This question is especially relevant when visualizations are used in scientific tasks, as there can be discrepancies between visualization best practices and domain conventions. However, there is little empirical evidence of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their effect on scientific judgment. To address this gap and to study these factors, we focus on the climatemore » science domain, specifically on visualizations used for comparison of model performance. We present a comprehensive user study with 47 climate scientists where we explored the following factors: i) relationships between scientists’ familiarity, their perceived levels of com- fort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
The Sunrise project: An R&D project for a national information infrastructure prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhnyoung
1995-02-01
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to a prototype National Information Infrastructure (NII) development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multimedia technologies, and data mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; and (3) To define a new way of collaboration between computer science and industrially relevant research.« less
A network-based distributed, media-rich computing and information environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, R.L.
1995-12-31
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less
Science Experience Unit: Plant and Animal Adaptations.
ERIC Educational Resources Information Center
Ferguson-Florissant School District, Ferguson, MO.
GRADES OR AGES: No mention. Appears to be upper elementary. SUBJECT MATTER: Science units--plants and animals. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 35 activities. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: No objectives are mentioned. The activities suggested aim to recreate common…
Affective Objectives in Community College Science.
ERIC Educational Resources Information Center
Ediger, Marlow
Science teachers need to stress several kinds of objectives in teaching and learning. One kind, cognitive, receives major emphasis by teachers. In addition to vital facts and concepts, pupils should also acquire major generalizations. And, in addition to facts, concepts, and generalizations, pupils also need to be able to think critically.…
Space-based Science Operations Grid Prototype
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Welch, Clara L.; Redman, Sandra
2004-01-01
Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid
Do Doctrinal Buzzwords Obscure the Meaning of Operational Art
1989-04-21
doctrine defines military strategy as "the art and science of employing the armed forres of a nation or alliance to secure policy objectives by the...objectives during peace, crisis, or war. Joint Chiefs of Staff Publication I (JCS Pub 1) defines 7, strategy as "the art and science of developing...definitions. One definition is "the science and art of employing the pnlitical, economic, psychological, and military forces of a nation or group of
The National Space Science and Technology Center's Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cox, G. N.; Denson, R. L.
2004-12-01
The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO is poised to be a leader in this field because of its direct support to agency's accountable for America's educational systems, and for its synergistic relationships across the integrated stakeholder community. This includes Alabama's NASA facility, USRA, the SSTA's seven research universities, businesses and industries, and the Alabama Math, Science and Technology Education Coalition. In addition to traditional outreach methodologies, the EPO uses the unique resources of the NSSTC to assist in dissolving the boundaries in education among academia, government, and industry and to foster a more collaborative environment in support of STEM education reform.
NASA Astrophysics Data System (ADS)
Shea, John E.
The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum from a catalog of courses is difficult because of the many factors being considered. To assist this process, the multi-objective model and the curriculum requirements were incorporated in a linear program to select the "optimum" curriculum. The application of this tool was also beneficial in identifying the active constraints that limit curriculum development and content.
ERIC Educational Resources Information Center
Vasquez-Mireles, Selina; West, Sandra
2007-01-01
A correlated science lesson is characterized as an integrated science lesson in that it may incorporate traditionally integrated activities and use math as a tool. However, a correlated math-science lesson also: (1) has the pertinent math and science objectives aligned with state standards; and (2) teaches parallel science and math ideas equally.…
Proceedings of the First Hanford Separation Science Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission,more » including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.« less
The Ionospheric Connection Explorer Mission: Mission Goals and Design
NASA Astrophysics Data System (ADS)
Immel, T. J.; England, S. L.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Korpela, E. J.; Taylor, E. R.; Craig, W. W.; Harris, S. E.; Bester, M.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gérard, J.-C.; Harlander, J. M.; Huba, J. D.; Hubert, B.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. R.; Raftery, C.; Rochus, P.; Siegmund, O. H. W.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.; Rider, K. A.; Sirk, M. M.
2018-02-01
The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.
A Call to Develop Course-Based Undergraduate Research Experiences (CUREs) for Nonmajors Courses
Ballen, Cissy J.; Blum, Jessamina E.; Brownell, Sara; Hebert, Sadie; Hewlett, James; Klein, Joanna R.; McDonald, Erik A.; Monti, Denise L.; Nold, Stephen C.; Slemmons, Krista E.; Soneral, Paula A. G.; Cotner, Sehoya
2017-01-01
Course-based undergraduate research experiences (CUREs) for non–science majors (nonmajors) are potentially distinct from CUREs for developing scientists in their goals, learning objectives, and assessment strategies. While national calls to improve science, technology, engineering, and mathematics education have led to an increase in research revealing the positive effects of CUREs for science majors, less work has specifically examined whether nonmajors are impacted in the same way. To address this gap in our understanding, a working group focused on nonmajors CUREs was convened to discuss the following questions: 1) What are our laboratory-learning goals for nonmajors? 2) What are our research priorities to determine best practices for nonmajors CUREs? 3) How can we collaborate to define and disseminate best practices for nonmajors in CUREs? We defined three broad student outcomes of prime importance to the nonmajors CURE: improvement of scientific literacy skills, proscience attitudes, and evidence-based decision making. We evaluated the state of knowledge of best practices for nonmajors, and identified research priorities for the future. The report that follows is a summary of the conclusions and future directions from our discussion. PMID:28450449
NASA Technical Reports Server (NTRS)
Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)
1989-01-01
An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.
USDA-ARS?s Scientific Manuscript database
This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...
GeoTrust Hub: A Platform For Sharing And Reproducing Geoscience Applications
NASA Astrophysics Data System (ADS)
Malik, T.; Tarboton, D. G.; Goodall, J. L.; Choi, E.; Bhatt, A.; Peckham, S. D.; Foster, I.; Ton That, D. H.; Essawy, B.; Yuan, Z.; Dash, P. K.; Fils, G.; Gan, T.; Fadugba, O. I.; Saxena, A.; Valentic, T. A.
2017-12-01
Recent requirements of scholarly communication emphasize the reproducibility of scientific claims. Text-based research papers are considered poor mediums to establish reproducibility. Papers must be accompanied by "research objects", aggregation of digital artifacts that together with the paper provide an authoritative record of a piece of research. We will present GeoTrust Hub (http://geotrusthub.org), a platform for creating, sharing, and reproducing reusable research objects. GeoTrust Hub provides tools for scientists to create `geounits'--reusable research objects. Geounits are self-contained, annotated, and versioned containers that describe and package computational experiments in an efficient and light-weight manner. Geounits can be shared on public repositories such as HydroShare and FigShare, and also using their respective APIs reproduced on provisioned clouds. The latter feature enables science applications to have a lifetime beyond sharing, wherein they can be independently verified and trust be established as they are repeatedly reused. Through research use cases from several geoscience laboratories across the United States, we will demonstrate how tools provided from GeoTrust Hub along with Hydroshare as its public repository for geounits is advancing the state of reproducible research in the geosciences. For each use case, we will address different computational reproducibility requirements. Our first use case will be an example of setup reproducibility which enables a scientist to set up and reproduce an output from a model with complex configuration and development environments. Our second use case will be an example of algorithm/data reproducibility, where in a shared data science model/dataset can be substituted with an alternate one to verify model output results, and finally an example of interactive reproducibility, in which an experiment is dependent on specific versions of data to produce the result. Toward this we will use software and data used in preparing data for the MODFLOW model in Hydrology, JupyterHub used in Hydroshare, PyLith used in Computational Infrastructure for Geodynamics, and GeoSpace Collaborative Observations and Assimilative Modeling used in space science. The GeoTrust Hub is funded through the National Science Foundation EarthCube program.
Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints
NASA Technical Reports Server (NTRS)
Whiffen, Gregory J.
2013-01-01
The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.
CANSAT: Design of a Small Autonomous Sounding Rocket Payload
NASA Technical Reports Server (NTRS)
Berman, Joshua; Duda, Michael; Garnand-Royo, Jeff; Jones, Alexa; Pickering, Todd; Tutko, Samuel
2009-01-01
CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch.
Recent advances in applying decision science to managing national forests
Marcot, Bruce G.; Thompson, Matthew P.; Runge, Michael C.; Thompson, Frank R.; McNulty, Steven; Cleaves, David; Tomosy, Monica; Fisher, Larry A.; Andrew, Bliss
2012-01-01
Management of federal public forests to meet sustainability goals and multiple use regulations is an immense challenge. To succeed, we suggest use of formal decision science procedures and tools in the context of structured decision making (SDM). SDM entails four stages: problem structuring (framing the problem and defining objectives and evaluation criteria), problem analysis (defining alternatives, evaluating likely consequences, identifying key uncertainties, and analyzing tradeoffs), decision point (identifying the preferred alternative), and implementation and monitoring the preferred alternative with adaptive management feedbacks. We list a wide array of models, techniques, and tools available for each stage, and provide three case studies of their selected use in National Forest land management and project plans. Successful use of SDM involves participation by decision-makers, analysts, scientists, and stakeholders. We suggest specific areas for training and instituting SDM to foster transparency, rigor, clarity, and inclusiveness in formal decision processes regarding management of national forests.
[Constructing images and territories: thinking on the visuality and materiality of remote sensing].
Monteiro, Marko
2015-01-01
This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
A normative analysis of nursing knowledge.
Zanotti, Renzo; Chiffi, Daniele
2016-03-01
This study addresses the question of normative analysis of the value-based aspects of nursing. In our perspective, values in science may be distinguished into (i) epistemic when related to the goals of truth and objectivity and (ii) non-epistemic when related to social, cultural or political aspects. Furthermore, values can be called constitutive when necessary for a scientific enterprise, or contextual when contingently associated with science. Analysis of the roles of the various forms of values and models of knowledge translation provides the ground to understand the specific role of values in nursing. A conceptual framework has been built to classify some of the classical perspectives on nursing knowledge and to examine the relationships between values and different forms of knowledge in nursing. It follows that adopting a normative perspective in the analysis of nursing knowledge provides key elements to identify its proper dimension. © 2015 John Wiley & Sons Ltd.
Preparing Students for Middle School Through After-School STEM Activities
NASA Astrophysics Data System (ADS)
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-12-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or mathematics curricula. This study investigates the effectiveness of an engineering-integrated STEM curriculum designed for use in an after-school environment. The inquiry-based activities comprising the unit, Think Like an Astronaut, were intended to introduce students to STEM careers—specifically engineering and aerospace engineering—and enhance their skills and knowledge applicable related to typical middle school science objectives. Results of a field test with a diverse population of 5th grade students in nine schools revealed that Think Like an Astronaut lessons are appropriate for an after-school environment, and may potentially help increase students' STEM-related content knowledge and skills.
Economic analysis of gradual "social exhaustion" of waste management capacity.
Koide, Hideo; Nakayama, Hirofumi
2013-12-01
This article proposes to analyze the quantitative effects of a gradual physical and "social" exhaustion of a landfill site on an equilibrium waste management service. A gradual social exhaustion of a landfill is defined here as an upward shift of a "subjective factor" associated with the amount of waste, based on the plausible hypothesis that an individual will not accept excessive presence of landfilled waste. Physical exhaustion occurs when the absolute capacity of a landfill site decreases. The paper shows some numerical examples using specific functions and parameters, and proposes appropriate directions for three policy objectives: to decrease the equilibrium waste disposal, to increase the economic surplus of the individual and/or the waste management firm, and to lower the equilibrium collection fee. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications
NASA Technical Reports Server (NTRS)
Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.
2002-01-01
Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.
The Pluto fast flyby mission: Completing the reconnaissance of the solar system
NASA Technical Reports Server (NTRS)
Henry, Paul K.
1993-01-01
The concept of a fast flyby mission to Pluto has been advanced as a means to complete the reconnaissance of the known solar system. In order to acquire data on the Pluto system at the earliest possible time, and within the professional lifetime of investigators now active in the field, concepts are being developed for relatively small spacecraft in the mass range of 70 Kg to 350 Kg with flight times to Pluto of 7 to 13 years. Necessarily, the science complement on such a mission will be very mass and power limited. The challenge will be to define a spacecraft and an instrument package that will maximize the scientific return within these limitations. Cost, of course, will be a major consideration, and funds for new technology development specific to this mission will not be extensive. Consequently, innovative ways to incorporate elegant simplicity into the designs must be found. In order to facilitate exploration of the Pluto-Charon system, fully integrated science payloads must be developed. Two proposed mission designs involving limited mass and power science payloads have been presented to the Outer Planets Science Working Group (OPSWG). These payload mass allocations range from 5 to 30 kilograms with power allocations as low as 5 watts. The drivers behind these low mass and power allocations are that they enable developing missions to fit within the moderate mission cost profile and allow fast flight times to Pluto (7 to 13 years). The OPSWG has prioritized science goals for this class of reconnaissance mission. Three specific science objectives were identified as the highest priority required for the first Pluto mission. These goals were: (1) study of the neutral atmosphere, (2) geology and morphology, and (3) surface compositional mapping. In order to achieve these science goals within the constraints of low mass, power and cost, it may be necessary to combine the functions of 3 conventional instruments (CCD camera, Ultra-Violet Spectrometer, and Infrared Spectrometer) into one fully integrated payload. Where possible, this payload would share optics, mechanisms, electronics and packaging.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edger A., Jr.
1996-01-01
This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.
NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1992-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
Overview of Faculty Development Programs for Interprofessional Education.
Ratka, Anna; Zorek, Joseph A; Meyer, Susan M
2017-06-01
Objectives. To describe characteristics of faculty development programs designed to facilitate interprofessional education, and to compile recommendations for development, delivery, and assessment of such faculty development programs. Methods. MEDLINE, CINAHL, ERIC, and Web of Science databases were searched using three keywords: faculty development, interprofessional education, and health professions. Articles meeting inclusion criteria were analyzed for emergent themes, including program design, delivery, participants, resources, and assessment. Results. Seventeen articles were identified for inclusion, yielding five characteristics of a successful program: institutional support; objectives and outcomes based on interprofessional competencies; focus on consensus-building and group facilitation skills; flexibility based on institution- and participant-specific characteristics; and incorporation of an assessment strategy. Conclusion. The themes and characteristics identified in this literature overview may support development of faculty development programs for interprofessional education. An advanced evidence base for interprofessional education faculty development programs is needed.
Time in Science: Reversibility vs. Irreversibility
NASA Astrophysics Data System (ADS)
Pomeau, Yves
To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.
NASA Technical Reports Server (NTRS)
Carsey, Frank; Behar, Alberto
2004-01-01
We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.
Re-use of Science Operations Systems around Mars: from Mars Express to ExoMars
NASA Astrophysics Data System (ADS)
Cardesin-Moinelo, Alejandro; Mars Express Operations Centre; ExoMars Science Operations Centre
2017-10-01
Mars Express and ExoMars 2016 Trace Gas Orbiter are the only two ESA planetary missions currently in operations, and they happen to be around the same planet! These two missions have great potential for synergies between their science objectives, instruments and observation capabilities and they can all be combined to improve the scientific outcome and improve our knowledge about Mars. In this contribution we will give a short summary of both missions, with an insight in its similarities and differences regarding their scientific and operational challenges, and we will summarize the lessons learned from Mars Express and how the existing science operations systems, processes and tools have been reused, redesigned and adapted in order to satisfy the operational requirements of ExoMars, with limited development resources thanks to the inherited capabilities from previous missions. In particular we will focus on the preparations done by the science operations centers at ESAC and the work within the Science Ground Segments for the re-use of the SPICE and MAPPS software tools, with the necessary modifications and upgrades to perform the geometrical and operational simulations of both spacecrafts, taking into account the specific instrument modelling, observation requirements and all the payload and spacecraft operational rules and constraints for feasibility checks. All of these system upgrades are now being finalized for ExoMars and some of them have already been rehearsed in orbit, getting ready for the nominal science operations phase starting in the first months of 2018 after the aerobraking phase
NASA Astrophysics Data System (ADS)
Ennico, Kimberly; Shirley, Mark; Colaprete, Anthony; Osetinsky, Leonid
2012-05-01
The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement.
NASA Astrophysics Data System (ADS)
Moser, F. C.; Allen, M. R.; Barberena-Arias, M.; Clark, J.; Harris, L.; Maldonado, P. M.; Olivo-Delgado, C.; Pierson, J. J.
2017-12-01
Over the last five years our multidisciplinary team explored different undergraduate research and professional development (PD) strategies to improve early stage Hispanic student retention in marine science with the objective of interesting them in pursuing degrees that may ultimately lead to geoscience careers. This research led to the 2016 launch of our current project, Centro TORTUGA (Tropical Oceanography Research Training for Undergraduate Academics). Our overarching goal is to increase the number of underrepresented students from minority serving institutions in geoscience-relevant disciplines and careers. Critical to success is building a program rich in both research and PD. Based on qualitative and quantitative evaluations we found students benefited from PD efforts to increase skills in areas such as: 1) speaking and writing English; 2) science communication; 3) teamwork; 4) project management; and 5) completing internship/graduate school applications. To build student self-confidence, networking, and science skills Centro Tortuga involves students' families, bridges cultural gaps across research and non-research institutions inside and outside of Puerto Rico, and provides a gathering place (Centro TORTUGA) for students. With our partners, Universidad del Turabo (UT), Universidad Metropolitana (UMET), and University of Maryland Center for Environmental Sciences, we are now testing a 12-month integrated research and PD curriculum. Initial results suggest areas for improved student training include: 1) science communication (reports and graphs); 2) science ethics; and 3) poster and oral presentations. Students also identified specific preparation they would like included in the Centro TORTUGA curriculum.
Diab, Paula N; Flack, Penny S; Mabuza, Langalibalele H; Reid, Stephen J Y
2012-01-01
There is evidence in the literature that rural background significantly encourages eventual rural practice. Given the shortage of healthcare providers in rural areas, we need to explore ways of ensuring throughput and success of rural-origin students in health sciences. It is therefore important to understand who these students are, what motivates them and the factors involved in the formation of their career choices. The aim of this study is to understand the aspirations of undergraduate health science students of rural origin with regard to their future career plans. The objectives of the study include to explore and identify the key issues facing rural-origin students with regard to their future career plans. Individual interviews were conducted with 15 health science students from two South African universities. Transcriptions were analyzed with the aid of Nvivo v8 (www.qsrinternational.com). The findings suggest health science students of rural origin studying at universities in the South African context face specific challenges related to the nature of the contrast between rural and urban life, in addition to the more generic adaptations that confront all students on entering tertiary education. In order to support rural students in their studies, academic, financial, emotional and social stressors need to be addressed. Universities should strengthen existing support structures as well as aid the development of further support that may be required.Key words: career plan, health science, rural background, South Africa.
A Discipline-Specific Approach to the History of U.S. Science Education
ERIC Educational Resources Information Center
Otero, Valerie K.; Meltzer, David E.
2017-01-01
Although much has been said and written about the value of using the history of science in teaching science, relatively little is available to guide educators in the various science disciplines through the educational history of their own discipline. Through a discipline-specific approach to a course on the history of science education in the…
Wolfe, Uta; Moran, Amy
2017-01-01
As neuroscience knowledge grows in its scope of societal applications so does the need to educate a wider audience on how to critically evaluate its research findings. Efforts at finding teaching approaches that are interdisciplinary, accessible and highly applicable to student experience are thus ongoing. The article describes an interdisciplinary undergraduate health course that combines the academic study of contemplative neuroscience with contemplative practice, specifically yoga. The class aims to reach a diverse mix of students by teaching applicable, health-relevant neuroscience material while directly connecting it to first-hand experience. Outcomes indicate success on these goals: The course attracted a wide range of students, including nearly 50% non-science majors. On a pre/post test, students showed large increases in their knowledge of neuroscience. Students’ ratings of the course overall, of increases in positive feelings about its field, and of their progress on specific course objectives were highly positive. Finally, students in their written work applied neuroscience course content to their personal and professional lives. Such results indicate that this approach could serve as a model for the interdisciplinary, accessible and applied integration of relevant neuroscience material into the undergraduate health curriculum. PMID:29371845
Science and football: a review of applied research in the football codes.
Reilly, Thomas; Gilbourne, David
2003-09-01
Over the last two decades there has been a growth in research directly related to football. Although most of this research is focused on soccer (association football), there has been a steady increase in publications related to the other football codes. There is evidence of more systematic training and selection influencing the anthropometric profiles of players who compete at the highest level. Fitness is being optimized to cope with match demands while accommodating the need for specific requirements of positional roles. There is evidence of work rate being higher in contemporary football games than in previous decades, with consequences for training and dietary practices. Notation analysis of actions during matches is now used regularly to provide detailed objective feedback on performance to players and coaches. Training regimens are designed for game-specific purposes where possible. Sports psychologists working in a football context have a more eclectic body of knowledge to draw from. In the professional soccer clubs, the rewards associated with a successful investment in youth academies have helped to focus attention on talent identification and development models. It is a challenge to those specializing in science and football to contribute to the success of such schemes.
Bosi, Maria Lúcia Magalhães
2015-09-01
This article discusses the use of the concept of risk in ethical guidelines directed to research in the humanities and social sciences (CHS), suggesting an alternative to that concept. In Public Health field (PH), risk assumes a peculiar semantics, closely linked to the idea of calculation and predictability, according to the disciplinary bases that support it. This circumstance makes incongruous its use in initiatives justified precisely by strong distinctions between biomedical and social research, as ilustrated by specific guidelines for CHS, especially to the qualitative approach. The authors do not seek to redefine risk, operating a conceptual transit, but to sustain an effective conceptual distance within these specific guidelines, keeping congruence with the objectives pursued by its construction. Taking risk in the quantitative sense, still hegemonic in PH, overlooks important dimensions, reifying the use of this concept in situations where uncertainty, unpredictability, intersubjectivity inherent to the processes beyond the calculation and measurement, as in the case of a significant portion of the research in CHS. Alternatively, it is suggested to replace the expression level of risk, as also appears in Brazilian resolutions.
Making Debris Avoidance Decisions for ESMO's EOS Mission Set
NASA Technical Reports Server (NTRS)
Mantziaras, Dimitrios
2016-01-01
The presentation will cover the aspects of making debris risk decisions from the NASA Mission Director's perspective, specifically for NASA Earth Science Mission Operations (ESMO) Earth Observing System (EOS) mission set. ESMO has been involved in analyzing potential debris risk conjunctions with secondary objects since the inception of this discipline. Through the cumulated years of experience and continued exposure to various debris scenarios, ESMO's understanding of the problem and process to deal with this issue has evolved. The presentation will describe the evolution of the ESMO process, specifically as it relates to the maneuver execution and spacecraft risk management decision process. It will briefly cover the original Drag Make-Up Maneuver, several day, methodical manually intensive, ramp up waive off approach, to the present day more automated, pre-canned onboard command, tools based approach. The presentation will also cover the key information needed to make debris decisions and challenges in doing so while still trying to meet science goals, constellation constraints and manage resources. A slide or two at the end of the presentation, will be devoted to discussing what further improvements could be helpful to improve decision making and future process improvement plans challenges.
ERIC Educational Resources Information Center
Gillen, Rose; And Others
1995-01-01
Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…
ERIC Educational Resources Information Center
Schultis, Cathy; Troisi, Andrea; Vidor, Constance; Rostek, Andrea; Linsky, Melissa Carruthers
1998-01-01
Presents six curriculum guides for art, language arts, reading, science, and social studies. Each activity identifies library media skills objectives, curriculum objectives, grade levels, resources, librarian and teacher instructional roles, activity and procedures for completion, activity samples, guidelines for evaluating finished activities,…
Life science research objectives and representative experiments for the space station
NASA Technical Reports Server (NTRS)
Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)
1989-01-01
A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.
Myerholtz, Linda; Schirmer, Julie; Carling, Mary Anne
2015-01-01
Beginning behavioral science faculty, who are critical residency program contributors, face significant immediate challenges that often diminish their effectiveness and increase the time it takes to translate and reformat their expertise into relevant and meaningful educational presentations. Residency program culture and competency-based learning are quite different from the educational objectives and teaching environments found in most behavioral health training programs. The goal of this article is to provide beginning behavior science faculty, who are typically on their own and learning on the job, with a guide to the core educational perspectives and skills required as well as key resources that are available to them. Since a significant portion of behavioral science faculty's teaching time revolves around small and large group presentations, our guide focuses on how to incorporate key strategies and resources into relevant, evidenced-based and, most importantly, effective behavioral health presentations for the program's resident physicians. Specifically, our recommendations include selection of content, methods of content organization, techniques for actively engaging resident physicians in discussing the significance of the topics, and descriptions of numerous Internet resources for the primary mental health topics that concern family medicine trainees. Finally, it is emphasized that the relevant and effective use of these recommendations is dependent upon the behavioral science faculty educator's first understanding and appreciating how physicians' think, speak, and prioritize information while caring for their patients. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Nilsson, Pernilla; Vikström, Anna
2015-11-01
One way for teachers to develop their professional knowledge, which also focuses on specific science content and the ways students learn, is through being involved in researching their own practice. The aim of this study was to examine how science teachers changed (or not) their professional knowledge of teaching after inquiring into their own teaching in learning studies. The data used in this article consisted of interviews and video-recorded lessons from the six teachers before the project (PCK pre-test) and after the project (PCK post-test), allowing an analysis of if and if then how the teachers changed their teaching practice. Hence, this study responds to the urgent call to focus direct attention on the practice of science teaching. When looking at the individual teachers, it was possible to discern similarities in the ways they have changed their teaching in lesson 2 compared to lesson 1, changes that can be described as: changes in how the object of learning was defined and focused, changes in how the examples that were presented to the students were chosen and changes in how the lessons were structured which in turn influenced the meaning of the concepts that were dealt with. As such, issues for enhancing teachers' professional learning were unpacked in ways that began to demonstrate, and offer insights into, the extent of their PCK development over time.
Unit: Charge, Inspection Pack, National Trial Print. Reference No. 214.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
This physical science unit from the Australian Science Education Project (ASEP) focuses on electrostatics. After students complete the activities contained in the core of the unit, they have six optional activities to pursue: How do charged objects behave? (conductors, insulators, charged objects); What is blue? (formation of copper ion); Putting…
Whose Literacy? Discursive Constructions of Life and Objectivity
ERIC Educational Resources Information Center
Fendler, Lynn; Tuckey, Steven F.
2006-01-01
Drawing from literature in the social studies of science, this paper historicizes two pivotal concepts in science literacy: the definition of life and the assumption of objectivity. In this paper we suggest that an understanding of the historical, discursive production of scientific knowledge affects the meaning of scientific literacy in at least…
The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course
ERIC Educational Resources Information Center
Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman
2008-01-01
Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…
ERIC Educational Resources Information Center
Rennie, Richard
2015-01-01
The Australian Curriculum: Science for Year 5 includes "recognising that the colour of an object depends on the properties of the object and the color of the light source". This article shows how much more can be done with color in the science laboratory. Activities include using a prism to explore white light, using a hand lens to…
Learning by Creating and Exchanging Objects: The SCY Experience
ERIC Educational Resources Information Center
De Jong, Ton; Van Joolingen, Wouter R.; Giemza, Adam; Girault, Isabelle; Hoppe, Ulrich; Kindermann, Jorg; Kluge, Anders; Lazonder, Ard W.; Vold, Vibeke; Weinberger, Armin; Weinbrenner, Stefan; Wichmann, Astrid; Anjewierden, Anjo; Bodin, Marjolaine; Bollen, Lars; D'Ham, Cedric; Dolonen, Jan; Engler, Jan; Geraedts, Caspar; Grosskreutz, Henrik; Hovardas, Tasos; Julien, Rachel; Lechner, Judith; Ludvigsen, Sten; Matteman, Yuri; Meistadt, Oyvind; Naess, Bjorge; Ney, Muriel; Pedaste, Margus; Perritano, Anthony; Rinket, Marieke; Von Schlanbusch, Henrik; Sarapuu, Tago; Schulz, Florian; Sikken, Jakob; Slotta, Jim; Toussaint, Jeremy; Verkade, Alex; Wajeman, Claire; Wasson, Barbara; Zacharia, Zacharias C.; Van Der Zanden, Martine
2010-01-01
Science Created by You (SCY) is a project on learning in science and technology domains. SCY uses a pedagogical approach that centres around products, called "emerging learning objects" (ELOs) that are created by students. Students work individually and collaboratively in SCY-Lab (the general SCY learning environment) on "missions" that are guided…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred object'' and object of...- 9). They are of Onondaga origin and were made circa 1970. Onondaga Nation traditional religious... that these medicine faces are culturally affiliated with the Onondaga Nation, and are both sacred...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of... center of the Seneca religious fire. This was agreed upon by representatives from the Seneca Nation of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...
Synergetic Paradigm of Geographical Science
ERIC Educational Resources Information Center
Gorbanyov, Vladimir A.
2016-01-01
It is shown that in the last decades, geography has expanded so much, that it has lost its object of study. It was not clear, what the geographical science does, and, as a consequence, households have an extremely low level of geographical cultures and geographical education. Each geography is extremely isolated, has its own object of study.…
Blencowe, Claire; Brigstocke, Julian; Noorani, Tehseen
2015-01-01
Through two case studies, the Hearing Voices Movement and Stepping Out Theatre Company, we demonstrate how successful participatory organisations can be seen as ‘engines of alternative objectivity’ rather than as the subjective other to objective, biomedical science. With the term ‘alternative objectivity’, we point to collectivisations of experience that are different to biomedical science but are nonetheless forms of objectivity. Taking inspiration from feminist theory, science studies and sociology of culture, we argue that participatory mental health organisations generate their own forms of objectivity through novel modes of collectivising experience. The Hearing Voices Movement cultivates an ‘activist science’ that generates an alternative objective knowledge through a commitment to experimentation, controlling, testing, recording and sharing experience. Stepping Out distinguishes itself from drama therapy by cultivating an alternative objective culture through its embrace of high production values, material culture, aesthetic standards. A crucial aspect of participatory practice is overcoming alienation, enabling people to get outside of themselves, encounter material worlds and join forces with others. PMID:26112801
Realistic Covariance Prediction for the Earth Science Constellation
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Long, Anne
2006-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.
The book availability study as an objective measure of performance in a health sciences library.
Kolner, S J; Welch, E C
1985-01-01
In its search for an objective overall diagnostic evaluation, the University of Illinois Library of the Health Sciences' Program Evaluation Committee selected a book availability measure; it is easy to administer and repeat, results are reproducible, and comparable data exist for other academic and health sciences libraries. The study followed the standard methodology in the literature with minor modifications. Patrons searching for particular books were asked to record item(s) needed and the outcome of the search. Library staff members then determined the reasons for failures in obtaining desired items. The results of the study are five performance scores. The first four represent the percentage probability of a library's operating with ideal effectiveness; the last provides an overall performance score. The scores of the Library of the Health Sciences demonstrated no unusual availability problems. The study was easy to implement and provided meaningful, quantitative, and objective data. PMID:3995202
An instructional package integrating science and social studies instruction at the fifth-grade level
NASA Astrophysics Data System (ADS)
Hulley, Kathy Louise Sullivan
Integrative education is being implemented by classroom teachers who want to immerse students in an environment rich in problem-solving skills, critical analysis skills, ethics, valuing of knowledge, and communication of learning. Several subject areas in the curriculum have been integrated, such as literature with social studies and mathematics with science. The focus of this dissertation is on the integration of science and social studies at the fifth grade level using the Mississippi State Department of Education Curriculum Guidelines and Objectives (MSDE, 1995) and the National Science Education Standards (National Research Council (NRC), 1996). An instructional package of lesson plans that teachers can use as ideas to create their own plans for an integrated curriculum of science and social studies was devised. The Mississippi State Department of Education Curriculum Guidelines and Objectives for Social Studies (MSDE, 1995) at the fifth grade level contain fifteen competencies. Three standards from the National Science Education Standards (NRC, 1996) were chosen. They include (a) science and technology, (b) science in personal and social perspectives, and (c) the history and nature of science. Each competency for social studies has three lesson plans written that integrate the three chosen standards from the National Science Education Standards. A total of forty-five lesson plans were written integrating science and social studies. Each lesson plan includes an objective, materials, procedures, and evaluation for teachers. Teachers are encouraged to use the lesson plans as a guide in creating their own lesson plans that would correspond to their school's particular curriculum guidelines. Consideration should be given to the learning levels and styles of their classroom. This qualitative study was done to create lesson plans that integrate science and social studies with the hope that teachers will expand upon them and implement them into their curricula.
NASA Astrophysics Data System (ADS)
Realdon, Giulia; Candussio, Giuliana; Manià, Marinella; Palamin, Serenella
2017-04-01
Marine micro-plastics are a relatively recent issue in research (Thompson et al. 2004), in the media and in education and, due to novelty and relevance, they are a suitable topic for addressing Ocean Literacy within science teaching to different age groups. In fact marine micro-plastics can be used to introduce Ocean Literacy and environmental science, but also traditional science subjects like biology, chemistry and Earth science, with a system approach focused on "understanding the Ocean's influence on humans and human influence on the Ocean". Inspired by the growing public interest for marine micro-plastics and by the lack of specific teaching activities in our country (Italy), we developed a vertically articulated curriculum on micro-plastics for students aged 5-15 years. Our proposal is based on a number of practical activities realized with different language and communication styles to be suitable for different age groups. For younger students (age 5-7) we use drama to address micro-plastics bioaccumulation in marine food chains: children act as fish of different trophic levels who pretend to "eat" micro-plastics models (built from plastic bottles) until the biggest fish is captured and ends up as a "meal" shared by other pupils. Teachers guide the performance and stimulate observations and remarks about the origin of micro-plastics and the correct management of plastic objects. The performance has been documented in a video and presented in a national teacher workshop (3 Giorni per la Scuola, Napoli 2015). For students aged 8-13 we propose observation and manipulation of common household plastic objects, followed by physical/chemical testing of different polymers to understand plastics characteristics that make these materials valuable but troublesome at the same time. Students then observe sand samples, taken from a local beach, containing natural components and man-made fragments (including micro-plastics), so they can directly experience the fate of dumped plastic, discussing more sustainable management of plastic objects. For older (14-16) students we introduce primary micro-plastics by means of personal care products containing micro-beads: students learn to recognize the presence of micro-beads by reading the product's composition, then measure micro-beads content of one of these products and calculate a possible annual dispersion of micro-beads from their town to the sea. Also this activity is followed by classroom discussion about possible solutions to micro-beads water pollution. Micro-plastics activities have been presented to 39 students' groups since November 2014 and have been evaluated though questionnaires given to class teachers. Lesson plans containing these activities have been published - and are freely accessible - in European and in Italian science teacher's journals (EIROforum Science in School, Pearson Italia Science Magazine).
As Science Evolves, How Can Science Policy? NBER Working Paper No. 16002
ERIC Educational Resources Information Center
Jones, Benjamin
2010-01-01
Getting science policy right is a core objective of government that bears on scientific advance, economic growth, health, and longevity. Yet the process of science is changing. As science advances and knowledge accumulates, ensuing generations of innovators spend longer in training and become more narrowly expert, shifting key innovations (i)…