The value of public health research and the division between basic vs. applied science.
Almeida-Filho, Namoar; Goldbaum, Moisés
2003-02-01
We question the movement towards exclusion of population and social health research from the field of science. The background under analysis is contemporary Brazil, where the scientific field that hosts this kind of research is known as Collective Health. First, the problem is formalized on logical grounds, evaluating the pertinence of considering unscientific the many objects and methods of public health research. Secondly, the cases of pulmonary tuberculosis and external causes are brought in as illustrations of the kind of scientific problem faced in health research today. The logical and epistemological basis of different forms of "scientific segregation" based on biomedical reductionism is analyzed, departing from three theses: (i) the ethics of the general application of science; (ii) the inappropriateness of monopolies for objectivity in the sciences; (iii) the specificity of scientific fields. In the current panorama of health research in Brazil, a residual hegemonic position that defends a narrow and specific definition of the object of knowledge was found. The denial of validity and specificity to objects, methods and research techniques that constitute social and population research in health is linked to elements of irrationality in reductionism approaches. Nevertheless, efforts should be directed to overcome this scientific division, in order to develop a pluralist and interdisciplinary national science, committed to the health care realities of our country.
Introduction: Reengaging with instruments.
Taub, Liba
2011-12-01
Over the past twenty years or so, historians of science have become increasingly sensitized to issues involved in studying and interpreting scientific and medical instruments. The contributors to this Focus section are historians of science who have worked closely with museum objects and collections, specifically instruments used in scientific and medical contexts. Such close engagement by historians of science is somewhat rare, provoking distinctive questions as to how we define and understand instruments, opening up issues regarding the value of broken or incomplete objects, and raising concerns about which scientific and medical artifacts are displayed and interpreted in museums and in what manner. It is hoped that these essays point historians of science in new directions for reengaging with scientific objects and collections.
ERIC Educational Resources Information Center
Kim, Sangsoo; Park, Jongwon
2018-01-01
Observing scientific events or objects is a complex process that occurs through the interaction between the observer's knowledge or expectations, the surrounding context, physiological features of the human senses, scientific inquiry processes, and the use of observational instruments. Scientific observation has various features specific to this…
Evans, Michael S
2009-01-01
In this paper, I examine how scientific disciplines define their boundaries by defining the publics with whom they engage. The case study is an episode in the development of early American sociology. In response to the dual challenge of credibility set up by the conflict between religious Baconian science and secular positivist science, key actors engaged in specific strategies of boundary-work to create their desired "sociological public"--a hybrid form of science-public relations that appealed to hostile university scientists while excluding a supportive religious audience from participation in the production of scientific knowledge. Using this case, I offer two specific insights. First I illustrate how, in the pursuit of scientific credibility, actors engage in boundary-work to differentiate audiences, not just practitioners. Such defining of publics is constitutive of scientific disciplines in their formative stage. Second, I demonstrate how audience boundaries can be redefined through the capture of existing boundary objects. Specifically, the removal of informational content in key boundary objects creates durable boundaries that are difficult to overcome.
Mariner 10 Venus encounter. [scientific objectives and instruments for flyby observations
NASA Technical Reports Server (NTRS)
Dunne, J. A.
1974-01-01
Review of the scientific objectives of the Mariner 10 mission with regard to observations of Venus during a flyby, and description of the equipment installed on the spacecraft to fulfill these objectives. A detailed description is given of the hardware modifications made to the payload specifically for the Venus sequence. In discussing the encounter operations, two spacecraft problems which significantly affected the Venus encounter sequence are cited - namely, a failure of the television optic heaters to come on shortly after launch, and the occurrence of a roll gyro oscillation.
Recommendations relative to the scientific missions of a Mars Automated Roving Vehicle (MARV)
NASA Technical Reports Server (NTRS)
Spencer, R. L. (Editor)
1973-01-01
Scientific objectives of the MARV mission are outlined and specific science systems requirements and experimental payloads defined. All aspects of the Martian surface relative to biotic and geologic elements and those relating to geophysical and geochemical properties are explored.
ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology
Schroeder, R.L.
2006-01-01
It is widely accepted that plans for restoration projects should contain specific, measurable, and science-based objectives to guide restoration efforts. The United States Fish and Wildlife Service (USFWS) is in the process of developing Comprehensive Conservation Plans (CCPs) for more than 500 units in the National Wildlife Refuge System (NWRS). These plans contain objectives for biological and ecosystem restoration efforts on the refuges. Based on USFWS policy, a system was developed to evaluate the scientific quality of such objectives based on three critical factors: (1) Is the objective specific, measurable, achievable, results-oriented, and time-fixed? (2) What is the extent of the rationale that explains the assumptions, logic, and reasoning for the objective? (3) How well was available science used in the development of the objective? The evaluation system scores each factor on a scale of 1 (poor) to 4 (excellent) according to detailed criteria. The biological and restoration objectives from CCPs published as of September 2004 (60 total) were evaluated. The overall average score for all biological and restoration objectives was 1.73. Average scores for each factor were: Factor 1-1.97; Factor 2-1.86; Factor 3-1.38. The overall scores increased from 1997 to 2004. Future restoration efforts may benefit by using this evaluation system during the process of plan development, to ensure that biological and restoration objectives are of the highest scientific quality possible prior to the implementation of restoration plans, and to allow for improved monitoring and adaptive management.
ERIC Educational Resources Information Center
Hartwell, Laura M.; Jacques, Marie-Paule
2012-01-01
Both reading and writing abstracts require specific language skills and conceptual capacities, which may challenge advanced learners. This paper draws explicitly upon the "Emergence" and "Scientext" research projects which focused on the lexis of scientific texts in French and English. The teaching objective of the project…
If an antelope is a document, then a rock is data: preserving earth science samples for the future
NASA Astrophysics Data System (ADS)
Ramdeen, S.
2015-12-01
As discussed in seminal works by Briet (1951) and Buckland (1998), physical objects can be considered documents when given specific context. In the case of an antelope, in the wild it's an animal, in a zoo it's a document. It is the primary source of information, specifically when it is made an object of study. When discussing earth science data, we may think about numbers in a spreadsheet or verbal descriptions of a rock. But what about physical materials such as cores, cuttings, fossils, and other tangible objects? The most recent version of the American Geophysical Union's data position statement states data preservation and management policies should apply to both "digital data and physical objects"[1]. If an antelope is a document, than isn't a rock a form of data? Like books in a library or items in a museum, these objects require surrogates (digital or analog) that allow researchers to access and retrieve them. Once these scientific objects are acquired, researchers can process the information they contain. Unlike books, and some museum materials, most earth science objects cannot yet be completely replaced by digital surrogates. A fossil may be scanned, but the original is needed for chemical testing and ultimately for 'not yet developed' processes of scientific analysis. These objects along with their metadata or other documentation become scientific data when they are used in research. Without documentation of key information (i.e. the location where it was collected) these objects may lose their scientific value. This creates a complex situation where we must preserve the object, its metadata, and the connection between them. These factors are important as we consider the future of earth science data, our definitions of what constitutes scientific data, as well as our data preservation and management practices. This talk will discuss current initiatives within the earth science communities (EarthCube's EC3 and iSamples; USGS's data preservation program; etc.) and within the communities of information science. As practitioners, these librarians, information scientists, and archivists work on similar issues and can offer practices and theories that might help us 'future proof' physical earth science records. [1] http://sciencepolicy.agu.org/draft-data-position-statement-comment
Optimizing regional collaborative efforts to achieve long-term discipline-specific objectives
USDA-ARS?s Scientific Manuscript database
Current funding programs focused on multi-disciplinary, multi-agency approaches to regional issues can provide opportunities to address discipline-specific advancements in scientific knowledge. Projects funded through the Agricultural Research Service, Joint Fire Science Program, and the Natural Re...
LST and instrument considerations. [modular design
NASA Technical Reports Server (NTRS)
Levin, G. M.
1974-01-01
In order that the LST meet its scientific objectives and also be a National Astronomical Space Facility during the 1980's and 1990's, broad requirements have been levied by the scientific community. These scientific requirements can be directly translated into design requirements and specifications for the scientific instruments. The instrument ensemble design must be consistent with a 15-year operational lifetime. Downtime for major repair/refurbishment or instrument updating must be minimized. The overall efficiency and performance of the instruments should be maximized. Modularization of instruments and instrument subsystems, some degree of on-orbit servicing (both repair and replacement), on-axis location, minimizing the number of reflections within instruments, minimizing polarization effects, and simultaneous operation of the F/24 camera with other instruments, are just a few of the design guidelines and specifications which can and will be met in order that these broader scientific requirements be satisfied.-
[Design of an educational tool for Primary Care patients with chronic non-specific low back pain].
Díaz-Cerrillo, Juan Luis; Rondón-Ramos, Antonio
2015-02-01
Current scientific evidence on the management of chronic non-specific low back pain highlights the benefits of physical exercise. This goal is frequently undermined due to lack of education of the subjects on the multifactorial, benign, and non-specific nature of low back pain, which can lead to a chronic disease with genuine psychosocial risk factors. Its influence may not only interfere with individual decision to adopt more adaptive coping behaviors, but also with the endogenous mechanisms of pain neuromodulation. Thus, the educational strategies and control of these factors have become important objectives to be incorporated into the management of the disorder and research guidelines. This paper presents the theoretical models and the scientific basis on which it has based the design of an educational tool for patients with chronic non-specific low back pain treated in Primary Care physiotherapy. Structure, content and objectives are also presented. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Head, James W.
1999-01-01
The Site Selection Process: Site selection as a process can be subdivided into several main elements and these can be represented as the corners of a tetrahedron. Successful site selection outcome requires the interactions between these elements or corners, and should also take into account several other external factors or considerations. In principle, elements should be defined in approximately the following order: (1) major scientific and programmatic goals and objectives: What are the major questions that are being asked, goals that should be achieved, and objectives that must be accomplished. Do programmatic goals (e.g., sample return) differ from mission goals (e.g., precursor to sample return)? It is most helpful if these questions can be placed in the context of site characterization and hypothesis testing (e.g., Was Mars warm and wet in the Noachian? Land at a Noachian-aged site that shows evidence of surface water and characterize it specifically to address this question). Goals and objectives, then, help define important engineering factors such as type of payload, landing regions of interest (highlands, lowlands, smooth, rough, etc.), mobility, mission duration, etc. Goals and objectives then lead to: (2) spacecraft design and engineering landing site constraints: the spacecraft is designed to optimize the areas that will meet the goals and objectives, but this in turn introduces constraints that must be met in the selection of a landing site. Scientific and programmatic goals and objectives also help to define (3), the specific lander scientific payload requirements and capabilities. For example, what observations and experiments are required to address the major questions? How do we characterize the site in reference to the specific questions? Is mobility required and if so, how much? Which experiments are on the spacecraft, which on the rover? The results of these deliberations should lead to a surface exploration strategy, in which the goals and objectives can in principle be achieved through the exploration of a site meeting the basic engineering constraints. Armed with all of this important background information, one can then proceed to (4) the selection of optimum sites to address major scientific and programmatic objectives. Following the successful completion of this process and the selection of a site or region, there is a further step of mission optimization, in which a detailed mission profile and surface exploration plan is developed. In practice, the process never works in a linear fashion. Scientific goals are influenced by ongoing discoveries and developments and simple crystallization of thinking. Programmatic goals are influenced by evolving fiscal constraints, perspectives on program duration, and roles of specific missions in the context of the larger program. Engineering constraints are influenced by evolving fiscal constraints, decisions on hardware design that may have little to do with scientific goals (e.g., lander clearance; size of landing ellipse), and evolving understanding (e.g., assessment of engineering constraint space reveals further the degree to which mission duration is severely influenced by available solar energy and thus latitude). Lander scientific payload is influenced by fiscal constraints, total mass, evolving complexity, technological developments, and a payload selection process that may involve very long-term goals (e.g., human exploration) as well as shorter term scientific and programmatic goals. Site selection activities commonly involve scientists who are actively trying to decipher the complex geology of the crust of Mars and to unravel its geologic history through geological mapping. By the nature of the process, they are thinking in terms of broad morphostratigraphic units which may have multiple possible origins, defined using images with resolutions of many tens to hundreds of meters, and whose surfaces at the scale of the lander and rover are virtually unknown; this approach and effort is crucially important but does not necessarily readily lend itself to integration with the other elements.
USDA-ARS?s Scientific Manuscript database
The 2011 Pennington Biomedical Research Center's Scientific Symposium focused on adiposity in children and adolescents. The symposium was attended by 15 speakers and other invited experts. The specific objectives of the symposium were to (i) integrate the latest published and unpublished findings on...
Scientists' Prioritization of Communication Objectives for Public Engagement.
Dudo, Anthony; Besley, John C
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
Toward a Climate OSSE for NASA Earth Sciences
NASA Astrophysics Data System (ADS)
Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.
2016-12-01
In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth Sciences will require answers from the climate research community to basic questions, such as whether a COSSE capability should be centralized or de-centralized. Most importantly, the quantified scientific objective of a proposed mission must be defined with extreme specificity for a COSSE to be applied.
Research study on stellar X-ray imaging experiment, volume 2
NASA Technical Reports Server (NTRS)
Wilson, H. H.; Vanspeybroeck, L. P.
1972-01-01
A review of the scientific objectives of an integrated X-ray orbiting telescope facility is presented. A set of observations to be conducted to achieve the objectives of the research are described. The techniques and equipment used in the experiment are defined. The configuration of the facility and the specifications of the test equipment are included.
Evaluation of procedures for quality assurance specifications
DOT National Transportation Integrated Search
2004-10-01
The objective of this project was to develop a comprehensive quality assurance (QA) manual, supported by scientific evidence and statistical theory, which provides step-by-step procedures and instructions for developing effective and efficient QA spe...
Introducing Pre-university Students to Primary Scientific Literature Through Argumentation Analysis
NASA Astrophysics Data System (ADS)
Koeneman, Marcel; Goedhart, Martin; Ossevoort, Miriam
2013-10-01
Primary scientific literature is one of the most important means of communication in science, written for peers in the scientific community. Primary literature provides an authentic context for showing students how scientists support their claims. Several teaching strategies have been proposed using (adapted) scientific publications, some for secondary education, but none of these strategies focused specifically on scientific argumentation. The purpose of this study is to evaluate a strategy for teaching pre-university students to read unadapted primary scientific literature, translated into students' native language, based on a new argumentation analysis framework. This framework encompasses seven types of argumentative elements: motive, objective, main conclusion, implication, support, counterargument and refutation. During the intervention, students studied two research articles. We monitored students' reading comprehension and their opinion on the articles and activities. After the intervention, we measured students' ability to identify the argumentative elements in a third unadapted and translated research article. The presented framework enabled students to analyse the article by identifying the motive, objective, main conclusion and implication and part of the supports. Students stated that they found these activities useful. Most students understood the text on paragraph level and were able to read the article with some help for its vocabulary. We suggest that primary scientific literature has the potential to show students important aspects of the scientific process and to learn scientific vocabulary in an authentic context.
The Shuttle Imaging Radar B (SIR-B) experiment report
NASA Technical Reports Server (NTRS)
Cimino, Jo Bea; Holt, Benjamin; Richardson, Annie
1988-01-01
The primary objective of the SIR-B experiment was to acquire multiple-incidence-angle radar imagery of a variety of Earth's surfaces to better understand the effects of imaging geometry on radar backscatter. A complementary objective was to map extensive regions of particular interest. Under these broad objectives, many specific scientific experiments were defined by the 43 SIR-B Science Team members, including studies in the area of geology, vegetation, radar penetration, oceanography, image analysis, and calibration technique development. Approximately 20 percent of the planned digital data were collected, meeting 40 percent of the scientific objectives. This report is an overview of the SIR-B experiment and includes the science investigations, hardware design, mission scenario, mission operations, events of the actual missions, astronaut participation, data products (including auxiliary data), calibrations, and a summary of the actual coverage. Also included are several image samples.
STIP Symposium on Retrospective Analyses and Future Coordinated Intervals
NASA Astrophysics Data System (ADS)
Dryer, M.; Shea, M. A.
The STIP (Study of Travelling Interplanetary Phenomena) Project of the Scientific Committee for Solar-Terrestrial Physics held its fifth international meeting in Les Diablerets, Switzerland, June 10-12, 1985. The STIP Project has as its objective the interdisciplinary, informal, and internationally cooperative study of specific solar and interplanetary events during all parts of the solar cycle. The purpose of this meeting was to bring together scientists from all areas of solar-terrestrial physics, both theoretical and experimental, to promote this coordinated study of coupling between the sun and the heliosphere and, in particular, to focus attention on 14 specific intervals of study and to outline scientific objectives for five future intervals. The meeting consisted of six successive sessions and an open business meeting. The program was arranged so that previously appointed coordinators could present invited half-hour summaries of the scientific highlights that characterized each of their Intervals. Contributed papers of 20-minute duration were interspersed among the chronological Interval presentations with 10-20 minute informal discussions following the speakers' presentations. There were 42 scientific papers presented at the meeting by 45 participants from 13 countries. The cosponsors of the conference, along with the Scientific Committee on Solar-Terrestrial Physics, were Committee for Space Research, International Astronomical Union, and International Union of Pure and Applied Physics. The papers presented at the Les Diablerets meeting will appear in STIP Symposium on Retrospective Analyses (M. A. Shea and D. F. Smart, Editors), a publication by the STIP Project, which is to be available in late 1986.
Cost-effective (gaming) motion and balance devices for functional assessment: Need or hype?
Bonnechère, B; Jansen, B; Van Sint Jan, S
2016-09-06
In the last decade, technological advances in the gaming industry have allowed the marketing of hardware for motion and balance control that is based on technological concepts similar to scientific and clinical equipment. Such hardware is attractive to researchers and clinicians for specific applications. However, some questions concerning their scientific value and the range of future potential applications have yet to be answered. This article attempts to present an objective analysis about the pros and cons of using such hardware for scientific and clinical purposes and calls for a constructive discussion based on scientific facts and practical clinical requests that are emerging from application fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey
2016-08-01
We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.
Scientists’ Prioritization of Communication Objectives for Public Engagement
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists’ report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public’s trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.
2016-01-01
The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.
Automated Target Acquisition, Recognition and Tracking (ATTRACT). Phase 1
NASA Technical Reports Server (NTRS)
Abdallah, Mahmoud A.
1995-01-01
The primary objective of phase 1 of this research project is to conduct multidisciplinary research that will contribute to fundamental scientific knowledge in several of the USAF critical technology areas. Specifically, neural networks, signal processing techniques, and electro-optic capabilities are utilized to solve problems associated with automated target acquisition, recognition, and tracking. To accomplish the stated objective, several tasks have been identified and were executed.
A Scalable, Open Source Platform for Data Processing, Archiving and Dissemination
2016-01-01
Object Oriented Data Technology (OODT) big data toolkit developed by NASA and the Work-flow INstance Generation and Selection (WINGS) scientific work...to several challenge big data problems and demonstrated the utility of OODT-WINGS in addressing them. Specific demonstrated analyses address i...source software, Apache, Object Oriented Data Technology, OODT, semantic work-flows, WINGS, big data , work- flow management 16. SECURITY CLASSIFICATION OF
NASA Astrophysics Data System (ADS)
Znikina, Ludmila; Rozhneva, Elena
2017-11-01
The article deals with the distribution of informative intensity of the English-language scientific text based on its structural features contributing to the process of formalization of the scientific text and the preservation of the adequacy of the text with derived semantic information in relation to the primary. Discourse analysis is built on specific compositional and meaningful examples of scientific texts taken from the mining field. It also analyzes the adequacy of the translation of foreign texts into another language, the relationships between elements of linguistic systems, the degree of a formal conformance, translation with the specific objectives and information needs of the recipient. Some key words and ideas are emphasized in the paragraphs of the English-language mining scientific texts. The article gives the characteristic features of the structure of paragraphs of technical text and examples of constructions in English scientific texts based on a mining theme with the aim to explain the possible ways of their adequate translation.
NASA Technical Reports Server (NTRS)
Bergstralh, J. T. (Editor)
1984-01-01
A scientific framework within which to plan the Voyager encounters with Uranus and Neptune was sought. Specific objectives were: (1) to assess the current state of knowledge of Uranus and Neptune, their magnetospheres, and their respective systems of satellites and rings (if any), (2) to identify important scientific issues that can be addressed effectively by Voyager, and (3) to provide an opportunity for Voyager investigators to interact with other scientists knowledgeable in the field of physical studies of the Uranian and Neptunian systems.
Scientific investigations with the data base HEAO-1 scanning modulator collimator
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.
1992-01-01
The hardware specification for the Scanning Modulation Collimator (MC) experiment on HEAO-1 was to measure positions of bright (greater than 10(exp -11) ergs/cm(exp 2)s), hard (1 to 15 keV) x-ray sources to 5-10 arcsec, and to measure their size and structure in three energy bands down to 10 arcsec resolution. The scientific purpose of this specification was to enable the identification of these x-ray sources with optical and radio objects in order to elucidate the x-ray emission mechanism and the nature of the candidate astronomical system. The experiment was an outstanding success. Hardware systems functioned perfectly although loss of one (out of eight) proportional counters degraded our sensitivity by about 10 percent. Our aspect solution of 7 arcsec precision, allowed us to achieve statistic-limited location precision for all but the strongest sources. We vigorously pursued a strategy of determining the scientific importance of each identification, and of publishing each scientific result as it came along.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Sivaramakrishnan, Chandrika; Critchlow, Terence J.
2011-07-04
A drawback of existing scientific workflow systems is the lack of support to domain scientists in designing and executing their own scientific workflows. Many domain scientists avoid developing and using workflows because the basic objects of workflows are too low-level and high-level tools and mechanisms to aid in workflow construction and use are largely unavailable. In our research, we are prototyping higher-level abstractions and tools to better support scientists in their workflow activities. Specifically, we are developing generic actors that provide abstract interfaces to specific functionality, workflow templates that encapsulate workflow and data patterns that can be reused and adaptedmore » by scientists, and context-awareness mechanisms to gather contextual information from the workflow environment on behalf of the scientist. To evaluate these scientist-centered abstractions on real problems, we apply them to construct and execute scientific workflows in the specific domain area of groundwater modeling and analysis.« less
Research on keyword retrieval method of HBase database based on index structure
NASA Astrophysics Data System (ADS)
Gong, Pijin; Lv, Congmin; Gong, Yongsheng; Ma, Haozhi; Sun, Yang; Wang, Lu
2017-10-01
With the rapid development of manned spaceflight engineering, the scientific experimental data in space application system is increasing rapidly. How to efficiently query the specific data in the mass data volume has become a problem. In this paper, a method of retrieving the object data based on the object attribute as the keyword is proposed. The HBase database is used to store the object data and object attributes, and the secondary index is constructed. The research shows that this method is a good way to retrieve specified data based on object attributes.
Tire Crumb Research Study Literature Review / Gap ...
In order to more fully understand data gaps in human exposure and toxicity to tire crumb materials, ATSDR, CPSC and EPA undertook a collaborative effort in the form of a scientific literature review and subsequent gaps analysis. The first objective of the Literature Review and Gap Analysis (LRGA) collaboration was to identify the existing body of literature related specifically to human exposure to tire crumb materials through the use of synthetic turf athletic fields and playgrounds. The second objective was to characterize and summarize the relevant data from the scientific literature. The final objective was to review the summary information and identify data gaps to build on the current understanding of the state-of-the-science and inform the development of specific research efforts that would be most impactful in the near-term. Because of the need for additional information, the U.S. Environmental Protection Agency (EPA), the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Consumer Product Safety Commission (CPSC) launched a multi-agency action plan to study key environmental human health questions. The Federal Research Action Plan includes numerous activities, including research studies (U.S. EPA, 2016). A key objective of the Action Plan is to identify key knowledge gaps.
Astronomical activities of the Apollo orbital science photographic team
NASA Technical Reports Server (NTRS)
Mercer, R. D.
1974-01-01
A partial accounting of Apollo Orbital Science Photographic Team (APST) work is presented as reported by one of its members who provided scientific recommendations for, guidance in, and reviews of photography in astronomy. Background on the formation of the team and its functions and management are discussed. It is concluded that the APST clearly performed the overall objective for which it was established - to improve the scientific value of the Apollo lunar missions. Specific reasons for this success are given.
A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions
NASA Technical Reports Server (NTRS)
Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.
2000-01-01
A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.
A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions
NASA Astrophysics Data System (ADS)
Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.
2000-07-01
A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.L.
1996-08-01
As of December 1995, the manufacture of Freon, along with many other chlorofluorocarbons (CFCs), was prohibited by the Clean Air Act of 1990 (CAA). The ban of CFC solvents has forced manufacturers across the country to search for alternative metal cleaning techniques. The objective of this study was to develop a thorough, scientific based approach for resolving one specific manufacturer`s problem of removing organic contamination from a stainless steel part. This objective was accomplished with an approach that involved: (1) defining the problem, (2) identifying the process constraints, (3) researching alternate cleaning methods, (4) researching applicable government regulations, (5) performingmore » a scientific evaluation and (6) drawing conclusions.« less
Bio-objects and the media: the role of communication in bio-objectification processes.
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-06-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.
NASA Technical Reports Server (NTRS)
Carsey, Frank; Behar, Alberto
2004-01-01
We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.
Testing Scientific Software: A Systematic Literature Review
Kanewala, Upulee; Bieman, James M.
2014-01-01
Context Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. Objective This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. Method We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. Results We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Conclusions Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques. PMID:25125798
Automatic labeling and characterization of objects using artificial neural networks
NASA Technical Reports Server (NTRS)
Campbell, William J.; Hill, Scott E.; Cromp, Robert F.
1989-01-01
Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms, i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.
The utilization of neural nets in populating an object-oriented database
NASA Technical Reports Server (NTRS)
Campbell, William J.; Hill, Scott E.; Cromp, Robert F.
1989-01-01
Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms (i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.
Multiple-foil microabrasion package (A0023)
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Ashworth, D. G.; Carey, W. C.; Flavill, R. P.; Jennison, R. C.
1984-01-01
The specific scientific objectives of this experiment are to measure the spatial distribution, size, velocity, radiance, and composition of microparticles in near-Earth space. The technological objectives are to measure erosion rates resulting from microparticle impacts and to evaluate thin-foil meteor 'bumpers'. The combinations of sensitivity and reliability in this experiment will provide up to 1000 impacts per month for laboratory analysis and will extend current sensitivity limits by 5 orders of magnitude in mass.
Research Thinking Development by Teaching Archaeoastronomy
NASA Astrophysics Data System (ADS)
Muglova, P. V.; Stoev, A. D.
2006-08-01
A model of research thinking development by teaching archaeoastronomy in specialized three-year extra-curriculum Astronomy programme and creation of favourable socio-educational surroundings is suggested. It is shown as a didactic system of conditions, influences and possibilities of answering specific hierarchic complex of personal needs in the 14 - 18 year age interval. Transformation of these needs in worldly values secures an active position of the students in the educational process and determines their personality development. It is also shown that the Archaeoastronomy School, as an educational environment, executes specific work of students' teaching, upbringing and progress as well as their inclusion in the real process of scientific research. Thus, they have the possibility of generating scientific ideas and obtaining results in the science archaeoastronomy. In consequence of this, their activity acquires social significance. Usages of this model of scientific school in the extra-curriculum Astronomy education reproduces norms and traditions of the real scientific research and directly relay subject content, cultural norms and values of archaeoastronomy in the educative process. Students' participation in archaeoastronomical expeditions, their competent work during the research of concrete archaeoastronomical objects create an investigation style of thinking and steady habits of scientific activity.
NASA Astrophysics Data System (ADS)
Furbish, Dean Russel
The purpose of this study is to examine pragmatist constructivism as a science education referent for adult learners. Specifically, this study seeks to determine whether George Herbert Mead's doctrine, which conflates pragmatist learning theory and philosophy of natural science, might facilitate (a) scientific concept acquisition, (b) learning scientific methods, and (c) preparation of learners for careers in science and science-related areas. A philosophical examination of Mead's doctrine in light of these three criteria has determined that pragmatist constructivism is not a viable science education referent for adult learners. Mead's pragmatist constructivism does not portray scientific knowledge or scientific methods as they are understood by practicing scientists themselves, that is, according to scientific realism. Thus, employment of pragmatist constructivism does not adequately prepare future practitioners for careers in science-related areas. Mead's metaphysics does not allow him to commit to the existence of the unobservable objects of science such as molecular cellulose or mosquito-borne malarial parasites. Mead's anti-realist metaphysics also affects his conception of scientific methods. Because Mead does not commit existentially to the unobservable objects of realist science, Mead's science does not seek to determine what causal role if any the hypothetical objects that scientists routinely posit while theorizing might play in observable phenomena. Instead, constructivist pragmatism promotes subjective epistemology and instrumental methods. The implication for learning science is that students are encouraged to derive scientific concepts based on a combination of personal experience and personal meaningfulness. Contrary to pragmatist constructivism, however, scientific concepts do not arise inductively from subjective experience driven by personal interests. The broader implication of this study for adult education is that the philosophically laden claims of constructivist learning theories need to be identified and assessed independently of any empirical support that these learning theories might enjoy. This in turn calls for educational experiences for graduate students of education that incorporate philosophical understanding such that future educators might be able to recognize and weigh the philosophically laden claims of adult learning theories.
Applying gene flow science to environmental policy needs: a boundary work perspective.
Ridley, Caroline E; Alexander, Laurie C
2016-08-01
One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.
NASA Technical Reports Server (NTRS)
1995-01-01
In response to a request by the NASA Administrator, the National Research Council (NRC) has conducted an accelerated scientific review of NASA's Gravity Probe B (GP-B) mission. The review was carried out by the Task Group on Gravity Probe B, under the auspices of the NRC's Space Studies Board and Board on Physics and Astronomy. The specific charge to the task group was to review the GP-B mission with respect to the following terms of reference: (1) scientific importance - including a current assessment of the value of the project in the context of recent progress in gravitational physics and relevant technology; (2) technical feasibility - the technical approach will be evaluated for likelihood of success, both in terms of achievement of flight mission objectives but also in terms of scientific conclusiveness of the various possible outcomes for the measurements to be made; and (3) competitive value - if possible, GP-B science will be assessed qualitatively against the objectives and accomplishments of one or more fundamental physics projects of similar cost (e.g., the Cosmic Background Explorer, COBE).
Opportunities and benefits as determinants of the direction of scientific research.
Bhattacharya, Jay; Packalen, Mikko
2011-07-01
Scientific research and private-sector technological innovation differ in objectives, constraints, and organizational forms. Scientific research may thus not be driven by the direct practical benefit to others in the way that private-sector innovation is. Alternatively, some - yet largely unexplored - mechanisms drive the direction of scientific research to respond to the expected public benefit. We test these two competing hypotheses of scientific research. This is important because any coherent specification of what constitutes the socially optimal allocation of research requires that scientists take the public practical benefit of their work into account in setting their agenda. We examine whether the composition of medical research responds to changes in disease prevalence, while accounting for the quality of available research opportunities. We match biomedical publications data with disease prevalence data and develop new methods for estimating the quality of research opportunities from textual information and structural productivity parameters. Copyright © 2011 Elsevier B.V. All rights reserved.
Opportunities and Benefits as Determinants of the Direction of Scientific Research*
Bhattacharya, Jay; Packale, Mikko
2017-01-01
Scientific research and private-sector technological innovation differ in objectives, constraints, and organizational forms. Scientific research may thus not be driven by the direct practical benefit to others in the way that private-sector innovation is. Alternatively, some–yet largely unexplored-mechanisms drive the direction of scientific research to respond to the expected public benefit. We test these two competing hypotheses of scientific research. This is important because any coherent specification of what constitutes the socially optimal allocation of research requires that scientists take the public practical benefit of their work into account in setting their agenda. We examine whether the composition of medical research responds to changes in disease prevalence, while accounting for the quality of available research opportunities. We match biomedical publications data with disease prevalence data and develop new methods for estimating the quality of research opportunities from textual information and structural productivity parameters. PMID:21683461
Fleck and the social constitution of scientific objectivity.
Fagan, Melinda B
2009-12-01
Ludwik Fleck's theory of thought-styles has been hailed as a pioneer of constructivist science studies and sociology of scientific knowledge. But this consensus ignores an important feature of Fleck's epistemology. At the core of his account is the ideal of 'objective truth, clarity, and accuracy'. I begin with Fleck's account of modern natural science, locating the ideal of scientific objectivity within his general social epistemology. I then draw on Fleck's view of scientific objectivity to improve upon reflexive accounts of the origin and development of the theory of thought-styles, and reply to objections that Fleck's epistemological stance is self-undermining or inconsistent. Explicating the role of scientific objectivity in Fleck's epistemology reveals his view to be an internally consistent alternative to recent social accounts of scientific objectivity by Harding, Daston and Galison. I use these contrasts to indicate the strengths and weaknesses of Fleck's innovative social epistemology, and propose modifications to address the latter. The result is a renewed version of Fleck's social epistemology, which reconciles commitment to scientific objectivity with integrated sociology, history and philosophy of science.
Four stages of a scientific discipline; four types of scientist.
Shneider, Alexander M
2009-05-01
In this article I propose the classification of the evolutionary stages that a scientific discipline evolves through and the type of scientists that are the most productive at each stage. I believe that each scientific discipline evolves sequentially through four stages. Scientists at stage one introduce new objects and phenomena as subject matter for a new scientific discipline. To do this they have to introduce a new language adequately describing the subject matter. At stage two, scientists develop a toolbox of methods and techniques for the new discipline. Owing to this advancement in methodology, the spectrum of objects and phenomena that fall into the realm of the new science are further understood at this stage. Most of the specific knowledge is generated at the third stage, at which the highest number of original research publications is generated. The majority of third-stage investigation is based on the initial application of new research methods to objects and/or phenomena. The purpose of the fourth stage is to maintain and pass on scientific knowledge generated during the first three stages. Groundbreaking new discoveries are not made at this stage. However, new ways to present scientific information are generated, and crucial revisions are often made of the role of the discipline within the constantly evolving scientific environment. The very nature of each stage determines the optimal psychological type and modus operandi of the scientist operating within it. Thus, it is not only the talent and devotion of scientists that determines whether they are capable of contributing substantially but, rather, whether they have the 'right type' of talent for the chosen scientific discipline at that time. Understanding the four different evolutionary stages of a scientific discipline might be instrumental for many scientists in optimizing their career path, in addition to being useful in assembling scientific teams, precluding conflicts and maximizing productivity. The proposed model of scientific evolution might also be instrumental for society in organizing and managing the scientific process. No public policy aimed at stimulating the scientific process can be equally beneficial for all four stages. Attempts to apply the same criteria to scientists working on scientific disciplines at different stages of their scientific evolution would be stimulating for one and detrimental for another. In addition, researchers operating at a certain stage of scientific evolution might not possess the mindset adequate to evaluate and stimulate a discipline that is at a different evolutionary stage. This could be the reason for suboptimal implementation of otherwise well-conceived scientific policies.
[Earth and Space Sciences Project Services for NASA HPCC
NASA Technical Reports Server (NTRS)
Merkey, Phillip
2002-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
[Earth Science Technology Office's Computational Technologies Project
NASA Technical Reports Server (NTRS)
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
Science exploration opportunities for manned missions to the Moon, Mars, Phobos, and an asteroid
NASA Technical Reports Server (NTRS)
Nash, Douglas B.; Plescia, Jeffrey; Cintala, Mark; Levine, Joel; Lowman, Paul; Mancinelli, Rocco; Mendell, Wendell; Stoker, Carol; Suess, Steven
1989-01-01
Scientific exploration opportunities for human missions to the Moon, Phobos, Mars, and an asteroid are addressed. These planetary objects are of prime interest to scientists because they are the accessible, terresterial-like bodies most likely to be the next destinations for human missions beyond Earth orbit. Three categories of science opportunities are defined and discussed: target science, platform science, and cruise science. Target science is the study of the planetary object and its surroundings (including geological, biological, atmospheric, and fields and particle sciences) to determine the object's natural physical characteristics, planetological history, mode of origin, relation to possible extant or extinct like forms, surface environmental properties, resource potential, and suitability for human bases or outposts. Platform science takes advantage of the target body using it as a site for establishing laboratory facilities and observatories; and cruise science consists of studies conducted by the crew during the voyage to and from a target body. Generic and specific science opportunities for each target are summarized along with listings of strawman payloads, desired or required precursor information, priorities for initial scientific objectives, and candidate landing sites. An appendix details the potential use of the Moon for astronomical observatories and specialized observatories, and a bibliography compiles recent work on topics relating to human scientific exploration of the Moon, Phobos, Mars, and asteroids. It is concluded that there are a wide variety of scientific exploration opportunities that can be pursued during human missions to planetary targets but that more detailed studies and precursor unmanned missions should be carried out first.
NASA Astrophysics Data System (ADS)
Hess, M.; Robson, S.
2012-07-01
3D colour image data generated for the recording of small museum objects and archaeological finds are highly variable in quality and fitness for purpose. Whilst current technology is capable of extremely high quality outputs, there are currently no common standards or applicable guidelines in either the museum or engineering domain suited to scientific evaluation, understanding and tendering for 3D colour digital data. This paper firstly explains the rationale towards and requirements for 3D digital documentation in museums. Secondly it describes the design process, development and use of a new portable test object suited to sensor evaluation and the provision of user acceptance metrics. The test object is specifically designed for museums and heritage institutions and includes known surface and geometric properties which support quantitative and comparative imaging on different systems. The development for a supporting protocol will allow object reference data to be included in the data processing workflow with specific reference to conservation and curation.
Comparing Emerging XML Based Formats from a Multi-discipline Perspective
NASA Astrophysics Data System (ADS)
Sawyer, D. M.; Reich, L. I.; Nikhinson, S.
2002-12-01
This paper analyzes the similarity and differences among several examples of an emerging generation of Scientific Data Formats that are based on XML technologies. Some of the factors evaluated include the goals of these efforts, the data models, and XML technologies used, and the maturity of currently available software. This paper then investigates the practicality of developing a single set of structural data objects and basic scientific concepts, such as units, that could be used across discipline boundaries and extended by disciplines and missions to create Scientific Data Formats for their communities. This analysis is partly based on an effort sponsored by the ESDIS office at GSFC to compare the Earth Science Markup Language (ESML) and the eXtensible Data Format( XDF), two members of this new generation of XML based Data Description Languages that have been developed by NASA funded efforts in recent years. This paper adds FITSML and potentially CDFML to the list of XML based Scientific Data Formats discussed. This paper draws heavily a Formats Evolution Process Committee (http://ssdoo.gsfc.nasa.gov/nost/fep/) draft white paper primarily developed by Lou Reich, Mike Folk and Don Sawyer to assist the Space Science community in understanding Scientific Data Formats. One of primary conclusions of that paper is that a scientific data format object model should be examined along two basic axes. The first is the complexity of the computer/mathematical data types supported and the second is the level of scientific domain specialization incorporated. This paper also discusses several of the issues that affect the decision on whether to implement a discipline or project specific Scientific Data Format as a formal extension of a general purpose Scientific Data Format or to implement the APIs independently.
Testbed for Satellite and Terrestrial Interoperability (TSTI)
NASA Technical Reports Server (NTRS)
Gary, J. Patrick
1998-01-01
Various issues associated with the "Testbed for Satellite and Terrestrial Interoperability (TSTI)" are presented in viewgraph form. Specific topics include: 1) General and specific scientific technical objectives; 2) ACTS experiment No. 118: 622 Mbps network tests between ATDNet and MAGIC via ACTS; 3) ATDNet SONET/ATM gigabit network; 4) Testbed infrastructure, collaborations and end sites in TSTI based evaluations; 5) the Trans-Pacific digital library experiment; and 6) ESDCD on-going network projects.
Automating the design of scientific computing software
NASA Technical Reports Server (NTRS)
Kant, Elaine
1992-01-01
SINAPSE is a domain-specific software design system that generates code from specifications of equations and algorithm methods. This paper describes the system's design techniques (planning in a space of knowledge-based refinement and optimization rules), user interaction style (user has option to control decision making), and representation of knowledge (rules and objects). It also summarizes how the system knowledge has evolved over time and suggests some issues in building software design systems to facilitate reuse.
1982-06-02
to Army Modeling efforts. Include design for future priori- ties and specific actions. (13) Establish standards, methodology and formats for exter- I...with models and the wider technological-scientific-academic community, (4) increased centralized management of data, and (5) design of a proactive...andObjectives ............... 2 Purposes and Preliminary Results . . . . . . . . . . . . 4 Scope of Study .................... 6 Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
Scientists working in a particular domain often adhere to conventional data analysis and presentation methods and this leads to familiarity with these methods over time. But does high familiarity always lead to better analytical judgment? This question is especially relevant when visualizations are used in scientific tasks, as there can be discrepancies between visualization best practices and domain conventions. However, there is little empirical evidence of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their effect on scientific judgment. To address this gap and to study these factors, we focus on the climatemore » science domain, specifically on visualizations used for comparison of model performance. We present a comprehensive user study with 47 climate scientists where we explored the following factors: i) relationships between scientists’ familiarity, their perceived levels of com- fort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
Bio-objects and the media: the role of communication in bio-objectification processes
Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia
2013-01-01
The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763
The depth of fields: Managing focus in the epistemic subcultures of mind and brain science.
Peterson, David
2017-02-01
The 'psy' sciences emerged from the tangled roots of philosophy, physiology, biology and medicine, and these origins have produced heterogeneous fields. Scientists in these areas work in a complex, overlapping ecology of fields that results in the constant co-presence of dissonant theories, methods and research objects. This raises questions regarding how conceptual clarity is maintained. Using the optical metaphor 'depth of field', I show how researchers in all fields marginalize potential threats to routine scientific work by framing them as either too broad and imprecise or too narrow and technical. The appearance of this defocusing and devaluing across sites suggests a general aspect of scientific cognition, rather than a by-product of any specific scientific dispute.
NASA Astrophysics Data System (ADS)
Hill, Sharon A.
21st century television and the Internet are awash in content regarding amateur paranormal investigators and research groups. These groups proliferated after reality investigation programs appeared on television. Exactly how many groups are active in the U.S. at any time is not known. The Internet provides an ideal means for people with niche interests to find each other and organize activities. This study collected information from 1000 websites of amateur research and investigation groups (ARIGs) to determine their location, area of inquiry, methodology and, particularly, to determine if they state that they use science as part of their mission, methods or goals. 57.3% of the ARIGs examined specifically noted or suggested use of science as part of the groups' approach to investigation and research. Even when not explicit, ARIGs often used science-like language, symbols and methods to describe their groups' views or activities. Yet, non-scientific and subjective methods were described as employed in conjunction with objective methods. Furthermore, what were considered scientific processes by ARIGs did not match with established methods and the ethos of the scientific research community or scientific processes of investigation. ARIGs failed to display fundamental understanding regarding objectivity, methodological naturalism, peer review, critical thought and theoretical plausibility. The processes of science appear to be mimicked to present a serious and credible reputation to the non-scientific public. These processes are also actively promoted in the media and directly to the local public as "scientific". These results highlight the gap between the scientific community and the lay public regarding the understanding of what it means to do science and what criteria are necessary to establish reliable knowledge about the world.
Cardiomed System for Medical Monitoring Onboard ISS
NASA Astrophysics Data System (ADS)
Lloret, J. C.; Aubry, P.; Nguyen, L.; Kozharinov, V.; Grachev, V.; Temnova, E.
2008-06-01
Cardiomed system was developed with two main objectives: (1) cardiovascular medical monitoring of cosmonauts onboard ISS together with LBNP countermeasure; (2) scientific study of the cardio-vascular system in micro-gravity. Cardiomed is an integrated end-to-end system, from the onboard segment operating different medical instruments, to the ground segment which provides real-time telemetry of on-board experiments and off-line analysis of physiological measurements. In the first part of the paper, Cardiomed is described from an architecture point of view together with some typical uses. In the second part, the most constraining requirements with respect to system design are introduced. Some requirements are generic; some are specific to medical follow-up, others to scientific objectives. In the last part, the main technical challenges which were addressed during the development and the qualification of Cardiomed and the lessons learnt are presented.
ERIC Educational Resources Information Center
Hampp, Constanze; Schwan, Stephan
2015-01-01
One characteristic of science centers and science museums is that they communicate scientific findings by presenting real scientific objects. In particular, science museums focus on the historical context of scientific discoveries by displaying authentic objects, defined as original objects that once served a science-related, real-world purpose…
Why scientists perform animal experiments, scientific or personal aim?
Mayir, Burhan; Doğan, Uğur; Bilecik, Tuna; Yardımcı, Erdem Can; Çakır, Tuğrul; Aslaner, Arif; Mayir, Yeliz Akpınar; Oruç, Mehmet Tahir
2016-01-01
Although all animal studies are conducted in line with a specific purpose, we think that not all animal studies are performed for a scientific purpose but for personal curiosity or to fulfill a requirement. The aim of the present study is to reveal the purposes of experimental studies conducted on animals. We searched for experimental studies performed on rats in general surgery clinics via PubMed, and obtained the e-mail addresses of the corresponding authors for each study. Afterwards, we sent a 7-item questionnaire to the authors and awaited their responses. Seventy-three (22.2%) of 329 authors responded to the questionnaire. Within these studies, 31 (42.5%) were conducted as part of a dissertation, while the remaining 19 (26.0%) were conducted to meet the academic promotion criteria. Only 23 (31.5%) were conducted for scientific purposes. The cost of 41% of those studies was higher than 2500 $. As shown in this study, the main objective of carrying out animal studies in Turkey is usually to prepare a dissertation or to be entitled to academic promotion. Animal experiments must be planned and performed as scientific studies to support related clinical studies. Additionally, animal studies must have well-defined objectives and be carried out in line with scientific purposes that may lead to useful developments in medicine, rather than personal interests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Karin; DeGeorge, Elise
2016-04-13
The objectives of this framework are to facilitate the study design and execution to test the effectiveness of bat and eagle impact-reduction strategies at wind energy sites. Through scientific field research, the wind industry and its partners can help determine if certain strategies are ready for operational deployment or require further development. This framework should be considered a living document to be improved upon as fatality-reduction technologies advance from the initial concepts to proven readiness (through project- and technology-specific testing) and as scientific field methods improve.
ELTs adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules
NASA Astrophysics Data System (ADS)
Neichel, B.; Conan, J.-M.; Fusco, T.; Gendron, E.; Puech, M.; Rousset, G.; Hammer, F.
2006-06-01
In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65μm) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of an extremely low SC. For the LGS approach, the option of low order correction with a faint NGS is discussed. We demonstrate that, this last solution allows the scientific requirements to be met together with a quasi full SC.
The naphthalene state of the science symposium: objectives, organization, structure, and charge.
Belzer, Richard B; Bus, James S; Cavalieri, Ercole L; Lewis, Steven C; North, D Warner; Pleus, Richard C
2008-07-01
This report provides a summary of the objectives, organization, structure and charge for the naphthalene state of the science symposium (NS(3)), Monterey, CA, October 9-12, 2006. A 1-day preliminary conference was held followed by a 3-day state of the science symposium covering four topics judged by the Planning Committee to be crucial for developing valid and reliable scientific estimates of low-dose human cancer risk from naphthalene. The Planning Committee reviewed the relevant scientific literature to identify singularly knowledgeable researchers and a pool of scientists qualified to serve as expert panelists. In two cases, independent scientists were commissioned to develop comprehensive reviews of the relevant science in a specific area for which no leading researcher could be identified. Researchers and expert panelists alike were screened for conflicts of interest. All policy issues related to risk assessment practices and risk management were scrupulously excluded. NS(3) was novel in several ways and provides an innovative model for the effective use of peer review to identify scientific uncertainties and propose research strategies for reducing or eliminating them prior to the conduct of risk assessment.
LOLA: The lunar operations landing assembly
NASA Technical Reports Server (NTRS)
Abreu, Mike; Argeles, Fernando; Stewart, Chris; Turner, Charles; Rivas, Gavino
1992-01-01
Because the President of the United States has begun the Space Exploration Initiative (SEI), which entails a manned mission to Mars by the year 2016, it is necessary to use the Moon as a stepping stone to this objective. In support of this mission, unmanned scientific exploration of the Moon will help re-establish man's presence there and will serve as a basis for possible lunar colonization, setting the stage for a manned Mars mission. The lunar landing platform must provide support to its payload in the form of power, communications, and thermal control. The design must be such that cost is held to a minimum, and so that a wide variety of payloads may be used with the lander. The objectives of this mission are (1) to further the SEI by returning to the moon with unmanned scientific experiments, (2) to demonstrate to the public that experimental payload missions are feasible, (3) to provide a common lunar lander platform so select scientific packages could be targeted to specific lunar locales, (4) to enable the lander to be built from off-the-shelf hardware, and (5) to provide first mission launch by 1996.
ERIC Educational Resources Information Center
Williams, Twyman G., Jr.
The effectiveness of visible recorded feedback responses in teaching scientific theory and principles to vocational agriculture students was studied. Specific objectives were to determine the value of group feedback to the teacher, the difference in learning retention between students with and without feedback, and the difference in efficient use…
Leadership in R&D Activity in English and Welsh Universities
ERIC Educational Resources Information Center
Mukan, Nataliya; Havrylyuk, Marianna; Prots, Maryana
2015-01-01
In the article, leadership in R&D activity in English and Welsh universities has been studied. The main objectives of the article are defined as following: to analyze the scientific literature which highlights different aspects of the problem under research, to identify the specificity of leadership practice in R&D, and to develop the…
Objects of Desire: Power and Passion in Collaborative Activity
ERIC Educational Resources Information Center
Nardi, Bonnie A.
2005-01-01
This article uses activity theory to analyze the conduct of collaborative scientific research, showing how the conceptualization of object is critical to understanding key aspects of scientific collaboration. I argue that the passions and desires behind objects of scientific research are missing in most accounts. I suggest refinements to the…
Developmental Programming: State-of-the-Science and Future Directions
Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric
2016-01-01
Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645
Carollo, Anna; Rieutord, André; Launay-Vacher, Vincent
2012-04-01
This glossary is a tool for clinicians who have to confront topics in which medical, scientific and technical jargon is closely linked. It provides definitions for the key concepts and terms of pharmaceutical care, clinical pharmacy, and research in the health care system in clinical settings. It includes items that are not particularly technical, but that should be part of the know-how of staff working in medical and scientific fields. In fact, the glossary can also help clinical technicians who want to understand the precise definition of scientific terms, which often do not coincide with the ones used in the practice setting. PRINCIPAL GOALS AND OBJECTIVES: The aim of this glossary is to aid in the development of more standardized and established terminology for clinical pharmacy, facilitate communication among different stakeholders and, ultimately, contribute to a higher-quality health care system. The glossary contains 165 definitions of concepts and principles in clinical pharmacy, and terms widely used in this field. The criteria for the inclusion of terms were specific applications in health promotion, or terms used in other fields that have a specific meaning or application when used in reference to clinical activity. The glossary arose from the need to standardize terminology in the scientific field. It was not intended as a comprehensive listing that would include all medical terms, but as a useful tool for clinical pharmacists working in this area, and for users who occasionally encounter unusual, often hard to understand, terminology.
An Overview of the Object Protocol Model (OPM) and the OPM Data Management Tools.
ERIC Educational Resources Information Center
Chen, I-Min A.; Markowitz, Victor M.
1995-01-01
Discussion of database management tools for scientific information focuses on the Object Protocol Model (OPM) and data management tools based on OPM. Topics include the need for new constructs for modeling scientific experiments, modeling object structures and experiments in OPM, queries and updates, and developing scientific database applications…
NASA Astrophysics Data System (ADS)
Teixeira, Carlos; Paulo, Gallo; Nogueira, Maria Inês
2015-04-01
Communication's Purpose: Identify the artistic expression that uses the language of cartoons and comics for public communication, having as reference the Earth Education for a better planet sustainability. Object/Theme: Cartoons and comics published in newspapers, on five continents, made available in online version. Theoretical: This study is related to the assumption that the public communication of science by cartoons and comics constitute a textual genre, by the fact that they report scientific and complex themes presented in playful language, using humor and artistic traces accessible to the lay public. The scientific cartoons and comics aim to call public attention to scientific discoveries and science themes using illustrative chart features and short texts, both contextualized in a humorous structure. There are in the cartoons and comics, which are created to the public communication of science, an unintentionally pedagogical approach/formal, while transmitting information by unpretentious way and using graphic/artistic communication By the fact that in this specific format of communication there is knowledge being informed, the scientific cartoons and comics can contribute to the scientific empowerment of the society, in addition to being instruments that can also arouse scientific curiosity. The scientific cartoons and comics use objective language and short sentences, also employ words that may have a double meaning. It can be considered as an incentive for people's reflection. Method: It was analyzed cartoons and comics published in newspapers, made available in online version, published on five continents, in English, Portuguese and Spanish. Palavras-chave: science communication, public communication of science and technology; cartoons; comics
[Ecological and economic approaches to removing radioactively dangerous objects from service].
Korenkov, I P; Lashchenova, T N; Neveĭkin, P P; Shandala, N K; Veselov, E I; Maksimova, O A
2011-01-01
The paper considers major ecological and economic problems when removing radiation dangerous objects from service and rehabilitating the areas, which require their solution: the absence of specific guidelines for ranking the contaminated lands exposed to radioactive and chemical pollution from the potential risk to the population and environment; no clear criteria for ceasing area rehabilitation works; radiation exposure levels for the population living in the areas after rehabilitation; allowable levels of residual specific activity, and levels of heavy metals in soil, surface and underground water and bed sediment. The cost such works is the most important and decisive problem. A decision-making algorithm consisting of three main blocks: organizational-technical, engineering, geological and medicoecological measures is proposed to solve managerial, economic, and scientific problems.
An Object-Oriented Network-Centric Software Architecture for Physical Computing
NASA Astrophysics Data System (ADS)
Palmer, Richard
1997-08-01
Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.
ERIC Educational Resources Information Center
Lowney, Kathleen S.
2014-01-01
There are many things that sociology faculty have to consider as they begin planning a student course such as: (1) why students need to understand scientific methods, by conducting research for themselves; (2) What specific learning goals and objectives will be met by students doing research, either individually or collectively?; (3) Why do…
ERIC Educational Resources Information Center
Levinson, Ralph; Kent, Phillip; Pratt, David; Kapadia, Ramesh; Yogui, Cristina
2012-01-01
Risk has now become a feature of science curricula in many industrialized countries. While risk is conceptualized within a number of different theoretical frameworks, the predominant model used in examination specifications is a utility model in which risk calculations are deemed to be objective through technical expert assessment and where the…
The Phenomenon of "Global Education Space" as an Object of Scientific-Pedagogical Research
ERIC Educational Resources Information Center
Avshenyuk, Natalia
2014-01-01
The characteristics of global education space as a social idea of creating a system of measures to ensure the right for education to any individual as well as its converting, that is recognition regardless of the nationality and country of study; and as a specific area of human activity, which forms the internal and external environment for…
Selecting and implementing scientific objectives. [for Voyager 1 and 2 planetary encounters
NASA Technical Reports Server (NTRS)
Miner, E. D.; Stembridge, C. H.; Doms, P. E.
1985-01-01
The procedures used to select and implement scientific objectives for the Voyager 1 and 2 planetary encounters are described. Attention is given to the scientific tradeoffs and engineering considerations must be addressed at various stages in the mission planning process, including: the limitations of ground and spacecraft communications systems, ageing of instruments in flight, and instrument calibration over long distances. The contribution of planetary science workshops to the definition of scientific objectives for deep space missions is emphasized.
Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics
NASA Technical Reports Server (NTRS)
Chappell, C. R.
1985-01-01
A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.
EVER-EST: a virtual research environment for Earth Sciences
NASA Astrophysics Data System (ADS)
Marelli, Fulvio; Albani, Mirko; Glaves, Helen
2016-04-01
There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST data processing infrastructure will be based on a Cloud Computing approach, in which new applications can be integrated using "virtual machines" that have their own specifications (disk size, processor speed, operating system etc.) and run on shared private (physical deployment over local hardware) or commercial Cloud infrastructures. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains including: ocean monitoring, natural hazards, land monitoring and risk management (volcanoes and seismicity). Each VRC will use the virtual research environment according to its own specific requirements for data, software, best practice and community engagement. This user-centric approach will allow an assessment to be made of the capability for the proposed solution to satisfy the heterogeneous needs of a variety of Earth Science communities for more effective collaboration, and higher efficiency and creativity in research. EVER-EST is funded by the European Commission's H2020 for three years starting in October 2015. The project is led by the European Space Agency (ESA), involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.
NASA Astrophysics Data System (ADS)
Ehlmann, Bryon K.
Current scientific experiments are often characterized by massive amounts of very complex data and the need for complex data analysis software. Object-oriented database (OODB) systems have the potential of improving the description of the structure and semantics of this data and of integrating the analysis software with the data. This dissertation results from research to enhance OODB functionality and methodology to support scientific databases (SDBs) and, more specifically, to support a nuclear physics experiments database for the Continuous Electron Beam Accelerator Facility (CEBAF). This research to date has identified a number of problems related to the practical application of OODB technology to the conceptual design of the CEBAF experiments database and other SDBs: the lack of a generally accepted OODB design methodology, the lack of a standard OODB model, the lack of a clear conceptual level in existing OODB models, and the limited support in existing OODB systems for many common object relationships inherent in SDBs. To address these problems, the dissertation describes an Object-Relationship Diagram (ORD) and an Object-oriented Database Definition Language (ODDL) that provide tools that allow SDB design and development to proceed systematically and independently of existing OODB systems. These tools define multi-level, conceptual data models for SDB design, which incorporate a simple notation for describing common types of relationships that occur in SDBs. ODDL allows these relationships and other desirable SDB capabilities to be supported by an extended OODB system. A conceptual model of the CEBAF experiments database is presented in terms of ORDs and the ODDL to demonstrate their functionality and use and provide a foundation for future development of experimental nuclear physics software using an OODB approach.
Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds
NASA Astrophysics Data System (ADS)
Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano
Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.
NASA's strategic plan for education. A strategy for change, 1993-1998
NASA Technical Reports Server (NTRS)
1992-01-01
NASA's education vision is to promote excellence in America's education system through enhancing and expanding scientific and technological competence. In doing so, NASA strives to be recognized by the education community as the premier mission agency in support of the National Education Goals and in the development and implementation of education standards. To realize this vision, NASA has clearly defined and developed three specific goals to promote excellence in education. Specific objectives and milestones are defined for each goal in the body of this strategic plan.
Model development for Ulysses and SOHO
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The purpose of this research is to provide scientific expertise in solar physics and in the development and use of magnetohydrodynamic (MHD) models of coronal structures for the computation of Lyman alpha scattered radiation in these structures. The specific objectives will be to run MHD models with new boundary conditions and compute resulting scattered solar Lyman alpha intensities, guided by results from the first series of boundary conditions.
NASA Astrophysics Data System (ADS)
Foglini, F.
2016-12-01
The EVER-EST project aims to develop a generic Virtual Research Environment (VRE) tailored to the needs and validated by the Earth Science domain. To achieve this the EVER-EST VRE provides earth scientists with the means to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modellings, which lead to the specific results that need to be attributable, validated and shared within the community e.g. in the form of scholarly communications. Central to this approach is the concept of Research Objects (ROs) as semantically rich aggregations of resources that bring together data, methods and people in scientific investigations. ROs enable the creation of digital artifacts that can encapsulate scientific knowledge and provide a mechanism for sharing and discovering assets of reusable research and scientific assets as first-class citizens. The EVER-EST VRE is the first RO-centric native infrastructure leveraging the notion of ROs and their application in observational rather than experimental disciplines and particularly in Earth Science. The Institute of MARine Science (ISMAR-CNR) is a scientific partner of the EVER-EST project providing useful and applicable contributions to the identification and definition of variables indicated by the European Commission in the Marine Strategy Framework Directive (MSFD) to achieve the Good Environment Status (GES). The VRC is willing to deliver practical methods, procedures and protocols to support coherent and widely accepted interpretation of the MSFD. The use case deal with 1. the Posidonia meadows along the Apulian coast, 2. the deep-sea corals along the Apulian continenatal slope and 3. the jellyfish abundance in the Italian water. The SeaMonitoring VRC created specific RO for asesing deep sea corals suitabilty, Posidonia meadows occurrences and for detecting jelly fish density aloing the italian coast. The VRC developed specific RO for bathymetric data implementing a data preservation plan and a specific vocabulary for metadata.
Bréchignac, F; Alexakhin, R; Bollhöfer, A; Frogg, K E; Hardeman, F; Higley, K; Hinton, T G; Kapustka, L A; Kuhne, W; Leonard, K; Masson, O; Nanba, K; Smith, G; Smith, K; Strand, P; Vandenhove, H; Yankovich, T; Yoshida, S
2017-04-01
During the past decades, many specialised networks have formed to meet specific radioecological objectives, whether regional or sectorial (purpose-oriented). Regional networks deal with an array of radioecological issues related to their territories. Examples include the South Pacific network of radioecologists, and the European network of excellence in radioecology. The latter is now part of the European platform for radiation protection. Sectorial networks are more problem-oriented, often with wider international representativeness, but restricted to one specific issue, (e.g. radioactive waste, low-level atmospheric contamination, modelling). All such networks, while often working in relative isolation, contribute to a flow of scientific information which, through United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR's) efforts of synthesis, feeds into the radiation protection frameworks of protecting humans and the environment. The IUR has therefore prompted a co-construction process aimed at improving worldwide harmonisation of radioecology networks. An initiative based on an initial set of 15 networks, now called the IUR FORUM, was launched in June 2014. The IUR Forum agreed to build a framework for improved coordination of scientific knowledge, integration and consensus development relative to environmental radioactivity. Three objectives have been collectively assigned to the IUR FORUM: (1) coordination, (2) global integration and construction of consensus and (3) maintenance of expertise. One particular achievement of the FORUM was an improved description and common understanding of the respective roles and functions of the various networks within the overall scene of radioecology R&D. It clarifies how the various networks assembled within the IUR FORUM interface with UNSCEAR and other international regulatory bodies (IAEA, ICRP), and how consensus on the assessment of risk is constructed. All these agencies interact with regional networks covering different geographical areas, and with other networks which address specific topics within radiation protection. After holding its first Consensus Symposium in 2015, examining the possible ecological impact of radiation from environmental contamination, the IUR FORUM continues its work towards improved radiation protection of humans and the environment. We welcome new members. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Schrader, Astrid
2010-04-01
Based on an analysis of an ongoing scientific-political controversy over the toxicity of a fish-killing microorganism, this paper explores the relationship between responsibility and nonhuman contributions to agency in experimental practices. Research into the insidious effects of the dinoflagellates Pfiesteria piscicida (the fish killer) that thrive in waters over-enriched with nutrients, has received considerable attention by both the media and government agencies concerned with public and environmental health. After nearly two decades of research, the question of whether Pfiesteria can be regarded the 'causative agent' of massive fish kills in the estuaries of the US mid-Atlantic could not be scientifically settled. In contrast to policymakers, who attribute the absence of a scientific consensus to gaps in scientific knowledge and uncertainties regarding the identity and behavior of the potentially toxic dinoflagellates, I propose that an inseparable entanglement of Pfiesteria's identities and their toxic activities challenges conventional notions of causality that seek to establish a connection between independent events in linear time. Building on Karen Barad's framework of agential realism, I argue for a move from epistemological uncertainties to ontological indeterminacies that follow from Pfiesteria's contributions to agency, as the condition for responsible and objective science. In tracking discrepant experimental enactments of Pfiesteria that have been mobilized as evidence for and against their toxicity, I investigate how criteria for what counts as evidence get built into the experimental apparatuses and suggest that the joint possibilities of causality and responsibility vary with the temporalities of the objects enacted. This discussion seeks to highlight a thorough entanglement of epistemic/ontological concerns with the ecological/political relevance of particular experiments. Finally, I introduce a new kind of scientific object that--borrowing from Derrida--I call phantomatic. Phantoms don't emerge as such, but appear as traces and are associated with specific matters of concern.
Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair
Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats
2011-01-01
Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project. PMID:26069574
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1987-01-01
The overall objectives and strategies of the Center for Remote Sensing remain to provide a center for excellence for multidisciplinary scientific expertise to address land-related global habitability and earth observing systems scientific issues. Specific research projects that were underway during the final contract period include: digital classification of coniferous forest types in Michigan's northern lower peninsula; a physiographic ecosystem approach to remote classification and mapping; land surface change detection and inventory; analysis of radiant temperature data; and development of methodologies to assess possible impacts of man's changes of land surface on meteorological parameters. Significant progress in each of the five project areas has occurred. Summaries on each of the projects are provided.
Automatic quality assessment of planetary images
NASA Astrophysics Data System (ADS)
Sidiropoulos, P.; Muller, J.-P.
2015-10-01
A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.
The Gaia mission a rich resource for outreach activities
NASA Astrophysics Data System (ADS)
O'Flaherty, K. S.; Douglas, J.; Prusti, T.
2008-07-01
Space science missions, and astronomy missions in particular, capture the public imagination at all levels. ESA's Gaia mission is no exception to this. In addition to its key scientific goal of providing new insight into the origin, formation, and evolution of the Milky Way, Gaia also touches on many other scientific topics of broad appeal, for example, solar system objects, stars (including rare and exotic ones), dark matter, gravitational light bending. The mission naturally provides a rich resource for outreach possibilities whether it be to the general public, or to specific interest groups, such as scientists from other fields or educators. We present some examples of possible outreach activities for Gaia.
Moll, F H
2015-02-01
The use of artifacts and objects from scientific medical collections and museums for academic teaching purposes are one of the main qualifying tasks of those institutions. In recent years, this aspect of scientific collections has again become on focus within academics. The collections offer a unique chance for visual and haptic forms of teaching in many fields. Due to the potential of scientific collections, educators in all branches in academic learning should be familiar with handling objects for such purposes.
Physical oceanography and tracer chemistry of the southern ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report considers technical and scientific developments and research questions in studies of the Southern Ocean since its predecessor, /open quotes/Southern Ocean Dynamics--A Strategy for Scientific Exploration 1973-1983/close quotes/ was published. The summary lists key research questions in Southern Ocean oceanography. Chapter 1 describes how Southern Ocean research has evolved to provide the basis for timely research toward more directed objectives. Chapter 2 recommends four research programs, encompassing many of the specific recommendations that follow. Appendix A provides the scientific background and Reference/Bibliography list for this report for: on air-sea-ice interaction; the Antarctic Circumpolar Current; water mass conversion; chemical tracermore » oceanography; and numerical modeling of the Southern Ocean. Appendix B describes the satellite-based observation systems expected to be active during the next decade. Appendix C is a list of relevant reports published during 1981-1987. 146 refs.« less
Gómez, Silvia; Tapia, María Jesús; Rueda, Laura
2017-01-01
Background The progression of occupational science in Chile is documented in the main scientific publication of the field, the Chilean Journal of Occupational Therapy (RChTO). Objective Identify approaches to understanding and applying occupation and occupational science as elucidated in the RChTO. Methodology A systematic qualitative review of the journal (2001–2012) identified articles elucidating an approach to understanding and application operationally defined as references to specific authors, theories, models/paradigms, definitions, and other fields that support approaches to O/OS. Results The study identified two main approaches. The first considers occupation/occupational science from a practical perspective or as a means to explain human behavior; the second considers occupation/occupational science as an object of study. Each approach is further divided into categories. Conclusion This study provides a novel perspective on regional use of occupational science concepts. These findings contribute to our understanding of this science in context and to recognition of the cultural relevance of these scientific concepts. PMID:29097971
Performance of OVERFLOW-D Applications based on Hybrid and MPI Paradigms on IBM Power4 System
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biegel, Bryan (Technical Monitor)
2002-01-01
This report briefly discusses our preliminary performance experiments with parallel versions of OVERFLOW-D applications. These applications are based on MPI and hybrid paradigms on the IBM Power4 system here at the NAS Division. This work is part of an effort to determine the suitability of the system and its parallel libraries (MPI/OpenMP) for specific scientific computing objectives.
Lunar Reconnaissance Orbiter (LRO) Navigation Overview
NASA Technical Reports Server (NTRS)
Lamb, Rivers
2008-01-01
This viewgraph presentation is an overview of the Lunar Reconnaissance Orbiter (LRO), with emphasis on the navigation and plans for the mission. The objective of the LRO mission is to conduct investigations that will be specifically target to prepare for and support future human exploration of the Moon. There is a review of the scientific instruments on board the LRO and an overview of the phases of the planned trajectory.
Preschool physics: Using the invisible property of weight in causal reasoning tasks
Williamson, Rebecca A.; Meltzoff, Andrew N.
2018-01-01
Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects—an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children’s understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children’s performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult. PMID:29561840
Preschool physics: Using the invisible property of weight in causal reasoning tasks.
Wang, Zhidan; Williamson, Rebecca A; Meltzoff, Andrew N
2018-01-01
Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects-an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children's understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children's performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult.
Using Scavenger Hunts to Familiarize Students with Scientific Journal Articles.
Lijek, Rebeccah S; Fankhauser, Sarah C
2016-03-01
Primary scientific literature can be difficult to navigate for anyone unfamiliar with its foreign, formal structure. We sought to create a fun, easy learning tool to help familiarize students of all ages with the structure of a scientific article. Our main learning objective was for the student to realize that science writing is formulaic-that specific information is found in predictable locations within an article-and that, with an understanding of the formula, anyone can comfortably navigate any journal article and accurately predict what to expect to find in each section. To this end, we designed a Journal Article Scavenger Hunt that requires the user to find and identify a series of commonplace features of a primary research article. The scavenger hunt activity is quick and easy to implement, and is adaptable to various ages and settings, including the classroom, lab, and at outreach events. The questions in the scavenger hunt can be scaled in difficulty and specificity to suit the instructor's needs. Over many years of using this activity, we have received positive feedback from students of all ages, from elementary school students to lay adult-learners as well as science teachers themselves. By making the unknown seem predictable and approachable, the scavenger hunt helps a variety of audiences feel more comfortable with science and more confident in their ability to engage directly with the scientific literature. Journal of Microbiology & Biology Education.
The PACA Project Ecology: Observing Campaigns, Outreach and Citizen Science
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2016-12-01
The PACA Project has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanding to include polarimetric exploration of solar system objects with small apertures and collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The use of social media is becoming prevalent in citizen science projects due to these factors. The final stage of the PACA ecosystem is the integration of these components into a publication. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects in all three categories with new partnerships and collaborations.
Impact of Cannabis Use During Stabilization on Methadone Maintenance Treatment
Scavone, Jillian L.; Sterling, Robert C.; Weinstein, Stephen P.; Van Bockstaele, Elisabeth J.
2016-01-01
Background and Objectives Illicit drug use, particularly of cannabis, is common among opiate-dependent individuals, and has the potential to impact treatment in a negative manner. Methods To examine this, patterns of cannabis use prior to and during methadone maintenance treatment (MMT) were examined to assess possible cannabis-related effects on MMT, particularly during methadone stabilization. Retrospective chart analysis was used to examine outpatient records of patients undergoing MMT (n=91), focusing specifically on past and present cannabis use and its association with opiate abstinence, methadone dose stabilization, and treatment compliance. Results Objective rates of cannabis use were high during methadone induction, dropping significantly following dose stabilization. History of cannabis use correlated with cannabis use during MMT, but did not negatively impact the methadone induction process. Pilot data also suggested that objective ratings of opiate withdrawal decrease in MMT patients using cannabis during stabilization. Conclusions and Scientific Significance The present findings may point to novel interventions to be employed during treatment for opiate dependence that specifically target cannabinoid-opioid system interactions. PMID:23795873
Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppock, Edrick G.
The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology inmore » collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.« less
Stone, Mark H; Stenner, A Jackson
2014-01-01
Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.
Rübel, Oliver; Dougherty, Max; Prabhat; Denes, Peter; Conant, David; Chang, Edward F.; Bouchard, Kristofer
2016-01-01
Neuroscience continues to experience a tremendous growth in data; in terms of the volume and variety of data, the velocity at which data is acquired, and in turn the veracity of data. These challenges are a serious impediment to sharing of data, analyses, and tools within and across labs. Here, we introduce BRAINformat, a novel data standardization framework for the design and management of scientific data formats. The BRAINformat library defines application-independent design concepts and modules that together create a general framework for standardization of scientific data. We describe the formal specification of scientific data standards, which facilitates sharing and verification of data and formats. We introduce the concept of Managed Objects, enabling semantic components of data formats to be specified as self-contained units, supporting modular and reusable design of data format components and file storage. We also introduce the novel concept of Relationship Attributes for modeling and use of semantic relationships between data objects. Based on these concepts we demonstrate the application of our framework to design and implement a standard format for electrophysiology data and show how data standardization and relationship-modeling facilitate data analysis and sharing. The format uses HDF5, enabling portable, scalable, and self-describing data storage and integration with modern high-performance computing for data-driven discovery. The BRAINformat library is open source, easy-to-use, and provides detailed user and developer documentation and is freely available at: https://bitbucket.org/oruebel/brainformat. PMID:27867355
Basing Science Ethics on Respect for Human Dignity.
Aközer, Mehmet; Aközer, Emel
2016-12-01
A "no ethics" principle has long been prevalent in science and has demotivated deliberation on scientific ethics. This paper argues the following: (1) An understanding of a scientific "ethos" based on actual "value preferences" and "value repugnances" prevalent in the scientific community permits and demands critical accounts of the "no ethics" principle in science. (2) The roots of this principle may be traced to a repugnance of human dignity, which was instilled at a historical breaking point in the interrelation between science and ethics. This breaking point involved granting science the exclusive mandate to pass judgment on the life worth living. (3) By contrast, respect for human dignity, in its Kantian definition as "the absolute inner worth of being human," should be adopted as the basis to ground science ethics. (4) The pathway from this foundation to the articulation of an ethical duty specific to scientific practice, i.e., respect for objective truth, is charted by Karl Popper's discussion of the ethical principles that form the basis of science. This also permits an integrated account of the "external" and "internal" ethical problems in science. (5) Principles of the respect for human dignity and the respect for objective truth are also safeguards of epistemic integrity. Plain defiance of human dignity by genetic determinism has compromised integrity of claims to knowledge in behavioral genetics and other behavioral sciences. Disregard of the ethical principles that form the basis of science threatens epistemic integrity.
Young, Lisa R; Trapnell, Bruce C; Mandl, Kenneth D; Swarr, Daniel T; Wambach, Jennifer A; Blaisdell, Carol J
2016-12-01
Pediatric rare lung disease (PRLD) is a term that refers to a heterogeneous group of rare disorders in children. In recent years, this field has experienced significant progress marked by scientific discoveries, multicenter and interdisciplinary collaborations, and efforts of patient advocates. Although genetic mechanisms underlie many PRLDs, pathogenesis remains uncertain for many of these disorders. Furthermore, epidemiology and natural history are insufficiently defined, and therapies are limited. To develop strategies to accelerate scientific advancement for PRLD research, the NHLBI of the National Institutes of Health convened a strategic planning workshop on September 3 and 4, 2015. The workshop brought together a group of scientific experts, intramural and extramural investigators, and advocacy groups with the following objectives: (1) to discuss the current state of PRLD research; (2) to identify scientific gaps and barriers to increasing research and improving outcomes for PRLDs; (3) to identify technologies, tools, and reagents that could be leveraged to accelerate advancement of research in this field; and (4) to develop priorities for research aimed at improving patient outcomes and quality of life. This report summarizes the workshop discussion and provides specific recommendations to guide future research in PRLD.
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.
ERIC Educational Resources Information Center
Jurecki, Karenann; Wander, Matthew C. F.
2012-01-01
In this work, we present an approach for teaching students to evaluate scientific literature and other materials critically. We use four criteria divided into two tiers: original research, authority, objectivity, and validity. The first tier, originality and authority, assesses the quality of the source. The second tier, objectivity and validity,…
Science, policy, and the transparency of values.
Elliott, Kevin C; Resnik, David B
2014-07-01
Opposing groups of scientists have recently engaged in a heated dispute over a preliminary European Commission (EC) report on its regulatory policy for endocrine-disrupting chemicals. In addition to the scientific issues at stake, a central question has been how scientists can maintain their objectivity when informing policy makers. Drawing from current ethical, conceptual, and empirical studies of objectivity and conflicts of interest in scientific research, we propose guiding principles for communicating scientific findings in a manner that promotes objectivity, public trust, and policy relevance. Both conceptual and empirical studies of scientific reasoning have shown that it is unrealistic to prevent policy-relevant scientific research from being influenced by value judgments. Conceptually, the current dispute over the EC report illustrates how scientists are forced to make value judgments about appropriate standards of evidence when informing public policy. Empirical studies provide further evidence that scientists are unavoidably influenced by a variety of potentially subconscious financial, social, political, and personal interests and values. When scientific evidence is inconclusive and major regulatory decisions are at stake, it is unrealistic to think that values can be excluded from scientific reasoning. Thus, efforts to suppress or hide interests or values may actually damage scientific objectivity and public trust, whereas a willingness to bring implicit interests and values into the open may be the best path to promoting good science and policy.
Mini-TES Observations of the Gusev and Meridiani Landing Sites
NASA Technical Reports Server (NTRS)
Christensen, Philip; Arvidson, Raymond; Bandfield, Joshua L.; Blaney, Diana; Budney, Charles; Calvin, Wendy; Ciccolella, Sandra; Fallacro, Alicia; Fergason, Robin; Glotch, Timothy
2004-01-01
The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of the mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers. The specific scientific objectives of this investigation are to: (1) determine the mineralogy of rocks and soils; (2) determine the thermophysical properties of surface materials; and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer.
Resources of Near-Earth Space: Abstracts
NASA Technical Reports Server (NTRS)
1991-01-01
The objectives are by theory, experiment, and bench-level testing of small systems, to develop scientifically-sound engineering processes and facility specifications for producing propellants and fuels, construction and shielding materials, and life support substances from the lithospheres and atmospheres of lunar, planetary, and asteroidal bodies. Current emphasis is on the production of oxygen, other usefull gases, metallic, ceramic/composite, and related byproducts from lunar regolith, carbonaceous chrondritic asteroids, and the carbon dioxide rich Martian atmosphere.
A-3 scientific results - extragalactic
NASA Technical Reports Server (NTRS)
Schwartz, D. A.
1979-01-01
The results of the HEAO A-3 experiment are summarized. Specific contributions of the experiment to extragalactic astronomy are emphasized. The discovery of relatively condensed X-ray emission in the cores of those clusters of galaxies which are dominated by a giant elliptical or cD galaxy, the discovery of extended X-ray emitting plasma in groups of galaxies, and the demonstration that BL Lac objects are a class of X-ray sources are among the topics discussed.
The development of a high-capacity instrument module heat transport system, appendixes
NASA Technical Reports Server (NTRS)
1981-01-01
Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.
Between physics and metaphysics: structure as a boundary concept.
Tau, Ramiro
2015-03-01
The notion of structure is found to be used in a great number of theories, scientific research programs and world views. However, its uses and definitions are as diverse as the objects of the scientific disciplines where it can be found. Without trying to recreate the structuralist aspiration from the mid XX century, which believed to have found in this notion a common transdisciplinary language, I discuss a specific aspect of this concept that could be considered a constant in different perspectives. This aspect refers to the location of the notions of structure as boundaries in the different scientific theories. With this, I try to argue that the definition or presentation of a structure configures in itself the frontier for scientific knowledge, defining at the same time implied ontological assumptions. In order to discuss this hypothesis, and taking into consideration the double origin of contemporary notions of structure -the mathematical and linguistic line-, I revise several theoretical perspectives which made explicit the relation between structures and knowledge, and their relation with the real: the arguments on physical knowledge by Eddington, structural anthropology, structural linguistics, Lacanian psychoanalysis and Piaget's genetic psychology.
Microgravity sciences application visiting scientist program
NASA Technical Reports Server (NTRS)
Glicksman, Martin; Vanalstine, James
1995-01-01
Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.
The role of color information on object recognition: a review and meta-analysis.
Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís
2011-09-01
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.
"Bad genes" & criminal responsibility.
González-Tapia, María Isabel; Obsuth, Ingrid
2015-01-01
The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
The present design symposium on the Ulysses Reference Mission (URM) provides data on the feasibility of the URM with particular attention given to reference data for Ulysses in the ecliptic plane as it passes the southern and northern pole areas of the sun. Specific issues addressed during the design workshop include the scientific objectives of the URM, the elements of the URM payload, the configuration and structural elements of the spacecraft, thermal control requirements and considerations, a system-engineering analysis, and the scientific subsystems of the URM. Also examined are the solar array and battery package, power control and distribution, technology considerations for the transmission of telemetric data, and a functional analysis of the URM on-board data-handling equipment. The description of the workshop concludes by noting that design studies are required to establish the moment of inertia and center of gravity of the URM spacecraft as well as specific mission parameters.
An ontology of scientific experiments
Soldatova, Larisa N; King, Ross D
2006-01-01
The formal description of experiments for efficient analysis, annotation and sharing of results is a fundamental part of the practice of science. Ontologies are required to achieve this objective. A few subject-specific ontologies of experiments currently exist. However, despite the unity of scientific experimentation, no general ontology of experiments exists. We propose the ontology EXPO to meet this need. EXPO links the SUMO (the Suggested Upper Merged Ontology) with subject-specific ontologies of experiments by formalizing the generic concepts of experimental design, methodology and results representation. EXPO is expressed in the W3C standard ontology language OWL-DL. We demonstrate the utility of EXPO and its ability to describe different experimental domains, by applying it to two experiments: one in high-energy physics and the other in phylogenetics. The use of EXPO made the goals and structure of these experiments more explicit, revealed ambiguities, and highlighted an unexpected similarity. We conclude that, EXPO is of general value in describing experiments and a step towards the formalization of science. PMID:17015305
Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models.
Le Muzic, M; Mindek, P; Sorger, J; Autin, L; Goodsell, D; Viola, I
2016-06-01
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes.
Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models
Le Muzic, M.; Mindek, P.; Sorger, J.; Autin, L.; Goodsell, D.; Viola, I.
2017-01-01
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes. PMID:28344374
Artificial intelligence for the EChO mission planning tool
NASA Astrophysics Data System (ADS)
Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep
2015-12-01
The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.
Y0: An innovative tool for spatial data analysis
NASA Astrophysics Data System (ADS)
Wilson, Jeremy C.
1993-08-01
This paper describes an advanced analysis and visualization tool, called Y0 (pronounced ``Why not?!''), that has been developed to directly support the scientific process for earth and space science research. Y0 aids the scientific research process by enabling the user to formulate algorithms and models within an integrated environment, and then interactively explore the solution space with the aid of appropriate visualizations. Y0 has been designed to provide strong support for both quantitative analysis and rich visualization. The user's algorithm or model is defined in terms of algebraic formulas in cells on worksheets, in a similar fashion to spreadsheet programs. Y0 is specifically designed to provide the data types and rich function set necessary for effective analysis and manipulation of remote sensing data. This includes various types of arrays, geometric objects, and objects for representing geographic coordinate system mappings. Visualization of results is tailored to the needs of remote sensing, with straightforward methods of composing, comparing, and animating imagery and graphical information, with reference to geographical coordinate systems. Y0 is based on advanced object-oriented technology. It is implemented in C++ for use in Unix environments, with a user interface based on the X window system. Y0 has been delivered under contract to Unidata, a group which provides data and software support to atmospheric researches in universities affiliated with UCAR. This paper will explore the key concepts in Y0, describe its utility for remote sensing analysis and visualization, and will give a specific example of its application to the problem of measuring glacier flow rates from Landsat imagery.
A web portal for hydrodynamical, cosmological simulations
NASA Astrophysics Data System (ADS)
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
[The gender debate from the pedagogic perspective].
Forster, Johanna
2004-09-01
The question of form and extent of biological and/or cultural influences on female and male behaviour and performance is marking a major focus in present scientific research. Accordingly, a broad spectrum of approaches in research and interpretations of results is available. The recent debate on sex and gender is offering two basic objectives for research in education science: First, the critical review of the data and results on sex specifics presented in respect to the articulation of educational aims, topics and methods. Second, the intensified research focus on the developmental consequences of gender and gender roles for boys and girls, women and men. The pedagogical focus is discussed regarding the following three objectives: 1. developmental conditions in early ontogeny, 2. the question of sex specific differences in cognitive abilities in respect to school performance of adolescents, and 3. teaching knowledge on "sex" and "gender" in schools.
Exploring Scientific Information for Policy Making under Deep Uncertainty
NASA Astrophysics Data System (ADS)
Forni, L.; Galaitsi, S.; Mehta, V. K.; Escobar, M.; Purkey, D. R.; Depsky, N. J.; Lima, N. A.
2016-12-01
Each actor evaluating potential management strategies brings her/his own distinct set of objectives to a complex decision space of system uncertainties. The diversity of these objectives require detailed and rigorous analyses that responds to multifaceted challenges. However, the utility of this information depends on the accessibility of scientific information to decision makers. This paper demonstrates data visualization tools for presenting scientific results to decision makers in two case studies, La Paz/ El Alto, Bolivia, and Yuba County,California. Visualization output from the case studies combines spatiotemporal, multivariate and multirun/multiscenario information to produce information corresponding to the objectives defined by key actors and stakeholders. These tools can manage complex data and distill scientific information into accessible formats. Using the visualizations, scientists and decision makers can navigate the decision space and potential objective trade-offs to facilitate discussion and consensus building. These efforts can support identifying stable negotiatedagreements between different stakeholders.
Scientific results obtained by the Busot observatory
NASA Astrophysics Data System (ADS)
García-Lozano, R.; Rodes, J. J.; Torrejón, J. M.; Bernabéu, G.; Berná, J. Á.
2016-12-01
We present the discovery of three new W UMa systems by our group as a part of a photometric follow-up of variable stars carried out with the Busot observatory 36 cm robotic telescope in collaboration with the X-ray astronomy group at University of Alicante (Alicante, Spain). Specifically we show the high limiting magnitude to detect moving objects (V˜ 21 mag), and the high stability and accuracy attained in photometry which allow us to measure very shallow planet transits.
2014-09-23
conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere
Zhang, Xiao-Bo; Li, Meng; Wang, Hui; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
In literature, there are many information on the distribution of Chinese herbal medicine. Limited by the technical methods, the origin of Chinese herbal medicine or distribution of information in ancient literature were described roughly. It is one of the main objectives of the national census of Chinese medicine resources, which is the background information of the types and distribution of Chinese medicine resources in the region. According to the national Chinese medicine resource census technical specifications and pilot work experience, census team with "3S" technology, computer network technology, digital camera technology and other modern technology methods, can effectively collect the location information of traditional Chinese medicine resources. Detailed and specific location information, such as regional differences in resource endowment and similarity, biological characteristics and spatial distribution, the Chinese medicine resource census data access to the accuracy and objectivity evaluation work, provide technical support and data support. With the support of spatial information technology, based on location information, statistical summary and sharing of multi-source census data can be realized. The integration of traditional Chinese medicine resources and related basic data can be a spatial integration, aggregation and management of massive data, which can help for the scientific rules data mining of traditional Chinese medicine resources from the overall level and fully reveal its scientific connotation. Copyright© by the Chinese Pharmaceutical Association.
Rissing, Steven W
2013-01-01
Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for "nonmajors," GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of "their" majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools' GE curricula.
Rissing, Steven W.
2013-01-01
Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for “nonmajors,” GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of “their” majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools’ GE curricula. PMID:24006392
Chairmanship of the Neptune/Pluto outer planets science working group
NASA Astrophysics Data System (ADS)
Stern, S. Alan
1993-11-01
The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar System missions. OPSWG consists of 19 members and is chaired by Dr. S. Alan Stern. This proposal summarizes the FY93 activities of OPSWG, describes a set of objectives for OPSWG in FY94, and outlines the SWG's activities for FY95. As chair of OPSWG, Dr. Stern will be responsible for: organizing priorities, setting agendas, conducting meetings of the Outer Planets SWG; reporting the results of OPSWG's work to SSED; supporting those activities relating to OPSWG work, such as briefings to the SSES, COMPLEX, and OSS; supporting the JPL/SAIC Pluto study team; and other tasks requested by SSED. As the Scientific Working Group (SWG) for Jupiter and the planets beyond, OPSWG is the SSED SWG chartered to study and develop mission plans for all missions to the giant planets, Pluto, and other distant objects in the remote outer solar system. In that role, OPSWG is responsible for: defining and prioritizing scientific objectives for missions to these bodies; defining and documenting the scientific goals and rationale behind such missions; defining and prioritizing the datasets to be obtained in these missions; defining and prioritizing measurement objectives for these missions; defining and documenting the scientific rationale for strawman instrument payloads; defining and prioritizing the scientific requirements for orbital tour and flyby encounter trajectories; defining cruise science opportunities plan; providing technical feedback to JPL and SSED on the scientific capabilities of engineering studies for these missions; providing documentation to SSED concerning the scientific goals, objectives, and rationale for the mission; interfacing with other SSED and OSS committees at the request of SSED's Director or those committee chairs; providing input to SSED concerning the structure and content of the Announcement of Opportunity for payload and scientific team selection for such missions; and providing other technical or programmatic inputs concerning outer solar system missions at the request of the Director of SSED.
Chairmanship of the Neptune/Pluto outer planets science working group
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1993-01-01
The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar System missions. OPSWG consists of 19 members and is chaired by Dr. S. Alan Stern. This proposal summarizes the FY93 activities of OPSWG, describes a set of objectives for OPSWG in FY94, and outlines the SWG's activities for FY95. As chair of OPSWG, Dr. Stern will be responsible for: organizing priorities, setting agendas, conducting meetings of the Outer Planets SWG; reporting the results of OPSWG's work to SSED; supporting those activities relating to OPSWG work, such as briefings to the SSES, COMPLEX, and OSS; supporting the JPL/SAIC Pluto study team; and other tasks requested by SSED. As the Scientific Working Group (SWG) for Jupiter and the planets beyond, OPSWG is the SSED SWG chartered to study and develop mission plans for all missions to the giant planets, Pluto, and other distant objects in the remote outer solar system. In that role, OPSWG is responsible for: defining and prioritizing scientific objectives for missions to these bodies; defining and documenting the scientific goals and rationale behind such missions; defining and prioritizing the datasets to be obtained in these missions; defining and prioritizing measurement objectives for these missions; defining and documenting the scientific rationale for strawman instrument payloads; defining and prioritizing the scientific requirements for orbital tour and flyby encounter trajectories; defining cruise science opportunities plan; providing technical feedback to JPL and SSED on the scientific capabilities of engineering studies for these missions; providing documentation to SSED concerning the scientific goals, objectives, and rationale for the mission; interfacing with other SSED and OSS committees at the request of SSED's Director or those committee chairs; providing input to SSED concerning the structure and content of the Announcement of Opportunity for payload and scientific team selection for such missions; and providing other technical or programmatic inputs concerning outer solar system missions at the request of the Director of SSED.
[Insert Your Science Here] Week: Creating science-driven public awareness campaigns
NASA Astrophysics Data System (ADS)
Mattson, Barbara; Mitchell, Sara; McElvery, Raleigh; Reddy, Francis; Wiessinger, Scott; Skelly, Clare; Saravia, Claire; Straughn, Amber N.; Washington, Dewayne
2018-01-01
NASA Goddard’s in-house Astrophysics Communications Team is responsible for facilitating the production of traditional and social media products to provide understanding and inspiration about NASA’s astrophysics missions and discoveries. Our team is largely driven by the scientific news cycle of launches, mission milestones, anniversaries, and discoveries, which can leave a number of topics behind, waiting for a discovery to be highlighted. These overlooked topics include compelling stories about ongoing research, underlying science, and science not tied to a specific mission. In looking for a way to boost coverage of these unsung topics, we struck upon an idea of creating “theme weeks” which bring together the broader scientific community around a topic, object, or scientific concept. This poster will present the first two of our Goddard-led theme weeks: Pulsar Week and Dark Energy Week. We will describe the efforts involved, our metrics, and the benefits and challenges we encountered. We will also suggest a template for doing this for your own science based on our successes.
[The Base of the Skull. Rudolf Virchow between Pathology and Anthropology].
Seemann, Sophie
2016-01-01
Throughout his scientific career, the pathologist and anthropologist Rudolf Virchow (1821-1902) examined countless skulls, gradually changing his perspective on this object of research. Initially, he was mainly concerned with pathologically deformed skulls. From the 1850s onwards, he gradually developed a more anthropological approach, and anthropology increasingly came to dominate his scientific interest. This article shows how different influences became central for the establishment of his specific and dynamic model of the human skull development and its successful application in anthropology. Crucial for this process were Virchow's collaboration with his teacher Robert Froriep (1804-1861) in the department of pathology of the Charité, his research on cretinism and rickets, as well as his description of the base of the skull as the center of skull development. His research work was attended by and showed a reciprocal interaction with the buildup of large skull collections. This article uses Virchow's original publications on skull pathology as well as his still preserved skull specimens from the collection of the Berlin Museum of Medical History at the Charité for an integrated text and object based analysis.
Photogrammetric Techniques for Paleoanthropological Objects Preserving and Studying
NASA Astrophysics Data System (ADS)
Knyaz, V. A.; Leybova, N. A.; Galeev, R.; Novikov, M.; Gaboutchian, A. V.
2018-05-01
Paleo-anthropological research has its specificity closely related with studied objects. Their complicated shape arises from anatomical features of human skull and other skeletal bones. The degree of preservation is associated with the fragility of palaeo-anthropological material which usually has high historical and scientific value. The circumstances mentioned above enhance the relevance of photogrammetry implementation in anthropological studies. Thus, such combination of scientific methodologies with up-to-date technology creates a potential for improvement of various stages of palaeo-anthropological studies. This can be referred to accurate documenting of anthropological material and creation of databases accessible for wide range of users, predominantly research scientists and students; preservation of highly valuable samples and possibility of sharing information as 3D images or printed copies, improving co-operation of scientists world-wide; potential for replication of contact anthropometric studies on 3D images or printed copies providing for development of new biometric methods, and etc. This paper presents an approach based on photogrammetric techniques and non-contact measurements, providing technological and methodological development of paleo-anthropological studies, including data capturing, processing and representing.
The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent
NASA Technical Reports Server (NTRS)
Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.
2005-01-01
The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.
Semi-annual technical report, September 30, 1999 - March 31, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Dorin
2000-04-01
The Consortium for Plant Biotechnology Research, Inc. (CPBR) continues to operate according to objectives outlined in the proposal funded through the cooperative agreement. The italicized objectives below are addressed in this report, which covers the period September 30,1999 through March 31, 2000. (1) Update the research agenda using information obtained from member companies. (2) Identify and implement research projects that are deemed by industrial, scientific, and sponsoring agency evaluation to address significantly the problems and future of U.S. energy resources and that are relevant to the Department of Energy's mission. Specifically: (1) Announce research grants competition through a Request formore » Preproposals. (2) Conduct a dual-stage review process: Stage one--industrial and DOE review of preproposals; and Stage two--peer review, scientific consultants' review, DOE review of full proposals and Project Recommendation Committee evaluation and recommendation for funding. (3) Board of Directors approval of recommended awards. (4) Conduct ongoing project management. (5) Obtain semiannual, annual and final reports for evaluation of research goals and technology transfer. (6) Present reports to DOE.« less
When can scientific studies promote consensus among conflicting stakeholders?
Small, Mitchell J; Güvenç, Ümit; DeKay, Michael L
2014-11-01
While scientific studies may help conflicting stakeholders come to agreement on a best management option or policy, often they do not. We review the factors affecting trust in the efficacy and objectivity of scientific studies in an analytical-deliberative process where conflict is present, and show how they may be incorporated in an extension to the traditional Bayesian decision model. The extended framework considers stakeholders who differ in their prior beliefs regarding the probability of possible outcomes (in particular, whether a proposed technology is hazardous), differ in their valuations of these outcomes, and differ in their assessment of the ability of a proposed study to resolve the uncertainty in the outcomes and their hazards--as measured by their perceived false positive and false negative rates for the study. The Bayesian model predicts stakeholder-specific preposterior probabilities of consensus, as well as pathways for increasing these probabilities, providing important insights into the value of scientific information in an analytic-deliberative decision process where agreement is sought. It also helps to identify the interactions among perceived risk and benefit allocations, scientific beliefs, and trust in proposed scientific studies when determining whether a consensus can be achieved. The article provides examples to illustrate the method, including an adaptation of a recent decision analysis for managing the health risks of electromagnetic fields from high voltage transmission lines. © 2014 Society for Risk Analysis.
Hanson, Todd
2016-07-01
Here, the historical material culture produced by American Cold War nuclear weapons testing includes objects of scientific inquiry that can be generally categorized as being either ephemeral or enduring. Objects deemed to be ephemeral were of a less substantial nature, being impermanent and expendable in a nuclear test, while enduring objects were by nature more durable and long-lasting. Although all of these objects were ultimately subject to disappearance, the processes by which they were transformed, degraded, or destroyed prior to their disappearing differ. Drawing principally upon archaeological theory, this paper proposes a functional dichotomy for categorizing and studying the historicalmore » trajectories of nuclear weapons testing technoscience artifacts. In examining the transformation patterns of steel towers and concrete blockhouses in particular, it explores an associated loss of scientific method that accompanies a science object's disappearance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Todd
Here, the historical material culture produced by American Cold War nuclear weapons testing includes objects of scientific inquiry that can be generally categorized as being either ephemeral or enduring. Objects deemed to be ephemeral were of a less substantial nature, being impermanent and expendable in a nuclear test, while enduring objects were by nature more durable and long-lasting. Although all of these objects were ultimately subject to disappearance, the processes by which they were transformed, degraded, or destroyed prior to their disappearing differ. Drawing principally upon archaeological theory, this paper proposes a functional dichotomy for categorizing and studying the historicalmore » trajectories of nuclear weapons testing technoscience artifacts. In examining the transformation patterns of steel towers and concrete blockhouses in particular, it explores an associated loss of scientific method that accompanies a science object's disappearance.« less
A prototype for the PASS Permanent All Sky Survey
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.
2004-10-01
A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.
Young, Lisa R.; Trapnell, Bruce C.; Mandl, Kenneth D.; Swarr, Daniel T.; Wambach, Jennifer A.
2016-01-01
Pediatric rare lung disease (PRLD) is a term that refers to a heterogeneous group of rare disorders in children. In recent years, this field has experienced significant progress marked by scientific discoveries, multicenter and interdisciplinary collaborations, and efforts of patient advocates. Although genetic mechanisms underlie many PRLDs, pathogenesis remains uncertain for many of these disorders. Furthermore, epidemiology and natural history are insufficiently defined, and therapies are limited. To develop strategies to accelerate scientific advancement for PRLD research, the NHLBI of the National Institutes of Health convened a strategic planning workshop on September 3 and 4, 2015. The workshop brought together a group of scientific experts, intramural and extramural investigators, and advocacy groups with the following objectives: (1) to discuss the current state of PRLD research; (2) to identify scientific gaps and barriers to increasing research and improving outcomes for PRLDs; (3) to identify technologies, tools, and reagents that could be leveraged to accelerate advancement of research in this field; and (4) to develop priorities for research aimed at improving patient outcomes and quality of life. This report summarizes the workshop discussion and provides specific recommendations to guide future research in PRLD. PMID:27925785
The Munsell Color System: a scientific compromise from the world of art.
Cochrane, Sally
2014-09-01
Color systems make accurate color specification and matching possible in science, art, and industry by defining a coordinate system for all possible color perceptions. The Munsell Color System, developed by the artist Albert Henry Munsell in the early twentieth century, has influenced color science to this day. I trace the development of the Munsell Color System from its origins in the art world to its acceptance in the scientific community. Munsell's system was the first to accurately and quantitatively describe the psychological experience of color. By considering the problems that color posed for Munsell's art community and examining his diaries and published material, I conclude that Munsell arrived at his results by remaining agnostic as to the scientific definition of color, while retaining faith that color perceptions could be objectively quantified. I argue that Munsell was able to interest the scientific community in his work because color had become a controversial topic between physicists and psychologists. Parts of Munsell's system appealed to each field, making it a workable compromise. For contrast, I suggest that three contemporary scientists with whom Munsell had contact--Wilhelm Ostwald, Ogden Rood, and Edward Titchener--did not reach the same conclusions in their color systems because they started from scientific assumptions about the nature of color.
[Developing patient information sheets in general practice. Proposal for a methodology].
Sustersic, Mélanie; Meneau, Aurélia; Drémont, Roger; Paris, Adeline; Laborde, Laurent; Bosson, Jean-Luc
2008-12-15
Health information is patients' wish and right. For general practitioners, it is a duty, a legal obligation and a pre-requisite in any preventive approach. Written information must complete oral information since it improves health care quality. However, in general practice, there are no patient documents which are scientifically valid, understandable and efficient in terms of communication. To develop a method for creating patient information sheets and to experiment its feasibility through the development of 125 sheets focused on the most common clinical conditions in general practice. Research and literature review pour the development of specifications, and creation of 125 sheets following these specifications. The specifications developed consist of the 10 following steps: selection of the topic and the objectives, literature review, selection of the sections, drafting, validation of the scientific contents, assessment among patients, validation of the layout, selection of the media, delivery to patients and update. Following these specifications, we developed 125 information sheets. Each of these was reviewed by several physicians and assessed with R. Flesh readability test (the established acceptable threshold value was 40). The 30 sheets associated with the lowest scores were selected and reviewed to improve their overall readability. Even though some difficulties cannot be avoided when developing patient information sheets, each physician or physician association can create its own documents following the proposed specifications and thus deliver a customized message.
Object-Oriented Scientific Programming with Fortran 90
NASA Technical Reports Server (NTRS)
Norton, C.
1998-01-01
Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.
McGowan, Conor P.; Lyons, James E.; Smith, David
2015-01-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
NASA Astrophysics Data System (ADS)
McGowan, Conor P.; Lyons, James E.; Smith, David R.
2015-04-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
Eckel, Julia; Schüttpelz-Brauns, Katrin; Miethke, Thomas; Rolletschek, Alexandra; Fritz, Harald M
2017-01-01
Introduction: The German Council of Science and Humanities as well as a number of medical professional associations support the strengthening of scientific competences by developing longitudinal curricula for teaching scientific competences in the undergraduate medical education. The National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM) has also defined medical scientific skills as learning objectives in addition to the role of the scholar. The development of the Mannheim science curriculum started with a systematic inventory of the teaching of scientific competences in the Mannheim Reformed Curriculum of Medicine (MaReCuM). Methods: The inventory is based on the analysis of module profiles, teaching materials, surveys among experts, and verbatims from memory. Furthermore, science learning objectives were defined and prioritized, thus enabling the contents of the various courses to be assigned to the top three learning objectives. Results: The learning objectives systematic collection of information regarding the current state of research, critical assessment of scientific information and data sources, as well as presentation and discussion of the results of scientific studies are facilitated by various teaching courses from the first to the fifth year of undergraduate training. The review reveals a longitudinal science curriculum that has emerged implicitly. Future efforts must aim at eliminating redundancies and closing gaps; in addition, courses must be more closely aligned with each other, regarding both their contents and their timing, by means of a central coordination unit. Conclusion: The teaching of scientific thinking and working is a central component in the MaReCuM. The inventory and prioritization of science learning objectives form the basis for a structured ongoing development of the curriculum. An essential aspect here is the establishment of a central project team responsible for the planning, coordination, and review of these measures.
Evaluation of results in aesthetic plastic surgery: preliminary observations on mammaplasty.
Ferreira, M C
2000-12-01
Aesthetic plastic surgery has received wide public attention in the past few years. Expectations of patients regarding results have been exaggerated; the real place and medical importance of the procedures are still not clear because of a lack of more objective evidence. This study discusses the difficulties encountered related to the scientific evaluation of the aesthetic operations and proposes alternatives for assessment. A frequently performed procedure, reduction mammaplasty, is presented as an example, with its specific evaluation.
A Study of Space Station Contamination Effects. [conference
NASA Technical Reports Server (NTRS)
Torr, M. R. (Editor); Spann, J. F. (Editor); Moorehead, T. W. (Editor)
1988-01-01
A workshop was held with the specific objective of reviewing the state-of-knowledge regarding Space Station contamination, the extent to which the various categories of contamination can be predicted, and the extent to which the predicted levels would interfere with onboard scientific investigations or space station functions. The papers presented at the workshop are compiled and address the following topics: natural environment, plasma electromagnetic environment, optical environment, particulate environment, spacecraft contamination, surface physics processes, laboratory experiments and vented chemicals/contaminants.
NASA Technical Reports Server (NTRS)
Hoerz, F. (Editor)
1986-01-01
Summaries of papers presented at the Workshop on Micrometeorite Capture Experiments are compiled. The goals of the workshop were to define the scientific objectives and the resulting performance requirements of a potential Space Station facility and to identify the major elements of a coherent development program that would generate the desired capabilities within the next decade. Specific topics include cosmic dust and space debris collection techniques, particle trajectory and source determination, and specimen analysis methods.
Science information systems: Archive, access, and retrieval
NASA Technical Reports Server (NTRS)
Campbell, William J.
1991-01-01
The objective of this research is to develop technology for the automated characterization and interactive retrieval and visualization of very large, complex scientific data sets. Technologies will be developed for the following specific areas: (1) rapidly archiving data sets; (2) automatically characterizing and labeling data in near real-time; (3) providing users with the ability to browse contents of databases efficiently and effectively; (4) providing users with the ability to access and retrieve system independent data sets electronically; and (5) automatically alerting scientists to anomalies detected in data.
NASA Technical Reports Server (NTRS)
1992-01-01
The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.
The new World Organisation for Animal Health standards on avian influenza and international trade.
Thiermann, Alex B
2007-03-01
In 2002, the World Organisation for Animal Health began a review of the chapter on avian influenza by convening a group of experts to revise the most recent scientific literature. The group drafted the initial text that would provide the necessary recommendations on avian influenza control and prevention measures. The main objectives of this draft were to provide clear notification criteria, as well as commodity-specific, risk-based mitigating measures, that would provide safety when trading and encourage transparent reporting.
Deep space optical communications experiment
NASA Technical Reports Server (NTRS)
Kinman, P.; Katz, J.; Gagliardi, R.
1983-01-01
An optical communications experiment between a deep space vehicle and an earth terminal is under consideration for later in this decade. The experimental link would be incoherent (direct detection) and would employ two-way cooperative pointing. The deep space optical transceiver would ride piggyback on a spacecraft with an independent scientific objective. Thus, this optical transceiver is being designed for minimum spacecraft impact - specifically, low mass and low power. The choices of laser transmitter, coding/modulation scheme, and pointing mechanization are discussed. A representative telemetry link budget is presented.
Evaluation Framework for NASA's Educational Outreach Programs
NASA Technical Reports Server (NTRS)
Berg, Rick; Booker, Angela; Linde, Charlotte; Preston, Connie
1999-01-01
The objective of the proposed work is to develop an evaluation framework for NASA's educational outreach efforts. We focus on public (rather than technical or scientific) dissemination efforts, specifically on Internet-based outreach sites for children.The outcome of this work is to propose both methods and criteria for evaluation, which would enable NASA to do a more analytic evaluation of its outreach efforts. The proposed framework is based on IRL's ethnographic and video-based observational methods, which allow us to analyze how these sites are actually used.
Task performance in astronomical adaptive optics
NASA Astrophysics Data System (ADS)
Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca
2006-06-01
In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images.
Objects prompt authentic scientific activities among learners in a museum programme
NASA Astrophysics Data System (ADS)
Achiam, Marianne; Simony, Leonora; Kramer Lindow, Bent Erik
2016-04-01
Although the scientific disciplines conduct practical work in different ways, all consider practical work as the essential way of connecting objects and phenomena with ideas and the abstract. Accordingly, practical work is regarded as central to science education as well. We investigate a practical, object-based palaeontology programme at a natural history museum to identify how palaeontological objects prompt scientific activity among upper secondary school students. We first construct a theoretical framework based on an analysis of the programme's palaeontological content. From this, we build our reference model, which considers the specimens used in the programme, possible palaeontological interpretations of these specimens, and the conditions inherent in the programme. We use the reference model to analyse the activities of programme participants, and illustrate how these activities are palaeontologically authentic. Finally, we discuss our findings, examining the mechanism by which the specimens prompt scientific activities. We also discuss our discipline-based approach, and how it allows us to positively identify participants' activities as authentic. We conclude by discussing the implications of our findings.
The Gaia On-Board Scientific Data Handling
NASA Astrophysics Data System (ADS)
Arenou, F.; Babusiaux, C.; Chéreau, F.; Mignot, S.
2005-01-01
Because Gaia will perform a continuous all-sky survey at a medium (Spectro) or very high (Astro) angular resolution, the on-board processing needs to cope with a high variety of objects and densities which calls for generic and adaptive algorithms at the detection level, but not only. Consequently, the Pyxis scientific algorithms developed for the on-board data handling cover a large range of application: detection and confirmation of astronomical objects, background sky estimation, classification of detected objects, Near-Earth Objects onboard detection, and window selection and positioning. Very dense fields, where the real-time computing requirements should remain within fixed bounds, are particularly challenging. Another constraint stems from the limited telemetry bandwidth and an additional compromise has to be found between scientific requirements and constraints in terms of the mass, volume and power budgets of the satellite. The rationale for the on-board data handling procedure is described here, together with the developed algorithms, the main issues and the expected scientific performances in the Astro and Spectro instruments.
PREVALENCE OF SCIENTIFIC MISCONDUCT AMONG A GROUP OF RESEARCHERS IN NIGERIA
OKONTA, PATRICK; ROSSOUW, THERESA
2012-01-01
Background There is a dearth of information on the prevalence of scientific misconduct from Nigeria. Objectives This study aimed at determining the prevalence of scientific misconduct in a group of researchers in Nigeria. Factors associated with the prevalence were ascertained. Method A descriptive study of researchers who attended a scientific conference in 2010 was conducted using the adapted Scientific Misconduct Questionnaire- Revised (SMQ-R). Results Ninety-one researchers (68.9%) admitted having committed at least one of the eight listed forms of scientific misconduct. Disagreement about authorship was the most common form of misconduct committed (36.4%) while plagiarism was the least (9.2%). About 42% of researchers had committed falsification of data or plagiarism. Analysis of specific acts of misconduct showed that committing plagiarism was inversely associated with years in research (Fisher exact p-value = 0.02); falsifying data was related to perceived low effectiveness of the institution’s rules and procedures for reducing scientific misconduct (X2 = 6.44, p-value = 0.01); and succumbing to pressure from study sponsor to engage in unethical practice was related to sex of researcher (Fisher exact p-value = 0.02). Conclusions The emergent data from this study is a cause for serious concern and calls for prompt intervention. The best response to reducing scientific misconduct will proceed from measures that contain both elements of prevention and enforcement. Training on research ethics has to be integrated into the curriculum of undergraduate and postgraduate students while provision should be made for in-service training of researchers. Penalties against acts of scientific misconduct should be enforced at institutional and national levels. PMID:22994914
Mars 2020 Science Rover: Science Goals and Mission Concept
NASA Astrophysics Data System (ADS)
Mustard, John F.; Beaty, D.; Bass, D.
2013-10-01
The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses the requirements specified by NASA in the SDT charter while also ensuring alignment with the recommendations of the National Academy of Sciences Decadal Survey for Planetary Exploration (Visions and Voyages, 2011).
Large space telescope, phase A. Volume 4: Scientific instrument package
NASA Technical Reports Server (NTRS)
1972-01-01
The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
NASA Technical Reports Server (NTRS)
Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.
1990-01-01
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.
The PACA Project: Creating Synergy Between Observing Campaigns, Outreach and Citizen Science
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, Padma
2017-04-01
The PACA (Pro-Am Collaborative Astronomy) Project's primary goal is to develop and build synergy between professional and amateur astronomers from observations in the many aspects of support of missions and campaigns. To achieve this, the PACA has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanded to include (i) polarimetric exploration of solar system objects with small apertures and (ii) in collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse, engage many levels of informal audiences using interactive social media to participate in the campaign. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The final stage of the PACA ecosystem is the integration of these components into publications. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects and new partnerships in all three categories.
DOE scientific and technical information management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beasly, M.
The objective of this paper was a discussion of the mission objectives and program activities of the DOE Office of Scientific and Technical Information. Topics of discussion were: (1) program direction and structure; (2) representation in gov`t and international organizations; (3) management of information; and (4) consultation and assistance.
NASA Technical Reports Server (NTRS)
Carsey, F.; Schenker, P.; Blamont, J.
2001-01-01
A workshop on Antartic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society in February to discuss scientific objectives and benefits of the use of rovers such as are being developed for use in planetary exploration.
Scientific Investigations Associated with the Human Exploration of Mars in the Next 35 Years
NASA Astrophysics Data System (ADS)
Niles, P. B.; Beaty, D.; Hays, L.; Bass, D.; Bell, M. S.; Bleacher, J.; Cabrol, N. A.; Conrad, P.; Eppler, D.; Hamilton, V.; Head, J.; Kahre, M.; Levy, J.; Lyons, T.; Rafkin, S.; Rice, J.; Rice, M.
2017-02-01
We present a summary of the findings of the Human Science Objectives Science Analysis Group (HSO-SAG) chartered by MEPAG in 2015 to address science objectives and landing site criteria for future human missions to Mars which could provide incredible scientific discovery.
Data publication, documentation and user friendly landing pages - improving data discovery and reuse
NASA Astrophysics Data System (ADS)
Elger, Kirsten; Ulbricht, Damian; Bertelmann, Roland
2016-04-01
Research data are the basis for scientific research and often irreplaceable (e.g. observational data). Storage of such data in appropriate, theme specific or institutional repositories is an essential part of ensuring their long term preservation and access. The free and open access to research data for reuse and scrutiny has been identified as a key issue by the scientific community as well as by research agencies and the public. To ensure the datasets to intelligible and usable for others they must be accompanied by comprehensive data description and standardized metadata for data discovery, and ideally should be published using digital object identifier (DOI). These make datasets citable and ensure their long-term accessibility and are accepted in reference lists of journal articles (http://www.copdess.org/statement-of-commitment/). The GFZ German Research Centre for Geosciences is the national laboratory for Geosciences in Germany and part of the Helmholtz Association, Germany's largest scientific organization. The development and maintenance of data systems is a key component of 'GFZ Data Services' to support state-of-the-art research. The datasets, archived in and published by the GFZ Data Repository cover all geoscientific disciplines and range from large dynamic datasets deriving from global monitoring seismic or geodetic networks with real-time data acquisition, to remotely sensed satellite products, to automatically generated data publications from a database for data from micro meteorological stations, to various model results, to geochemical and rock mechanical analyses from various labs, and field observations. The user-friendly presentation of published datasets via a DOI landing page is as important for reuse as the storage itself, and the required information is highly specific for each scientific discipline. If dataset descriptions are too general, or require the download of a dataset before knowing its suitability, many researchers often decide not to reuse a published dataset. In contrast to large data repositories without thematic specification, theme-specific data repositories have a large expertise in data discovery and opportunity to develop usable, discipline-specific formats and layouts for specific datasets, including consultation to different formats for the data description (e.g., via a Data Report or an article in a Data Journal) with full consideration of international metadata standards.
The AIRInforma experiment: peer-reviewed public dissemination of science in Italy
NASA Astrophysics Data System (ADS)
Forneris, Federico; Cassetta, Luca; Gravina, Teresita
2015-04-01
Public dissemination of science to the public is often negatively affected by biased, incorrect information distributed over the world wide web through social networks and weblogs. In Italy, the lack of correct scientific information has generated several important issues, raising concerns by the international scientific community in several occasions over the past five years. Our association AIRIcerca (International Association of Italian Researchers, http://www.airicerca.org) has recently started a novel scientific dissemination initiative to the general public in Italy. The project is based on 1) direct involvement of researchers (with accademic or industrial affiliation) in article preparation and publication and 2) introduction of a peer-reviewing system similar to that applied in conventional scientific publishing. Our initiative, named AIRInforma (http://informa.airicerca.org) has already published more than 10 original articles and 3 meeting reports, in Italian language, about various fields of scientific research, ranging from social sciences to evolutionary biology , mathematics and medicine . The editorial board is composed of approximately 20 Italian scientists working all over the world and voluntarily contributing to the AIRInforma initiative. Submitted manuscripts are initially evaluated by the editorial board and, if suitable, they are assigned to four non-anonymous reviewers selected by the editorial board for accurate evaluation. Two reviewers are selected based on their specific expertise on the topic presented in the manuscript (expert reviewers), and two are specifically selected as working on distant fields (naive reviewers). The purpose of naive reviewers is to provide feedback on the efficacy and clarity of the information for the general public. So far, AIRInforma has established a novel channel of scientific communication in Italy, receiving excellent feedback and reaching more than 8000 new unique visitors every month on our website and social network communication pages. Recently established collaborations with other scientific blogs will facilitate the expansion of our public and of our pool of authors, which is constantly growing. Following the initial enthusiasm and success of our initiative, we are considering to convert AIRInforma into an effective scientific publication by obtaining digital object identifiers for our articles in order to increase their impact and facilitate their dissemination. We are strongly convinced that a correct scientific information to the public will be more and more relevant in the future, and we are confident that AIRInforma will contribute solid milestones of correctness and scientific accuracy to the complex landscape of scientific communication in Italy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, G. D.
2003-01-01
In the science studies literature the theoretical construct of boundary objects has been developed to explain how diverse communities clustered around a scientific subject area cooperate to advance that area. Boundary objects are 'scientific objects that inhabit several intersecting social worlds . . . and satisfy the informational requirements of each of them' (Star and Griesemer 393). Star and Griesemer's foundational article showed that these objects can be shared by communities ranging from academic researchers to amateur enthiasts, adminsitrators, philanthropists, and technicians. While each community understands the object differently, there is enough commonality in the understanding of the object tomore » unite these distinct social worlds and facilitate cooperation among them.« less
Jones, Nancy L; Peiffer, Ann M; Lambros, Ann; Guthold, Martin; Johnson, A Daniel; Tytell, Michael; Ronca, April E; Eldridge, J Charles
2010-10-01
A multidisciplinary faculty committee designed a curriculum to shape biomedical graduate students into researchers with a high commitment to professionalism and social responsibility and to provide students with tools to navigate complex, rapidly evolving academic and societal environments with a strong ethical commitment. The curriculum used problem-based learning (PBL), because it is active and learner-centred and focuses on skill and process development. Two courses were developed: Scientific Professionalism: Scientific Integrity addressed discipline-specific and broad professional norms and obligations for the ethical practice of science and responsible conduct of research (RCR). Scientific Professionalism: Bioethics and Social Responsibility focused on current ethical and bioethical issues within the scientific profession, and implications of research for society. Each small-group session examined case scenarios that included: (1) learning objectives for professional norms and obligations; (2) key ethical issues and philosophies within each topic area; (3) one or more of the RCR instructional areas; and (4) at least one type of moral reflection. Cases emphasised professional standards, obligations and underlying philosophies for the ethical practice of science, competing interests of stakeholders and oversight of science (internal and external). To our knowledge, this is the first use of a longitudinal, multi-semester PBL course to teach scientific integrity and professionalism. Both faculty and students endorsed the active learning approach for these topics, in contrast to a compliance-based approach that emphasises learning rules and regulations.
Distribution of authorship in a scientific work.
Petroianu, Andy
2012-01-01
To publish became almost compulsory in Medicine. There is no doubt about the importance of publishing research, but the ordering of its authors is not easy. The lack of internationally accepted criteria led to the establishment of several groups or conventions particularized medical and scientific sectors. To present numerical method to establish rule of value to people who carried out the research, and whether or not incorporated as authors. The proposed score is based on the needs of each step when conducting a scientific work. They were divided into topics in which the main ones were: 1) scientific criteria for authorship; 2) create the idea that originated the work and develop hypotheses; 3) structure the method of work; 4) guiding the work; 5) write the manuscript; 6) coordinate the group that carried out the work; 7) reviewing the literature; 8) suggestions incorporated into the work; 9) to solve fundamental problems of labor; 10) to collect data; 11) presentation at scientific meetings; 12 ) lead the job and raise funds; 13) providing patients or material; 14) to do the routine needs; 15) specific fee to participate; 16) criteria for ranking the authors; 17) honorary author; 18) usurpation of the main authorship, 19) acknowledgments . It is important to emphasize that, to prevent major conflicts, the group that is willing to conduct a scientific work should establish at the outset, as objectively as possible, the criteria to be adopted for distribution of authorship. The subjective criteria here proposed avoid interference and prevent conflicts of interest.
Link-Based Similarity Measures Using Reachability Vectors
Yoon, Seok-Ho; Kim, Ji-Soo; Ryu, Minsoo; Choi, Ho-Jin
2014-01-01
We present a novel approach for computing link-based similarities among objects accurately by utilizing the link information pertaining to the objects involved. We discuss the problems with previous link-based similarity measures and propose a novel approach for computing link based similarities that does not suffer from these problems. In the proposed approach each target object is represented by a vector. Each element of the vector corresponds to all the objects in the given data, and the value of each element denotes the weight for the corresponding object. As for this weight value, we propose to utilize the probability of reaching from the target object to the specific object, computed using the “Random Walk with Restart” strategy. Then, we define the similarity between two objects as the cosine similarity of the two vectors. In this paper, we provide examples to show that our approach does not suffer from the aforementioned problems. We also evaluate the performance of the proposed methods in comparison with existing link-based measures, qualitatively and quantitatively, with respect to two kinds of data sets, scientific papers and Web documents. Our experimental results indicate that the proposed methods significantly outperform the existing measures. PMID:24701188
Dantzker, Heather C.; Portier, Christopher J.
2014-01-01
Background: Biological pathway-based chemical testing approaches are central to the National Research Council’s vision for 21st century toxicity testing. Approaches such as high-throughput in vitro screening offer the potential to evaluate thousands of chemicals faster and cheaper than ever before and to reduce testing on laboratory animals. Collaborative scientific engagement is important in addressing scientific issues arising in new federal chemical testing programs and for achieving stakeholder support of their use. Objectives: We present two recommendations specifically focused on increasing scientific engagement in the U.S. Environmental Protection Agency (EPA) ToxCast™ initiative. Through these recommendations we seek to bolster the scientific foundation of federal chemical testing efforts such as ToxCast™ and the public health decisions that rely upon them. Discussion: Environmental Defense Fund works across disciplines and with diverse groups to improve the science underlying environmental health decisions. We propose that the U.S. EPA can strengthen the scientific foundation of its new chemical testing efforts and increase support for them in the scientific research community by a) expanding and diversifying scientific input into the development and application of new chemical testing methods through collaborative workshops, and b) seeking out mutually beneficial research partnerships. Conclusions: Our recommendations provide concrete actions for the U.S. EPA to increase and diversify engagement with the scientific research community in its ToxCast™ initiative. We believe that such engagement will help ensure that new chemical testing data are scientifically robust and that the U.S. EPA gains the support and acceptance needed to sustain new testing efforts to protect public health. Citation: McPartland J, Dantzker HC, Portier CJ. 2015. Building a robust 21st century chemical testing program at the U.S. Environmental Protection Agency: recommendations for strengthening scientific engagement. Environ Health Perspect 123:1–5; http://dx.doi.org/10.1289/ehp.1408601 PMID:25343778
Scientific decision-making and stakeholder consultations: the case of salt recommendations.
Timotijevic, Lada; Barnett, Julie; Brown, Kerry; Raats, Monique M; Shepherd, Richard
2013-05-01
Scientific advisory committees (SACs) are seen as "boundary organisations" working at the interface between science, policy and society. Although their narrowly defined remit of risk assessment is anchored in notions of rationality, objectivity, and reason, in reality, their sources for developing recommendations are not limited to scientific evidence. There is a growing expectation to involve non-scientific sources of information in the formation of knowledge, including the expectation of stakeholder consultation in forming recommendations. Such a move towards "democratisation" of scientific processes of decision-making within SACs has been described and often studied as "post-normal science" (PNS) (Funtowicz & Ravetz, 1993). In the current paper we examine the application of PNS in practice through a study of stakeholder consultations within the workings of the UK Scientific Advisory Committee for Nutrition (SACN). We use the theoretical insights from PNS-related studies to structure the analysis and examine the way in which PNS tenets resonate with the practices of SACN. We have selected a particular case of the SACN UK recommendations for salt as it is characterized by scientific controversy, uncertainty, vested interests and value conflict. We apply the tenets of PNS through documentary analysis of the SACN Salt Subgroup (SSG) consultation documents published in 2002/2003: the minutes of the 5 SACN SSG's meetings which included summary of the SACN SSG's stakeholder consultation and the SSG's responses to the consultation. The analysis suggests that the SACN consultation can be construed as a process of managing sources of risk to its organisation. Thus, rather than being an evidence of post-normal scientific practice, engagement became a mechanism for confirming the specific framing of science that is resonant with technocratic models of science holding authority over the facts. The implications for PNS theory are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sobie, Eric A
2011-09-13
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy.
Sobie, Eric A.
2014-01-01
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy. PMID:21934110
SP2 Deployment at Boston College—Aerodyne-Led Coated Black Carbon Study (BC4) Final Campaign Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, T. B.; Sedlacek, A. J.
The main objective of the Boston College-Aerodyne led laboratory study (BC4) was to measure the optical properties of black carbon (BC) particles from a diffusion flame directly and after being coated with secondary organic and inorganic material and to achieve optical closure with model predictions. The measurements of single particle BC mass and population mixing states provided by a single particle soot photometer (SP2) was central to achieving the laboratory-based study’s objective. Specifically, the DOE ARM SP2 instrument participated in the BC4 project to address the following scientific questions: 1. What is the mass-specific absorption coefficient as a function ofmore » secondary organic and inorganic material coatings? 2. What is the spread in the population mixing states within our carefully generated laboratory particles? 3. How does the SP2 instrument respond to well-characterized, internally mixed BC-containing particles?« less
NASA Astrophysics Data System (ADS)
Ulrich, Steve; de Lafontaine, Jean
2007-12-01
Upcoming landing missions to Mars will require on-board guidance and control systems in order to meet the scientific requirement of landing safely within hundreds of meters to the target of interest. More specifically, in the longitudinal plane, the first objective of the entry guidance and control system is to bring the vehicle to its specified velocity at the specified altitude (as required for safe parachute deployment), while the second objective is to reach the target position in the longitudinal plane. This paper proposes an improvement to the robustness of the constant flight path angle guidance law for achieving the first objective. The improvement consists of combining this guidance law with a novel adaptive control scheme, derived from the so-called Simple Adaptive Control (SAC) technique. Monte-Carlo simulation results are shown to demonstrate the accuracy and the robustness of the proposed guidance and adaptive control system.
Brüggmann, Dörthe; Kollascheck, Jana; Quarcoo, David; Bendels, Michael H; Klingelhöfer, Doris; Louwen, Frank; Jaque, Jenny M; Groneberg, David A
2017-01-01
Objective About 2% of all pregnancies are complicated by the implantation of the zygote outside the uterine cavity and termed ectopic pregnancy. Whereas a multitude of guidelines exists and related research is constantly growing, no thorough assessment of the global research architecture has been performed yet. Hence, we aim to assess the associated scientific activities in relation to geographical and chronological developments, existing research networks and socioeconomic parameters. Design Retrospective, descriptive study. Setting On the basis of the NewQIS platform, scientometric methods were combined with novel visualising techniques such as density-equalising mapping to assess the scientific output on ectopic pregnancy. Using the Web of Science, we identified all related entries from 1900 to 2012. Results 8040 publications were analysed. The USA and the UK were dominating the field in regard to overall research activity (2612 and 723 publications), overall citation numbers and country-specific H-Indices (US: 80, UK: 42). Comparison to economic power of the most productive countries demonstrated that Israel invested more resources in ectopic pregnancy-related research than other nations (853.41 ectopic pregnancy-specific publications per 1000 billlion US$ gross domestic product (GDP)), followed by the UK (269.97). Relation to the GDP per capita index revealed 49.3 ectopic pregnancy-specific publications per US$1000 GDP per capita for the USA in contrast to 17.31 for the UK. Semiqualitative indices such as country-specific citation rates ranked Switzerland first (24.7 citations per ectopic pregnancy-specific publication), followed by the Scandinavian countries Finland and Sweden. Low-income countries did not exhibit significant research activities. Conclusions This is the first in-depth analysis of global ectopic pregnancy research since 1900. It offers unique insights into the global scientific landscape. Besides the USA and the UK, Scandinavian countries and Switzerland can also be regarded as leading nations with regard to their relative socioeconomic input. PMID:29025848
Whose Literacy? Discursive Constructions of Life and Objectivity
ERIC Educational Resources Information Center
Fendler, Lynn; Tuckey, Steven F.
2006-01-01
Drawing from literature in the social studies of science, this paper historicizes two pivotal concepts in science literacy: the definition of life and the assumption of objectivity. In this paper we suggest that an understanding of the historical, discursive production of scientific knowledge affects the meaning of scientific literacy in at least…
NASA Technical Reports Server (NTRS)
Beauchamp, P. M.; Brown, R. H.; Capps, R. W.; Rodgers, D. H.; Sercel, J.; Vane, G.; Soderblom, L. A.; Yelle, R. V.
1994-01-01
The technological capabilities are now at hand to design an integrated system that combines science instruments, spacecraft, and propulsion elements into a single system. The authors have called this a sciencecraft since it is intended to provide automatic scientific observations of planetary and astrophysical objects. Integration of function allows lower mass and cost and supports a short development cycle. A specific science mission is described in this paper, a flyby of Neptune, Triton, and an object in the Kuiper belt. The SCIENCECRAFT system is described. It has electric propulsion and is capable of measuring the surface constituents and morphology of objects visited and characterizing their atmospheres both in emission and adsorption (against the Sun). Miniature fields and particles experiments are incorporated that will provide interplanetary information together with details of the magnetic and electric attributes of each object. The Sciencecraft is Delta launched and has a flight time to the Kuiper belt of 7 years. The design is such that the craft functions in a largely autonomous mode to provide low cost mission operations.
Simonton, Dean Keith
2009-09-01
Prior research supports the inference that scientific disciplines can be ordered into a hierarchy ranging from the "hard" natural sciences to the "soft" social sciences. This ordering corresponds with such objective criteria as disciplinary consensus, knowledge obsolescence rate, anticipation frequency, theories-to-laws ratio, lecture disfluency, and age at recognition. It is then argued that this hierarchy can be extrapolated to encompass the humanities and arts and interpolated within specific domains to accommodate contrasts in subdomains (e.g., revolutionary versus normal science). This expanded and more finely differentiated hierarchy is then shown to have a partial psychological basis in terms of dispositional traits (e.g., psychopathology) and developmental experiences (e.g., family background). This demonstration then leads to three hypotheses about how a creator's domain-specific impact depends on his or her disposition and development: the domain-progressive, domain-typical, and domain-regressive creator hypotheses. Studies published thus far lend the most support to the domain-regressive creator hypothesis. In particular, major contributors to a domain are more likely to have dispositional traits and developmental experiences most similar to those that prevail in a domain lower in the disciplinary hierarchy. However, some complications to this generalization suggest the need for more research on the proposed hierarchical model. © 2009 Association for Psychological Science.
Templeton, Alan R.
2013-01-01
Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two most commonly used biological concepts of race, chimpanzees are indeed subdivided into races but humans are not. Adaptive traits, such as skin color, have frequently been used to define races in humans, but such adaptive traits reflect the underlying environmental factor to which they are adaptive and not overall genetic differentiation, and different adaptive traits define discordant groups. There are no objective criteria for choosing one adaptive trait over another to define race. As a consequence, adaptive traits do not define races in humans. Much of the recent scientific literature on human evolution portrays human populations as separate branches on an evolutionary tree. A tree-like structure among humans has been falsified whenever tested, so this practice is scientifically indefensible. It is also socially irresponsible as these pictorial representations of human evolution have more impact on the general public than nuanced phrases in the text of a scientific paper. Humans have much genetic diversity, but the vast majority of this diversity reflects individual uniqueness and not race. PMID:23684745
NASA Astrophysics Data System (ADS)
Mestad, Idar; Kolstø, Stein Dankert
2017-10-01
This study aims to characterize a group of students' preliminary oral explanations of a scientific phenomenon produced as part of their learning process. The students were encouraged to use their own wordings to test out their own interpretation of observations when conducting practical activities. They presented their explanations orally in the whole class after having discussed and written down an explanation in a small group. The data consists of transcribed video recordings of the presented explanations, observation notes, and interviews. A genre perspective was used to characterize the students' explanations together with analysis of the students use of scientific terms, gestures, and the language markers "sort of" and "like." Based on the analysis we argue to separate between event-focused explanations, where the students describe how objects move, and object-focused explanations, where the students describe object properties and interactions. The first type uses observable events and few scientific terms, while the latter contains object properties and tentative use of scientific terms. Both types are accompanied by an extensive use of language markers and gestures. A third category, term-focused explanations, is used when the students only provide superficial explanations by expressing scientific terms. Here, the students' use of language markers and gestures are low. The analyses shows how students' explanations can be understood as tentative attempts to build on their current understanding and observations while trying to reach out for a deeper and scientific way of identifying observations and building explanations and new ways of talking.
Gaia DR1 documentation Chapter 6: Variability
NASA Astrophysics Data System (ADS)
Eyer, L.; Rimoldini, L.; Guy, L.; Holl, B.; Clementini, G.; Cuypers, J.; Mowlavi, N.; Lecoeur-Taïbi, I.; De Ridder, J.; Charnas, J.; Nienartowicz, K.
2017-12-01
This chapter describes the photometric variability processing of the Gaia DR1 data. Coordination Unit 7 is responsible for the variability analysis of over a billion celestial sources. In particular the definition, design, development, validation and provision of a software package for the data processing of photometrically variable objects. Data Processing Centre Geneva (DPCG) responsibilities cover all issues related to the computational part of the CU7 analysis. These span: hardware provisioning, including selection, deployment and optimisation of suitable hardware, choosing and developing software architecture, defining data and scientific workflows as well as operational activities such as configuration management, data import, time series reconstruction, storage and processing handling, visualisation and data export. CU7/DPCG is also responsible for interaction with other DPCs and CUs, software and programming training for the CU7 members, scientific software quality control and management of software and data lifecycle. Details about the specific data treatment steps of the Gaia DR1 data products are found in Eyer et al. (2017) and are not repeated here. The variability content of the Gaia DR1 focusses on a subsample of Cepheids and RR Lyrae stars around the South ecliptic pole, showcasing the performance of the Gaia photometry with respect to variable objects.
New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert J.; /SLAC; Amini, Rashied
Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving themmore » unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.« less
Symbolic objects as sediments of the intersubjective stream of feelings.
Guimarães, Danilo Silva
2010-09-01
Taking into account that feeling is "the critical mediating process of the person-world relationships" (Josephs, Theory & Psychology 10(6):815, 2000), this article focuses on the artistic symbolic object as constraints that direct someone's feelings. Johansen (2010) states that the literary discourse "is designed to arousing and forming the feelings of listeners and readers" (p. 185). Distancing from strict literary production, I've used the testimony of the Brazilian songwriter, composer and performer, Tom Zé (2003), in order to discuss the intersubjective aspect of feelings articulation in his artistic work. Is proposed that the creative process of a symbolic object, which can be considered art, is a circumstance of a most general intersubjective-cultural process in which novel objects are built. If the specificity of art is to give a symbolic shape to human feeling (cf. Langer 1953), I argue that it is a sort of mediation which allows otherness to elaborate their affections through its objective guidance. In contrast with the scientific method of objective creation that is an effort for silencing contradictions (cf. Stengers 2002), the object of art remains open to multiple interpretations, stimulating the other to recursively speak and feel through it.
The use of the German V-2 in US for upper atmosphere research
NASA Technical Reports Server (NTRS)
Curtis, S. A.
1979-01-01
Early U.S. space experiments involving the liquid propellant German V-2 are discussed. Although the primary objective of the experiments conducted under project Hermes after World War II was initially the development of missile technology, scientific objectives were soon given the priority. The missile was modified for scientific experiments and the payload increased from 6.8% to 47% between 1946 and 1949. Among other instruments, the payload included a cosmic ray telescope, ionosphere transmitter and spectrograph for solar spectral measurements. While the scientific success of the program established a positive public attitude towards space research, the Upper Atmosphere Research Panel, formed to coordinate the project, set a pattern for future scientific advisory bodies.
How Things Work: The Physics of Everyday Life, 2nd Edition
NASA Astrophysics Data System (ADS)
Bloomfield, Louis A.
2000-12-01
Written primarily for a one-term, undergraduate level course, this book attempts to convey an understanding and appreciation for the concepts and principles of Physics by finding them within specific objects of everyday experience. It's primary market are liberal arts students who are seeking a connection between science and the world they live in; among its many secondary markets are the growing number of institutions offering courses with scientific real-world context. These courses may also be offered to students from the Sciences, Engineering, Architecture, and other technical fields.
Scientific Assessment of NASA's Solar System Exploration Roadmap
NASA Technical Reports Server (NTRS)
1996-01-01
At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
Performance Characteristics of Lithium-Ion Prototype Batteries for Mars Surveyor Program 2001 Lander
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L.; Surampudi, S.; Byers, J.; Marsh, R. A.
2000-01-01
A viewgraph presentation outlines the scientific payload, expected launch date and tasks, and an image of the Mars Surveyor 2001 Lander components. The Lander's battery specifications are given. The program objectives for the Li-ion cells for the Lander are listed, and results performance evaluation and cycle life performance tests are outlined for different temperatures. Cell charge characteristics are described, and test data is presented for charge capacity at varying temperatures. Capacity retention and storage characteristics tests are described and results are shown.
A Drupal-Based Collaborative Framework for Science Workflows
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, P.; Gandara, A.
2010-12-01
Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.
Subjective judgements in scientific practice and art.
Regidor, Enrique
2011-12-01
Since art and science went their separate ways in the 18th century, the purpose of science has been to generate true knowledge based on reason and objectivity. However, during the second half of the 20th century, opinions emerged within science that showed the impossibility of eliminating subjectivity in scientific practice. This paper describes the similarity of the subjective judgements that form part of the peer-review system-the method devised by the scientific community to guarantee truth and objectivity-and the subjective judgements involved in artistic evaluation.
From a lunar outpost to Mars - Science, policy and the U.S. Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Pilcher, Carl B.
1992-01-01
The technological developments required for the Space Exploration Initiative (SEI) objectives are discussed in terms of scientific investigation and present U.S. space policy. The results of the 90-Day Study are listed which include explicit suggestions for the successful exploration of the moon and Mars. The Outreach/Synthesis program is described which provides four methods for eliciting ideas, technologies, and research venues for lunar and Martian missions. The results of the studies include 5 scientific objectives such as the relationship between the sun, planetary atmospheres, and climate. The protection of human life from potential extraterrestrial hazards such as radiation is also found to be a key objective of SEI as are the theoretical and practical issues of scientific research.
Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)
Basilevsky, A.T.; Keller, H.U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.
2004-01-01
The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future. ?? 2004 Elsevier Ltd. All rights reserved.
Extraterrestrial Virtual Field Experience: Water at Meridiani
NASA Astrophysics Data System (ADS)
Duggan-Haas, D.; Million, C.; Sullivan, R. J., Jr.; Hayes, A. G., Jr.; Ross, R. M.; St Clair, M.
2014-12-01
The Spacecraft Planetary Imaging Facility (SPIF) at Cornell University, in collaboration with Million Concepts and the Paleontological Research Institute (PRI), has developed the Extraterrestrial Virtual Field Experience (EVFE), a web-based, game-like and inquiry-driven classroom activity targeted to middle school through undergraduate introductory Earth science classrooms. Students play the role of mission scientists for a NASA rover mission, tasked with targeting the rover's scientific instruments to investigate a specific scientific question about the landing site. As with the real mission, the student operators must optimize the efficient use of limited resources and time against the need to make observations to address working hypotheses. The activity uses only real--not artificial or simulated--mission data, and students are guided throughout by a "Mission Manager" who provides hints and advice about the scientific meaning of observations within the broader context of the mission objectives. The MER Opportunity EVFE is a pilot effort, the first of five EVFE modules planned a rate of one per year that will feature different NASA missions and scientific topics. The MER Opportunity EVFE has already been developed and focuses on the investigation of the history of water on Mars at the Meridiani landing site of the Opportunity rover. The module includes a teacher guide and is currently available to educators through the SPIF website.
NASA Astrophysics Data System (ADS)
Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.
2017-12-01
The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.
Zvelc, Gregor
2010-12-01
In the article the author presents a model of interpersonal relationships based on integration of object relations theory and theory of attachment. He proposes three main bipolar dimensions of interpersonal relationships: Independence - Dependence, Connectedness - Alienation and Reciprocity - Self-absorption. The author also proposes that it is important to distinguish between two main types of adult interpersonal relationships: object and subject relations. Object relations describe relationships in which the other person is perceived as an object that serves the satisfaction of the first person's needs. Object relations are a manifestation of the right pole of the three main dimensions of interpersonal relationships (Dependence, Alienation and Self-absorption). Subject relations are a counter-pole to the concept of object relations. They describe relationships with other people who are experienced as subjects with their own wishes, interests and needs. Subject relations are a manifestation of the left pole of the main dimensions (Independence, Connectedness and Reciprocity). In this article the author specifically focuses on definitions of object relations in adulthood through a description of six sub-dimensions of object relations: Symbiotic Merging, Separation Anxiety, Social Isolation, Fear of Engulfment, Egocentrism and Narcissism. Every sub-dimension is described in connection to adaptive and pathological functioning. Further research is needed to test the clinical and scientific validity of the model.
Tolaymat, Thabet M; El Badawy, Amro M; Genaidy, Ash; Scheckel, Kirk G; Luxton, Todd P; Suidan, Makram
2010-02-01
Most recently, renewed interest has arisen in manufactured silver nanomaterials because of their unusually enhanced physicochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging from disinfecting medical devices and home appliances to water treatment. Because the hypothesized mechanisms that govern the fate and transport of bulk materials may not directly apply to materials at the nanoscale, there are great concerns in the regulatory and research communities about potential environmental impacts associated with the use of silver nanoparticles. In particular, the unlimited combinations of properties emerging from the syntheses and applications of silver nanoparticles are presenting an urgent need to document the predominant salt precursors, reducing agents and stabilizing agents utilized in the synthesis processes of silver nanoparticles to guide the massive efforts required for environmental risk assessment and management. The primary objective of this study is to present an evidence-based environmental perspective of silver nanoparticle properties in syntheses and applications. The following specific aims are designed to achieve the study objective: Aim 1--to document the salt precursors and agents utilized in synthesizing silver nanoparticles; Aim 2--to determine the characteristics of silver nanoparticles currently in use in the scientific literature when integrated in polymer matrices to form nanocomposites and combined with other metal nanoparticles to form bimetallic nanoparticles; Aim 3--to provide a summary of the morphology of silver nanoparticles; and (4) Aim 4--to provide an environmental perspective of the evidence presented in Aims 1 to 3. A comprehensive electronic search of scientific databases was conducted in support of the study objectives. Specific inclusion criteria were applied to gather the most pertinent research articles. Data and information extraction relied on the type of synthesis methods, that is, synthesized silver nanoparticles in general and specific applications, nanocomposites, and bimetallic techniques. The following items were gathered for: type of silver salt, solvent, reducing agent, stabilizing agent, size, and type of application/nanocomposite/bimetallic, and template (for nanocomposites). The description of evidence was presented in tabular format. The critical appraisal was analyzed in graphical format and discussed. An analysis of the scientific literature suggests that most synthesis processes produce spherical silver nanoparticles with less than 20nm diameter. Silver nanoparticles are often synthesized via reduction of AgNO(3), dissolution in water, and utilization of reductants also acting as capping or stabilizing agents for the control of particle size to ensure a relatively stable suspension. Two of the most commonly used reductants and stabilizing agents are NaBH(4) and citrate which yield particles with a negative surface charge over the environmental pH range (3-10). The environmental perspectives of these parameters are discussed. It is expected that the antibacterial property of bulk silver is carried over and perhaps enhanced, to silver nanoparticles. Therefore, when one examines the environmental issues associated with the manufacture and use of silver nanoparticle-based products, the antibacterial effects should always be taken into account particularly at the different stages of the product lifecycle. Currently, there are two arguments in the scientific literature about the mechanisms of antimicrobial properties of silver nanoparticles as they relate to colloidal silver particles and inonic silver. Methodologies of risk assessment and control have to account for both arguments. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.
1994-01-01
The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic.
Gravitropic responses of plants in the absence of a complicating G-force (6-IML-1)
NASA Technical Reports Server (NTRS)
Brown, Allan H.
1992-01-01
On the Earth it is patently impossible to measure any tropistic, physiologic, or morphogenic reactions to environmental stimuli without taking into account our planet's gravitational influence on the time course of the test subject's response. It follows that all published reports of quantitative measurements of such responses must have been contaminated by an additional gravity dependent component which probably was not trivial. Our research effort has as its principal scientific objective, the acquisition of experimental data from tests in a microgravity environment that will address a number of basic questions about plants' gravitropic responses to the perception of transversely applied g forces in the hypogravity range, from essentially zero to unit g. Comparable tests on Earth but in the same flight hardware, referred to as the Gravitational Plant Physiology Facility (GPPF), will provide 1 g data for various useful comparisons. Four specific scientific questions are addressed.
[Constructing images and territories: thinking on the visuality and materiality of remote sensing].
Monteiro, Marko
2015-01-01
This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.
Quo vadis, analytical chemistry?
Valcárcel, Miguel
2016-01-01
This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.
Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex
NASA Technical Reports Server (NTRS)
2003-01-01
Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.
SafeConnect Solar - Final Scientific/Technical Report (Updated)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNish, Zachary
2016-02-03
Final Scientific/Technical Report from Tier 0 SunShot Incubator award for hardware-based solution to reducing soft costs of installed solar. The primary objective of this project was for SafeConnect Solar (“SafeConnect”) to create working proof-of-concept hardware prototypes from its proprietary intellectual property and business concepts for a plug-and-play, safety-oriented hardware solution for photovoltaic solar systems. Specifically, SafeConnect sought to build prototypes of its “SmartBox” and related cabling and connectors, as well as the firmware needed to run the hardware. This hardware is designed to ensure a residential PV system installed with it can address all safety concerns that currently form themore » basis of AHJ electrical permitting and licensing requirements, thereby reducing the amount of permitting and specialized labor required on a residential PV system, and also opening up new sales channels and customer acquisition opportunities.« less
The NASA Integrated Information Technology Architecture
NASA Technical Reports Server (NTRS)
Baldridge, Tim
1997-01-01
This document defines an Information Technology Architecture for the National Aeronautics and Space Administration (NASA), where Information Technology (IT) refers to the hardware, software, standards, protocols and processes that enable the creation, manipulation, storage, organization and sharing of information. An architecture provides an itemization and definition of these IT structures, a view of the relationship of the structures to each other and, most importantly, an accessible view of the whole. It is a fundamental assumption of this document that a useful, interoperable and affordable IT environment is key to the execution of the core NASA scientific and project competencies and business practices. This Architecture represents the highest level system design and guideline for NASA IT related activities and has been created on the authority of the NASA Chief Information Officer (CIO) and will be maintained under the auspices of that office. It addresses all aspects of general purpose, research, administrative and scientific computing and networking throughout the NASA Agency and is applicable to all NASA administrative offices, projects, field centers and remote sites. Through the establishment of five Objectives and six Principles this Architecture provides a blueprint for all NASA IT service providers: civil service, contractor and outsourcer. The most significant of the Objectives and Principles are the commitment to customer-driven IT implementations and the commitment to a simpler, cost-efficient, standards-based, modular IT infrastructure. In order to ensure that the Architecture is presented and defined in the context of the mission, project and business goals of NASA, this Architecture consists of four layers in which each subsequent layer builds on the previous layer. They are: 1) the Business Architecture: the operational functions of the business, or Enterprise, 2) the Systems Architecture: the specific Enterprise activities within the context of IT systems, 3) the Technical Architecture: a common, vendor-independent framework for design, integration and implementation of IT systems and 4) the Product Architecture: vendor=specific IT solutions. The Systems Architecture is effectively a description of the end-user "requirements". Generalized end-user requirements are discussed and subsequently organized into specific mission and project functions. The Technical Architecture depicts the framework, and relationship, of the specific IT components that enable the end-user functionality as described in the Systems Architecture. The primary components as described in the Technical Architecture are: 1) Applications: Basic Client Component, Object Creation Applications, Collaborative Applications, Object Analysis Applications, 2) Services: Messaging, Information Broker, Collaboration, Distributed Processing, and 3) Infrastructure: Network, Security, Directory, Certificate Management, Enterprise Management and File System. This Architecture also provides specific Implementation Recommendations, the most significant of which is the recognition of IT as core to NASA activities and defines a plan, which is aligned with the NASA strategic planning processes, for keeping the Architecture alive and useful.
Deathcore, creativity, and scientific thinking
Angeler, David G.; Sundstrom, Shana M.; Allen, Craig R.
2016-01-01
BackgroundMajor scientific breakthroughs are generally the result of materializing creative ideas, the result of an inductive process that sometimes spontaneously and unexpectedly generates a link between thoughts and/or objects that did not exist before. Creativity is the cornerstone of scientific thinking, but scientists in academia are judged by metrics of quantification that often leave little room for creative thinking. In many scientific fields, reductionist approaches are rewarded and new ideas viewed skeptically. As a result, scientific inquiry is often confined to narrow but safe disciplinary ivory towers, effectively preventing profoundly creative explorations that could yield unexpected benefits.New informationThis paper argues how apparently unrelated fields specifically music and belief systems can be combined in a provocative allegory to provide novel perspectives regarding patterns in nature, thereby potentially inspiring innovation in the natural, social and other sciences. The merger between basic human tensions such as those embodied by religion and music, for example the heavy metal genre of deathcore, may be perceived as controversial, challenging, and uncomfortable. However, it is an example of moving the thinking process out of unconsciously established comfort zones, through the connection of apparently unrelated entities. We argue that music, as an auditory art form, has the potential to enlighten and boost creative thinking in science. Metal, as a fast evolving and diversifying extreme form of musical art, may be particularly suitable to trigger surprising associations in scientific inquiry. This may pave the way for dealing with questions about what we don´t know that we don´t know in a fast-changing planet.
Enabling cross-disciplinary research by linking data to Open Access publications
NASA Astrophysics Data System (ADS)
Rettberg, N.
2012-04-01
OpenAIREplus focuses on the linking of research data to associated publications. The interlinking of research objects has implications for optimising the research process, allowing the sharing, enrichment and reuse of data, and ultimately serving to make open data an essential part of first class research. The growing call for more concrete data management and sharing plans, apparent at funder and national level, is complemented by the increasing support for a scientific infrastructure that supports the seamless access to a range of research materials. This paper will describe the recently launched OpenAIREplus and will detail how it plans to achieve its goals of developing an Open Access participatory infrastructure for scientific information. OpenAIREplus extends the current collaborative OpenAIRE project, which provides European researchers with a service network for the deposit of peer-reviewed FP7 grant-funded Open Access publications. This new project will focus on opening up the infrastructure to data sources from subject-specific communities to provide metadata about research data and publications, facilitating the linking between these objects. The ability to link within a publication out to a citable database, or other research data material, is fairly innovative and this project will enable users to search, browse, view, and create relationships between different information objects. In this regard, OpenAIREplus will build on prototypes of so-called "Enhanced Publications", originally conceived in the DRIVER-II project. OpenAIREplus recognizes the importance of representing the context of publications and datasets, thus linking to resources about the authors, their affiliation, location, project data and funding. The project will explore how links between text-based publications and research data are managed in different scientific fields. This complements a previous study in OpenAIRE on current disciplinary practices and future needs for infrastructural Open Access services, taking into account the variety within research approaches. Adopting Linked Data mechanisms on top of citation and content mining, it will approach the interchange of data between generic infrastructures such as OpenAIREplus and subject specific service providers. The paper will also touch on the other challenges envisaged in the project with regard to the culture of sharing data, as well as IPR, licensing and organisational issues.
Creativity, visualization abilities, and visual cognitive style.
Kozhevnikov, Maria; Kozhevnikov, Michael; Yu, Chen Jiao; Blazhenkova, Olesya
2013-06-01
Despite the recent evidence for a multi-component nature of both visual imagery and creativity, there have been no systematic studies on how the different dimensions of creativity and imagery might interrelate. The main goal of this study was to investigate the relationship between different dimensions of creativity (artistic and scientific) and dimensions of visualization abilities and styles (object and spatial). In addition, we compared the contributions of object and spatial visualization abilities versus corresponding styles to scientific and artistic dimensions of creativity. Twenty-four undergraduate students (12 females) were recruited for the first study, and 75 additional participants (36 females) were recruited for an additional experiment. Participants were administered a number of object and spatial visualization abilities and style assessments as well as a number of artistic and scientific creativity tests. The results show that object visualization relates to artistic creativity and spatial visualization relates to scientific creativity, while both are distinct from verbal creativity. Furthermore, our findings demonstrate that style predicts corresponding dimension of creativity even after removing shared variance between style and visualization ability. The results suggest that styles might be a more ecologically valid construct in predicting real-life creative behaviour, such as performance in different professional domains. © 2013 The British Psychological Society.
Asynchronous Object Storage with QoS for Scientific and Commercial Big Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brim, Michael J; Dillow, David A; Oral, H Sarp
2013-01-01
This paper presents our design for an asynchronous object storage system intended for use in scientific and commercial big data workloads. Use cases from the target workload do- mains are used to motivate the key abstractions used in the application programming interface (API). The architecture of the Scalable Object Store (SOS), a prototype object stor- age system that supports the API s facilities, is presented. The SOS serves as a vehicle for future research into scalable and resilient big data object storage. We briefly review our research into providing efficient storage servers capable of providing quality of service (QoS) contractsmore » relevant for big data use cases.« less
Study of a comet rendezvous mission, volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
The feasibility, scientific objectives, modes of exploration and implementation alternatives of a rendezvous mission to Encke's comet in 1984 are considered. Principal emphasis is placed on developing the scientific rationale for such a mission, based on available knowledge and best estimates of this comet's physical characteristics, including current theories of its origin, evolution and composition. Studied are mission profile alternatives, performance tradeoffs, preferred exploration strategy, and a spacecraft design concept capable of performing this mission. The study showed that the major scientific objectives can be met by a Titan IIID/Centaur-launched 17.5 kw solar electric propulsion spacecraft which carries 60 kg of scientific instruments and is capable of extensive maneuvering within the comet envelope to explore the coma, tail and nucleus.
Research Infrastructure and Scientific Collections: The Supply and Demand of Scientific Research
NASA Astrophysics Data System (ADS)
Graham, E.; Schindel, D. E.
2016-12-01
Research infrastructure is essential in both experimental and observational sciences and is commonly thought of as single-sited facilities. In contrast, object-based scientific collections are distributed in nearly every way, including by location, taxonomy, geologic epoch, discipline, collecting processes, benefits sharing rules, and many others. These diffused collections may have been amassed for a particular discipline, but their potential for use and impact in other fields needs to be explored. Through a series of cross-disciplinary activities, Scientific Collections International (SciColl) has explored and developed new ways in which the supply of scientific collections can meet the demand of researchers in unanticipated ways. From cross-cutting workshops on emerging infectious diseases and food security, to an online portal of collections, SciColl aims to illustrate the scope and value of object-based scientific research infrastructure. As distributed infrastructure, the full impact of scientific collections to the research community is a result of discovering, utilizing, and networking these resources. Examples and case studies from infectious disease research, food security topics, and digital connectivity will be explored.
Building Scientific Data's list of recommended data repositories
NASA Astrophysics Data System (ADS)
Hufton, A. L.; Khodiyar, V.; Hrynaszkiewicz, I.
2016-12-01
When Scientific Data launched in 2014 we provided our authors with a list of recommended data repositories to help them identify data hosting options that were likely to meet the journal's requirements. This list has grown in size and scope, and is now a central resource for authors across the Nature-titled journals. It has also been used in the development of data deposition policies and recommended repository lists across Springer Nature and at other publishers. Each new addition to the list is assessed according to a series of criteria that emphasize the stability of the resource, its commitment to principles of open science and its implementation of relevant community standards and reporting guidelines. A preference is expressed for repositories that issue digital object identifiers (DOIs) through the DataCite system and that share data under the Creative Commons CC0 waiver. Scientific Data currently lists fourteen repositories that focus on specific areas within the Earth and environmental sciences, as well as the broad scope repositories, Dryad and figshare. Readers can browse and filter datasets published at the journal by the host repository using ISA-explorer, a demo tool built by the ISA-tools team at Oxford University1. We believe that well-maintained lists like this one help publishers build a network of trust with community data repositories and provide an important complement to more comprehensive data repository indices and more formal certification efforts. In parallel, Scientific Data has also improved its policies to better support submissions from authors using institutional and project-specific repositories, without requiring each to apply for listing individually. Online resources Journal homepage: http://www.nature.com/scientificdata Data repository criteria: http://www.nature.com/sdata/policies/data-policies#repo-criteria Recommended data repositories: http://www.nature.com/sdata/policies/repositories Archived copies of the list: https://dx.doi.org/10.6084/m9.figshare.1434640.v6 Reference Gonzalez-Beltran, A. ISA-explorer: A demo tool for discovering and exploring Scientific Data's ISA-tab metadata. Scientific Data Updates http://blogs.nature.com/scientificdata/2015/12/17/isa-explorer/ (2015).
Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane
2018-01-01
We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy.
Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane
2018-01-01
We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy. PMID:29904518
Pioneer 10. [observations of Jupiter environment and asteroid belt hazards
NASA Technical Reports Server (NTRS)
Hall, C. F.
1974-01-01
On Dec. 4, 1973, after 21 months in flight, Pioneer 10 passed by Jupiter at a distance within 130,000 km of its cloud tops. During the month before and after, instrumentation on the spacecraft made a number of scientific measurements of the Jupiter environment, thus completing one of three scientific objectives of the mission. Previously, Pioneer 10 had explored the asteroid belt and had completed the second scientific objective by determining that the belt did not present a hazard to spacecraft passing through it. The third objective, the exploration of interplanetary phenomena, started with the launch of Pioneer 10 and will not be completed until 1977 when the spacecraft nears the orbit of Uranus and the signal from the spacecraft becomes too weak to be heard at ground receivers.
The African Reference Frame (AFREF) project: a fundamental geodetic tool for Africa
NASA Astrophysics Data System (ADS)
Farah, H.
2009-04-01
AFREF has as objective the establishment and maintenance of a unified geodetic reference frame for Africa, which will support and facilitate fundamental scientific and technical projects. The installation of observation systems all over Africa will provide important data that can be used in many different scientific fields (e.g., geodynamics, meteorological). Furthermore, AFREF will create an uniform frame that will support development projects, uniform environmental and mapping programmes as well as aid in resolving current and future international boundary disputes. This reference frame will be based on the International Terrestrial Reference Frame (ITRF) and will be realised through the establishment of a network of permanent Global Navigation Satellite System (GNSS) receivers. In close collaboration with several institutional role players, AFREF is an initiative of the United Nations Economic Commission for Africa (UNECA) Committee on Development Information (CODI). A steering committee is currently responsible for the over-all management and coordination of the implementation of AFREF. Implementation of AFREF is envisaged to be at national level in collaboration with National Mapping Organizations. Furthermore, many scientific Institutions are contributing for the densification of the network. The current status of the AFREF network will be discussed in detail. Several CORS systems have been installed to support AFREF specifically. In addition, most or all of the IGS stations located in Africa will automatically qualify as AFREF core stations. Furthermore, we will show examples of interaction between specific projects and AFREF that are contributing for the development of science in Africa.
[On the evolution of scientific thought].
de Micheli, Alfredo; Iturralde Torres, Pedro
2015-01-01
The Nominalists of the XIV century, precursors of modern science, thought that science's object was not the general, vague and indeterminate but the particular, which is real and can be known directly. About the middle of the XVII Century the bases of the modern science became established thanks to a revolution fomented essentially by Galileo, Bacon and Descartes. During the XVIII Century, parallel to the development of the great current of English Empiricism, a movement of scientific renewal also arose in continental Europe following the discipline of the Dutch Physicians and of Boerhaave. In the XIX Century, Claude Bernard dominated the scientific medicine but his rigorous determinism impeded him from taking into account the immense and unforeseeable field of the random. Nowadays, we approach natural science and medicine, from particular groups of facts; that is, from the responses of Nature to specific questions, but not from the general laws. Furthermore, in recent epistemology, the concept that experimental data are not pure facts, but rather, facts interpreted within a hermeneutical context has been established. Finally a general tendency to retrieve philosophical questions concerning the understanding of essence and existence can frequently be seen in scientific inquiry. In the light of the evolution of medical thought, it is possible to establish the position of scientific medicine within the movement of ideas dominating in our time. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
MachineProse: an Ontological Framework for Scientific Assertions
Dinakarpandian, Deendayal; Lee, Yugyung; Vishwanath, Kartik; Lingambhotla, Rohini
2006-01-01
Objective: The idea of testing a hypothesis is central to the practice of biomedical research. However, the results of testing a hypothesis are published mainly in the form of prose articles. Encoding the results as scientific assertions that are both human and machine readable would greatly enhance the synergistic growth and dissemination of knowledge. Design: We have developed MachineProse (MP), an ontological framework for the concise specification of scientific assertions. MP is based on the idea of an assertion constituting a fundamental unit of knowledge. This is in contrast to current approaches that use discrete concept terms from domain ontologies for annotation and assertions are only inferred heuristically. Measurements: We use illustrative examples to highlight the advantages of MP over the use of the Medical Subject Headings (MeSH) system and keywords in indexing scientific articles. Results: We show how MP makes it possible to carry out semantic annotation of publications that is machine readable and allows for precise search capabilities. In addition, when used by itself, MP serves as a knowledge repository for emerging discoveries. A prototype for proof of concept has been developed that demonstrates the feasibility and novel benefits of MP. As part of the MP framework, we have created an ontology of relationship types with about 100 terms optimized for the representation of scientific assertions. Conclusion: MachineProse is a novel semantic framework that we believe may be used to summarize research findings, annotate biomedical publications, and support sophisticated searches. PMID:16357355
Final Technical Report: "New Tools for Physics with Low-energy Antimatter"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surko, Clifford M.
2013-10-02
The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap frommore » the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
2018-04-17
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph
NASA Technical Reports Server (NTRS)
West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)
2001-01-01
This paper will describe the scientific objectives of the MSFC SUMI project and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed, This paper will describe the optical measurements that have been made on the SUMI telescope mirrors and polarization optics.
[Quality concept in health care. Methodology for its measurement].
Morera Guitart, J
2003-12-01
It is increasingly necessary that the neurologists achieve basic knowledgement in clinical management and medical care quality. We will review the concepts of medical care quality (MCQ). Of the definitions checked, we want to emphasize the following aspects. a) application of current scientific knowledge; b) interpersonal relationship; c) environment where the assistance is dispensed; d) results in health; e) cost of assistance; f) risks for the patient and g) patient satisfaction. For the analysis of the MCQ we could distinguish several components: scientific-technical component, efficacy, effectiveness, efficiency, accessibility, continuity, equity, appropriateness, and satisfaction of the patient and of the professional. One of the main objectives to measure the MCQ is to improve the assistance itself. For its measurement we can employ diverse methods depending on our objective: to improve the process, to do Benchmarking, to know the satisfaction of the patients or to guarantee the quality of the medical attention. The most used tools for this measurement are: establishment of criteria-indicator-standard for quality, elaboration of satisfaction questionnaires, interviews to key informant, analysis of complaints and claims of patients and professionals, and clinical audits. The role of the neurologist in the achievement of a high quality neurological attention if fundamental. Therefore, it is necessary some specific formation on: scientific and technical matter, communicative abilities, teamworking, management and organisation of tasks and pharmaco-economic evaluation, and a cultural change that involves every professional on the co-responsibility of the continuous improvement of the processes and of the results of his work, advancing gradually towards the excellence of medical assistance.
43 CFR 15.9 - Collection of scientific specimens.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Collection of scientific specimens. 15.9 Section 15.9 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.9 Collection of scientific specimens. Collection of natural objects and marine life for...
43 CFR 15.9 - Collection of scientific specimens.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Collection of scientific specimens. 15.9 Section 15.9 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.9 Collection of scientific specimens. Collection of natural objects and marine life for...
43 CFR 15.9 - Collection of scientific specimens.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Collection of scientific specimens. 15.9 Section 15.9 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.9 Collection of scientific specimens. Collection of natural objects and marine life for...
43 CFR 15.9 - Collection of scientific specimens.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Collection of scientific specimens. 15.9 Section 15.9 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.9 Collection of scientific specimens. Collection of natural objects and marine life for...
43 CFR 15.9 - Collection of scientific specimens.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Collection of scientific specimens. 15.9 Section 15.9 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.9 Collection of scientific specimens. Collection of natural objects and marine life for...
Recent Developments in the Scientific Study of UFO's
ERIC Educational Resources Information Center
Salisbury, Frank B.
1975-01-01
Reviews the interest of the last few years, both inside and outside the scientific community, in unidentified flying objects (UFO), placing special emphasis on the extraterrestrial intelligence hypothesis. Cites numerous examples of UFO sightings and urges that the investigation of UFO's proceed in a scientific manner, despite skeptical public…
75 FR 4043 - Endangered Species; File No. 14396
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... scientific research. ADDRESSES: The permit and related documents are available for review upon written..., notice was published in the Federal Register (74 FR 42861) that a request for a scientific research... scientific study of shortnose sturgeon in the Delaware River where primary study objectives are to locate and...
Scientific independence: A key to credibility
Leonard F. Ruggiero
2007-01-01
Independence and objectivity are key ingredients of scientific credibility, especially in research organizations that are part of a natural resource management agency like the Forest Service. Credibility, in turn, is essential to the utility of scientific information in socio-political processes. In order to develop this thesis further, a basic understanding of Forest...
Sexual Consent as a Scientific Subject: A Literature Review
ERIC Educational Resources Information Center
Fenner, Lydia
2017-01-01
Despite the presumed centrality of sexual consent to definitions of sexual violence, it remains an ambiguous and often unexamined concept both in lay and professional/scientific discourses. The following literature review of peer-reviewed research studying sexual consent as a scientific object will thematically present major findings from said…
Is a Scientific Classification of Educational (Behavioral) Objectives Possible?
ERIC Educational Resources Information Center
Stigliano, Tony
Robert M. W. Travers's 1980 essay is the focal point of this paper. He argues that evaluation research requires a scientific taxonomy of human behavior and learning. Such a taxonomy must be experimentally based, mathematically expressed, theoretically sound, and predictive. He bases such criteria on the development of scientifically successful…
Anesi, Andrea; Stocchero, Matteo; Dal Santo, Silvia; Commisso, Mauro; Zenoni, Sara; Ceoldo, Stefania; Tornielli, Giovanni Battista; Siebert, Tracey E; Herderich, Markus; Pezzotti, Mario; Guzzo, Flavia
2015-08-07
The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.
It's Theories All the Way Down: A Response to Scientific Research in Education
ERIC Educational Resources Information Center
Gee, James Paul
2005-01-01
This article considers the six principles that the National Research Council's report Scientific Research in Education claims define an enterprise as scientific. I argue that these principles are relatively vacuous generalities because one cannot determine anything about any of them from outside specific theories of specific domains (and domains…
Klotz, Sebastian
2008-09-01
The study of acoustics, harmonics and of music has been providing scientific models since Greek Antiquity. Since the early modern ages, two separate cultures began to emerge out of the study of music: a technical acoustics and an aesthetically and philosophically inspired musical criticism. In the writings of Johann Friedrich Herbart (1811) a scientific approach to musical aesthetics and to music perception is taking shape that reinstalls the listening process as a highly complex and logical phenomenon. By opening music for a scientific psychological investigation, Herbart pioneered the physiologically and acoustically grounded seminal work by Hermann von Helmholtz On the sensations of tone (1863) which the author considered a prerequisite for musical aesthetics and music theory. Helmholtz in turn inspired the philosopher and psychologist Carl Stumpf to further investigate musical perception (beginning in 1883). To Stumpf, it provided a paradigm for experimental psychology as mental functions and phenomena could be studied in detail. These functions and phenomena are the actual objects of scientific study in Stumpf's inductive and descriptive psychology. Combining insights from statistics, ethnology, anthropology, psychoacoustics and the cultural history of mankind, Stumpf and his team developed a new blend of science which absorbs styles of reasoning, analytical procedures and academic convictions from natural history, the natural sciences and the humanities but at the same time identifies shortcomings of these approaches that fail to grasp the complexities of psychic functions. Despite their reliance on the quasi-objective phonograph and despite their commitment to objectivity, precision and measurement, mental phenomena relating to tonal perception and to music provided too complex a challenge to be easily articulated and shared by the scientific community after 1900. The essay illustrates these tensions against the background of a history of objectivity.
Objective, Structured Proforma to Score the Merit of Scientific Presentations.
Agarwal, Nayan; Thawani, Rajat; Gupta, Setu; Sharma, Arun; Dhaliwal, Upreet
2015-12-01
Around 100,000 medical conferences are organized all over the world and hence, they form an integral part of a medical professional's life. Oral presentations, especially award sessions, are judged by a panel of faculty judges who score individual presentations on various aspects including content, delivery and submission. Our objective was to compare the scores given by student-judges and faculty-judges for scientific presentations using the standardized score sheet. An objective, structured score-sheet was designed using existing literature. Five presentations, all made using PowerPoint, were judged using the structured score-sheet by seven student-judges and two-faculty judges. The mean score of all the score-sheets (n = 45) was 38.5 + 5.4 (out of a maximum score of 50). There was no statistical difference between mean scores assigned by students or faculty (p = 0.2). Thus, an objective, structured score sheet like ours, when used to judge scientific presentations, gave uniform results even when judges hailed from different levels of the medical hierarchy.
STRATCOM-8 scientific objectives and mission orginization
NASA Technical Reports Server (NTRS)
Reed, E. I. (Compiler)
1977-01-01
Stratospheric photochemistry was studied, with emphasis on the Ozone-NOx-ultraviolet flux interactions, but also including members of the chlorine, water vapor, and carbon-containing families. Secondary objectives include: (1) study of the balloon environment, (2) comparison of independent measurements of ozone and of NO, (3) development of new sensor systems; and (4) some measurements for exploratory purposes. Most, but not all, systems and instruments performed as planned, and it is believed that data are available to achieve most of the planned scientific and engineering objectives. The emphasis on photochemistry in the 35 to 40 km region is greater than anticipated, and observations are more complete for sunset than for sunrise. The planned instruments and a summary of the flight operations is discussed partly for the mutual information of those participating and partly for the wider scientific community.
[Depressive realism: happiness or objectivity].
Birinci, Fatih; Dirik, Gülay
2010-01-01
Realism is described as objective evaluations and judgments about the world; however, some research indicates that judgments made by "normal" people include a self-favored, positive bias in the perception of reality. Additionally, some studies report that compared to normal people, such cognitive distortions are less likely among depressive people. These findings gave rise to the depressive realism hypothesis. While results of several studies verify the notion that depressive people evaluate reality more objectively, other studies fail to support this hypothesis. Several causes for these inconsistent findings have been proposed, which can be characterized under 3 headings. One proposed explanation suggests that what is accepted as "realistic" in these studies is not quite objective and is in fact ambiguous. According to another perspective, the term "depressive" used in these studies is inconsistent with the criteria of scientific diagnostic methods. Another suggests that the research results can only be obtained under the specific experimental conditions. General negativity and limited processing are popular approaches used for explaining the depressive realism hypothesis. Nowadays, the debate over this hypothesis continues. The present review focuses on frequently cited research related to depressive realism and discusses the findings.
Landslide modeling and forecasting—recent progress by the u.s. geological survey
Baum, Rex L.; Kean, Jason W.
2015-01-01
Landslide studies by the U.S. Geological Survey (USGS) are focused on two main objectives: scientific understanding and forecasting. The first objective is to gain better understanding of the physical processes involved in landslide initiation and movement. This objective is largely in support of the second objective, to develop predictive capabilities to answer the main hazard questions. Answers to the following six questions are needed to characterize the hazard from landslides: (1) Where will landslides occur? (2) What kind(s) of landslides will occur? (3) When will landslides occur? (4) How big will the landslides be? (5) How fast will the landslides travel? (6) How far will the landslides go? Although these questions are sometimes recast in different terms, such as frequency or recurrence rather than timing (when), the questions or their variants address the spatial, physical, and temporal aspects of landslide hazards. Efforts to develop modeling and forecasting capabilities by the USGS are primarily focused on specific landslide types that pose a high degree of hazard and show relatively high potential for predictability.
IT Strategic Planning Workshops Develop Long-Term Goals | Poster
As part of NCI’s Research IT Strategic Planning efforts, a workshop was held on the NIH main campus in June. The main purpose of the workshop was to discuss ways to better integrate IT and informatics throughout NCI, and develop specific, high-level goals and related objectives that will drive the direction of IT and informatics support over the next five years. The initiative to integrate NCI’s IT and informatics is a collaboration between the Center for Biomedical Informatics and Information Technology (CBIIT), Office of Scientific Operations, Data Management Services, and the IT Operations Group.
Galaxies and cosmology with ALMA
NASA Astrophysics Data System (ADS)
Planesas, P.
2011-12-01
Intensive work is being carried out at the Joint ALMA Observatory in order to bring four bands of a 16-antenna mm/submm interferometer into scientific operation. Specific tests of the advertised capabilities for Early Science are being carried out as well as further tests in order to bring ALMA into full operation as planned. Some of the measurements were taken towards extragalactic objects. In fact, the high sensitivity, high angular resolution, high image fidelity, and high mapping speed, together with a large frequency coverage, will make ALMA the right instrument for high redshift studies, and detailed dynamical and chemical studies of nearby galaxies.
Global precipitation measurement (GPM) preliminary design
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.
2008-10-01
The overarching Earth science mission objective of the Global Precipitation Measurement (GPM) mission is to develop a scientific understanding of the Earth system and its response to natural and human-induced changes. This will enable improved prediction of climate, weather, and natural hazards for present and future generations. The specific scientific objectives of GPM are advancing: Precipitation Measurement through combined use of active and passive remote-sensing techniques, Water/Energy Cycle Variability through improved knowledge of the global water/energy cycle and fresh water availability, Climate Prediction through better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release, Weather Prediction through improved numerical weather prediction (NWP) skills from more accurate and frequent measurements of instantaneous rain rates with better error characterizations and improved assimilation methods, Hydrometeorological Prediction through better temporal sampling and spatial coverage of highresolution precipitation measurements and innovative hydro-meteorological modeling. GPM is a joint initiative with the Japan Aerospace Exploration Agency (JAXA) and other international partners and is the backbone of the Committee on Earth Observation Satellites (CEOS) Precipitation Constellation. It will unify and improve global precipitation measurements from a constellation of dedicated and operational active/passive microwave sensors. GPM is completing the Preliminary Design Phase and is advancing towards launch in 2013 and 2014.
Biological data integration: wrapping data and tools.
Lacroix, Zoé
2002-06-01
Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. Building a digital library for scientific data requires accessing and manipulating data extracted from flat files or databases, documents retrieved from the Web as well as data generated by software. We present an approach to wrapping web data sources, databases, flat files, or data generated by tools through a database view mechanism. Generally, a wrapper has two tasks: it first sends a query to the source to retrieve data and, second builds the expected output with respect to the virtual structure. Our wrappers are composed of a retrieval component based on an intermediate object view mechanism called search views mapping the source capabilities to attributes, and an eXtensible Markup Language (XML) engine, respectively, to perform these two tasks. The originality of the approach consists of: 1) a generic view mechanism to access seamlessly data sources with limited capabilities and 2) the ability to wrap data sources as well as the useful specific tools they may provide. Our approach has been developed and demonstrated as part of the multidatabase system supporting queries via uniform object protocol model (OPM) interfaces.
NASA Astrophysics Data System (ADS)
Luo, Lin
2017-08-01
In the practical selection of Wushu athletes, the objective evaluation of the level of athletes lacks sufficient technical indicators and often relies on the coach’s subjective judgments. It is difficult to accurately and objectively reflect the overall quality of the athletes without a fully quantified indicator system, thus affecting the level improvement of Wushu competition. The analytic hierarchy process (AHP) is a systemic analysis method combining quantitative and qualitative analysis. This paper realizes structured, hierarchized and quantified decision-making process of evaluating broadsword, rod, sword and spear athletes in the AHP. Combing characteristics of the athletes, analysis is carried out from three aspects, i.e., the athlete’s body shape, physical function and sports quality and 18 specific evaluation indicators established, and then combining expert advice and practical experience, pairwise comparison matrix is determined, and then the weight of the indicators and comprehensive evaluation coefficient are obtained to establish the evaluation model for the athletes, thus providing a scientific theoretical basis for the selection of Wushu athletes. The evaluation model proposed in this paper has realized the evaluation system of broadsword, rod, sword and spear athletes, which has effectively improved the scientific level of Wushu athletes selection in practical application.
Evaluation of the Validity and Reliability of the Waterlow Pressure Ulcer Risk Assessment Scale
Charalambous, Charalambos; Koulori, Agoritsa; Vasilopoulos, Aristidis; Roupa, Zoe
2018-01-01
Introduction Prevention is the ideal strategy to tackle the problem of pressure ulcers. Pressure ulcer risk assessment scales are one of the most pivotal measures applied to tackle the problem, much criticisms has been developed regarding the validity and reliability of these scales. Objective To investigate the validity and reliability of the Waterlow pressure ulcer risk assessment scale. Method The methodology used is a narrative literature review, the bibliography was reviewed through Cinahl, Pubmed, EBSCO, Medline and Google scholar, 26 scientific articles where identified. The articles where chosen due to their direct correlation with the objective under study and their scientific relevance. Results The construct and face validity of the Waterlow appears adequate, but with regards to content validity changes in the category age and gender can be beneficial. The concurrent validity cannot be assessed. The predictive validity of the Waterlow is characterized by high specificity and low sensitivity. The inter-rater reliability has been demonstrated to be inadequate, this may be due to lack of clear definitions within the categories and differentiating level of knowledge between the users. Conclusion Due to the limitations presented regarding the validity and reliability of the Waterlow pressure ulcer risk assessment scale, the scale should be used in conjunction with clinical assessment to provide optimum results. PMID:29736104
76 FR 54197 - Census Scientific Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
...-SAC). The Committee will address policy, research, and technical issues relating to a full range of... scientific and technical expertise, as appropriate, to address Census Bureau program needs and objectives...
Quevauviller, Philippe; Barceló, Damia; Beniston, Martin; Djordjevic, Slobodan; Harding, Richard J; Iglesias, Ana; Ludwig, Ralf; Navarra, Antonio; Navarro Ortega, Alícia; Mark, Ole; Roson, Roberto; Sempere, Daniel; Stoffel, Markus; van Lanen, Henny A J; Werner, Micha
2012-12-01
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.
Science communication podcasting in Brazil: the potential and challenges depicted by two podcasts.
Dantas-Queiroz, Marcos V; Wentzel, Lia C P; Queiroz, Luciano L
2018-01-01
Podcasts - online distributed audio files - are easy access and production media, which can be used for Scientific Communication (SC) but few are presented in Portuguese. The objective of this work is to perform a case study with data from a survey for two Brazilian SC podcasts (Dragões de Garagem and Fronteiras da Ciência) to evaluate the increase of science podcast media in Brazil, the involved potential, their advantages, shortcomings, and perspectives. We noted an increase of listeners over the years, probably due to the internet popularization and the massive increase of mobile phones. Scientific content is underexplored, despite the great interest of the public. Humorous and informal podcasts are the most appealing to the public and they usually listen to them on informal educational sites. The majority of the public is from the South and Southeast regions, they are young male adults with undergraduate or graduate degrees. SC podcasts, despite their potential to communicate science, still have shortcomings to overcome. Nevertheless, independent initiatives can solve this difficulty, making possible for the media to reach a varied audience, affecting different groups that would not have interest in a specific content before, or even the access itself to the scientific knowledge.
Ark and Archive: Making a Place for Long-Term Research on Barro Colorado Island, Panama.
Raby, Megan
2015-12-01
Barro Colorado Island (BCI), Panama, may be the most studied tropical forest in the world. A 1,560-hectare island created by the flooding of the Panama Canal, BCI became a nature reserve and biological research station in 1923. Contemporaries saw the island as an "ark" preserving a sample of primeval tropical nature for scientific study. BCI was not simply "set aside," however. The project of making it a place for science significantly reshaped the island through the twentieth century. This essay demonstrates that BCI was constructed specifically to allow long-term observation of tropical organisms--their complex behaviors, life histories, population dynamics, and changing species composition. An evolving system of monitoring and information technology transformed the island into a living scientific "archive," in which the landscape became both an object and a repository of scientific knowledge. As a research site, BCI enabled a long-term, place-based form of collective empiricism, focused on the study of the ecology of a single tropical island. This essay articulates tropical ecology as a "science of the archive" in order to examine the origins of practices of environmental surveillance that have become central to debates about global change and conservation.
Geodesy, a Bibliometric Approach for 2000-2006
NASA Astrophysics Data System (ADS)
Vazquez, G.; Landeros, C. F.
2007-12-01
In recent years, bibliometric science has been frequently applied in the development and evaluation of scientific research. This work presents a bibliometric analysis for the research work performed in the field of geodesy "science of the measurement and mapping of the earth surface including its external gravity field". The objective of this work is to present a complete overview of the generated research on this field to assemble and study the most important publications occurred during the past seven years. The analysis was performed including the SCOPUS and WEB OF SCIENCE databases for all the geodetic scientific articles published between 2000 and 2006. The search profile was designed considering a strategy to seek for titles and article descriptors using the terms geodesy and geodetic and some other terms associated with the topics: geodetic surfaces, vertical measurements, reference systems and frames, modern space-geodetic techniques and satellite missions. Some preliminary results had been achieved specifically Bradford law of distribution for journals and education institutes, and Lotka's law for authors that also includes the cooperation between countries in terms of writing together scientific articles. In the particular case of distributions, the model suggested by Egghe (2002) was adopted for determining the cores.
Clouds and Water Vapor in the Climate System: Remotely Piloted Aircraft and Satellites
NASA Technical Reports Server (NTRS)
Anderson, James G.
1999-01-01
The objective of this work was to attack unanswered questions that lie at the intersection of radiation, dynamics, chemistry and climate. Considerable emphasis was placed on scientific collaboration and the innovative development of instruments required to address these scientific issues. The specific questions addressed include: Water vapor distribution in the Tropical Troposphere: An understanding of the mechanisms that dictate the distribution of water vapor in the middle-upper troposphere; Atmospheric Radiation: In the spectral region between 200 and 600/cm that encompasses the water vapor rotational and continuum structure, where most of the radiative cooling of the upper troposphere occurs, there is a critical need to test radiative transfer calculations using accurate, spectrally resolved radiance observations of the cold atmosphere obtained simultaneously with in situ species concentrations; Thin Cirrus: Cirrus clouds play a central role in the energy and water budgets of the tropical tropopause region; Stratosphere-Troposphere Exchange: Assessment of our ability to predict the behavior of the atmosphere to changes in the boundary conditions defined by thermal, chemical or biological variables; Correlative Science with Satellite Observations: Linking this research to the developing series of EOS observations is critical for scientific progress.
Tallacchini, Mariachiara
2014-01-01
Science and law can be seen as the main creators of orders and rules in knowledge-based societies. These relations are particularly delicate in domains where scientific uncertainty and probabilistic causality are more frequently involved, such as environment and health. The decision of the Court of Florence (Tuscany Region, Northern Italy) (Second Criminal Division, 3217/2010, 17th May 2010) - here analysed - deals with the uncertain correlations between PM10 and health. The criminal law case involved some public officers in Tuscany, indicted for having failed to adopt the adequate measures to keep PM10 levels within the limits set by European Directive 2008/50/EC on air quality. In arguing that accusations were ill-founded, the Court, while invoking the validity of science, deliberately chose the scientific evidence relevant to drawing specific legal consequences. Meteorological phenomena are considered as the single determinant of high levels of PM10; their uncertainty is framed as absolute unpredictability and ungovernability, and from these flaws non-responsibility. The concept of coproduction is applied as a useful critical tool to open up the complex relationships between science and law by showing how scientific and legal concepts generate and influence each other even when legal regulations claims to be neutrally and objectively science-based.
NASA Astrophysics Data System (ADS)
Cobb, Bethany E.
2018-01-01
Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the early labs and more independence later on. Finally, in every lab, students must identify and reflect on sources of error. These labs are more challenging for the instructors to run and to grade, but they are much more satisfying when it comes to student learning.
Animal board invited review: advances in proteomics for animal and food sciences.
Almeida, A M; Bassols, A; Bendixen, E; Bhide, M; Ceciliani, F; Cristobal, S; Eckersall, P D; Hollung, K; Lisacek, F; Mazzucchelli, G; McLaughlin, M; Miller, I; Nally, J E; Plowman, J; Renaut, J; Rodrigues, P; Roncada, P; Staric, J; Turk, R
2015-01-01
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Proceedings: Fourth Workshop on Mining Scientific Datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamath, C
Commercial applications of data mining in areas such as e-commerce, market-basket analysis, text-mining, and web-mining have taken on a central focus in the JCDD community. However, there is a significant amount of innovative data mining work taking place in the context of scientific and engineering applications that is not well represented in the mainstream KDD conferences. For example, scientific data mining techniques are being developed and applied to diverse fields such as remote sensing, physics, chemistry, biology, astronomy, structural mechanics, computational fluid dynamics etc. In these areas, data mining frequently complements and enhances existing analysis methods based on statistics, exploratorymore » data analysis, and domain-specific approaches. On the surface, it may appear that data from one scientific field, say genomics, is very different from another field, such as physics. However, despite their diversity, there is much that is common across the mining of scientific and engineering data. For example, techniques used to identify objects in images are very similar, regardless of whether the images came from a remote sensing application, a physics experiment, an astronomy observation, or a medical study. Further, with data mining being applied to new types of data, such as mesh data from scientific simulations, there is the opportunity to apply and extend data mining to new scientific domains. This one-day workshop brings together data miners analyzing science data and scientists from diverse fields to share their experiences, learn how techniques developed in one field can be applied in another, and better understand some of the newer techniques being developed in the KDD community. This is the fourth workshop on the topic of Mining Scientific Data sets; for information on earlier workshops, see http://www.ahpcrc.org/conferences/. This workshop continues the tradition of addressing challenging problems in a field where the diversity of applications is matched only by the opportunities that await a practitioner.« less
The High Energy Solar Physics mission (HESP): Scientific objectives and technical description
NASA Technical Reports Server (NTRS)
Crannell, Carol; Dennis, Brian; Davis, John; Emslie, Gordon; Haerendel, Gerhard; Hudson, High; Hurford, Gordon; Lin, Robert; Ling, James; Pick, Monique
1991-01-01
The High Energy Solar Physics mission offers the opportunity for major breakthroughs in the understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. The following subject areas are covered: the scientific objectives of HESP; what we can expect from the HESP observations; the high energy imaging spectrometer (HEISPEC); the HESP spacecraft; and budget and schedule.
2007-01-01
primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2
Brives, Charlotte
2017-12-13
In March, 2007, the WHO and UNAIDS established a joint recommendation at the Montreux technical consultation, making male circumcision the first surgery to be used as a preventative tool against an infectious disease. This recommendation was immediately followed by the publication of numerous articles denouncing its content, leading to two distinct controversies, one between epidemiologists, and a second between epidemiologists and social scientists. Interestingly, however, none of these works took male circumcision as an issue in itself, exploring neither that both epidemiologists and social scientists had taken the object 'circumcision' as a given, nor what each party was referring to when talking about circumcision. In this paper, taking a step back, and building on the notion of heuristic context, I show how the RCTs constructed this object in a very specific way, and how this construction was often lost in translation, leading not only to an illusion of universality, but also to misunderstandings between disciplines regarding what is at stake in global health issues.
NASA Astrophysics Data System (ADS)
Gerard-Marchant, P. G.
2008-12-01
Numpy is a free, open source C/Python interface designed for the fast and convenient manipulation of multidimensional numerical arrays. The base object, ndarray, can also be easily be extended to define new objects meeting specific needs. Thanks to its simplicity, efficiency and modularity, numpy and its companion library Scipy have become increasingly popular in the scientific community over the last few years, with application ranging from astronomy and engineering to finances and statistics. Its capacity to handle missing values is particularly appealing when analyzing environmental time series, where irregular data sampling might be an issue. After reviewing the main characteristics of numpy objects and the mechanism of subclassing, we will present the scikits.timeseries package, developed to manipulate single- and multi-variable arrays indexed in time. We will illustrate some typical applications of this package by introducing climpy, a set of extensions designed to help analyzing the impacts of climate variability on environmental data such as precipitations or streamflows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
2017-05-08
Scientists often use specific data analysis and presentation methods familiar within their domain. But does high familiarity drive better analytical judgment? This question is especially relevant when familiar methods themselves can have shortcomings: many visualizations used conventionally for scientific data analysis and presentation do not follow established best practices. This necessitates new methods that might be unfamiliar yet prove to be more effective. But there is little empirical understanding of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their visual analytic judgments. To address this gap and to study these factors, we focusmore » on visualizations used for comparison of climate model performance. We report on a comprehensive survey-based user study with 47 climate scientists and present an analysis of : i) relationships among scientists’ familiarity, their perceived lev- els of comfort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
Linear feature detection algorithm for astronomical surveys - I. Algorithm description
NASA Astrophysics Data System (ADS)
Bektešević, Dino; Vinković, Dejan
2017-11-01
Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.
The Sunrise project: An R&D project for a national information infrastructure prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhnyoung
1995-02-01
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to a prototype National Information Infrastructure (NII) development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multimedia technologies, and data mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; and (3) To define a new way of collaboration between computer science and industrially relevant research.« less
A network-based distributed, media-rich computing and information environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, R.L.
1995-12-31
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less
A need for a code of ethics in science communication?
NASA Astrophysics Data System (ADS)
Benestad, R. E.
2009-09-01
The modern western civilization and high standard of living are to a large extent the 'fruits' of scientific endeavor over generations. Some examples include the longer life expectancy due to progress in medical sciences, and changes in infrastructure associated with the utilization of electromagnetism. Modern meteorology is not possible without the state-of-the-art digital computers, satellites, remote sensing, and communications. Science also is of relevance for policy making, e.g. the present hot topic of climate change. Climate scientists have recently become much exposed to media focus and mass communications, a task for which many are not trained. Furthermore, science, communication, and politics have different objectives, and do not necessarily mix. Scientists have an obligation to provide unbiased information, and a code of ethics is needed to give a guidance for acceptable and unacceptable conduct. Some examples of questionable conduct in Norway include using the title 'Ph.D' to imply scientific authority when the person never had obtained such an academic degree, or writing biased and one-sided articles in Norwegian encyclopedia that do not reflect the scientific consensus. It is proposed here that a set of guide lines (for the scientists and journalists) and a code of conduct could provide recommendation for regarding how to act in media - similar to a code of conduct with respect to carrying out research - to which everyone could agree, even when disagreeing on specific scientific questions.
McNair, Antonia; Moran, Conor; McGrath, Erinn; Naqvi, Syed; Connolly, Claire; McKenna, Verna; Kropmans, Thomas
2011-01-01
Since the introduction of professionalism in medical curricula worldwide, little evidence has been published to exemplify good educational practice. The Medical school at the National University of Ireland Galway teaches professionalism in an interdisciplinary manner, integrating the learning objectives of health informatics, understanding health & illness in society, medical law and ethics. Students work in small groups on clinical cases. Enquiry-based learning is used as the teaching method following a few introductory lectures on specific objectives. Students present their work in the format of a scientific essay. The latter is assessed by a board of reviewers. The purpose of this article is to demonstrate evidence of excellent professional output and illustrate the benefits to a fully integrated professionalism curriculum.
Stenzel, Christian
2016-09-01
The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach, however, increases the operational overhead significantly. But meeting especially these requirements offers unique opportunities for testing these sensor technologies in harsh and dedicated environments which are not available on Earth, therefore pushing the related technologies and methodologies to their limits. The scientific objectives for selected experiments, representing a wide range of research fields, are presented, including the instrument setups and the implemented sensor technologies, and where available, the first scientific results are presented.
NASA Astrophysics Data System (ADS)
Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.
2016-08-01
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.
Pre-Service Versus In-Service Science Teachers' Views of NOS
ERIC Educational Resources Information Center
Hoh, Yin Kiong
2013-01-01
This article reports on the results of a paper-pen questionnaire study involving certain key aspects of the nature of science. The questionnaire covers, among other things, aspects such as uniqueness of the scientific method, objectivity of scientific data, and immutability of scientific laws. The survey was given out to eighty trainee teachers…
ERIC Educational Resources Information Center
Su, Jun-Ming; Lin, Huan-Yu; Tseng, Shian-Shyong; Lu, Chia-Jung
2011-01-01
Promoting the development of students' scientific inquiry capabilities is a major learning objective in science education. As a result, teachers require effective assessment approaches to evaluate students' scientific inquiry-related performance. Teachers must also be able to offer appropriate supplementary instructions, as needed, to students.…
Creating a Taken-as-Shared Understanding for Scientific Explanation: Classroom Norm Perspective
ERIC Educational Resources Information Center
Saglam, Yilmaz; Karaaslan, Emre Harun; Ayas, Alipasa
2014-01-01
The study aimed to investigate whether classroom norm perspective influence the students' capability of elucidating a natural phenomena and beliefs about scientific explanation. In particular, our objective was to explore the process by which the norm for scientific explanation was established and discover how the students' explanation…
Integrating Data Base into the Elementary School Science Program.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document describes seven science activities that combine scientific principles and computers. The objectives for the activities are to show students how the computer can be used as a tool to store and arrange scientific data, provide students with experience using the computer as a tool to manage scientific data, and provide students with…
Do cultural factors affect causal beliefs? Rational and magical thinking in Britain and Mexico.
Subbotsky, Eugene; Quinteros, Graciela
2002-11-01
In two experiments, unusual phenomena (spontaneous destruction of objects in an empty wooden box) were demonstrated to adult participants living in rural communities in Mexico. These were accompanied by actions which had no physical link to the destroyed object but could suggest either scientifically based (the effect of an unknown physical device) or non-scientifically based (the effect of a 'magic spell') causal explanations of the event. The results were compared to the results of the matching two experiments from the earlier study made in Britain. The expectation that scientifically based explanations would prevail in British participants' judgments and behaviours, whereas Mexican participants would be more tolerant toward magical explanations, received only partial support. The prevalence of scientific explanations over magical explanations was evident in British participants' verbal judgments but not in Mexican participants' judgments. In their behavioural responses under the low-risk condition, British participants rejected magical explanations more frequently than did Mexican participants. However, when the risk of disregarding the possible causal effect of magic was increased, participants in both samples showed an equal degree of credulity in the possible effect of magic. The data are interpreted in terms of the relationships between scientific and 'folk' representations of causality and object permanence.
NASA Astrophysics Data System (ADS)
van Eijck, Michiel; Roth, Wolff-Michael
2007-06-01
Given the central place IT-based research tools take in scientific research, the marginal role such tools currently play in science curricula is dissatisfying from the perspective of making students scientifically literate. To appropriately frame the role of IT-based research tools in science curricula, we propose a framework that is developed to understand the use of tools in human activity, namely cultural-historical activity theory (CHAT). Accordingly, IT-based research tools constitute central moments of scientific research activity and neither can be seen apart from its objectives, nor can it be considered apart from the cultural-historical determined forms of activity (praxis) in which human subjects participate. Based on empirical data involving students participating in research activity, we point out how an appropriate account of IT-based research tools involves subjects' use of tools with respect to the objectives of research activity and the contribution to the praxis of research. We propose to reconceptualize the role of IT-based research tools as contributing to scientific literacy if students apply these tools with respect to the objectives of the research activity and contribute to praxis of research by evaluating and modifying the application of these tools. We conclude this paper by sketching the educational implications of this reconceptualized role of IT-based research tools.
Learner factors associated with radical conceptual change among undergraduates
NASA Astrophysics Data System (ADS)
Olson, Joanne Kay
Students frequently enter learning situations with knowledge inconsistent with scientific views. One goal of science instruction is to enable students to construct scientifically accepted ideas while rejecting inaccurate constructs. This process is called conceptual change. This study examined factors associated with students at three levels of conceptual change to elucidate possible influences on the conceptual change process. Factors studied included motivation (including utility value, interest, attainment value, mood, self efficacy, and task difficulty), prior experiences with science, perceptions of the nature of science, connections to objects or events outside the classroom, and specific activities that helped students learn. Four science classes for undergraduate preservice elementary teachers participated in the study, conducted during a three week unit on electricity. Data sources included concept maps, drawings, reflective journal entries, quizzes, a science autobiography assignment, and interviews. Concept maps, drawings, and quizzes were analyzed, and students were placed into high, moderate, and low conceptual change groups. Of the ninety-eight students in the study, fifty-seven were interviewed. Perhaps the most important finding of this study relates to the assessment of conceptual change. Interviews were conducted two months after the unit, and many items on the concept maps had decayed from students' memories. This indicates that time is an important factor. In addition, interview-derived data demonstrated conceptual change levels; concept maps were insufficient to indicate the depth of students' understanding. Factors associated with conceptual change include self efficacy and interest in topic. In addition, moderate conceptual change students cited specific activities as having helped them learn. Low and high students focused on the method of instruction rather than specific activities. Factors not found to be associated with conceptual change include: utility value, mood, task difficulty, and prior experiences with science, and connections to objects and events outside the classroom. Attainment value, perceptions of the nature of science, and mood cannot be ruled out as possible factors due to the problematic nature of assessing them within the context of this study.
Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R
2012-02-01
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.
Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.
2012-01-01
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427
Maximizing the utility of monitoring to the adaptive management of natural resources
Kendall, William L.; Moore, Clinton T.; Gitzen, Robert A.; Cooper, Andrew B.; Millspaugh, Joshua J.; Licht, Daniel S.
2012-01-01
Data collection is an important step in any investigation about the structure or processes related to a natural system. In a purely scientific investigation (experiments, quasi-experiments, observational studies), data collection is part of the scientific method, preceded by the identification of hypotheses and the design of any manipulations of the system to test those hypotheses. Data collection and the manipulations that precede it are ideally designed to maximize the information that is derived from the study. That is, such investigations should be designed for maximum power to evaluate the relative validity of the hypotheses posed. When data collection is intended to inform the management of ecological systems, we call it monitoring. Note that our definition of monitoring encompasses a broader range of data-collection efforts than some alternative definitions – e.g. Chapter 3. The purpose of monitoring as we use the term can vary, from surveillance or “thumb on the pulse” monitoring (see Nichols and Williams 2006), intended to detect changes in a system due to any non-specified source (e.g. the North American Breeding Bird Survey), to very specific and targeted monitoring of the results of specific management actions (e.g. banding and aerial survey efforts related to North American waterfowl harvest management). Although a role of surveillance monitoring is to detect unanticipated changes in a system, the same result is possible from a collection of targeted monitoring programs distributed across the same spatial range (Box 4.1). In the face of limited budgets and many specific management questions, tying monitoring as closely as possible to management needs is warranted (Nichols and Williams 2006). Adaptive resource management (ARM; Walters 1986, Williams 1997, Kendall 2001, Moore and Conroy 2006, McCarthy and Possingham 2007, Conroy et al. 2008a) provides a context and specific purpose for monitoring: to evaluate decisions with respect to achievement of specific management objectives; and to evaluate the relative validity of predictive system models. This latter purpose is analogous to the role of data collection within the scientific method, in a research context.
Brüggmann, Dörthe; Richter, Theresa; Klingelhöfer, Doris; Gerber, Alexander; Bundschuh, Matthias; Jaque, Jenny; Groneberg, David A
2016-04-04
Gestational diabetes mellitus (GDM) is associated with substantial morbidity for mothers and their offspring. While clinical and basic research activities on this important disease grow constantly, there is no concise analysis of global architecture of GDM research. Hence, it was the objective of this study to assess the global scientific performance chronologically, geographically and in relation to existing research networks and gender distribution of publishing authors. On the basis of the New Quality and Quantity Indices in Science (NewQIS) platform, scientometric methods were combined with modern visualizing techniques such as density equalizing mapping, and the Web of Science database was used to assess GDM-related entries from 1900 to 2012. Twelve thousand five hundred four GDM-related publications were identified and analyzed. The USA (4295 publications) and the UK (1354 publications) dominated the field concerning research activity, overall citations and country-specific Hirsch-Index, which quantified the impact of a country's published research on the scientific community. Semi-qualitative indices such as country-specific citation rates ranked New Zealand and the UK at top positions. Annual collaborative publications increased steeply between the years 1990 and 2012 (71 to 1157 respectively). Subject category analysis pointed to a minor interest of public health issues in GDM research. Gender analysis in terms of publication authorship revealed a clear dominance of the male gender until 2005; then a trend towards gender equity started and the activity of female scientists grew visibly in many countries. The country-specific gender analysis revealed large differences, i.e. female scientists dominated the scientific output in the USA, whereas the majority of research was published by male authors in countries such as Japan. This study provides the first global sketch of GDM research architecture. While North-American and Western-European countries were dominating the GDM-related scientific landscape, a disparity exists in terms of research output between developed and low-resource countries. Since GDM is linked to considerable mortality and morbidity of mothers and their offspring and constitutes a tremendous burden for the healthcare systems in underserved countries, our findings emphasize the need to address disparities by fostering research endeavors, public health programs and collaborative efforts in these nations.
Fraser, Véronique J; Martin, James G
2009-05-11
The language of science should be objective and detached and should place data in the appropriate context. The aim of this commentary was to explore the notion that recent trends in the use of language have led to a loss of objectivity in the presentation of scientific data. The relationship between the value-laden vocabulary and impact factor among fundamental biomedical research and clinical journals has been explored. It appears that fundamental research journals of high impact factors have experienced a rise in value-laden terms in the past 25 years.
Commitment to quality of the Spanish scientific societies.
García-Alegría, J; Vázquez-Fernández Del Pozo, S; Salcedo-Fernández, F; García-Lechuz Moya, J M; Andrés Zaragoza-Gaynor, G; López-Orive, M; García-San Jose, S; Casado-Durández, P
2017-05-01
This article summarises the objectives, methodology and initial conclusions of the project "Commitment to Quality of the Spanish Scientific Societies", coordinated by the Ministry of Health, Social Services and Equality, the Spanish Society of Internal Medicine and the Aragon Institute of Health Sciences, in which 48 scientific societies participate. This project's objectives are to decrease the use of unnecessary medical interventions, which are those that have shown no efficacy, have little or questionable effectiveness or are not cost-effective; decrease variability in clinical practice; promote the commitment among physicians and patients to properly use healthcare resources; and to promote clinical safety. The document includes 135 final recommendations for what not to do, prepared by 30 Spanish scientific societies. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Objectivity, abstraction, and the individual: the influence of Søren Kierkegaard on Paul Feyerabend.
Kidd, Ian James
2011-03-01
This paper explores the influence of Søren Kierkegaard upon Paul Feyerabend by examining their common criticisms of totalising accounts of human nature. Both complained that philosophical and scientific theories of human nature which were methodologically committed to objectivity and abstraction failed to capture the richness of human experience. Kierkegaard and Feyerabend argued that philosophy and the science were threatening to become obstacles to human development by imposing abstract theories of human nature and reality which denied the complexities of both. In both cases, this took the form of asserting an 'existential' criterion for the assessment of philosophical and scientific theories. Kierkegaard also made remarks upon the inappropriateness of applying natural scientific methods to human beings which Feyerabend later expanded and developed in his criticisms of the inability of the 'scientific world-view' to accommodate the values necessary to a flourishing human life. I conclude by noting some differences between Kierkegaard and Feyerabend's positions and by affirming the value of existential criticisms of scientific knowledge.
Antibody Scientific Committee | Office of Cancer Clinical Proteomics Research
The Antibody Scientific Committee provides scientific insight and guidance to the NCI's Antibody Characterization Program. Specifically, the members of this committee evaluate request from the external scientific community for development and characterization of antibodies by the program. The members of the Antibody Scientific Committee include:
Enhancing Scientific Literacy by Targeting Specific Scientific Skills
ERIC Educational Resources Information Center
Hicks, Sylvia; MacDonald, Shane; Martin, Ela
2017-01-01
The term scientific literacy is increasingly used by governments and teaching bodies, stemming from a growing international concern by scientists and government, who recognize the economic significance of developing scientific skills (McGregor & Kearton, 2010). However, in a society that requires students to be scientifically literate,…
Science, truth, and forensic cultures: the exceptional legal status of DNA evidence.
Lynch, Michael
2013-03-01
Many epistemological terms, such as investigation, inquiry, argument, evidence, and fact were established in law well before being associated with science. However, while legal proof remained qualified by standards of 'moral certainty', scientific proof attained a reputation for objectivity. Although most forms of legal evidence (including expert evidence) continue to be treated as fallible 'opinions' rather than objective 'facts', forensic DNA evidence increasingly is being granted an exceptional factual status. It did not always enjoy such status. Two decades ago, the scientific status of forensic DNA evidence was challenged in the scientific literature and in courts of law, but by the late 1990s it was being granted exceptional legal status. This paper reviews the ascendancy of DNA profiling, and argues that its widely-heralded objective status is bound up with systems of administrative accountability. The 'administrative objectivity' of DNA evidence rests upon observable and reportable bureaucratic rules, records, recording devices, protocols, and architectural arrangements. By highlighting administrative sources of objectivity, this paper suggests that DNA evidence remains bound within the context of ordinary organisational and practical routines, and is not a transcendent source of 'truth' in the criminal justice system. Copyright © 2012. Published by Elsevier Ltd.
Values and Objectivity in Science: Value-Ladenness, Pluralism and the Epistemic Attitude
NASA Astrophysics Data System (ADS)
Carrier, Martin
2013-10-01
My intention is to cast light on the characteristics of epistemic or fundamental research (in contrast to application-oriented research). I contrast a Baconian notion of objectivity, expressing a correspondence of the views of scientists to the facts, with a pluralist notion, involving a critical debate between conflicting approaches. These conflicts include substantive hypotheses or theories but extend to values as well. I claim that a plurality of epistemic values serves to accomplish a non-Baconian form of objectivity that is apt to preserve most of the intuitions tied to the objectivity of science. For instance, pluralism is the only way to cope with the challenge of preference bias. Furthermore, the plurality of epistemic values cannot be substantially reduced by exploring the empirical success of scientific theories distinguished in light of particular such values. However, in addition to pluralism at the level of theories and value-commitments alike, scientific research is also characterized by a joint striving for consensus which I trace back to a shared epistemic attitude. This attitude manifests itself, e.g., in the willingness of scientists to subject their claims to empirical scrutiny and to respect rational argument. This shared epistemic attitude is embodied in rules adopted by the scientific community concerning general principles of dealing with knowledge claims. My contention is that pluralism and consensus formation can be brought into harmony by placing them at different levels of consideration: at the level of scientific reasoning and at the level of social conventions regarding how to deal with claims put forward within the scientific community.
Jones, Nancy L.; Peiffer, Ann M.; Lambros, Ann; Guthold, Martin; Johnson, A. Daniel; Tytell, Michael; Ronca, April E.; Eldridge, J. Charles
2013-01-01
A curriculum was designed to shape biomedical graduate students into researchers with a high commitment to professionalism and social responsibility, and to provide students with tools to navigate the complex, rapidly evolving academic and societal environments with a strong ethical commitment. Problem-Based Learning (PBL) pedagogy was chosen because it is active, learner-centered, and focuses on skill and process development. Additionally, the small group format provides a high degree of socialization around professional norms. Two courses were developed. Scientific Professionalism Scientific Integrity addressed discipline-specific and broad professional norms and obligations for the ethical practice of science and responsible conduct of research (RCR). Scientific Professionalism Bioethics and Social Responsibility focused on current ethical and bioethical issues within the scientific profession and implications of research for society. Each small-group session examined case scenarios that included: (1) learning objectives for professional norms and obligations; (2) key ethical issues and philosophies within each topic area; (3) one or more of the RCR instructional areas; and (4) at least one type of moral reflection. Cases went beyond covering overt research misconduct to emphasize professional standards, obligations, and underlying philosophies for the ethical practice of science, competing interests of stakeholders, and oversight of science (internal and external). To our knowledge this was the first use of PBL to teach scientific integrity and ethics. Both faculty and students at Wake Forest endorsed the orientation of professionalism, active learning, and acquiring skills in contrast to a compliance-based approach that emphasizes learning rules and regulations. PMID:20797979
Artificial Neural Networks as Decision Support Tools in Cytopathology: Past, Present, and Future
Pouliakis, Abraham; Karakitsou, Efrossyni; Margari, Niki; Bountris, Panagiotis; Haritou, Maria; Panayiotides, John; Koutsouris, Dimitrios; Karakitsos, Petros
2016-01-01
OBJECTIVE This study aims to analyze the role of artificial neural networks (ANNs) in cytopathology. More specifically, it aims to highlight the importance of employing ANNs in existing and future applications and in identifying unexplored or poorly explored research topics. STUDY DESIGN A systematic search was conducted in scientific databases for articles related to cytopathology and ANNs with respect to anatomical places of the human body where cytopathology is performed. For each anatomic system/organ, the major outcomes described in the scientific literature are presented and the most important aspects are highlighted. RESULTS The vast majority of ANN applications are related to cervical cytopathology, specifically for the ANN-based, semiautomated commercial diagnostic system PAPNET. For cervical cytopathology, there is a plethora of studies relevant to the diagnostic accuracy; in addition, there are also efforts evaluating cost-effectiveness and applications on primary, secondary, or hybrid screening. For the rest of the anatomical sites, such as the gastrointestinal system, thyroid gland, urinary tract, and breast, there are significantly less efforts relevant to the application of ANNs. Additionally, there are still anatomical systems for which ANNs have never been applied on their cytological material. CONCLUSIONS Cytopathology is an ideal discipline to apply ANNs. In general, diagnosis is performed by experts via the light microscope. However, this approach introduces subjectivity, because this is not a universal and objective measurement process. This has resulted in the existence of a gray zone between normal and pathological cases. From the analysis of related articles, it is obvious that there is a need to perform more thorough analyses, using extensive number of cases and particularly for the nonexplored organs. Efforts to apply such systems within the laboratory test environment are required for their future uptake. PMID:26917984
Dental research in Spain. A bibliometric analysis on subjects, authors and institutions (1993-2012).
Bueno-Aguilera, F; Jiménez-Contreras, E; Lucena-Martín, C; Pulgar-Encinas, R
2016-03-01
Bibliometrics is defined as the use of statistical methods in the analysis of a body of literature to reveal the historical development of subject fields and patterns of authorship, publication, and use. Our objective was to characterize Spanish scientific output in Dentistry through the analysis of Web of Science database in a 20-year period. By means of a bibliometric study documents were statistically analyzed using indicators that showed quantitative and qualitative aspects of the production. Specifically, time course of the scientific production within the time span was analysed, as were the journals where the article was published and the categories of Journal Citation Reports (JCR) in which they belong, thematic areas, authorship, and finally authors and institutions with the highest production in Spain. By means of the design of a specific search strategy previously described in the scientific literature, we recovered all citable documents about Dentistry signed by Spanish researchers and included in the WoS database between 1993 and 2012. A total of 3006 documents fulfilled the search criteria, of which 2449 (81.5%) were published in journals within the category Dentistry Oral Surgery and Medicine and 557 (18.5%) within other categories of the JCR. During the four quinquenniums studied, the production increased quantitatively (8.6-fold) and qualitatively. Finally, the universities of Granada and Complutense of Madrid were the institutions with the highest production and most prolific authors. The Spanish dental production sharply increased in the last two decades, reaching quantitative and qualitative levels similar to those of the other medical specialties in the country.
Use of scientific social networking to improve the research strategies of PubMed readers.
Evdokimov, Pavel; Kudryavtsev, Alexey; Ilgisonis, Ekaterina; Ponomarenko, Elena; Lisitsa, Andrey
2016-02-18
Keeping up with journal articles on a daily basis is an important activity of scientists engaged in biomedical research. Usually, journal articles and papers in the field of biomedicine are accessed through the Medline/PubMed electronic library. In the process of navigating PubMed, researchers unknowingly generate user-specific reading profiles that can be shared within a social networking environment. This paper examines the structure of the social networking environment generated by PubMed users. A web browser plugin was developed to map [in Medical Subject Headings (MeSH) terms] the reading patterns of individual PubMed users. We developed a scientific social network based on the personal research profiles of readers of biomedical articles. A browser plugin is used to record the digital object identifier or PubMed ID of web pages. Recorded items are posted on the activity feed and automatically mapped to PubMed abstract. Within the activity feed a user can trace back previously browsed articles and insert comments. By calculating the frequency with which specific MeSH occur, the research interests of PubMed users can be visually represented with a tag cloud. Finally, research profiles can be searched for matches between network users. A social networking environment was created using MeSH terms to map articles accessed through the Medline/PubMed online library system. In-network social communication is supported by the recommendation of articles and by matching users with similar scientific interests. The system is available at http://bioknol.org/en/.
Daniel L. Schmoldt; David L. Peterson; Robert E. Keane; James M. Lenihan; Donald McKenzie; David R. Weise; David V. Sandberg
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial...
ERIC Educational Resources Information Center
McNeill, Katherine L.; Knight, Amanda M.
2013-01-01
One of the hallmarks of science and science education is the production of new knowledge about the natural world through objective argument and critique. Teachers' understanding of scientific argumentation impacts how they incorporate this important scientific practice into science classrooms. This study examined how three professional…
Human and Robotic Exploration of Near-Earth Objects
NASA Technical Reports Server (NTRS)
Abell, Paul A.
2010-01-01
A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the early solar system. Data collected from these missions would help constrain the suite of materials possibly delivered to the early Earth, and would identify potential source regions from which NEOs originate. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense.
Educational NASA Computational and Scientific Studies (enCOMPASS)
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2013-01-01
Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.
Quecedo Gutiérrez, L; Ruiz Abascal, R; Calvo Vecino, J M; Peral García, A I; Matute González, E; Muñoz Alameda, L E; Guasch Arévalo, E; Gilsanz Rodríguez, F
2016-11-01
In April 2013 the Ministry of Health (MSSSI) adopted the project called "Commitment to Quality by Scientific Societies in Spain", in response to social and professional demands for sustainability of the health system. The initiative is part of the activities of the Spanish Network of Agencies for Health Technology Assessment and Services of the National Health System, and is coordinated jointly by the Quality and Cohesion Department, the Aragon Institute of Health Sciences (IACS), and the Spanish Society of Internal Medicine (SEMI). All the scientific societies in Spain have been included in this project, and its main objective is to reduce the unnecessary use of health interventions in order to agree "do not do" recommendations, based on scientific evidence. The primary objective was to identify interventions that have not proven effective, have limited or doubtful effectiveness, are not cost-effective, or do not have priority. Secondary objectives were: reducing variability in clinical practice, to spread information between doctors and patients to guide decision-making, the appropriate use of health resources and, the promotion of clinical safety and reducing iatrogenesis. The selection process of the 5 "do not do" recommendations was made by Delphi methodology. A total of 25 panellists (all anaesthesiologists) chose between 15 proposals based on: evidence that supports quality, relevance, or clinical impact, and the people they affect. The 5 recommendations proposed were: Do not maintain deep levels of sedation in critically ill patients without a specific indication; Do not perform preoperative chest radiography in patients under 40 years-old with ASA physical status I or II; Do not systematically perform preoperative tests in cataract surgery unless otherwise indicated based on clinical history and physical examination; Do not perform elective surgery in patients with anaemia at risk of bleeding until a diagnostic workup is performed and treatment is given; and not perform laboratory tests (blood count, biochemistry and coagulation) prior to surgery in healthy or low risk patients (ASA I and II) with minimal estimated blood loss. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
A standardized set of 3-D objects for virtual reality research and applications.
Peeters, David
2018-06-01
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.
Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph
NASA Technical Reports Server (NTRS)
West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.
2001-01-01
This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.
Bender, Miriam; Elias, Dina
The esthetic pattern of knowing is critical for nursing practice, yet remains weakly defined and understood. This gap has arguably relegated esthetic knowing to an "ineffable" creativity that resists transparency and understanding, which is a barrier to articulating its value for nursing and its importance in producing beneficial health outcomes. Current philosophy of science developments are synthesized to argue that esthetic knowing is an appropriate "object" of scientific inquiry. Examples of empirical scholarship that can be conceived as scientific inquiry into manifestations of esthetic knowing are highlighted. A program of research is outlined to advance a science of esthetic knowing.
Morrison, Rodolfo; Gómez, Silvia; Henny, Enrique; Tapia, María Jesús; Rueda, Laura
2017-01-01
The progression of occupational science in Chile is documented in the main scientific publication of the field, the Chilean Journal of Occupational Therapy (RChTO). Identify approaches to understanding and applying occupation and occupational science as elucidated in the RChTO. A systematic qualitative review of the journal (2001-2012) identified articles elucidating an approach to understanding and application operationally defined as references to specific authors, theories, models/paradigms, definitions, and other fields that support approaches to O/OS. The study identified two main approaches. The first considers occupation/occupational science from a practical perspective or as a means to explain human behavior; the second considers occupation/occupational science as an object of study. Each approach is further divided into categories. This study provides a novel perspective on regional use of occupational science concepts. These findings contribute to our understanding of this science in context and to recognition of the cultural relevance of these scientific concepts.
Preventing miscarriages of justice: A review of forensic firearm identification.
Bolton-King, Rachel S
2016-03-01
The role of a firearm examiner is wide ranging, involving tasks that require scientific understanding in aspects of chemistry, physics and biology. This article aims to provide a critical review of the key scientific principles and practices specifically involved with forensic firearm identification and to discuss how misidentifications have resulted in cases of injustice. Implementation of quality assured examination practice, demonstration of individual examiner competence and more objective methods of reporting are being adopted by firearm examiners and laboratories to address some of the criticisms relating to subjectivity and standardisation inherent within the discipline. The impact of these changes is outlined and further recommendations are made for both examiners and legal professionals to minimise the potential for future injustices involving firearms evidence. Latest research in the field is cited, continuing to support the theory and use of firearm identification as admissible evidence in court. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Placebos in clinical practice and research.
De Deyn, P P; D'Hooge, R
1996-01-01
The main current application of placebo is in clinical research. The term placebo effect refers to diverse non-specific, desired or non-desired effects of substances or procedures and interactions between patient and therapist. Unpredictability of the placebo effect necessitates placebo-controlled designs for most trials. Therapeutic and diagnostic use of placebo is ethically acceptable only in few well-defined cases. While "therapeutic" application of placebo almost invariably implies deception, this is not the case for its use in research. Conflicts may exist between the therapist's Hippocratic and scientific obligations. The authors provide examples in neuropsychiatry, illustrating that objective scientific data and well-considered guidelines may solve the ethical dilemma. Placebo control might even be considered an ethical obligation but some provisos should be kept in mind: (a) no adequate therapy for the disease should exist and/or (presumed) active therapy should have serious side-effects; (b) placebo treatment should not last too long; (c) placebo treatment should not inflict unacceptable risks, and (d) the experimental subject should be adequately informed and informed consent given. PMID:8798935
NASA Astrophysics Data System (ADS)
Bruguière, Catherine; Perru, Olivier; Charles, Frédéric
2018-03-01
The article examines a number of links between the metaphorical uses of the concept of metamorphosis in literature and the various changes of the meaning of the concept that took place at the beginning of the modern scientific age between the 17th and 19th centuries, a period during which the notion of metamorphosis resurfaced in conflict with evolutionist thinking. We present the extent to which the concept of animal metamorphosis, the object of multiple redefinitions over the course of this historical period, became the vector of a very strong metaphorical meaning, which emerged in the literature of the period and survives to this day in certain children's storybooks belonging to what we term the genre of "realistic fiction". We intend, from a pedagogical standpoint, to identify which specific attributes of these metaphors exist in those storybooks, and to gauge the extent to which those attributes contradict the scientific characteristics and fictional representations of the concept of metamorphosis.
Research briefing on high-temperature superconductivity
NASA Astrophysics Data System (ADS)
1987-10-01
The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.
ASTEX - a study of a lander and orbiter mission to two near-Earth asteroids
NASA Astrophysics Data System (ADS)
Boehnhardt, Hermann; Nathues, Andreas; Harris, Alan; Astex Study Team
ASTEX stands for a feasibility study of an exploration mission to two near-Earth asteroids. The targets should have different mineralogical constitution, more specifically one asteroid should be of ‘primitive" nature, the other one should be "evolved". The scientific goal of such a mission is to explore the physical, geological and compositional constitution of the asteroids as planetary bodies as well as to provide information and constraints on the formation and evolution history of the objects per se and of the planetary system, here the asteroid belt, as a whole. Two aspects play an important role, i.e. the search and exploration for the origin and evolution of the primordial material for the formation of life in the solar system on one side and the understanding of the processes that have led to mineralogical differentiation of planetary embryos on the other side. The mission scenario consists of an orbiting and landing phase at each target. The immediate aims of the study are (1) to identify potential targets and to develop for selected pairs more detailed mission scenarios including the best possible propulsion systems to be used, (2) to define the scientific payload of the mission, (3) to analyse the requirements and options for the spacecraft bus and the lander system, and (4) to assess and to define requirements for the operational ground segment of the mission.This eight-months study is directed by the MPI for Solar System Research under support grant by DLR Bonn-Oberkassel and is performed in close collaboration between German scientific research institutes and industry. It is considered complementary to mission studies performed elsewhere and focussing on sample return and impact hazards and their remedy from near-Earth objects.
Lausberg, Hedda; Sloetjes, Han
2016-09-01
As visual media spread to all domains of public and scientific life, nonverbal behavior is taking its place as an important form of communication alongside the written and spoken word. An objective and reliable method of analysis for hand movement behavior and gesture is therefore currently required in various scientific disciplines, including psychology, medicine, linguistics, anthropology, sociology, and computer science. However, no adequate common methodological standards have been developed thus far. Many behavioral gesture-coding systems lack objectivity and reliability, and automated methods that register specific movement parameters often fail to show validity with regard to psychological and social functions. To address these deficits, we have combined two methods, an elaborated behavioral coding system and an annotation tool for video and audio data. The NEUROGES-ELAN system is an effective and user-friendly research tool for the analysis of hand movement behavior, including gesture, self-touch, shifts, and actions. Since its first publication in 2009 in Behavior Research Methods, the tool has been used in interdisciplinary research projects to analyze a total of 467 individuals from different cultures, including subjects with mental disease and brain damage. Partly on the basis of new insights from these studies, the system has been revised methodologically and conceptually. The article presents the revised version of the system, including a detailed study of reliability. The improved reproducibility of the revised version makes NEUROGES-ELAN a suitable system for basic empirical research into the relation between hand movement behavior and gesture and cognitive, emotional, and interactive processes and for the development of automated movement behavior recognition methods.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.
1989-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
1990-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Marletta, Giuseppe; Canfora, Angela; Roscani, Francesco; Cernicchiaro, Lucia; Cutrera, Maria; Russo, Marianna; Artioli, Giovanna; Sarli, Leopoldo
2015-09-09
Evidence-based medicine offers effective pathways of pharmacological treatment for chronic pain that may compromise the quality of life of patients; this is one of the main reasons why more and more people resort to traditional and complementary approaches, to try to maintain or regain their health. The effectiveness of the various forms of complementary treatments often cannot be proven objectively, which is why, given the need to find more concrete evidence of the effectiveness of complementary therapies with particular reference to the method of healing touch massage, a review of the literature was conducted in order to gather evidence of the efficacy of the specific method regarding pain and other health outcomes of patients with malignant disease to support a proposal for improvement, based on the practice of healing touch massage conducted by nurses. Systematic review. There are several examples (in some cases specifically regarding patients with tumors) of the positive effects of healing touch massage on pain, anxiety and fatigue, and also on biochemical parameters. The way to full recognition by both the institutional and the scientific community seems to promise fairly well, although it should be noted that the achievement of this goal will require further research avoiding the limitations of previous studies.
Scientific Rationale and Requirements for a Global Seismic Network on Mars
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Anderson, Don L.; Banerdt, W. Bruce; Butler, Rhett G.; Davis, Paul M.; Duennebier, Frederick K.; Nakamura, Yosio; Okal, Emile A.; Phillips, Roger J.
1991-01-01
Following a brief overview of the mission concepts for a Mars Global Network Mission as of the time of the workshop, we present the principal scientific objectives to be achieved by a Mars seismic network. We review the lessons for extraterrestrial seismology gained from experience to date on the Moon and on Mars. An important unknown on Mars is the expected rate of seismicity, but theoretical expectations and extrapolation from lunar experience both support the view that seismicity rates, wave propagation characteristics, and signal-to-noise ratios are favorable to the collection of a scientifically rich dataset during the multiyear operation of a global seismic experiment. We discuss how particular types of seismic waves will provide the most useful information to address each of the scientific objectives, and this discussion provides the basis for a strategy for station siting. Finally, we define the necessary technical requirements for the seismic stations.
For science, love and money: the social worlds of poultry and rabbit breeding in Britain, 1900-1940.
Marie, Jenny
2008-12-01
This paper traces the joint histories of poultry and rabbit breeding by fanciers, and for commercial and scientific purposes, in early 20th-century Britain. I show that the histories of the social worlds that bred for these different purposes are intertwined, as are the histories of poultry and rabbit breeding in general. To properly understand the history of scientific breeding we must therefore understand the general context of breeding in which this occurred. In the paper I show that as fancy poultry and rabbits were taken up for scientific research at the start of the 20th century they became scientific specimens and boundary objects between the social worlds. Their existence as boundary objects motivated the social worlds to coordinate their work through translators and trading zones. By the 1930s all three coordination methods were being used simultaneously.
International Ultraviolet Explorer Observatory operations
NASA Technical Reports Server (NTRS)
1985-01-01
This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.
ERIC Educational Resources Information Center
Kaya, Gamze Inan
2017-01-01
The purpose of this study was to investigate the relations between pre-service teachers' scientific epistemological beliefs and goal orientations in 2X2 framework. Scientific epistemological beliefs are domain-specific views of people about nature and acquisition of scientific knowledge, how scientific knowledge is produced, how reliable and valid…
ERIC Educational Resources Information Center
Zangori, Laura; Forbes, Cory T.
2016-01-01
To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…
Beyond 2013 - The Future of European Scientific Drilling Research - An introduction.
NASA Astrophysics Data System (ADS)
Camoin, G.; Stein, R.
2009-04-01
The Integrated Ocean Drilling Program (IODP) is funded for the period 2003-2013, and is now starting to plan the future of ocean drilling beyond 2013, including the development of new technologies, new emerging research fields as and the societal relevance of this programme. In this context an interdisciplinary and multinational (USA, Europe, Japan, Asian and Oceanian countries), key conference - INVEST IODP New Ventures in Exploring Scientific Targets - addressing all international IODP partners is therefore planned for September 23rd-25th 2009 in Bremen, Germany (more information at http://www.iodp.org and http://marum.de/iodp-invest.html) to discuss future directions of ocean drilling research and related aspects such as ventures with related programmes or with industry. The first critical step of INVEST is to define the scientific research goals of the second phase of the Integrated Ocean Drilling Program (IODP), which is expected to begin in late 2013. INVEST will be open to all interested scientists and students and will be the principal opportunity for the international science community to help shape the future of scientific ocean drilling. The outcome of the conference will be the base to draft a science plan in 2010 and to define new goals and strategies to effectively meet the challenges of society and future ocean drilling. The current EGU Session and the related two days workshop which will be held at the University of Vienna will specifically address the future of European scientific drilling research. The major objectives of those two events are to sharpen the European interests in the future IODP and to prepare the INVEST Conference and are therefore of prime importance to give weight to the European propositions in the program renewal processes, both on science, technology and management, and to provide the participants with information about the status/process of ongoing discussions and negotiations regarding program structure, and provide them with the expected framework (available drilling platforms and anticipated funding levels). The key items that should be addressed during the EGU Session and the workshop will especially include : (1) The future of ECORD (science, technology, management). (2) New research initiatives and emerging fields in scientific drilling (3) Relationships between IODP and other programs (e.g. ICDP, IMAGES etc). (4) Collaboration between academia and industry. (5) New technologies and the Mission Specific Platform approach.
Sources Sought for Innovative Scientific Instrumentation for Scientific Lunar Rovers
NASA Technical Reports Server (NTRS)
Meyer, C.
1993-01-01
Lunar rovers should be designed as integrated scientific measurement systems that address scientific goals as their main objective. Scientific goals for lunar rovers are presented. Teleoperated robotic field geologists will allow the science team to make discoveries using a wide range of sensory data collected by electronic 'eyes' and sophisticated scientific instrumentation. rovers need to operate in geologically interesting terrain (rock outcrops) and to identify and closely examine interesting rock samples. Enough flight-ready instruments are available to fly on the first mission, but additional instrument development based on emerging technology is desirable. Various instruments that need to be developed for later missions are described.
Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.;
2008-01-01
To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.
ClassLess: A Comprehensive Database of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Hillenbrand, Lynne; Baliber, Nairn
2015-01-01
We have designed and constructed a database housing published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks.
Commentaries on “Informatics and Medicine: From Molecules to Populations”
Altman, R. B.; Balling, R.; Brinkley, J. F.; Coiera, E.; Consorti, F.; Dhansay, M. A.; Geissbuhler, A.; Hersh, W.; Kwankam, S. Y.; Lorenzi, N. M.; Martin-Sanchez, F.; Mihalas, G. I.; Shahar, Y.; Takabayashi, K.; Wiederhold, G.
2009-01-01
Summary Objective To discuss interdisciplinary research and education in the context of informatics and medicine by commenting on the paper of Kuhn et al. “Informatics and Medicine: From Molecules to Populations”. Method Inviting an international group of experts in biomedical and health informatics and related disciplines to comment on this paper. Results and Conclusions The commentaries include a wide range of reasoned arguments and original position statements which, while strongly endorsing the educational needs identified by Kuhn et al., also point out fundamental challenges that are very specific to the unusual combination of scientific, technological, personal and social problems characterizing biomedical informatics. They point to the ultimate objectives of managing difficult human health problems, which are unlikely to yield to technological solutions alone. The psychological, societal, and environmental components of health and disease are emphasized by several of the commentators, setting the stage for further debate and constructive suggestions. PMID:18690363
Simple and Multiple Endmember Mixture Analysis in the Boreal Forest
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie
2000-01-01
A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.
NASA RECON: Course development, administration, and evaluation. A research and development proposal
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Roquemore, Leroy
1984-01-01
This proposal addresses the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system. Chapter 1 presents a brief introduction. Chapter 2 identifies general and specific objectives, i.e., needs analysis, course development, course administration, and course evaluation. Chapter 3 proposes the methodology to be used in successfully accomplishing these objectives. Chapter 4 highlights expected results and product deliverables, and Chapter 5 presents the project evaluation plan to be followed. Chapter 6 is a brief overview of the institutional resources available at the proposing institutions, i.e., at the University of Southwestern Louisiana and at Southern University to support the project. Chapter 7 proposes a budget, time schedule, and management plan. Chapter 8 is a summary of the foregoing.
The engineered phytoremediation of ionic and methylmercury pollution 70054yr.2001.doc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
2001-06-01
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts ofmore » this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as recently reviewed (Meagher et al., 2000; Rugh et al., 2000).« less
Fraser, Véronique J; Martin, James G
2009-01-01
The language of science should be objective and detached and should place data in the appropriate context. The aim of this commentary was to explore the notion that recent trends in the use of language have led to a loss of objectivity in the presentation of scientific data. The relationship between the value-laden vocabulary and impact factor among fundamental biomedical research and clinical journals has been explored. It appears that fundamental research journals of high impact factors have experienced a rise in value-laden terms in the past 25 years. PMID:19432970
"Above the Slough of Despond": Weylean invariantism and quantum physics
NASA Astrophysics Data System (ADS)
Toader, Iulian D.
2018-02-01
The pursuit of scientific objectivity turned physical theories into systems of symbols or, as Weyl also put it sometimes, into symbolic constructions. What characterizes such constructions, at least in part, is a certain type of Begriffsbildung, according to which scientific concepts are freely created by the mind, i.e., implicitly defined via fundamental theoretical postulates (Toader, 2013). This idea, inspired by Hilbert, together with an approach to understanding influenced by Husserl, led Weyl to a form of skepticism about science, according to which if objectivity could be attained, understanding would thereby be sacrificed; and if understanding were to be pursued, this would render objectivity unattainable (Toader, 2011).
Positive technology: using interactive technologies to promote positive functioning.
Riva, Giuseppe; Baños, Rosa M; Botella, Cristina; Wiederhold, Brenda K; Gaggioli, Andrea
2012-02-01
It is generally assumed that technology assists individuals in improving the quality of their lives. However, the impact of new technologies and media on well-being and positive functioning is still somewhat controversial. In this paper, we contend that the quality of experience should become the guiding principle in the design and development of new technologies, as well as a primary metric for the evaluation of their applications. The emerging discipline of Positive Psychology provides a useful framework to address this challenge. Positive Psychology is the scientific study of optimal human functioning and flourishing. Instead of drawing on a "disease model" of human behavior, it focuses on factors that enable individuals and communities to thrive and build the best in life. In this paper, we propose the "Positive Technology" approach--the scientific and applied approach to the use of technology for improving the quality of our personal experience through its structuring, augmentation, and/or replacement--as a way of framing a suitable object of study in the field of cyberpsychology and human-computer interaction. Specifically, we suggest that it is possible to use technology to influence three specific features of our experience--affective quality, engagement/actualization, and connectedness--that serve to promote adaptive behaviors and positive functioning. In this framework, positive technologies are classified according to their effects on a specific feature of personal experience. Moreover, for each level, we have identified critical variables that can be manipulated to guide the design and development of positive technologies.
[Bioethics today: Heidegger’s questions].
Figueroa, Gustavo
2011-10-01
Bioethics was born not only as an aftermath of medical technological advance but also from underlying philosophical conceptions about man, that determine scientific research. Analyzing occidental ethics, Heidegger showed that animalism was the only human dimension considered and thereby the domain of measurable objectiveness. He postulated that the essence of human existence as being-in-the-world is ethical and revealed through an original consciousness. Unlike moral conscience, original conscience calls to authenticity, to hear his constitutive nihilism as a "Being-referred-to-death". The founding ground of bioethics may be to listen to this primary being-guilty prior to the derived guilts, e.g. faults, deficiencies and shortcomings of specific daily actions.
A preliminary experiment definition for video landmark acquisition and tracking
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.
1976-01-01
Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.
NASA Technical Reports Server (NTRS)
1972-01-01
The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.
Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program
NASA Technical Reports Server (NTRS)
Peri, Frank; Volz, Stephen
2013-01-01
NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.
The role of architecture and ontology for interoperability.
Blobel, Bernd; González, Carolina; Oemig, Frank; Lopéz, Diego; Nykänen, Pirkko; Ruotsalainen, Pekka
2010-01-01
Turning from organization-centric to process-controlled or even to personalized approaches, advanced healthcare settings have to meet special interoperability challenges. eHealth and pHealth solutions must assure interoperability between actors cooperating to achieve common business objectives. Hereby, the interoperability chain also includes individually tailored technical systems, but also sensors and actuators. For enabling corresponding pervasive computing and even autonomic computing, individualized systems have to be based on an architecture framework covering many domains, scientifically managed by specialized disciplines using their specific ontologies in a formalized way. Therefore, interoperability has to advance from a communication protocol to an architecture-centric approach mastering ontology coordination challenges.
Mulhearn, Tyler J; Watts, Logan L; Todd, E Michelle; Medeiros, Kelsey E; Connelly, Shane; Mumford, Michael D
2017-01-01
Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r = 0.46) with objective course outcomes. Implications for training program development and refinement are discussed.
ETV VR/VS Magee Scientific Model AE33 Aethalometer
The objective of the ETV AMS Center is to verify the performance characteristics of environmental monitoring technologies for air, water, and soil. This report provides results for the verification testing of the Magee Scientific Model AE33 Aethalometer.
7 CFR 3401.17 - Review criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION.... Overall scientific and technical quality of proposal 10 2. Scientific and technical quality of the.... Feasibility of attaining objectives; adequacy of professional training and experience, facilities and...
ERIC Educational Resources Information Center
Haitao, Liu
1998-01-01
Reviews the history of interlinguistics in China through scientific and specialist journals, tracing a path from early discussions of language policy through growing recognition of Esperanto as an object of scientific study to the application of interlinguistics in computing and terminology. (Author/JL)
ETDEWEB versus the World-Wide-Web: a specific database/web comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, Debbie
2010-06-28
A study was performed comparing user search results from the specialized scientific database on energy-related information, ETDEWEB, with search results from the internet search engines Google and Google Scholar. The primary objective of the study was to determine if ETDEWEB (the Energy Technology Data Exchange – World Energy Base) continues to bring the user search results that are not being found by Google and Google Scholar. As a multilateral information exchange initiative, ETDE’s member countries and partners contribute cost- and task-sharing resources to build the largest database of energy-related information in the world. As of early 2010, the ETDEWEB databasemore » has 4.3 million citations to world-wide energy literature. One of ETDEWEB’s strengths is its focused scientific content and direct access to full text for its grey literature (over 300,000 documents in PDF available for viewing from the ETDE site and over a million additional links to where the documents can be found at research organizations and major publishers globally). Google and Google Scholar are well-known for the wide breadth of the information they search, with Google bringing in news, factual and opinion-related information, and Google Scholar also emphasizing scientific content across many disciplines. The analysis compared the results of 15 energy-related queries performed on all three systems using identical words/phrases. A variety of subjects was chosen, although the topics were mostly in renewable energy areas due to broad international interest. Over 40,000 search result records from the three sources were evaluated. The study concluded that ETDEWEB is a significant resource to energy experts for discovering relevant energy information. For the 15 topics in this study, ETDEWEB was shown to bring the user unique results not shown by Google or Google Scholar 86.7% of the time. Much was learned from the study beyond just metric comparisons. Observations about the strengths of each system and factors impacting the search results are also shared along with background information and summary tables of the results. If a user knows a very specific title of a document, all three systems are helpful in finding the user a source for the document. But if the user is looking to discover relevant documents on a specific topic, each of the three systems will bring back a considerable volume of data, but quite different in focus. Google is certainly a highly-used and valuable tool to find significant ‘non-specialist’ information, and Google Scholar does help the user focus on scientific disciplines. But if a user’s interest is scientific and energy-specific, ETDEWEB continues to hold a strong position in the energy research, technology and development (RTD) information field and adds considerable value in knowledge discovery. (auth)« less
ERIC Educational Resources Information Center
Adaye, Abebe Alaro
This paper reports on past educational objectives of the old political regime in Ethiopia and new educational objectives of revolutionary Ethiopia. It is reported that these new objectives focus on education for production, scientific research, and socialist consciousness, and that all subjects are based on Marxism-Leninism. Curricular objectives…
The Solar Probe mission - Mission design concepts and requirements
NASA Technical Reports Server (NTRS)
Ayon, Juan A.
1992-01-01
The Solar Probe concept as studied by the Jet Propulsion Laboratory represents the first mission to combine out-of-the-ecliptic scientific coverage with multiple, close solar encounters (at 4 solar radii). The scientific objectives of the mission have driven the investigation and analysis of several mission design concepts, all optimized to meet the science/mission requirements. This paper reviews those mission design concepts developed, the science objectives that drive the mission design, and the principle mission requirements associated with these various concepts.
Space Processing Applications Rocket project SPAR III
NASA Technical Reports Server (NTRS)
Reeves, F.
1978-01-01
This document presented the engineering report and science payload III test report and summarized the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wester, W., editor
Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.
ERIC Educational Resources Information Center
Kunsting, Josef; Wirth, Joachim; Paas, Fred
2011-01-01
Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…
50 CFR 21.23 - Scientific collecting permits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... take, transport, or possess migratory birds, their parts, nests, or eggs for scientific research or... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Scientific collecting permits. 21.23... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Specific Permit Provisions § 21.23 Scientific...
50 CFR 21.23 - Scientific collecting permits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... take, transport, or possess migratory birds, their parts, nests, or eggs for scientific research or... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Scientific collecting permits. 21.23... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Specific Permit Provisions § 21.23 Scientific...
Scientific Assistant Virtual Laboratory (SAVL)
NASA Astrophysics Data System (ADS)
Alaghband, Gita; Fardi, Hamid; Gnabasik, David
2007-03-01
The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.
Geopotential research mission, science, engineering and program summary
NASA Technical Reports Server (NTRS)
Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)
1986-01-01
This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.
NASA Astrophysics Data System (ADS)
Schizas, Dimitrios; Papatheodorou, Efimia; Stamou, George
2017-04-01
This study conducts a textbook analysis in the frame of the following working hypothesis: The transformation of scientific knowledge into school knowledge is expected to reproduce the problems encountered with the scientific knowledge itself or generate additional problems, which may both induce misconceptions in textbook users. Specifically, we describe four epistemological problems associated with how the concept of "ecosystem" is elaborated within ecological science and we examine how each problem is reproduced in the biology textbook utilized by Greek students in the 12th grade and the resulting teacher and student misunderstandings that may occur. Our research demonstrates that the authors of the textbook address these problems by appealing simultaneously to holistic and reductionist ideas. This results in a meaningless and confused depiction of "ecosystem" and may provoke many serious misconceptions on the part of textbook users, for example, that an ecosystem is a system that can be applied to every set of interrelated ecological objects irrespective of the organizational level to which these entities belong or how these entities are related to each other. The implications of these phenomena for science education research are discussed from a perspective that stresses the role of background assumptions in the understanding of declarative knowledge.
Evidence of the Association Between Psychology and Tissue and Organ Transplantation in Brazil.
Silva, J D A; Ariente, L C; Roza, B A; Mucci, S
2016-09-01
The addition of psychologists to organ transplant teams is still new in Brazil. In seeking the efficient performance of this professional, the knowledge of the scientific production and the development of research in the area is fundamental. In this sense, this study aims to survey the Brazilian scientific research that has investigated the psychologic aspects involved in tissue and organ transplantation. A literature narrative review was performed with the use of the "Transplante AND Psicologia" descriptors in the Biblioteca Virtual em Saúde and the CAPES Journal Portal. Fifty-three articles were found, of which 22 met the inclusion criteria: publications dating from 2000 to 2014 and the main topic of interest of the studies being quality of life, followed by organ donation. The instruments used most frequently were interviews developed by the researchers and the SF-36 Quality of Life Questionnaire. Recent Brazilian studies on the association between psychology and transplantation are still scarce, possibly because of the recent addition of psychologists to transplantation teams. Therefore, it is suggested that more scientific research is made in the area and that the objects of study are more varied, to ensure adequacy of the psychologist to meet the specific demands of organ and tissue transplantation process. Copyright © 2016 Elsevier Inc. All rights reserved.
DataHub: Knowledge-based data management for data discovery
NASA Astrophysics Data System (ADS)
Handley, Thomas H.; Li, Y. Philip
1993-08-01
Currently available database technology is largely designed for business data-processing applications, and seems inadequate for scientific applications. The research described in this paper, the DataHub, will address the issues associated with this shortfall in technology utilization and development. The DataHub development is addressing the key issues in scientific data management of scientific database models and resource sharing in a geographically distributed, multi-disciplinary, science research environment. Thus, the DataHub will be a server between the data suppliers and data consumers to facilitate data exchanges, to assist science data analysis, and to provide as systematic approach for science data management. More specifically, the DataHub's objectives are to provide support for (1) exploratory data analysis (i.e., data driven analysis); (2) data transformations; (3) data semantics capture and usage; analysis-related knowledge capture and usage; and (5) data discovery, ingestion, and extraction. Applying technologies that vary from deductive databases, semantic data models, data discovery, knowledge representation and inferencing, exploratory data analysis techniques and modern man-machine interfaces, DataHub will provide a prototype, integrated environement to support research scientists' needs in multiple disciplines (i.e. oceanography, geology, and atmospheric) while addressing the more general science data management issues. Additionally, the DataHub will provide data management services to exploratory data analysis applications such as LinkWinds and NCSA's XIMAGE.
Recommended approaches to the scientific evaluation of ...
A SETAC Pellston Workshop™ ?‘Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)’ was held from 31st January to 5th February 2016 in Pensacola, Florida, USA. The primary aim of the workshop was to provide objective advice, based on current scientific understanding, to regulators and policy makers, whether in industry, government or academia. The aim being to make considered, informed decisions on whether to select an environmental hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on six endocrine active substances (EAS not necessarily proven EDS), that are representative of a range of endocrine system perturbations and considered to be data-rich in relevant information at multiple biological levels of organisation for one or more ecologically-relevant taxa. The substances selected were 17á-ethinylestradiol, perchlorate, propiconazole, 17â-trenbolone, tributyltin and vinclozolin. The six case studies were not comprehensive safety evaluations, but provided the foundations for clarifying key issues and procedures that should be considered when assessing the environmental hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve
Beyond Objectivity and Subjectivity: The Intersubjective Foundations of Psychological Science.
Mascolo, Michael F
2016-12-01
The question of whether psychology can properly be regarded as a science has long been debated (Smedslund in Integrative Psychological & Behavioral Science, 50, 185-195, 2016). Science is typically understood as a method for producing reliable knowledge by testing falsifiable claims against objective evidence. Psychological phenomena, however, are traditionally taken to be "subjective" and hidden from view. To the extent that science relies upon objective observation, is a scientific psychology possible? In this paper, I argue that scientific psychology does not much fail to meet the requirements of objectivity as much as the concept of objectivity fails as a methodological principle for psychological science. The traditional notion of objectivity relies upon the distinction between a public, observable exterior and a private, subjective interior. There are good reasons, however, to reject this dichotomy. Scholarship suggests that psychological knowledge arises neither from the "inside out" (subjectively) nor from the outside-in (objectively), but instead intersubjective processes that occur between people. If this is so, then objectivist methodology may do more to obscure than illuminate our understanding of psychological functioning. From this view, we face a dilemma: Do we, in the name of science, cling to an objective epistemology that cuts us off from the richness of psychological activity? Or do we seek to develop a rigorous intersubjective psychology that exploits the processes through which we gain psychological knowledge in the first place? If such a psychology can produce systematic, reliable and useful knowledge, then the question of whether its practices are "scientific" in the traditional sense would become irrelevant.
Bayesian Multiscale Modeling of Closed Curves in Point Clouds
Gu, Kelvin; Pati, Debdeep; Dunson, David B.
2014-01-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786
Charter for the ARM Climate Research Facility Science Board
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, W
The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
Performance objectives are stated for each of the three secondary school units included in this package prepared for the Dade County Florida Quinmester Program. The units all concern some aspect of instruction in scientific method. "The Scientific Approach to Solving Problems" introduces students to the use of experimental testing of…
ERIC Educational Resources Information Center
Sutter, A. McKinzie; Dauer, Jenny M.; Forbes, Cory T.
2018-01-01
One aim of science education is to develop scientific literacy for decision-making in daily life. Socio-scientific issues (SSI) and structured decision-making frameworks can help students reach these objectives. This research uses value belief norm (VBN) theory and construal level theory (CLT) to explore students' use of personal values in their…
Advanced X-ray Astrophysics Facility (AXAF): Science working group report. [space shuttle payload
NASA Technical Reports Server (NTRS)
1980-01-01
The Advanced X-Ray Astrophysics Facility (AXAF) mission concept is examined from a scientific viewpoint. A brief description of the development of X-ray astronomy and a summary description of AXAF, the scientific objectives of the facility, a description of representative scientific instruments, requirements for X-ray ground testing, and a summary of studies related to spacecraft and support subsystems, are included.
Discovering cultural differences (and similarities) in facial expressions of emotion.
Chen, Chaona; Jack, Rachael E
2017-10-01
Understanding the cultural commonalities and specificities of facial expressions of emotion remains a central goal of Psychology. However, recent progress has been stayed by dichotomous debates (e.g. nature versus nurture) that have created silos of empirical and theoretical knowledge. Now, an emerging interdisciplinary scientific culture is broadening the focus of research to provide a more unified and refined account of facial expressions within and across cultures. Specifically, data-driven approaches allow a wider, more objective exploration of face movement patterns that provide detailed information ontologies of their cultural commonalities and specificities. Similarly, a wider exploration of the social messages perceived from face movements diversifies knowledge of their functional roles (e.g. the 'fear' face used as a threat display). Together, these new approaches promise to diversify, deepen, and refine knowledge of facial expressions, and deliver the next major milestones for a functional theory of human social communication that is transferable to social robotics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Elger, Kirsten; Ulbricht, Damian; Bertelmann, Roland
2017-04-01
Open access to research data is an increasing international request and includes not only data underlying scholarly publication, but also raw and curated data. Especially in the framework of the observed shift in many scientific fields towards data science and data mining, data repositories are becoming important player as data archives and access point to curated research data. While general and institutional data repositories are available across all scientific disciplines, domain-specific data repositories are specialised for scientific disciplines, like, e.g., bio- or geosciences, with the possibility to use more discipline-specific and richer metadata models than general repositories. Data publication is increasingly regarded as important scientific achievement, and datasets with digital object identifier (DOI) are now fully citable in journal articles. Moreover, following in their signature of the "Statement of Commitment of the Coalition on Publishing Data in the Earth and Space Sciences" (COPDESS), many publishers have adopted their data policies and recommend and even request to store and publish data underlying scholarly publications in (domain-specific) data repositories and not as classical supplementary material directly attached to the respective article. The curation of large dynamic data from global networks in, e.g., seismology, magnetics or geodesy, always required a high grade of professional, IT-supported data management, simply to be able to store and access the huge number of files and manage dynamic datasets. In contrast to these, the vast amount of research data acquired by individual investigators or small teams known as 'long-tail data' was often not the focus for the development of data curation infrastructures. Nevertheless, even though they are small in size and highly variable, in total they represent a significant portion of the total scientific outcome. The curation of long-tail data requires more individual approaches and personal involvement of the data curator, especially regarding the data description. Here we will introduce best practices for the publication of long-tail data that are helping to reduce the individual effort, improve the quality of the data description. The data repository of GFZ Data Services, which is hosted at GFZ German Research Centre for Geosciences in Potsdam, is a domain-specific data repository for geosciences. In addition to large dynamic datasets from different disciplines, it has a large focus on the DOI-referenced publication of long-tail data with the aim to reach a high grade of reusability through a comprehensive data description and in the same time provide and distribute standardised, machine actionable metadata for data discovery (FAIR data). The development of templates for data reports, metadata provision by scientists via an XML Metadata Editor and discipline-specific DOI landing pages are helping both, the data curators to handle all kinds of datasets and enabling the scientists, i.e. user, to quickly decide whether a published dataset is fulfilling their needs. In addition, GFZ Data Services have developed DOI-registration services for several international networks (e.g. ICGEM, World Stress Map, IGETS, etc.). In addition, we have developed project-or network-specific designs of the DOI landing pages with the logo or design of the networks or project
ESA's Earth observation priority research objectives and satellite instrument requirements
NASA Astrophysics Data System (ADS)
Reynolds, M. L.
2018-04-01
Since 1996 the European Space Agency has been pursuing an Earth Observation strategy based on a resolution endorsed by European Minister at a meeting in Toulouse. This resolution recognised a broad distinction between purely research objectives, on the one hand, and purely application objectives on the other. However, this is not to be understood as an absolute separation, but rather as an identification of the major driving emphasis for the definition of mission requirement. Indeed, application satellites can provide a wealth of data for research objectives and scientific earth observation programmes can equally provide an important source of data to develop and demonstrate new applications. It is sufficient to look at the data utilisation of Meteosat and ERS to find very many examples of this. This paper identifies the priority research objectives defined for scientific Earth Explorer missions and the resulting instrument needs. It then outlines the requirements for optical instruments.
Patterson, David A.; Cooke, Steven J.; Hinch, Scott G.; Robinson, Kendra A.; Young, Nathan; Farrell, Anthony P.; Miller, Kristina M.
2016-01-01
The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon (Oncorhynchus nerka) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management. PMID:27928508
Patterson, David A; Cooke, Steven J; Hinch, Scott G; Robinson, Kendra A; Young, Nathan; Farrell, Anthony P; Miller, Kristina M
2016-01-01
The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon ( Oncorhynchus nerka ) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management.
Surveys with Athena: results from detailed SIXTE simulations
NASA Astrophysics Data System (ADS)
Lanzuisi, G.; Comastri, A.; Aird, J.; Brusa, M.; Cappelluti, N.; Gilli, R.; Matute, I.
2017-10-01
"Formation and early growth of BH' and "Accretion by supermassive BH through cosmic time' are two of the scientific objectives of the Athena mission. To these and other topics (i.e. first galaxy groups, cold and warm obscuration and feedback signatures in AGN at high z), a large fraction (20-25%) of the Athena Mock Observing Plan is devoted, in the form of a multi-tiered (deep-medium-wide) survey with the WFI. We used the flexible SIXTE simulator to study the impact of different instrumental configurations, in terms of WFI FOV, mirror psf, background levels, on the performance in the three layers of the WFI survey. We mainly focus on the scientific objective that drives the survey configuration: the detection of at least 10 AGN at z=6-8 with Log(LX)=43-43.5 erg/s and 10 at z=8.10 with Log(LX)=44-44.5 erg/s. Implications for other scientific objectives involved in the survey are also discussed.
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Preparing future fisheries professionals to make good decisions
Colvin, Michael E.; Peterson, James T.
2017-01-01
Future fisheries professionals will face decision-making challenges in an increasingly complex field of fisheries management. Though fisheries students are well trained in the use of the scientific method to understand the natural world, they are rarely exposed to structured decision making (SDM) as part of an undergraduate or graduate education. Specifically, SDM encourages users (e.g., students, managers) to think critically and communicate the problem and then identify specific, measurable objectives as they relate to the problem. Next, users must think critically and creatively about management alternatives that can be used to meet the objectives—there must be more than one alternative or there is no decision to be made. Lastly, the management alternatives are evaluated with regard to how likely they are to succeed in terms of multiple, possibly completing, objectives, such as how stakeholder groups value outcomes of management actions versus monetary cost. We believe that exposure to SDM and its elements is an important part of preparing future fisheries professional to meet the challenges they may face. These challenges include reduced budgets, the growth of potentially competing natural resource interest groups, and stakeholder desire to be involved in management decisions affecting public trust resources, just to name a few.
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1994-01-01
An ethnographic field study was conducted to investigate the nature of presence in field geology, and to develop specifications for domain-based planetary exploration systems utilizing virtual presence. Two planetary geologists were accompanied on a multi-day geologic field trip that they had arranged for their own scientific purposes, which centered on an investigation of the extraordinary xenolith/nodule deposits in the Kaupulehu lava flow of Hualalai Volcano, on the island of Hawaii. The geologists were observed during the course of their field investigations and interviewed regarding their activities and ideas. Analysis of the interview resulted in the identification of key domain entities and their attributes, relations among the entities, and explorer interactions with the environment. The results support and extend the author's previously reported continuity theory of presence, indicating that presence in field geology is characterized by persistent engagement with objects associated by metonymic relations. The results also provide design specifications for virtual planetary exploration systems, including an integrating structure for disparate data integration. Finally, the results suggest that unobtrusive participant observation coupled with field interviews is an effective research methodology for engineering ethnography.
OLES : Online Laboratory for Environmental Sciences
NASA Astrophysics Data System (ADS)
Anquetin, Sandrine; Beaufil, Xavier; Chaffard, Véronique; Juen, Patrick
2015-04-01
One of the major scientific challenges in the 21st century is to improve our understanding on the evolution of the water cycle associated with the climate variability. Main issues concern the prediction of i) the water resource and the access to drinkable water and ii) the extreme events, both droughts and floods. Observation strategies covering a wide range of space and time scales must therefore be set up, while continuing advanced research on the involved mechanisms and developing integrated modeling approaches. Within this general context, the present work relies on three natural observatories, located in West Africa, Worldwide Glaciers, and in Mediterranean region, managed at LTHE (Laboratoire d'étude des Transferts en Hydrologie et Environnement; Grenoble, France) and gathered at OSUG (Observatoire des Sciences de l'Univers; Grenoble, France). Their scientific objectives aim at improving the understanding of the water cycle functioning, providing water and mass balances for multi-scale basin sizes, and evaluating the hydrological impacts of the evolving climate. Water cycle variables (precipitation; soil moisture; snow cover; discharge; air and river temperatures; suspended material; etc …) are observed and recorded in 3 different databases built under specific technical constraints linked to the respective partnerships of the natural observatories. Each of the observatories has its own database, and modeling tools were developed separately leading to important efforts often duplicated. Therefore, there was a need to build an integrated cyber-infrastructure to provide access to data, and to shared tools and models that enable the understanding of the water cycle. This is the project called OLES, for Online Laboratory for Environmental Sciences. Focused on the understanding of the water cycle under contrasted climates, OLES facilitates the work of the scientific community and then, help interactions between the research community and water agencies or diverse stakeholders. OLES aims at i) extracting the required data from a GIS server, based on OGC web services (CSW, SOS, …), ii) building a specific process chain based on modules that use NETcdf for data interoperability, iii) running the process in chosen computing facilities, OLES can connect outside on a private LAN and iv) visualizing the result of the process. Based on J2EE, the MMI of OLES is a web interface and interacts with EJB objects. OLES uses web services to communicate with a sequencer developed in C++. Long-term objective is to promote education centered in water science strongly connected with climatic issues. This work has been supported by a grant from Labex OSUG@2020 (Investissements d'avenir - ANR10 LABX56). Sandrine Anquetin, Véronique Chaffard and Patrick Juen (LTHE, Grenoble, France) and Xavier Beaufils (OSUG, Grenoble, France) are part of Labex OSUG@2020 (ANR10 LABX56). Moreover the authors deeply thank the contribution of the OLES user's committee that helps to precise the specifications required for OLES.
A Virtual Tour of the 1868 Hayward Earthquake in Google EarthTM
NASA Astrophysics Data System (ADS)
Lackey, H. G.; Blair, J. L.; Boatwright, J.; Brocher, T.
2007-12-01
The 1868 Hayward earthquake has been overshadowed by the subsequent 1906 San Francisco earthquake that destroyed much of San Francisco. Nonetheless, a modern recurrence of the 1868 earthquake would cause widespread damage to the densely populated Bay Area, particularly in the east Bay communities that have grown up virtually on top of the Hayward fault. Our concern is heightened by paleoseismic studies suggesting that the recurrence interval for the past five earthquakes on the southern Hayward fault is 140 to 170 years. Our objective is to build an educational web site that illustrates the cause and effect of the 1868 earthquake drawing on scientific and historic information. We will use Google EarthTM software to visually illustrate complex scientific concepts in a way that is understandable to a non-scientific audience. This web site will lead the viewer from a regional summary of the plate tectonics and faulting system of western North America, to more specific information about the 1868 Hayward earthquake itself. Text and Google EarthTM layers will include modeled shaking of the earthquake, relocations of historic photographs, reconstruction of damaged buildings as 3-D models, and additional scientific data that may come from the many scientific studies conducted for the 140th anniversary of the event. Earthquake engineering concerns will be stressed, including population density, vulnerable infrastructure, and lifelines. We will also present detailed maps of the Hayward fault, measurements of fault creep, and geologic evidence of its recurrence. Understanding the science behind earthquake hazards is an important step in preparing for the next significant earthquake. We hope to communicate to the public and students of all ages, through visualizations, not only the cause and effect of the 1868 earthquake, but also modern seismic hazards of the San Francisco Bay region.
2014-01-01
Background In the greater framework of the essential functions of Public Health, our focus is on a systematic, objective, external evaluation of Latin American scientific output, to compare its publications in the area of Public Health with those of other major geographic zones. We aim to describe the regional distribution of output in Public Health, and the level of visibility and specialization, for Latin America; it can then be characterized and compared in the international context. Methods The primary source of information was the Scopus database, using the category “Public Health, Environmental and Occupational Health”, in the period 1996–2011. Data were obtained through the portal of SCImago Journal and Country Rank. Using a set of qualitative (citation-based), quantitative (document recount) and collaborative (authors from more than one country) indicators, we derived complementary data. The methodology serves as an analytical tool for researchers and scientific policy-makers. Results The contribution of Latin America to the arsenal of world science lies more or less midway on the international scale in terms of its output and visibility. Revealed as its greatest strengths are the high level of specialization in Public Health and the sustained growth of output. The main limitations identified were a relative decrease in collaboration and low visibility. Conclusions Collaboration is a key factor behind the development of scientific activity in Latin America. Although this finding can be useful for formulating research policy in Latin American countries, it also underlines the need for further research into patterns of scientific communication in this region, to arrive at more specific recommendations. PMID:24950735
Media portrayal of prenatal and postpartum marijuana use in an era of scientific uncertainty.
Jarlenski, Marian; Koma, Jonathan W; Zank, Jennifer; Bodnar, Lisa M; Tarr, Jill A; Chang, Judy C
2018-06-01
Objectives were to characterize how scientific information about prenatal and postpartum marijuana use was presented in online media content, and to assess how media portrayed risks and benefits of such marijuana use. We analyzed online media items (n = 316) from March 2015 to January 2017. A codebook was developed to measure media content in 4 domains: scientific studies, information about health and well-being, mode of ingestion, and portrayal of risks and benefits. Content analysis was performed by two authors, with high inter-rater reliability (mean ĸ = 0.82). Descriptive statistics were used to characterize content, and regression analyses were used to test for predictors of media portrayal of the risk-benefit ratio of prenatal and postpartum marijuana use. 51% of the media items mentioned health risks of prenatal and postpartum marijuana use. Nearly one-third (28%) mentioned marijuana use for treatment of nausea and vomiting in pregnancy. Most media items mentioned a specific research study. More than half of media (59%) portrayed prenatal or postpartum marijuana risks > benefits, 10% portrayed benefits> risks, and the remainder were neutral. While mention of a scientific study was not predictive of the portrayal of the risk-benefit ratio of marijuana use in pregnancy or postpartum, discussion of health risks and health benefits predicted portrayals of the risk-benefit ratio. Online media content about prenatal and postpartum marijuana use presented health risks consistent with evidence, and discussed a health benefit of marijuana use for nausea and vomiting in pregnancy. Portrayal of risks and benefits was somewhat equivocal, consistent with current scientific debate. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bromme, Rainer; Scharrer, Lisa; Stadtler, Marc; Hömberg, Johanna; Torspecken, Ronja
2015-01-01
Scientific texts are a genre in which adherence to specific discourse conventions allows for conclusions on the scientific integrity of the information and thus on its validity. This study examines whether genre-typical features of scientific discourse influence how laypeople handle conflicting science-based knowledge claims. In two experiments…
Felfe, Robert
2008-01-01
For some time a hightened interest in so-called "curiosity cabinets" of the 16th to 18th century has surfaced in the historical sciences as well as in exhibitions with popular appeal, the arts and literature. Johann Laurentius Bausch was among those who assembled such a collection of natural history objects and artefacts. His curiosity cabinet was closely connected to his far more famous library and in his last will Bausch attempted to safeguard the coherence of the two. Against this background the article accentuates some of the aspects of his work from a perspective of a history of collections. One focus will thereby be on the practice of collecting as seemingly contradictory, being characterised on the one hand by the preservation of ancient knowledge as well as by scientific research based on specific objects. Another focus will be on curiosity cabinets as important platforms of exchange and means of social advancement. For the Academia Naturae Curiosorum exhibition objects and their publication were an important device of achieving recognition and protection from the Emperor's Court.
Pulkovo Observatory: An essay on its history and scientific activity
NASA Technical Reports Server (NTRS)
Dadaev, A. N.
1978-01-01
A history of the observatory and of the development of astronomy in Russia during the past 150 years is presented. Scientific activity was traced from the earliest objectives of precise stellar coordinates to the problems of radio variabilities of quasars.
NASA Astrophysics Data System (ADS)
Heidmann, Ilona; Milde, Jutta
2014-05-01
The research about the fate and behavior of engineered nanoparticles in the environment is despite its wide applications still in the early stages. 'There is a high level of scientific uncertainty in nanoparticle research' is often stated in the scientific community. Knowledge about these uncertainties might be of interest to other scientists, experts and laymen. But how could these uncertainties be characterized and are they communicated within the scientific literature and the mass media? To answer these questions, the current state of scientific knowledge about scientific uncertainty through the example of environmental nanoparticle research was characterized and the communication of these uncertainties within the scientific literature is compared with its media coverage in the field of nanotechnologies. The scientific uncertainty within the field of environmental fate of nanoparticles is by method uncertainties and a general lack of data concerning the fate and effects of nanoparticles and their mechanisms in the environment, and by the uncertain transferability of results to the environmental system. In the scientific literature, scientific uncertainties, their sources, and consequences are mentioned with different foci and to a different extent. As expected, the authors in research papers focus on the certainty of specific results within their specific research question, whereas in review papers, the uncertainties due to a general lack of data are emphasized and the sources and consequences are discussed in a broader environmental context. In the mass media, nanotechnology is often framed as rather certain and positive aspects and benefits are emphasized. Although reporting about a new technology, only in one-third of the reports scientific uncertainties are mentioned. Scientific uncertainties are most often mentioned together with risk and they arise primarily from unknown harmful effects to human health. Environmental issues itself are seldom mentioned. Scientific uncertainties, sources, and consequences have been most widely discussed in the review papers. Research papers and mass media tend to emphasize more the certainty of their scientific results or the benefits of the nanotechnology applications. Neither the broad spectrum nor any specifications of uncertainties have been communicated. This indicates that there has been no effective dialogue over scientific uncertainty with the public so far.
A Scientific Workflow Platform for Generic and Scalable Object Recognition on Medical Images
NASA Astrophysics Data System (ADS)
Möller, Manuel; Tuot, Christopher; Sintek, Michael
In the research project THESEUS MEDICO we aim at a system combining medical image information with semantic background knowledge from ontologies to give clinicians fully cross-modal access to biomedical image repositories. Therefore joint efforts have to be made in more than one dimension: Object detection processes have to be specified in which an abstraction is performed starting from low-level image features across landmark detection utilizing abstract domain knowledge up to high-level object recognition. We propose a system based on a client-server extension of the scientific workflow platform Kepler that assists the collaboration of medical experts and computer scientists during development and parameter learning.
Silva, Vera Lucia Marques da; Camargo Júnior, Kenneth Rochel de
2012-06-01
The paper investigates the epistemic objects of Toxoplasma gondii and the correlation of forces of research groups committed to redefine or reconfigure toxoplasmosis. The data research and this analysis were conducted in a scientific congress, according to the concepts of 'manipulation' and 'reenactment,' based on the idea of 'dramatization' proposed by Mol in a study of empirical philosophy. It was found that the objects were represented from diversified hues and with strong ties to the industrial complex. For its projection in the trends of the global economy in the twenty-first century, genetics was a major protagonist in the debates on sole causality, one of the convictions of Western science.
Planning the FUSE Mission Using the SOVA Algorithm
NASA Technical Reports Server (NTRS)
Lanzi, James; Heatwole, Scott; Ward, Philip R.; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly
2011-01-01
Three documents discuss the Sustainable Objective Valuation and Attainability (SOVA) algorithm and software as used to plan tasks (principally, scientific observations and associated maneuvers) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. SOVA is a means of managing risk in a complex system, based on a concept of computing the expected return value of a candidate ordered set of tasks as a product of pre-assigned task values and assessments of attainability made against qualitatively defined strategic objectives. For the FUSE mission, SOVA autonomously assembles a week-long schedule of target observations and associated maneuvers so as to maximize the expected scientific return value while keeping the satellite stable, managing the angular momentum of spacecraft attitude- control reaction wheels, and striving for other strategic objectives. A six-degree-of-freedom model of the spacecraft is used in simulating the tasks, and the attainability of a task is calculated at each step by use of strategic objectives as defined by use of fuzzy inference systems. SOVA utilizes a variant of a graph-search algorithm known as the A* search algorithm to assemble the tasks into a week-long target schedule, using the expected scientific return value to guide the search.
NASA Astrophysics Data System (ADS)
Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia
2014-05-01
In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro experience we consider the objectivity of the Volcanic Activity Level a powerful tool to focus the discussions in a Scientific Committee on the activity forecast and on the expected scenarios, rather than on the multiple explanations of the data fluctuations, which is one of the main sources of conflict in the Scientific Committee discussions. Although the Volcanic Alert System was designed specifically for the unrest episodes at El Hierro, the involved methodologies may be applied to other situations of unrest.
There is no ``I'' in referee: Why referees should be anonymous
NASA Astrophysics Data System (ADS)
Ucko, Daniel
2015-03-01
From the early days of modern science, it has been recognized that scientific claims must be verified by someone who is not the maker of those claims, and who furthermore has no stake in the matter. In other words, claims need to be evaluated objectively, by the community. The way in which this tends to be done is by peer review conducted by journals. Peer review as currently practiced touches on the themes of trust, where the trust is in institutions and procedures that emerge from expert communities. The practice of peer review is viewed as a citizenly duty of scientists in the scientific community, because all scientists take turns serving either as authors, referees, and editors in the peer review process We lack the resources to have a work evaluated by the entire community, so we substitute with a representative. Yet, in most examples of scientific review, the referee or referees are anonymous. This question is particularly important when the peer review process is brought to bear in order to evaluate matters beyond scientific validity, more ``subjective'' criteria such as relative importance, broadness of interest - criteria that do not appear to have an objective standard of comparison and validation. I will show that the anonymity of referees, far from endangering this trust, actually strengthens it. I will show that this anonymity is crucial in order to maintain any objectivity in scientific peer review, and why authors should not try to unmask the referee. Also at American Physical Society (APS).
Dental research in Spain. A bibliometric analysis on subjects, authors and institutions (1993-2012)
Bueno-Aguilera, Felipe; Lucena-Martín, Cristina; Pulgar-Encinas, Rosa
2016-01-01
Background Bibliometrics is defined as the use of statistical methods in the analysis of a body of literature to reveal the historical development of subject fields and patterns of authorship, publication, and use. Our objective was to characterize Spanish scientific output in Dentistry through the analysis of Web of Science database in a 20-year period. By means of a bibliometric study documents were statistically analyzed using indicators that showed quantitative and qualitative aspects of the production. Specifically, time course of the scientific production within the time span was analysed, as were the journals where the article was published and the categories of Journal Citation Reports (JCR) in which they belong, thematic areas, authorship, and finally authors and institutions with the highest production in Spain. Material and Methods By means of the design of a specific search strategy previously described in the scientific literature, we recovered all citable documents about Dentistry signed by Spanish researchers and included in the WoS database between 1993 and 2012. Results A total of 3006 documents fulfilled the search criteria, of which 2449 (81.5%) were published in journals within the category Dentistry Oral Surgery and Medicine and 557 (18.5%) within other categories of the JCR. During the four quinquenniums studied, the production increased quantitatively (8.6-fold) and qualitatively. Finally, the universities of Granada and Complutense of Madrid were the institutions with the highest production and most prolific authors. Conclusions The Spanish dental production sharply increased in the last two decades, reaching quantitative and qualitative levels similar to those of the other medical specialties in the country. Key words:Dental research, dentistry, publications, Journal impact factor, bibliometrics, biomedical research, Spanish dental production. PMID:26827056
NASA Astrophysics Data System (ADS)
Carrier, B. L.; Beaty, D. W.
2017-12-01
NASA's Mars 2020 rover is scheduled to land on Mars in 2021 and will be equipped with a sampling system capable of collecting rock cores, as well as a specialized drill bit for collecting unconsolidated granular material. A key mission objective is to collect a set of samples that have enough scientific merit to justify returning to Earth. In the case of granular materials, we would like to catalyze community discussion on what we would do with these samples if they arrived in our laboratories, as input to decision-making related to sampling the regolith. Numerous scientific objectives have been identified which could be achieved or significantly advanced via the analysis of martian rocks, "regolith," and gas samples. The term "regolith" has more than one definition, including one that is general and one that is much more specific. For the purpose of this analysis we use the term "granular materials" to encompass the most general meaning and restrict "regolith" to a subset of that. Our working taxonomy includes the following: 1) globally sourced airfall dust (dust); 2) saltation-sized particles (sand); 3) locally sourced decomposed rock (regolith); 4) crater ejecta (ejecta); and, 5) other. Analysis of martian granular materials could serve to advance our understanding areas including habitability and astrobiology, surface-atmosphere interactions, chemistry, mineralogy, geology and environmental processes. Results of these analyses would also provide input into planning for future human exploration of Mars, elucidating possible health and mechanical hazards caused by the martian surface material, as well as providing valuable information regarding available resources for ISRU and civil engineering purposes. Results would also be relevant to matters of planetary protection and ground-truthing orbital observations. We will present a preliminary analysis of the following, in order to generate community discussion and feedback on all issues relating to: What are the specific reasons (and their priorities) for collecting samples of granular materials? How do those reasons translate to sampling priorities? In what condition would these samples be expected to be received? What is our best projection of the approach by which these samples would be divided, prepared, and analyzed to achieve our objectives?
AMIE SMART-1: review of results and legacy 10 years after launch
NASA Astrophysics Data System (ADS)
Josset, Jean-Luc; Souchon, Audrey; Josset, Marie; Foing, Bernard
2014-05-01
The Advanced Moon micro-Imager Experiment (AMIE) camera was launched in September 2003 onboard the ESA SMART-1 spacecraft. We review the technical characteristics, scientific objectives and results of the instrument, 10 years after its launch. The AMIE camera is an ultra-compact imaging system that includes a tele-objective with a 5.3° x 5.3° field of view and an imaging sensor of 1024 x 1024 pixels. It is dedicated to spectral imaging with three spectral filters (750, 915 and 960 nm filters), photometric measurements (filter free CCD area), and Laser-link experiment (laser filter at 847 nm). The AMIE camera was designed to acquire high-resolution images of the lunar surface, in white light and for specific spectral bands, under a number of different viewing conditions and geometries. Specifically, its main scientific objectives included: (i) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin and the permanently shadowed regions close to the South Pole; (ii) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith); (iii) multi-band imaging for constraining the chemical and mineral composition of the surface; (iv) detection and characterisation of lunar non-mare volcanic units; (v) study of lithological variations from impact craters and implications for crustal heterogeneity. The study of AMIE images enhanced the knowledge of the lunar surface, in particular regarding photometric modelling and surface physical properties of localized lunar areas and geological units. References: http://scholar.google.nl/scholar?q=smart-1+amie We acknowledge ESA, member states, industry and institutes for their contribution, and the members of the AMIE Team: J.-L. Josset, P. Plancke, Y. Langevin, P. Cerroni, M. C. De Sanctis, P. Pinet, S. Chevrel, S. Beauvivre, B.A. Hofmann, M. Josset, D. Koschny, M. Almeida, K. Muinonen, J. Piironen, M. A. Barucci, P. Ehrenfreund, Yu. Shkuratov, V. Shevchenko, Z. Sodnik, S. Mancuso, F. Ankersen, B.H. Foing, and other associated scientists, collaborators, students and colleagues.
Components for the Global Digital Object Cloud
NASA Astrophysics Data System (ADS)
Glaves, Helen; Hanahoe, Hilary; Weigel, Tobias; Lannom, Larry; Wittenburg, Peter; Koureas, Dimitris; Almas, Bridget
2017-04-01
We are at a tipping point in the development of a common conceptual framework and set of tools and components which will revolutionize the management of scientific data. It is widely acknowledged that the current volumes and complexity of data now being collected, and the inevitable and enormous increase in that volume and complexity, have reached the point where action is required. Around 80% of the data generated is being lost after short time periods and a corresponding amount of time is being wasted by reseachers on routine data management tasks. At the same time, and largely in response to this perceived crisis, a number of principles (G8, RDA DFT, FAIR) for the management of scientific data have arisen and been widely endorsed. The danger now is that agreement will stop at the level of principles and that multiple non-interoperable domain and technology specific silos will continue to arise, all based on the abstract principles. If this happens, we will lose the opportunity to create a common set of low-level tools and components based on an agreed conceptual approach. The Research Data Alliance (RDA) is now combining recommendations from its individual working and interest groups, such as suggestions for proper citation of dynamic data or how to assess the quality of repositories, to design configurations of core components (as specified by RDA and other initiatives such as W3C) and stimulate their implementation. Together with a few global communities such as climate modeling, biodiversity and material science, experts involved in RDA are developing a concept called Global Digital Object Cloud (GDOC) which has the potential to overcome the huge fragmentation which hampers efficient data management and re-use. It is compliant with the FAIR principles in so far as a) it puts Digital Objects (DOs) in its center, b) has all DOs assigned PIDs which are resolvable to useful state information, c) has all DOs associated with metadata, and d) has all DO bit sequences stored in trustworthy repositories. The presentation will give an overview of the types of components involved, the corresponding specifications of RDA, and the concept of the GDOC.
Environmental geology: Our professional public responsibility
Gerhard, L.C.; Brady, L.L.
1999-01-01
Conflicts between different interest groups for use of natural resources is one area where state geological surveys can provide assistance. A state geological survey working within the scientific constraints of specific issues can remain objective in its presentations and maintain the faith of both the conflicting interest groups and the public. One cannot vary from the objective view or you will quickly be criticized. Criticism can still occur from one side of a natural resource issue as your data might counter their views. However, the final decisions are almost always made in some legislators, or regulators, area of responsibility. The responsibility of the state geological survey is to provide the important data that will assist in making correct decisions. Should one party in the conflict become extreme in their demands, a potential compromise that is beneficial to both sides can be lost. In Kansas, the classical natural resource problem of resource/recreation in a populated area is presented as a case study. The state geological survey presented data on sand resources in the Kansas River and its valley in northeast Kansas. That information was important to both recreation and dredging interests where the political problem is a conflict of sand use as a construction material resource versus use of the alluvial river as an important recreation area, especially for canoeing. However, when a reasonable compromise was near completion in the Kansas Legislature one side, in a bold move to develop an advantage, ruined that potential for compromise.Conflicts between different interest groups for use of natural resources is one area where state geological surveys can provide assistance. A state geological survey working within the scientific constraints of specific issues can remain objective in its presentations and maintain the faith of both the conflicting interest groups and the public. In Kansas, the classical natural resource problem of resource/recreation in a populated area is presented as a case study. The state geological survey presented data on sand resources in the Kansas River and its valley in northeast Kansas. That information was important to both recreation and dredging interests.
Infrared Space Astrometry missions: JASMINE
NASA Astrophysics Data System (ADS)
Gouda, Naoteru
2015-08-01
JASMINE is an abbreviation for Japan Astrometry Satellite Mission for INfrared Exploration. We are now focusing on the development of two projects, those are Nano-JASMINE and Small-JASMINE. The Nano-JASMINE micro-satellite project, with a primary mirror aperture of 5-cm class, is currently underway to test part of the technologies used for Small-JASMINE and to produce scientific results based on the astrometric information of bright objects in the neighboring space. Despite its small aperture, the satellite is capable of a level of observational precision comparable to the Hipparcos satellite, and the combination of the observational data from Nano-JASMINE and the Hipparcos Catalogue is expected to produce more precise data on proper motions and annual parallaxes. The satellite is scheduled for launch in the near future. An additional plan is underway to launch a small-scale JASMINE satellite (Small-JASMINE), with a primary mirror aperture of 30-cm class, in around FY 2021. This satellite will engage in observations of only a limited area around the bulge and certain specific astronomical objects.. The main scientific objective of Small-JASMINE is to clarify the dynamical structure of the Galactic nuclear bulge and search for observational relics of a sequential merger of multiple black holes to form the supermassive black hole at the Galactic center. In particular, our main goal is that Small-JASMINE will provide an understanding of the past evolution processes of the supermassive black hole and a prediction of the future activities of our Galactic center through knowledge of the gravitational potential in the Galactic nuclear bulge, and that this understanding can contribute to a better understanding of the co-evolution of the supermassive black holes and bulges in external galaxies. Next to this primary goal, Small-JASMINE will have many other scientific targets. Small-JASMINE can measure the same target every 100 minutes, so it is useful to resolve phenomena with short periods such as X-ray binaries, extrasolar planetary systems and gravitational lens effects. For example, the orbital elements of the star accompanying Cygnus X-1 can be resolved by Small-JASMINE.
Bekker, Cindy; Fransman, Wouter; Boessen, Ruud; Oerlemans, Arné; Ottenbros, Ilse B; Vermeulen, Roel
2017-01-01
Nano-specific inhalation exposure models could potentially be effective tools to assess and control worker exposure to nano-objects, and their aggregates and agglomerates (NOAA). However, due to the lack of reliable and consistent collected NOAA exposure data, the scientific basis for validation of the existing NOAA exposure models is missing or limited. The main objective of this study was to gain more insight into the effect of various determinants underlying the potential on the concentration of airborne NOAA close to the source with the purpose of providing a scientific basis for existing and future exposure inhalation models. Four experimental studies were conducted to investigate the effect of 11 determinants of emission on the concentration airborne NOAA close to the source during dumping of ~100% nanopowders. Determinants under study were: nanomaterial, particle size, dump mass, height, rate, ventilation rate, mixing speed, containment, particle surface coating, moisture content of the powder, and receiving surface. The experiments were conducted in an experimental room (19.5 m3) with well-controlled environmental and ventilation conditions. Particle number concentration and size distribution were measured using real-time measurement devices. Dumping of nanopowders resulted in a higher number concentration and larger particles than dumping their reference microsized powder (P < 0.05). Statistically significant more and larger particles were also found during dumping of SiO2 nanopowder compared to TiO2/Al2O3 nanopowders. Particle surface coating did not affect the number concentration but on average larger particles were found during dumping of coated nanopowders. An increase of the powder's moisture content resulted in less and smaller particles in the air. Furthermore, the results indicate that particle number concentration increases with increasing dump height, rate, and mass and decreases when ventilation is turned on. These results give an indication of the direction and magnitude of the effect of the studied determinants on concentrations close to the source and provide a scientific basis for (further) development of existing and future NOAA inhalation exposure models. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Translations on Eastern Europe, Scientific Affairs, Number 601
1978-09-18
discerning of optical objects is the basis for methods of data processing and diagnosis in a multitude of social sectors and scientific disciplines...comes from the first letters of "kulon-kereseti" [special profit] or "kulon-kutatasi" [ social research] work. It is more probable, however, that it...embraces commissions requiring high level scientific work which are of major importance from the social and economic viewpoint. The second category
NASA Technical Reports Server (NTRS)
Adams, Robert B.; LaPointe, Michael; Wilks, Rod; Allen, Brian
2009-01-01
This poster reviews the planning and design for an integrated architecture for characterization, mitigation, scientific evaluation and resource utilization of near earth objects. This includes tracks to observe and characterize the nature of the threat posed by a NEO, and deflect if a significant threat is posed. The observation stack can also be used for a more complete scientific analysis of the NEO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitler, Timothy M; Stewart, Matthew; Pasquier, Aurelien Du
Altair Nanotechnolgies, Inc. (Altair) has performed and hereby reports on research and development of novel nanomaterials for applications in 1) advanced power storage devices, 2) sensors for chemical, biological and radiological agents and on an 3) investigation into mechanisms of living cell-nanoparticle interactions that will allow predictions of health and safety issues and potentially result in novel agents for remediation of chemical and biological hazards. The project was organized around four distinct objectives. Two of the objectives are focused on developments designed to dramatically improve the performance of rechargeable Li-Ion batteries. These efforts are based on extensions of Altair's proprietarymore » TiO{sub 2} nanoparticles and nanoparticle aggregates in the form of lithium titanate spinel, lithium manganates and lithium cobaltates. A third objective leverages the core Altair nanomaterials technology to develop a unique (nanosensor) platform for the error-free, "lab on a chip" detection of chemical, biological and radiological agents for hazardous materials remediation and threat detection. The innovative approach taken by the Altair/Western Michigan team develops individual nanosensor elements built upon a construct that includes a target-specific receptor molecule coupled through a signal transducing nanomolecule to a gold, TiO{sub 2} or SiO{sub 2} nanoparticle coated with a high density of strongfluorescing molecules for signal amplification The final objective focuses on interaction mechanisms between cells and nanoparticles with the goal of understanding how specific chemical and physical properties of these nanoparticles influence that interaction. The effort will examine a range of microbes that have environmental or societal importance.« less
Data structures and organisation: Special problems in scientific applications
NASA Astrophysics Data System (ADS)
Read, Brian J.
1989-12-01
In this paper we discuss and offer answers to the following questions: What, really, are the benifits of databases in physics? Are scientific databases essentially different from conventional ones? What are the drawbacks of a commercial database management system for use with scientific data? Do they outweigh the advantages? Do databases systems have adequate graphics facilities, or is a separate graphics package necessary? SQL as a standard language has deficiencies, but what are they for scientific data in particular? Indeed, is the relational model appropriate anyway? Or, should we turn to object oriented databases?
SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.
Sass, J.H.; Elders, W.A.
1986-01-01
The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.
77 FR 24714 - Meeting of the National Toxicology Program (NTP) Board of Scientific Counselors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... public and private sectors that provides primary scientific oversight to the NTP and evaluates the... private sectors that provides primary scientific oversight to the NTP. Specifically, the BSC advises the...
76 FR 68461 - Meeting of the National Toxicology Program (NTP) Board of Scientific Counselors
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... public and private sectors that provides primary scientific oversight to the NTP and evaluates the... private sectors that provides primary scientific oversight to the NTP. Specifically, the BSC advises the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary... are directed toward objectives for which the work or methods cannot be precisely described in advance... to encourage the best sources from the scientific and industrial community to become involved in the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary... are directed toward objectives for which the work or methods cannot be precisely described in advance... to encourage the best sources from the scientific and industrial community to become involved in the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary... are directed toward objectives for which the work or methods cannot be precisely described in advance... to encourage the best sources from the scientific and industrial community to become involved in the...
Harnessing the Power of Digital Data for Science and Society
2009-01-01
development and that the research process is responsive to the real-world needs of the implementation sector. Relationship to the Scientific Collections IWG...The Scientific Collections Interagency Working Group focuses on collections of physical objects relevant to science (e.g., biological specimens
Linking Neuroscience and Psychoanalysis.
ERIC Educational Resources Information Center
Habicht, Manuela H.
This review discusses the relationship between neuroscience and psychoanalysis and introduces a new scientific method called neuro-psychoanalysis, a combination of the two phenomena. A significant difference between the two is that psychoanalysis has not evolved scientifically since it has not developed objective methods for testing ideas that it…
Robotics in the rehabilitation treatment of patients with stroke.
Volpe, Bruce T; Ferraro, Mark; Krebs, Hermano I; Hogan, Neville
2002-07-01
Stroke is the leading cause of permanent disability despite continued advances in prevention and novel interventional treatments. Post-stroke neuro-rehabilitation programs teach compensatory strategies that alter the degree of permanent disability. Robotic devices are new tools for therapists to deliver enhanced sensorimotor training and concentrate on impairment reduction. Results from several groups have registered success in reducing impairment and increasing motor power with task-specific exercise delivered by the robotic devices. Enhancing the rehabilitation experience with task-specific repetitive exercise marks a different approach to the patient with stroke. The clinical challenge will be to streamline, adapt, and expand the robot protocols to accommodate healthcare economies, to determine which patients sustain the greatest benefit, and to explore the relationship between impairment reduction and disability level. With these new tools, therapists will measure aspects of outcome objectively and contribute to the emerging scientific basis of neuro-rehabilitation.
From Scientific Object to Commemorated Victim: the Children of the Spiegelgrund
Weindling, Paul
2015-01-01
The legacy of German medical research in the era of National Socialism remains contentious, as regards identification of victims, and the appropriate handling of scientific specimens. These questions are acutely posed by the scientific slides, brain sections, and other body parts of victims, who were killed for research. These slides continued to be held by Austrian and German scientific institutes in the second half of the twentieth century. That scientists continued research on these slides between 1945 and the late1980s suggests a disassociation of guilt and responsibility for the deaths of the victims by the German scientific community. PMID:24779110
Digital Archive Issues from the Perspective of an Earth Science Data Producer
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.
2004-01-01
Contents include the following: Introduction. A Producer Perspective on Earth Science Data. Data Producers as Members of a Scientific Community. Some Unique Characteristics of Scientific Data. Spatial and Temporal Sampling for Earth (or Space) Science Data. The Influence of the Data Production System Architecture. The Spatial and Temporal Structures Underlying Earth Science Data. Earth Science Data File (or Relation) Schemas. Data Producer Configuration Management Complexities. The Topology of Earth Science Data Inventories. Some Thoughts on the User Perspective. Science Data User Communities. Spatial and Temporal Structure Needs of Different Users. User Spatial Objects. Data Search Services. Inventory Search. Parameter (Keyword) Search. Metadata Searches. Documentation Search. Secondary Index Search. Print Technology and Hypertext. Inter-Data Collection Configuration Management Issues. An Archive View. Producer Data Ingest and Production. User Data Searching and Distribution. Subsetting and Supersetting. Semantic Requirements for Data Interchange. Tentative Conclusions. An Object Oriented View of Archive Information Evolution. Scientific Data Archival Issues. A Perspective on the Future of Digital Archives for Scientific Data. References Index for this paper.
Children's Exploration of Physical Phenomena during Object Play
ERIC Educational Resources Information Center
Solis, S. Lynneth; Curtis, Kaley N.; Hayes-Messinger, Amani
2017-01-01
Researchers propose that experiencing and manipulating physical principles through objects allows young children to formulate scientific intuitions that may serve as precursors to learning in STEM subjects. This may be especially true when children discover these physical principles through object affordances during play. The present study…
Spreading Chaos: The Role of Popularizations in the Diffusion of Scientific Ideas
ERIC Educational Resources Information Center
Paul, Danette
2004-01-01
Scientific popularizations are generally considered translations (often dubious ones) of scientific research for a lay audience. This study explores the role popularizations play within scientific discourse, specifically in the development of chaos theory. The methods included a review of the popular and the semipopular books on chaos theory from…
Moll, F H; Rathert, P; Fangerau, H
2012-09-01
Objects in a museum that were used by urologists are part of the history of urology. If we know how to look at them they can be sources for a better understanding of the history of urology. In a museum visitors are confronted with objects during exhibitions which are the stage on which one possible interpretation of the history of urology is displayed. Objects have become"carriers of symbols" between the past and present (Pomian). Collections from medical societies which are not connected with a university or another public institution cannot be legitimized on the basis of the argument of conserving historical heritage only. The museum itself with its many tasks and as a classical site of scientific communication should be seen as a topic of scientific interest.
a Framework for Distributed Mixed Language Scientific Applications
NASA Astrophysics Data System (ADS)
Quarrie, D. R.
The Object Management Group has defined an architecture (CORBA) for distributed object applications based on an Object Request Broker and Interface Definition Language. This project builds upon this architecture to establish a framework for the creation of mixed language scientific applications. A prototype compiler has been written that generates FORTRAN 90 or Eiffel stubs and skeletons and the required C++ glue code from an input IDL file that specifies object interfaces. This generated code can be used directly for non-distributed mixed language applications or in conjunction with the C++ code generated from a commercial IDL compiler for distributed applications. A feasibility study is presently underway to see whether a fully integrated software development environment for distributed, mixed-language applications can be created by modifying the back-end code generator of a commercial CASE tool to emit IDL.
Science literacy and academic identity formulation
NASA Astrophysics Data System (ADS)
Reveles, John M.; Cordova, Ralph; Kelly, Gregory J.
2004-12-01
The purpose of this article is to report findings from an ethnographic study that focused on the co-development of science literacy and academic identity formulation within a third-grade classroom. Our theoretical framework draws from sociocultural theory and studies of scientific literacy. Through analysis of classroom discourse, we identified opportunities afforded students to learn specific scientific knowledge and practices during a series of science investigations. The results of this study suggest that the collective practice of the scientific conversations and activities that took place within this classroom enabled students to engage in the construction of communal science knowledge through multiple textual forms. By examining the ways in which students contributed to the construction of scientific understanding, and then by examining their performances within and across events, we present evidence of the co-development of students' academic identities and scientific literacy. Students' communication and participation in science during the investigations enabled them to learn the structure of the discipline by identifying and engaging in scientific activities. The intersection of academic identities with the development of scientific literacy provides a basis for considering specific ways to achieve scientific literacy for all students.
NEEMO 20: Science Training, Operations, and Tool Development
NASA Technical Reports Server (NTRS)
Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.
2016-01-01
The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool development conducted during NEEMO 20 with an emphasis on the primary lessons learned.
NASA Technical Reports Server (NTRS)
Ronbinson, Julie A.; Harm, Deborah L.
2009-01-01
As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less
O'Connor, A; Anthony, R; Bergamasco, L; Coetzee, J F; Dzikamunhenga, R S; Johnson, A K; Karriker, L A; Marchant-Forde, J N; Martineau, G P; Millman, S T; Pajor, E A; Rutherford, K; Sprague, M; Sutherland, M A; von Borell, E; Webb, S R
2016-04-01
Accurate and complete reporting of study methods, results and interpretation are essential components for any scientific process, allowing end-users to evaluate the internal and external validity of a study. When animals are used in research, excellence in reporting is expected as a matter of continued ethical acceptability of animal use in the sciences. Our primary objective was to assess completeness of reporting for a series of studies relevant to mitigation of pain in neonatal piglets undergoing routine management procedures. Our second objective was to illustrate how authors can report the items in the Reporting guidElines For randomized controLled trials for livEstoCk and food safety (REFLECT) statement using examples from the animal welfare science literature. A total of 52 studies from 40 articles were evaluated using a modified REFLECT statement. No single study reported all REFLECT checklist items. Seven studies reported specific objectives with testable hypotheses. Six studies identified primary or secondary outcomes. Randomization and blinding were considered to be partially reported in 21 and 18 studies, respectively. No studies reported the rationale for sample sizes. Several studies failed to report key design features such as units for measurement, means, standard deviations, standard errors for continuous outcomes or comparative characteristics for categorical outcomes expressed as either rates or proportions. In the discipline of animal welfare science, authors, reviewers and editors are encouraged to use available reporting guidelines to ensure that scientific methods and results are adequately described and free of misrepresentations and inaccuracies. Complete and accurate reporting increases the ability to apply the results of studies to the decision-making process and prevent wastage of financial and animal resources.
The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team
2017-10-01
A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.
NASA Astrophysics Data System (ADS)
Pantale, O.; Caperaa, S.; Rakotomalala, R.
2004-07-01
During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.
2014 Fermilab Laboratory Directed Research & Development Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wester, W., editor
2016-05-26
Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.
Skylab experiments. Volume 2: Remote sensing of earth resources
NASA Technical Reports Server (NTRS)
1973-01-01
This volume covers the broad area of earth resources in which Skylab experiments will be performed. A brief description of the Skylab program, its objectives, and vehicles is included. Section 1 introduces the concept and historical significance of remote sensing, and discusses the major scientific considerations involved in remotely sensing the earth's resources. Sections 2 through 6 provide a description of the individual earth resource sensors and experiments to be performed. Each description includes a discussion of the experiment background and scientific objectives, the equipment involved, and a discussion of significant experiment performance areas.
Basic mathematical function libraries for scientific computation
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.
Successful Undergraduate Research: Creating Win-Win-Win
NASA Astrophysics Data System (ADS)
Guswa, A. J.; Rhodes, A. L.
2003-12-01
Undergraduate involvement in research has the potential to advance science, enhance education, strengthen the research community, and raise general awareness of the importance and impact of scientific understanding. Rather than being competing objectives, these goals are synergistic. Effective research experiences are those that create win-win-win situations: benefits to the student, benefits to the project, and benefits to the scientific community. When structured appropriately, undergraduate research fits into a learner-centered paradigm that puts emphasis on student learning, rather than instructor teaching. Under such a paradigm the student and professor learn together, constructing knowledge by integrating information with critical-thinking and problem-solving skills, and use this knowledge to address issues in real-life contexts. Creating such a learning environment requires that the professor be vested in the outcome of the research, that the student take a meta-cognitive approach to the project and work at a level appropriate to her abilities, and that the student understand how her contribution fits into the project and the larger field. All of these factors lead to greater independence, confidence, and productivity on the part of the student. By providing undergraduates with these experiences, we introduce not only future scientists but also non-scientists to the excitement of discovery and the value of scientific research. Currently, we involve undergraduates in our research on the hydrology and geochemistry of a tropical montane cloud forest in Monteverde, Costa Rica. At the start of each student's involvement, we provide her with the big picture: our project goals, the relevant social issues, and the importance of watershed research. Each student then articulates her own educational and project objectives. Together, we choose tasks that match her skills and interests with our scholarly work. Specific activities range from literature review to experimental design to installation of field instrumentation to sampling and analysis of data. At the conclusion, each student produces a report on her work along with a written reflection on the value of her experience and how it affected her knowledge, values, and actions. In this learner-centered way, we look to create successful undergraduate research experiences that benefit the student, our project, and the broader scientific community.
NASA Astrophysics Data System (ADS)
Cury, Philippe; Baisnée, Pierre-François
2010-05-01
The EUR-OCEANS Consortium is the follow-up structure of the homonym European Network of Excellence (NoE; 2005-2008, FP6 contract number 511106). It is a scientific network, benefiting from and relying upon the institutional commitment of the 27 research performing organisations forming its core (paying) membership. It aims at the long-term harmonization of European research efforts related to ocean ecosystems undergoing anthropogenic and natural forcing. More specifically, its objectives are to facilitate and promote: (1) top-level scientific research on the impacts of anthropogenic and natural forcing on ocean ecosystems, fostering collaborations across the European Research Area; (2) the optimal use of any shared technical infrastructures and scientific facilities; and (3) activities to spread excellence, such as the training of scientific personnel and students, or knowledge dissemination towards the general public and socio-economic users. A particular focus is put during the first scientific coordination mandate on the building of scenarios for marine ecosystems under anthropogenic and natural forcing in the XXI Century, and on the improvement of the science-policy interface. Through calls for projects and networking activities, the Consortium seeks to favour the emergence of coordinated projects on key hot topics on one hand, and the crystallisation of scientific priorities and strategies that could serve as input to ERA-NETs, ESFRI, Joint Programming Initiatives and European Research Planning actors in general. While being an active standalone structure, the Consortium is also engaged in the Euromarine FP7 project (submitted) aiming at the definition of a common coordinating or integrating structure for the three follow-up entities of FP6 marine science NoEs (Marine Genomics Europe, MarBEF, EUR-OCEANS). The 2009-2011 strategy and activity plan of EUR-OCEANS will be presented and the involvement of EUR-OCEANS members in other key projects or programmes will be summarized.
NASA Astrophysics Data System (ADS)
Lombardo, Valerio; Rubbia, Giuliana
2015-04-01
Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes; contribute to innovative pedagogies for scientific learning; create a scientific feedback-loop with students and teachers; implement a multi-level video game for scientific outreach.
NASA Astrophysics Data System (ADS)
Marelli, Fulvio; Glaves, Helen; Albani, Mirko
2017-04-01
Advances in technologies and measuring techniques in the Earth science and Earth observation domains have resulted in huge amounts of data about our Planet having been acquired. By making this data readily discoverable and accessible, and providing researchers with the necessary processing power, tools, and technologies to work collaboratively and share the results with their peers, will create new opportunities and innovative approaches for cross-disciplinary research. The EVER-EST project aims to support these advancements in scientific research by developing a generic Virtual Research Environment (VRE) which is tailored to the needs of the Earth Science domain. It will provide scientists with the means to manage, share and preserve the data and methodologies applied in their research, and lead to results that are validated, attributable and can be shared within and beyond their often geographically dispersed communities e.g. in the form of scholarly communications. The EVER-EST VRE is being implemented as a Service Oriented Architecture (SOA) that is based on loosely coupled services which can be differentiated as being either generic or specific to the requirements of the Earth Science domain. Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although the concept of Research Objects has previously been validated by other experimental disciplines this application in the Earth Sciences represents its first implementation in observational research. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRCs represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907. The project is led by the European Space Agency (ESA), and involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.
Systematic sampling for suspended sediment
Robert B. Thomas
1991-01-01
Abstract - Because of high costs or complex logistics, scientific populations cannot be measured entirely and must be sampled. Accepted scientific practice holds that sample selection be based on statistical principles to assure objectivity when estimating totals and variances. Probability sampling--obtaining samples with known probabilities--is the only method that...
76 FR 33245 - Endangered Species; File No. 15135
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... sea turtles for purposes scientific research. ADDRESSES: The permit and related documents are..., notice was published in the Federal Register (75 FR 11863) that a request for a scientific research..., North Carolina. The objective of the research is to determine if gear modifications can eliminate or...
Healthy People 2010: Understanding and Improving Health.
ERIC Educational Resources Information Center
Department of Health and Human Services, Washington, DC.
This publication presents 10-year health objectives for the nation, reflecting the scientific advances that have occurred in the past 20 years in preventive medicine, disease surveillance, vaccine and therapeutic development, and information technology. It incorporates information from a broad cross-section of scientific experts. The publication…
36 CFR 9.10 - Plan of operations approval.
Code of Federal Regulations, 2011 CFR
2011-07-01
... any site, structure, object, or other value of historical, archeological, or other cultural scientific... Superintendent any cultural and/or scientific resource that might be altered or destroyed by his operation and shall leave such discovery intact until told to proceed by the Superintendent. The Superintendent will...
36 CFR 9.10 - Plan of operations approval.
Code of Federal Regulations, 2012 CFR
2012-07-01
... any site, structure, object, or other value of historical, archeological, or other cultural scientific... Superintendent any cultural and/or scientific resource that might be altered or destroyed by his operation and shall leave such discovery intact until told to proceed by the Superintendent. The Superintendent will...
36 CFR 9.10 - Plan of operations approval.
Code of Federal Regulations, 2013 CFR
2013-07-01
... any site, structure, object, or other value of historical, archeological, or other cultural scientific... Superintendent any cultural and/or scientific resource that might be altered or destroyed by his operation and shall leave such discovery intact until told to proceed by the Superintendent. The Superintendent will...
36 CFR 9.10 - Plan of operations approval.
Code of Federal Regulations, 2014 CFR
2014-07-01
... any site, structure, object, or other value of historical, archeological, or other cultural scientific... Superintendent any cultural and/or scientific resource that might be altered or destroyed by his operation and shall leave such discovery intact until told to proceed by the Superintendent. The Superintendent will...
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.
This collection of science activities is designed to supplement traditional science education by encompassing an issues-based approach to helping students develop scientific and technological literacy. Each unit can be used within an existing teaching sequence and includes an introduction specifying scientific issues and educational objectives, a…
The USRA workshop report: Electrostatic fog dispersal
NASA Technical Reports Server (NTRS)
Davis, M. H. (Editor)
1983-01-01
The Workshop was held at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, on February 1-2, 1983. The Workshop was attended by seventeen experts in the scientific fields of fog and cloud physics, charged-particle electrodynamics, atmospheric turbulence, atmospheric electricity, and electro-gasdynamics. The major objective of the Workshop was to assess the scientific merits and scientific basis of the proposed system and to assess its potential for operational application.
[Reliability and validity of the Braden Scale for predicting pressure sore risk].
Boes, C
2000-12-01
For more accurate and objective pressure sore risk assessment various risk assessment tools were developed mainly in the USA and Great Britain. The Braden Scale for Predicting Pressure Sore Risk is one such example. By means of a literature analysis of German and English texts referring to the Braden Scale the scientific control criteria reliability and validity will be traced and consequences for application of the scale in Germany will be demonstrated. Analysis of 4 reliability studies shows an exclusive focus on interrater reliability. Further, even though examination of 19 validity studies occurs in many different settings, such examination is limited to the criteria sensitivity and specificity (accuracy). The range of sensitivity and specificity level is 35-100%. The recommended cut off points rank in the field of 10 to 19 points. The studies prove to be not comparable with each other. Furthermore, distortions in these studies can be found which affect accuracy of the scale. The results of the here presented analysis show an insufficient proof for reliability and validity in the American studies. In Germany, the Braden scale has not yet been tested under scientific criteria. Such testing is needed before using the scale in different German settings. During the course of such testing, construction and study procedures of the American studies can be used as a basis as can the problems be identified in the analysis presented below.
Infection and childhood leukemia: review of evidence
Maia, Raquel da Rocha Paiva; Wünsch, Victor
2013-01-01
OBJECTIVE To analyze studies that evaluated the role of infections as well as indirect measures of exposure to infection in the risk of childhood leukemia, particularly acute lymphoblastic leukemia. METHODS A search in Medline, Lilacs, and SciELO scientific publication databases initially using the descriptors "childhood leukemia" and "infection" and later searching for the words "childhood leukemia" and "maternal infection or disease" or "breastfeeding" or "daycare attendance" or "vaccination" resulted in 62 publications that met the following inclusion criteria: subject aged ≤ 15 years; specific analysis of cases diagnosed with acute lymphoblastic leukemia or total leukemia; exposure assessment of mothers' or infants' to infections (or proxy of infection), and risk of leukemia. RESULTS Overall, 23 studies that assessed infections in children support the hypothesis that occurrence of infection during early childhood reduces the risk of leukemia, but there are disagreements within and between studies. The evaluation of exposure to infection by indirect measures showed evidence of reduced risk of leukemia associated mainly with daycare attendance. More than 50.0% of the 16 studies that assessed maternal exposure to infection observed increased risk of leukemia associated with episodes of influenza, pneumonia, chickenpox, herpes zoster, lower genital tract infection, skin disease, sexually transmitted diseases, Epstein-Barr virus, and Helicobacter pylori. CONCLUSIONS Although no specific infectious agent has been identified, scientific evidence suggests that exposure to infections has some effect on childhood leukemia etiology. PMID:24626555
Lower Stratospheric Measurement Issues Workshop Report
NASA Technical Reports Server (NTRS)
Schmeltekopf, Arthur L.
1992-01-01
The Lower Stratospheric Measurement Issues workshop was held on 17-19 Oct. 1990. The 3-day workshop was sponsored by the Atmospheric Effects of Stratospheric Aircraft (AESA) component of the High Speed Research Program (HSRP). Its purpose was to provide a scientific forum for addressing specific issues regarding chemistry and transport in the lower stratosphere, for which measurements are essential to an assessment of the environmental impact of a projected fleet of high speed civil transports (HSCTs). The objective of the workshop was to obtain vigorous and critical review of the following topics: (1) atmospheric measurements needed for the assessment; (2) present capability for making those measurements; and (3) areas in instrumentation or platform development essential to making the measurements.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.
Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Chait, Arnon
2010-01-01
A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.
Business process modeling in healthcare.
Ruiz, Francisco; Garcia, Felix; Calahorra, Luis; Llorente, César; Gonçalves, Luis; Daniel, Christel; Blobel, Bernd
2012-01-01
The importance of the process point of view is not restricted to a specific enterprise sector. In the field of health, as a result of the nature of the service offered, health institutions' processes are also the basis for decision making which is focused on achieving their objective of providing quality medical assistance. In this chapter the application of business process modelling - using the Business Process Modelling Notation (BPMN) standard is described. Main challenges of business process modelling in healthcare are the definition of healthcare processes, the multi-disciplinary nature of healthcare, the flexibility and variability of the activities involved in health care processes, the need of interoperability between multiple information systems, and the continuous updating of scientific knowledge in healthcare.
Scientific integrity in Brazil.
Lins, Liliane; Carvalho, Fernando Martins
2014-09-01
This article focuses on scientific integrity and the identification of predisposing factors to scientific misconduct in Brazil. Brazilian scientific production has increased in the last ten years, but the quality of the articles has decreased. Pressure on researchers and students for increasing scientific production may contribute to scientific misconduct. Cases of misconduct in science have been recently denounced in the country. Brazil has important institutions for controlling ethical and safety aspects of human research, but there is a lack of specific offices to investigate suspected cases of misconduct and policies to deal with scientific dishonesty.
Specifics on a XML Data Format for Scientific Data
NASA Astrophysics Data System (ADS)
Shaya, E.; Thomas, B.; Cheung, C.
An XML-based data format for interchange and archiving of scientific data would benefit in many ways from the features standardized in XML. Foremost of these features is the world-wide acceptance and adoption of XML. Applications, such as browsers, XQL and XSQL advanced query, XML editing, or CSS or XSLT transformation, that are coming out of industry and academia can be easily adopted and provide startling new benefits and features. We have designed a prototype of a core format for holding, in a very general way, parameters, tables, scalar and vector fields, atlases, animations and complex combinations of these. This eXtensible Data Format (XDF) makes use of XML functionalities such as: self-validation of document structure, default values for attributes, XLink hyperlinks, entity replacements, internal referencing, inheritance, and XSLT transformation. An API is available to aid in detailed assembly, extraction, and manipulation. Conversion tools to and from FITS and other existing data formats are under development. In the future, we hope to provide object oriented interfaces to C++, Java, Python, IDL, Mathematica, Maple, and various databases. http://xml.gsfc.nasa.gov/XDF
Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.
Losko, Sascha; Heumann, Klaus
2017-01-01
The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.
Leaf micromorphology of four medicinal ferns species in Tasik Chini, Pahang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurnida, M. K., E-mail: nurnidakamal@gmail.com; Noraini, T.; Ruzi, A. R.
A leaf micromorphology study was conducted on four selected medicinal ferns species in Tasik Chini, Pahang. The four chosen species were Adiantum latifolium Lam., Lygodium flexuosum (L.) Sw., Lygodium microphyllum (Cav.) R. Br. and Tectaria singaporeana (Wall.) Ching. The objective of this study is to identify the leaf micromorphological characteristics that can be used as supportive scientific data especially in authentification of medicinal ferns species. The procedures involved such as dehydration, critical point drying, gold coated and examination under scanning electron microscope. Results in this study have shown some similarities and variations in the leaf micromorphological characteristics such as presencemore » of cuticular striation, type of epicuticular waxes, structural feature of stomata and also in the presence or absence and type of trichomes. Four types of epicuticular waxes and only one type of trichome were observed, that were specific for some species. As a conclusion, the results of this study definitely proven that leaf micromorphology can be used for species authentification and might useful as preliminary scientific data for future references and further study.« less
Trends in Social Science: The Impact of Computational and Simulative Models
NASA Astrophysics Data System (ADS)
Conte, Rosaria; Paolucci, Mario; Cecconi, Federico
This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.
Design of Multistable Origami Structures
NASA Astrophysics Data System (ADS)
Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip
Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.
The Unified Radio and Plasma wave investigation
NASA Technical Reports Server (NTRS)
Stone, R. G.; Bougeret, J. L.; Caldwell, J.; Canu, P.; De Conchy, Y.; Cornilleau-Wehrlin, N.; Desch, M. D.; Fainberg, J.; Goetz, K.; Goldstein, M. L.
1992-01-01
The scientific objectives of the Ulysses Unified Radio and Plasma wave (URAP) experiment are twofold: (1) the determination of the direction, angular size, and polarization of radio sources for remote sensing of the heliosphere and the Jovian magnetosphere and (2) the detailed study of local wave phenomena, which determine the transport coefficients of the ambient plasma. A brief discussion of the scientific goals of the experiment is followed by a comprehensive description of the instrument. The URAP sensors consist of a 72.5 m electric field antenna in the spin plane, a 7.5-m electric field monopole along the spin axis of a pair of orthogonal search coil magnetic antennas. The various receivers, designed to encompass specific needs of the investigation, cover the frequency range from dc to 1 MHz. A relaxation sounder provides very accurate electron density measurements. Radio and plasma wave observations are shown to demonstrate the capabilities and limitations of the URAP instruments: radio observations include solar bursts, auroral kilometric radiation, and Jovian bursts; plasma waves include Langmuir waves, ion acousticlike noise, and whistlers.
Divers-Operated Underwater Photogrammetry: Applications in the Study of Antarctic Benthos
NASA Astrophysics Data System (ADS)
Piazza, P.; Cummings, V.; Lohrer, D.; Marini, S.; Marriott, P.; Menna, F.; Nocerino, E.; Peirano, A.; Schiaparelli, S.
2018-05-01
Ecological studies about marine benthic communities received a major leap from the application of a variety of non-destructive sampling and mapping techniques based on underwater image and video recording. The well-established scientific diving practice consists in the acquisition of single path or `round-trip' over elongated transects, with the imaging device oriented in a nadir looking direction. As it may be expected, the application of automatic image processing procedures to data not specifically acquired for 3D modelling can be risky, especially if proper tools for assessing the quality of the produced results are not employed. This paper, born from an international cooperation, focuses on this topic, which is of great interest for ecological and monitoring benthic studies in Antarctica. Several video footages recorded from different scientific teams in different years are processed with an automatic photogrammetric procedure and salient statistical features are reported to critically analyse the derived results. As expected, the inclusion of oblique images from additional lateral strips may improve the expected accuracy in the object space, without altering too much the current video recording practices.
Component Technology for High-Performance Scientific Simulation Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epperly, T; Kohn, S; Kumfert, G
2000-11-09
We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less
NASA Astrophysics Data System (ADS)
Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme
2017-04-01
This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space-time pattern will be discussed as well as the subsequent possible strategies for data assimilation into models (and eventually highlight a generalized approach toward multi-mission data processing). Notably, in case of data assimilation along the course of rivers, the river slope might be estimated and compensated for, in order to produce local water level "pseudo time series" at arbitrary locations, and specifically at model's inlets.
Dowd, Jason E; Thompson, Robert J; Schiff, Leslie A; Reynolds, Julie A
2018-01-01
Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students' writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students' scientific reasoning in their writing. © 2018 J. E. Dowd et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Plans and objectives of the remaining Apollo missions.
NASA Technical Reports Server (NTRS)
Scherer, L. R.
1972-01-01
The three remaining Apollo missions will have significantly increased scientific capabilities. These result from increased payload, more time on the surface, improved range, and more sophisticated experiments on the surface and in orbit. Landing sites for the last three missions will be carefully selected to maximize the total scientific return.
Program Supports Scientific Visualization
NASA Technical Reports Server (NTRS)
Keith, Stephan
1994-01-01
Primary purpose of General Visualization System (GVS) computer program is to support scientific visualization of data generated by panel-method computer program PMARC_12 (inventory number ARC-13362) on Silicon Graphics Iris workstation. Enables user to view PMARC geometries and wakes as wire frames or as light shaded objects. GVS is written in C language.
A framework to build scientific confidence in read across results. (SOT CE course presentation)
Read-across acceptance is remains a major hurdle primarily due to the lack of objectivity and clarity on how to practically address uncertainties. One avenue that can be exploited to build scientific confidence in the development and evaluation of read-across is by taking advant...
Critical Field Experiments on Uses of Scientific and Technical Information.
ERIC Educational Resources Information Center
Rubenstein, Albert H.; And Others
Research in the field of "information-seeking behavior of scientists and engineers" has been done on the behavior and preferences of researchers with respect to technical literature, computer-based information systems, and other scientific and technical information (STI) systems and services. The objectives of this project are: (1) to…
USDA-ARS?s Scientific Manuscript database
Because of the continuing global concerns involving antibiotic resistance, there is a pressing need to have scientific forums to assess scientific advancements regarding development of antimicrobials to combat the global increase in antibiotic resistance among bacterial pathogens. The objectives of ...
Growing the Seeds of Scientific Enquiry
ERIC Educational Resources Information Center
Deller, Clarysly
2017-01-01
As plants and seed dispersal are common themes in primary science, the author thought that she would share an enquiry challenge activity that addresses many of the "working scientifically" objectives of the National Curriculum for England. Year 3 and 4 children had a whole afternoon made up firstly of "playing", planning and…
Scientific and Technological Information Systems in the Soviet Union
ERIC Educational Resources Information Center
Kirson, Benjamin L.
1973-01-01
Not much is known at present about the organization and structure of the Soviet Union's information systems. It is the purpose of the communication to objectively review and summarize the present state-of-the-art of scientific and technological information systems within the Soviet Union. (9 references) (Author)
Designing Epistemologically Correct Science Narratives
ERIC Educational Resources Information Center
Sachin, Datt; Poovaiah, Ravi
2012-01-01
In recent years use of narratives for teaching science at secondary school level has gained impetus. This paper deals with the problem of designing narratives for teaching scientific concept. The central issue of the problem of designing narratives for carrying scientific information is that science belongs to the domain of objective observation…
Preparing Students for Science in the Face of Social Controversy
ERIC Educational Resources Information Center
Bramschreiber, Terry; Westmoreland, David
2015-01-01
Science educators often teach topics that are largely resolved in the scientific community yet remain controversial in broader society. In such cases, students may perceive the teacher as biased. We present two exercises that foster more objective learning about the scientific underpinnings of socially controversial topics. The first exercise…
Evaluation of injury and fatality risk in rock and ice climbing.
Schöffl, Volker; Morrison, Audry; Schwarz, Ulrich; Schöffl, Isabelle; Küpper, Thomas
2010-08-01
Rock and ice climbing are widely considered to be 'high-risk' sporting activities that are associated with a high incidence of severe injury and even death, compared with more mainstream sports. However, objective scientific data to support this perception are questionable. Accordingly, >400 sport-specific injury studies were analysed and compared by quantifying the injury incidence and objectively grading the injury severity (using the National Advisory Committee for Aeronautics score) per 1000 hours of sporting participation. Fatalities were also analysed. The analysis revealed that fatalities occurred in all sports, but it was not always clear whether the sport itself or pre-existing health conditions contributed or caused the deaths. Bouldering (ropeless climbing to low heights), sport climbing (mostly bolt protected lead climbing with little objective danger) and indoor climbing (climbing indoors on artificial rock structures), showed a small injury rate, minor injury severity and few fatalities. As more objective/external dangers exist for alpine and ice climbing, the injury rate, injury severity and fatality were all higher. Overall, climbing sports had a lower injury incidence and severity score than many popular sports, including basketball, sailing or soccer; indoor climbing ranked the lowest in terms of injuries of all sports assessed. Nevertheless, a fatality risk remains, especially in alpine and ice climbing. In the absence of a standard definition for a 'high-risk' sport, categorizing climbing as a high-risk sport was found to be either subjective or dependent on the definition used. In conclusion, this analysis showed that retrospective data on sport-specific injuries and fatalities are not reported in a standardized manner. To improve preventative injury measures for climbing sports, it is recommended that a standardized, robust and comprehensive sport-specific scoring model should be developed to report and fully evaluate the injury risk, severity of injuries and fatality risk in climbing sports.
Towards an Artificial Space Object Taxonomy
NASA Astrophysics Data System (ADS)
Wilkins, M.; Schumacher, P.; Jah, M.; Pfeffer, A.
2013-09-01
Object recognition is the first step in positively identifying a resident space object (RSO), i.e. assigning an RSO to a category such as GPS satellite or space debris. Object identification is the process of deciding that two RSOs are in fact one and the same. Provided we have appropriately defined a satellite taxonomy that allows us to place a given RSO into a particular class of object without any ambiguity, one can assess the probability of assignment to a particular class by determining how well the object satisfies the unique criteria of belonging to that class. Ultimately, tree-based taxonomies delineate unique signatures by defining the minimum amount of information required to positively identify a RSO. Therefore, taxonomic trees can be used to depict hypotheses in a Bayesian object recognition and identification process. This work describes a new RSO taxonomy along with specific reasoning behind the choice of groupings. An alternative taxonomy was recently presented at the Sixth Conference on Space Debris in Darmstadt, Germany. [1] The best example of a taxonomy that enjoys almost universal scientific acceptance is the classical Linnaean biological taxonomy. A strength of Linnaean taxonomy is that it can be used to organize the different kinds of living organisms, simply and practically. Every species can be given a unique name. This uniqueness and stability are a result of the acceptance by biologists specializing in taxonomy, not merely of the binomial names themselves. Fundamentally, the taxonomy is governed by rules for the use of these names, and these are laid down in formal Nomenclature Codes. We seek to provide a similar formal nomenclature system for RSOs through a defined tree-based taxonomy structure. Each categorization, beginning with the most general or inclusive, at any level is called a taxon. Taxon names are defined by a type, which can be a specimen or a taxon of lower rank, and a diagnosis, a statement intended to supply characters that differentiate the taxon from others with which it is likely to be confused. Each taxon will have a set of uniquely distinguishing features that will allow one to place a given object into a specific group without any ambiguity. When a new object does not fall into a specific taxon that is already defined, the entire tree structure will need to be evaluated to determine if a new taxon should be created. Ultimately, an online learning process to facilitate tree growth would be desirable. One can assess the probability of assignment to a particular taxon by determining how well the object satisfies the unique criteria of belonging to that taxon. Therefore, we can use taxonomic trees in a Bayesian process to assign prior probabilities to each of our object recognition and identification hypotheses. We will show that this taxonomy is robust by demonstrating specific stressing classification examples. We will also demonstrate how to implement this taxonomy in Figaro, an open source probabilistic programming language.
Space Telescope Systems Description Handbook
NASA Technical Reports Server (NTRS)
Carter, R. E.
1985-01-01
The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.
Peer Review for EPA's Biologically Based Dose-Response ...
EPA is developing a regulation for perchlorate in drinking water. As part the regulatory process EPA must develop a Maximum Contaminant Level Goal (MCLG). FDA and EPA scientists developed a biologically based dose-response (BBDR) model to assist in deriving the MCLG. This model is designed to determine under what conditions of iodine nutrition and exposure to perchlorate across sensitive lifestages would result in low serum free and total thyroxine (hypothyroxinemia). EPA is undertaking a peer review to provide a focused, objective independent peer evaluation of the draft model and its model results report. EPA is undertaking a peer review to provide a focused, objective independent peer evaluation of the draft model and its model results report. Peer review is an important component of the scientific process. The criticism, suggestions, and new ideas provided by the peer reviewers stimulate creative thought, strengthen the interpretation of the reviewed material, and confer credibility on the product. The peer review objective is to provide advice to EPA on steps that will yield a highly credible scientific product that is supported by the scientific community and a defensible perchlorate MCLG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, B E
Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives ofmore » integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.« less
Scientific Objectives of China-Russia Joint Mars Exploration Program YH-1
NASA Astrophysics Data System (ADS)
Wu, Ji; Zhu, Guang-Wu; Zhao, Hua; Wang, Chi; Li, Lei; Sun, Yue-Qiang; Guo, Wei; Huang, Cheng-Li
2010-04-01
Compared with other planets, Mars is a planet most similar with the earth and most possible to find the extraterrestrial life on it, and therefore especially concerned about by human beings. In recent years, some countries have launched Mars probes and announced their manned Mars exploration programs. China has become the fifth country in the world to launch independently artificial satellites, and the third country able to carry out an independent manned space program. However, China is just at the beginning of deep space explorations. In 2007, China and Russia signed an agreement on a joint Mars exploration program by sending a Chinese micro-satellite Yinghuo-1 (YH-1) to the Mars orbit. Once YH-1 enters its orbit, it will carry out its own exploration, as well as the joint exploration with the Russian Phobos-Grunt probe. This paper summarizes the scientific background and objectives of YH-1 and describes briefly its payloads for realizing these scientific objectives. In addition, the main exploration tasks of YH-1 and a preliminary prospect on its exploration results are also given.
ERIC Educational Resources Information Center
Zimov, Sarah
2004-01-01
Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.
Towards a distributed infrastructure for research drilling in Europe
NASA Astrophysics Data System (ADS)
Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.
2012-04-01
The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.
Project BudBurst - Meeting the Needs of Climate Change Educators and Scientists
NASA Astrophysics Data System (ADS)
Henderson, S.
2015-12-01
It is challenging for many to get a sense of what climate change means as long periods of time are involved - like decades - which can be difficult to grasp. However, there are a number of citizen science based projects, including NEON's Project BudBurst, that provide the opportunity for both learning about climate change and advancing scientific knowledge. In this presentation, we will share lessons learned from Project BudBurst. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events and to increase climate literacy. Project BudBurst is important from an educational perspective, but also because it enables scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. It was important to better understand if and how Project BudBurst is meeting its goals. Specifically, does participation by non-experts advance scientific knowledge? Does participation advance educational goals and outcomes? Is participation an effective approach to advance/enhance science education in both formal and informal settings? Critical examination of Project BudBurst supports advancement of scientific knowledge and realization of educational objectives. Citizen science collected observations and measurements are being used by scientists as evidenced by the increase of such data in scientific publication. In addition, we found that there is a significant increase in educators utilizing citizen science as part of their instruction. Part of this increase is due to the resources and professional development materials available to educators. Working with partners also demonstrated that the needs of both science and education are being met. Project BudBurst, partners with the PhenoCam Network, National Geographic Society, US Fish and Wildlife Service, National Park Service botanic gardens, science centers and other organizations with both a scientific and educational mission.
NASA Astrophysics Data System (ADS)
Schildhauer, M.; Bermudez, L. E.; Bowers, S.; Dibner, P. C.; Gries, C.; Jones, M. B.; McGuinness, D. L.; Cao, H.; Cox, S. J.; Kelling, S.; Lagoze, C.; Lapp, H.; Madin, J.
2010-12-01
Research in the environmental sciences often requires accessing diverse data, collected by numerous data providers over varying spatiotemporal scales, incorporating specialized measurements from a range of instruments. These measurements are typically documented using idiosyncratic, disciplinary specific terms, and stored in management systems ranging from desktop spreadsheets to the Cloud, where the information is often further decomposed or stylized in unpredictable ways. This situation creates major informatics challenges for broadly discovering, interpreting, and merging the data necessary for integrative earth science research. A number of scientific disciplines have recognized these issues, and been developing semantically enhanced data storage frameworks, typically based on ontologies, to enable communities to better circumscribe and clarify the content of data objects within their domain of practice. There is concern, however, that cross-domain compatibility of these semantic solutions could become problematic. We describe here our efforts to address this issue by developing a core, unified Observational Data Model, that should greatly facilitate interoperability among the semantic solutions growing organically within diverse scientific domains. Observational Data Models have emerged independently from several distinct scientific communities, including the biodiversity sciences, ecology, evolution, geospatial sciences, and hydrology, to name a few. Informatics projects striving for data integration within each of these domains had converged on identifying "observations" and "measurements" as fundamental abstractions that provide useful "templates" through which scientific data can be linked— at the structural, composited, or even cell value levels— to domain terms stored in ontologies or other forms of controlled vocabularies. The Scientific Observations Network, SONet (http://sonet.ecoinformatics.org) brings together a number of these observational data efforts, and is harmonizing their models. The specific observational data models currently under consideration include the OGC's Observations and Measurements Encoding Standard, O&M; the ecological community's Extensible Observation Ontology, OBOE'; the evolutionary community's Entity-Quality model, EQ; and the VSTO core classes, intended for describing atmospheric and solar-terrestrial phenomena, VSTO.OWL. These models all share high structural similarities, expressed in different languages (e.g. UML or OWL), and are intended for use with very different forms of data. The main focus of this talk will be describing these Observational Data Models, and more importantly, how harmonizing these will catalyze semantically enhanced access to large additional data resources across the earth and life sciences.
Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback
NASA Technical Reports Server (NTRS)
Leitner, Jesse A.; Cheng, Victor H. L.
2003-01-01
Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.
Biotechnology System Facility: Risk Mitigation on Mir
NASA Technical Reports Server (NTRS)
Gonda, Steve R., III; Galloway, Steve R.
2003-01-01
NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.
The oblique perspective: philosophical diagnostics of contemporary life sciences research.
Zwart, Hub
2017-12-01
This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.
Baron, Jill S.
2001-01-01
Long-term ecosystem research and monitoring was begun in the Loch Vale watershed of Rocky Mountain National Park in 1983, after extensive survey work to identify the best location. Then, as now, our scientific objectives were to understand natural biogeochemical cycles and variability, so that we could differentiate ecosystem changes from human-caused disturbances, such as atmospheric deposition of pollutants and climate change. We have learned many lessons, often through our mistakes, that are worth passing on. Clear scientific objectives, even for long-term monitoring, are essential. Standardized methods, including rigorous quality assurance procedures should be adhered to from the beginning of the program. All data, even those collected routinely for background records, should be scrutinized and summarized at least once a year. Freely share basic information such as weather, hydrologic, chemical, and descriptive records with other researchers who can build upon your efforts. Use many tools when asking complex ecological questions, in order to minimize bias toward specific results. Publish frequently; long-term studies do not imply there are no interim conclusions or interesting findings. Interpret findings frequently to policy makers and citizens; increased understanding of the environment and human-caused changes may improve natural resource management, and build support for ecological research. And finally, be persistent. Long-term ecological research can be frustrating and difficult to maintain, yet is often the best way to observe and understand ecological change on a meaningful time scale.
Brouwer, Derk; Berges, Markus; Virji, Mohammed Abbas; Fransman, Wouter; Bello, Dhimiter; Hodson, Laura; Gabriel, Stefan; Tielemans, Erik
2012-01-01
The present paper summarizes the outcome of the discussions at the First International Scientific Workshop on Harmonization of Strategies to Measure and Analyze Exposure to (Manufactured) Nano-objects in Workplace Air that was organized and hosted by the Netherlands Organization for Applied Scientific Research (TNO) and the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) (Zeist, The Netherlands, December 2010). It reflects the discussions by 25 international participants in the area of occupational (nano) exposure assessment from Europe, USA, Japan, and Korea on nano-specific issues related to the three identified topics: (i) measurement strategies; (ii) analyzing, evaluating, and reporting of exposure data; and (iii) core information for (exposure) data storage. Preliminary recommendations were achieved with respect to (i) a multimetric approach to exposure assessment, a minimal set of data to be collected, and basic data analysis and reporting as well as (ii) a minimum set of contextual information to be collected and reported. Other issues that have been identified and are of great interest include (i) the need for guidance on statistical approaches to analyze time-series data and on electron microscopy analysis and its reporting and (ii) the need for and possible structure of a (joint) database to store and merge data. To make progress in the process of harmonization, it was concluded that achieving agreement among researchers on the preliminary recommendations of the workshop is urgent.
Learning Objects and Virtual Learning Environments Technical Evaluation Criteria
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Dagiene, Valentina
2009-01-01
The main scientific problems investigated in this article deal with technical evaluation of quality attributes of the main components of e-Learning systems (referred here as DLEs--Digital Libraries of Educational Resources and Services), i.e., Learning Objects (LOs) and Virtual Learning Environments (VLEs). The main research object of the work is…
"Reading an Object": Developing Effective Scientific Inquiry Using Student Questions
ERIC Educational Resources Information Center
Hynes-Berry, Mary; Berry, Gordon
2014-01-01
We explore the power of allowing students to construct their own conceptual understanding as they "read an object" in a series of guided inquiry steps, developing their own questions about the object. Their ownership of questions increases the learner's engagement and results in more efficacious learning and meets the standards of…
Ellison, Kirsten L
2014-04-01
Drawing from a collection of over 160 North American print advertisements for anti-aging skin care products from January to December of 2009, this paper examines the discourse of agelessness, a vision of esthetic perfection and optimal health that is continually referred to by gerontologists, cultural theorists, and scientific researchers as a state of being to which humankind can aspire. Employing critical discourse analysis through the use of semiotics and visual rhetoric, this paper explores the means through which anti-aging skin care advertisements present to their viewers a particular object of desire, looking, more specifically, at how agelessness is presented as a way out and ultimate transcendence of age. Through the analytical tools of semiotics and visual rhetoric, four visions of agelessness are identified and explored in this paper: Agelessness as Scientific Purity, Agelessness as Genetic Impulse, Agelessness as Nature's Essence, and Agelessness as Myth. Whether found in the heights of scientific purity, the inner core of our genetic impulse, the depths of nature's essence, or whether agelessness itself has reached its own, untouchable, mythic status, the advertisements in this study represent one of the most pervasive vehicles through which our current vision(s) of ageless perfection are reflected, reinforced, and suspended in a drop of cream. Copyright © 2013 The Author. Published by Elsevier Inc. All rights reserved.
Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.
Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT.
Ditty, Jayna L; Williams, Kayla M; Keller, Megan M; Chen, Grischa Y; Liu, Xianxian; Parales, Rebecca E
2013-01-01
It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and laboratory in the context of a genuine scientific question. Toward this objective, the National Science Foundation funded a collaborative research grant between a primarily undergraduate institution and a research-intensive institution to study the chemotactic responses of the bacterium Pseudomonas putida F1. As part of the project, a new Bioinformatics course was developed in which undergraduates annotate relevant regions of the P. putida F1 genome using Integrated Microbial Genomes Annotation Collaboration Toolkit, a bioinformatics interface specifically developed for undergraduate programs by the Department of Energy Joint Genome Institute. Based on annotations of putative chemotaxis genes in P. putida F1 and comparative genomics studies, undergraduate students from both institutions developed functional genomics research projects that evolved from the annotations. The purpose of this study is to describe the nature of the NSF grant, the development of the Bioinformatics lecture and wet laboratory course, and how undergraduate student involvement in the project that was initiated in the classroom has served as a springboard for independent undergraduate research projects. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
National and State-Specific Sales and Prices for Electronic Cigarettes-U.S., 2012-2013.
Loomis, Brett R; Rogers, Todd; King, Brian A; Dench, Daniel L; Gammon, Doris G; Fulmer, Erika B; Agaku, Israel T
2016-01-01
The growing market for electronic cigarettes (e-cigarettes) has been widely reported in the media, but very little objective data exist in the scientific literature, and no data have been published on state-specific trends in prices or sales. Our objective is to assess state-specific annual sales and average prices for e-cigarettes in the U.S. Commercial retail scanner data were used to assess total dollar sales and average price per unit for disposable e-cigarettes, starter kits, and cartridge refills for selected states and the total U.S. during 2012-2013. Data were analyzed in 2014. Data were available for convenience stores (29 states) and food, drug, and mass merchandisers (44 states). In convenience stores, dollar sales increased markedly during 2012-2013: 320.8% for disposable e-cigarettes, 72.4% for starter kits, and 82% for cartridges. In food, drug, and mass merchandisers, dollar sales increased 49.5% for disposable e-cigarettes, 89.4% for starter kits, and 126.2% for cartridges. Average prices across all product categories increased in convenience stores and decreased in food, drug, and mass merchandisers. Sales and prices varied substantially across states included in the analyses. Sales of all e-cigarette device types grew considerably in convenience stores and food, drug, and mass merchandisers during 2012-2013. The market for e-cigarettes is growing rapidly, resulting in dynamic sales and price changes that vary across the U.S. Continued state-specific surveillance of the e-cigarette market is warranted. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.
National and State-Specific Sales and Prices for Electronic Cigarettes—U.S., 2012–2013
Loomis, Brett R.; Rogers, Todd; King, Brian A.; Dench, Daniel L.; Gammon, Doris G.; Fulmer, Erika B.; Agaku, Israel T.
2015-01-01
Introduction The growing market for electronic cigarettes (e-cigarettes) has been widely reported in the media, but very little objective data exist in the scientific literature, and no data have been published on state-specific trends in prices or sales. Our objective is to assess state-specific annual sales and average prices for e-cigarettes in the U.S. Methods Commercial retail scanner data were used to assess total dollar sales and average price per unit for disposable e-cigarettes, starter kits, and cartridge refills for selected states and the total U.S. during 2012–2013. Data were analyzed in 2014. Data were available for convenience stores (29 states) and food, drug, and mass merchandisers (44 states). Results In convenience stores, dollar sales increased markedly during 2012–2013: 320.8% for disposable e-cigarettes, 72.4% for starter kits, and 82% for cartridges. In food, drug, and mass merchandisers, dollar sales increased 49.5% for disposable e-cigarettes, 89.4% for starter kits, and 126.2% for cartridges. Average prices across all product categories increased in convenience stores and decreased in food, drug, and mass merchandisers. Sales and prices varied substantially across states included in the analyses. Conclusions Sales of all e-cigarette device types grew considerably in convenience stores and food, drug, and mass merchandisers during 2012–2013. The market for e-cigarettes is growing rapidly, resulting in dynamic sales and price changes that vary across the U.S. Continued state-specific surveillance of the e-cigarette market is warranted. PMID:26163173
Bonneuil, Christophe; Levidow, Les
2012-02-01
The World Trade Organization (WTO) dispute settlement procedure is a key arena for establishing global legal norms for what counts as relevant knowledge. As a high-profile case, the WTO trade dispute on GMOs mobilized scientific expertise in somewhat novel ways. Early on, the Panel put the dispute under the Sanitary and Phytosanitary (SPS) Agreement through a new legal ontology; it classified transgenes as potential pests and limited all environmental issues to the 'plant and animal health' category. The selection of scientific experts sought a multi-party consensus through a fast adversarial process, reflecting a specific legal epistemology. For the SPS framing, focusing on the defendant's regulatory procedures, the Panel staged scientific expertise in specific ways that set up how experts were questioned, the answers they would give, their specific role in the legal arena, and the way their statements would complement the Panel's findings. In these ways, the dispute settlement procedure co-produced legal and scientific expertise within the Panel's SPS framework. Moreover, the Panel operated a procedural turn in WTO jurisprudence by representing its findings as a purely legal-administrative judgement on whether the EC's regulatory procedures violated the SPS Agreement, while keeping implicit its own judgements on substantive risk issues. As this case illustrates, the WTO settlement procedure mobilizes scientific expertise for sophisticated, multiple aims: it recruits a source of credibility from the scientific arena, thus reinforcing the standard narrative of 'science-based trade discipline', while also constructing new scientific expertise for the main task--namely, challenging trade restrictions for being unduly cautious.
50 CFR 635.32 - Specifically authorized activities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... prohibited by the regulations contained in this part for the conduct of scientific research, the acquisition... not limited to: scientific research resulting in, or likely to result in, the take, harvest, or... are subject to all conditions specified in any letter of acknowledgment, EFP, scientific research...
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
Typical missions identified for AMPS flights in the arly 1980's are described. Experiment objectives and typical scientific instruments selected to accomplish these objectives are discussed along with mission requirements and shuttle and Spacelab capabilities assessed to determine any AMPS unique requirements. Preliminary design concepts for the first two AMPS flights form the basis for the Phase C/D program plan. This plan implements flights 1 and 2 and indicates how both the scientific and flight support hardware can be systematically evolved for future AMPS flights.
Colour, vision and ergonomics.
Pinheiro, Cristina; da Silva, Fernando Moreira
2012-01-01
This paper is based on a research project - Visual Communication and Inclusive Design-Colour, Legibility and Aged Vision, developed at the Faculty of Architecture of Lisbon. The research has the aim of determining specific design principles to be applied to visual communication design (printed) objects, in order to be easily read and perceived by all. This study target group was composed by a selection of socially active individuals, between 55 and 80 years, and we used cultural events posters as objects of study and observation. The main objective is to overlap the study of areas such as colour, vision, older people's colour vision, ergonomics, chromatic contrasts, typography and legibility. In the end we will produce a manual with guidelines and information to apply scientific knowledge into the communication design projectual practice. Within the normal aging process, visual functions gradually decline; the quality of vision worsens, colour vision and contrast sensitivity are also affected. As people's needs change along with age, design should help people and communities, and improve life quality in the present. Applying principles of visually accessible design and ergonomics, the printed design objects, (or interior spaces, urban environments, products, signage and all kinds of visually information) will be effective, easier on everyone's eyes not only for visually impaired people but also for all of us as we age.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Kay-Bunnell, Linda; Werner, Martin R.; Park, Sang-Young; Kumar, Renjith R.
2002-01-01
There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS is a future spacebased system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This paper provides a summary of CAPS and discusses several key areas and technologies that are being investigated.
NASA Technical Reports Server (NTRS)
Soule, Veronique
1989-01-01
This study was initiated to provide an approach to the development of a permanently manned Mars base. The objectives for a permanently manned Mars base are numerous. Primarily, human presence on Mars will allow utilization of new resources for the improvement of the quality of life on Earth, allowing for new discoveries in technologies, the solar system, and human physiology. Such a mission would also encourage interaction between different countries, increasing international cooperation and leading to a stronger unification of mankind. Surface studies of Mars, scientific experiments in the multiple fields, the research for new minerals, and natural resource production are more immediate goals of the Mars mission. Finally, in the future, colonization of Mars will ensure man's perpetual presence in the universe. Specific objectives of this study were: (1) to design a Mars habitat that minimizes the mass delivered to the Mars surface, provides long-stay capability for the base crew, and accommodates future expansion and modification; (2) to develop a scenario of the construction of a permanently manned Mars base; and (3) to incorporate new and envisioned technologies.
Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30)
NASA Technical Reports Server (NTRS)
Mest, S. C.; Berman, D. C.; Petro, N. E.
2010-01-01
In this study we use recent image, spectral and topographic data to map the geology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-7]. The overall objective of this research is to constrain the geologic evolution of LQ-30 (60 -90 S, 0 - 180 ) with specific emphasis on evaluation of a) the regional effects of impact basin formation, and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Determining the geologic history of LQ-30 and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of potential resources (e.g., H, Fe, Th) and their relationships with surface materials.
Data-driven classification of bipolar I disorder from longitudinal course of mood.
Cochran, A L; McInnis, M G; Forger, D B
2016-10-11
The Diagnostic and Statistical Manual of Mental Disorder (DSM) classification of bipolar disorder defines categories to reflect common understanding of mood symptoms rather than scientific evidence. This work aimed to determine whether bipolar I can be objectively classified from longitudinal mood data and whether resulting classes have clinical associations. Bayesian nonparametric hierarchical models with latent classes and patient-specific models of mood are fit to data from Longitudinal Interval Follow-up Evaluations (LIFE) of bipolar I patients (N=209). Classes are tested for clinical associations. No classes are justified using the time course of DSM-IV mood states. Three classes are justified using the course of subsyndromal mood symptoms. Classes differed in attempted suicides (P=0.017), disability status (P=0.012) and chronicity of affective symptoms (P=0.009). Thus, bipolar I disorder can be objectively classified from mood course, and individuals in the resulting classes share clinical features. Data-driven classification from mood course could be used to enrich sample populations for pharmacological and etiological studies.
Modeling Background Radiation in our Environment Using Geochemical Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malchow, Russell L.; Marsac, Kara; Burnley, Pamela
2015-02-01
Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation:more » D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.« less
Phytoremediation of ionic and methylmercury pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
2002-06-01
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts ofmore » this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as we recently reviewed (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium.« less
Phytoremediation of Ionic and Methyl Mercury Pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants by applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants employs a variety of different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, transport, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest and waste disposal.more » Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants, as we reviewed previously (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium (Dhankher et al., 2003).« less
Phytoremediation of ionic and methylmercury pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts ofmore » this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as we recently reviewed (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium.« less
Liras, Antonio
2010-12-10
There is much to be investigated about the specific characteristics of stem cells and about the efficacy and safety of the new drugs based on this type of cells, both embryonic as adult stem cells, for several therapeutic indications (cardiovascular and ischemic diseases, diabetes, hematopoietic diseases, liver diseases). Along with recent progress in transference of nuclei from human somatic cells, as well as iPSC technology, has allowed availability of lineages of all three germ layers genetically identical to those of the donor patient, which permits safe transplantation of organ-tissue-specific adult stem cells with no immune rejection. The main objective is the need for expansion of stem cell characteristics to maximize stem cell efficacy (i.e. the proper selection of a stem cell) and the efficacy (maximum effect) and safety of stem cell derived drugs. Other considerations to take into account in cell therapy will be the suitability of infrastructure and technical staff, biomaterials, production costs, biobanks, biosecurity, and the biotechnological industry. The general objectives in the area of stem cell research in the next few years, are related to identification of therapeutic targets and potential therapeutic tests, studies of cell differentiation and physiological mechanisms, culture conditions of pluripotent stem cells and efficacy and safety tests for stem cell-based drugs or procedures to be performed in both animal and human models in the corresponding clinical trials. A regulatory framework will be required to ensure patient accessibility to products and governmental assistance for their regulation and control. Bioethical aspects will be required related to the scientific and therapeutic relevance and cost of cryopreservation over time, but specially with respect to embryos which may ultimately be used for scientific uses of research as source of embryonic stem cells, in which case the bioethical conflict may be further aggravated.
Post, Robert
2009-09-01
The question of what constitutional constraints should apply to government efforts to regulate scientific speech is frequently contrasted to the question of what constitutional constraints should apply to government efforts to regulate scientific research. This comment argues that neither question is well formulated for constitutional analysis, which should instead turn on the relationship to constitutional values of specific acts of scientific speech and research.
Scientific Controversies in Teaching Science: The Case of Volta.
ERIC Educational Resources Information Center
Kipnis, Nahum
2001-01-01
Discusses a way of introducing a scientific controversy that emphasizes objective aspects of such issues as multiple theoretical interpretation of phenomena, choosing a theory, and insistence on the chosen theory. The goal is to give students a better insight into the workings of science and provide guidelines for building theories in their own…
NASA Technical Reports Server (NTRS)
1972-01-01
The scientific objectives were considered for a Phobos/Deimos mission. The payloads for a minimum useful instrument complement were developed. The rationale for a sample return mission is discussed, along with the scientific constraints and requirements for the acquisition of samples.