Single-cell isolation by a modular single-cell pipette for RNA-sequencing.
Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong
2016-11-29
Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.
Isolation of a single rice chromosome by optical micromanipulation
NASA Astrophysics Data System (ADS)
Wang, Haowei; Liu, Xiaohui; Li, Yinmei; Han, Bin; Lou, Liren; Wang, Kangjun
2004-01-01
A new method based on optical tweezers technology is reported for the isolation of a single chromosome. A rice cell suspended in liquid was first fragmented by laser pulses (optical scalpel). Then a single released chromosome from the cell was manipulated and pulled away from other cells and oddments by optical tweezers without any direct mechanical contact. Finally the isolated single chromosome was extracted individually into a glass capillary nearby. After molecular cloning of the isolated chromosome, we obtained some specific DNA segments from the single chromosome. All these segments can be used for rice genomic sequencing. Different methods of extracting a single chromosome are compared. The advantages of optical micromanipulation method are summarized.
Magnetic microfluidic system for isolation of single cells
NASA Astrophysics Data System (ADS)
Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna
2015-06-01
This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.
Zhang, Qiang; Wang, Tingting; Zhou, Qian; Zhang, Peng; Gong, Yanhai; Gou, Honglei; Xu, Jian; Ma, Bo
2017-01-23
Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches.
Zhang, Qiang; Wang, Tingting; Zhou, Qian; Zhang, Peng; Gong, Yanhai; Gou, Honglei; Xu, Jian; Ma, Bo
2017-01-01
Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches. PMID:28112223
Single cell gene expression profiling of cortical osteoblast lineage cells.
Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon
2013-03-01
In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.
Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui
2014-12-16
Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.
Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M.; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui
2014-01-01
Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 ‘contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments. PMID:25511131
Isolation of single Chlamydia-infected cells using laser microdissection.
Podgorny, Oleg V; Polina, Nadezhda F; Babenko, Vladislav V; Karpova, Irina Y; Kostryukova, Elena S; Govorun, Vadim M; Lazarev, Vassili N
2015-02-01
Chlamydia are obligate intracellular parasites of humans and animals that cause a wide range of acute and chronic infections. To elucidate the genetic basis of chlamydial parasitism, several approaches for making genetic modifications to Chlamydia have recently been reported. However, the lack of the available methods for the fast and effective selection of genetically modified bacteria restricts the application of genetic tools. We suggest the use of laser microdissection to isolate of single live Chlamydia-infected cells for the re-cultivation and whole-genome sequencing of single inclusion-derived Chlamydia. To visualise individual infected cells, we made use of the vital labelling of inclusions with the fluorescent Golgi-specific dye BODIPY® FL C5-ceramide. We demonstrated that single Chlamydia-infected cells isolated by laser microdissection and placed onto a host cell monolayer resulted in new cycles of infection. We also demonstrated the successful use of whole-genome sequencing to study the genomic variability of Chlamydia derived from a single inclusion. Our work provides the first evidence of the successful use of laser microdissection for the isolation of single live Chlamydia-infected cells, thus demonstrating that this method can help overcome the barriers to the fast and effective selection of Chlamydia. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Xiang-Ying; Yu, Shuang-Qing; Cheng, Zhan; Ye, Jing-Rong; Xu, Ke; Feng, Xia; Zeng, Yi
2013-04-01
To establish a simple and practical method for screening of Env-specific monoclonal antibodies from HIV-1 infected individuals. Human B cells were purified by negative sorting from PBMCs and memory B cells were further enriched using anti-CD27 microbeads. Gp120 antigen labbled with biotin was incubated with memory B cells to specifically bind IgG on cells membrane. The memory B cells expressing the Env-specific antibody were harvested by magnetic beads separating, counted and diluted to the level of single cell in each PCR well that loading with catch buffer containing RNase inhibitor to get RNAs. The antibody genes were amplified by single cell RT-PCR and nested PCR, cloned into eukaryotic expression vectors and transfected into 293T cells. The binding activity of recombinant antibodies to Env were tested by ELISA. Three monocolonal Env-specific antibodies were isolated from one HIV-1 infected individual. We can obtain Env-specific antibody by biotin labbled antigen, magnetic beads separating technique coupled with single cell RT-PCR and expression cloning.
Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao
2017-07-01
In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.
Single cell transcriptomic analysis of prostate cancer cells.
Welty, Christopher J; Coleman, Ilsa; Coleman, Roger; Lakely, Bryce; Xia, Jing; Chen, Shu; Gulati, Roman; Larson, Sandy R; Lange, Paul H; Montgomery, Bruce; Nelson, Peter S; Vessella, Robert L; Morrissey, Colm
2013-02-16
The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR). Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient. A transcriptomic profile can be reliably obtained from a single cell using commercially available technology. As expected, fewer amplified genes are detected from a single-cell sample than from pooled-cell samples, however this method can be used to reliably obtain a transcriptomic profile from DTC isolated from the bone marrow of patients with PCa.
Negative Enrichment and Isolation of Circulating Tumor Cells for Whole Genome Amplification.
Kanwar, Nisha; Done, Susan J
2017-01-01
Circulating tumor cells (CTCs) are a rare population of cells found in the peripheral blood of patients with many types of cancer such as breast, prostate, colon, and lung cancers. Higher numbers of these cells in blood are associated with a poorer prognosis of patients. Genomic profiling of CTCs would help characterize markers specific for the identification of these cells in blood, and also define genomic alterations that give these cells a metastatic advantage over other cells in the primary tumor. Here, we describe an immunomagnetic method to enrich CTCs from the blood of patients with breast cancer, followed by single-cell laser capture microdissection to isolate single CTCs. Whole genome amplification of isolated CTCs allows for many downstream applications to be performed to aide in their characterization, such as whole genome or exome sequencing, Single Nucleotide Polymorphism (SNP) and copy number analysis, and targeted sequencing or quantitative Polymerase Chain Reaction (qPCR) for genomic analyses.
Roex, Marthe C J; Hageman, Lois; Heemskerk, Matthias T; Veld, Sabrina A J; van Liempt, Ellis; Kester, Michel G D; Germeroth, Lothar; Stemberger, Christian; Falkenburg, J H Frederik; Jedema, Inge
2018-04-01
Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Quantitative high-resolution genomic analysis of single cancer cells.
Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard
2011-01-01
During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.
A microfluidic chaotic mixer platform for cancer stem cell immunocapture and release
NASA Astrophysics Data System (ADS)
Shaner, Sebastian Wesley
Isolation of exceedingly rare and ambiguous cells, like cancer stem cells (CSCs), from a pool of other abundant cells is a daunting task primarily due to the inadequately defined properties of such cells. With phenotypes of different CSCs fairly well-defined, immunocapturing of CSCs is a desirable cell-specific capture technique. A microfluidic device is a proven candidate that offers the platform for user-constrained microenvironments that can be optimized for small-scale volumetric flow experimentation. In this study, we show how a well-known passive micromixer design (staggered herringbone mixer - SHM) can be optimized to induce maximum chaotic mixing within antibody-laced microchannels and, ultimately, promote CSC capture. The device's (Cancer Stem Cell Capture Chip - CSC3 (TM)) principle design configuration is called: Single-Walled Staggered Herringbone (SWaSH). The CSC3 (TM) was constructed of a polydimethylsiloxane (PDMS) foundation and thinly coated with an alginate hydrogel derivatized with streptavidin. The results of our work showed that the non-stickiness of alginate and antigen-specific antibodies allowed for superb target-specific cell isolation and negligible non-specific cell binding. Future engineering design directions include developing new configurations (e.g. Staggered High-Low Herringbone (SHiLoH) and offset SHiLoH) to optimize microvortex generation within the microchannels. This study's qualitative and quantitative results can help stimulate progress into refinements in device design and prospective advancements in cancer stem cell isolation and more comprehensive single-cell and cluster analysis.
Abraham, Parvin; Maliekal, Tessy Thomas
2017-04-01
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.
Isolation of an Aptamer that Binds Specifically to E. coli
Cleto, Fernanda; Krieger, Marco Aurélio; Cardoso, Josiane
2016-01-01
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies. PMID:27104834
Review of methods to probe single cell metabolism and bioenergetics
Vasdekis, Andreas E.; Stephanopoulos, Gregory
2015-01-01
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed. PMID:25448400
Gothard, David; Tare, Rahul S; Mitchell, Peter D; Dawson, Jonathan I; Oreffo, Richard O C
2011-04-07
Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.
Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.
Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit
2016-03-30
Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.
Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang
2016-07-01
Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.
Quantitative High-Resolution Genomic Analysis of Single Cancer Cells
Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard
2011-01-01
During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428
Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko
2017-07-12
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
Isolation and gene expression analysis of single potential human spermatogonial stem cells.
von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N
2016-04-01
It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gene expression profiling of single cells on large-scale oligonucleotide arrays
Hartmann, Claudia H.; Klein, Christoph A.
2006-01-01
Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717
Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.
Schmidt, Felix; Efferth, Thomas
2016-06-16
Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.
Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study.
Görner, Karin; Bachmann, Jeannine; Holzhauer, Claudia; Kirchner, Roland; Raba, Katharina; Fischer, Johannes C; Martignoni, Marc E; Schiemann, Matthias; Alunni-Fabbroni, Marianna
2015-07-01
Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far. Copyright © 2015. Published by Elsevier Inc.
Drop-on-Demand Single Cell Isolation and Total RNA Analysis
Moon, Sangjun; Kim, Yun-Gon; Dong, Lingsheng; Lombardi, Michael; Haeggstrom, Edward; Jensen, Roderick V.; Hsiao, Li-Li; Demirci, Utkan
2011-01-01
Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods. PMID:21412416
Single-Cell Resolution of Temporal Gene Expression during Heart Development.
DeLaughter, Daniel M; Bick, Alexander G; Wakimoto, Hiroko; McKean, David; Gorham, Joshua M; Kathiriya, Irfan S; Hinson, John T; Homsy, Jason; Gray, Jesse; Pu, William; Bruneau, Benoit G; Seidman, J G; Seidman, Christine E
2016-11-21
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Parks, Donovan H.; Imelfort, Michael; Skennerton, Connor T.; Hugenholtz, Philip; Tyson, Gene W.
2015-01-01
Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. PMID:25977477
Parks, Donovan H; Imelfort, Michael; Skennerton, Connor T; Hugenholtz, Philip; Tyson, Gene W
2015-07-01
Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of "marker" genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. © 2015 Parks et al.; Published by Cold Spring Harbor Laboratory Press.
Kim, Jinho; Cho, Hyungseok; Han, Song-I; Han, Ki-Ho
2016-05-03
This paper introduces a single-cell isolation technology for circulating tumor cells (CTCs) using a microfluidic device (the "SIM-Chip"). The SIM-Chip comprises a lateral magnetophoretic microseparator and a microdispenser as a two-step cascade platform. First, CTCs were enriched from whole blood by the lateral magnetophoretic microseparator based on immunomagnetic nanobeads. Next, the enriched CTCs were electrically identified by single-cell impedance cytometer and isolated as single cells using the microshooter. Using 200 μL of whole blood spiked with 50 MCF7 breast cancer cells, the analysis demonstrated that the single-cell isolation efficiency of the SIM-Chip was 82.4%, and the purity of the isolated MCF7 cells with respect to WBCs was 92.45%. The data also showed that the WBC depletion rate of the SIM-Chip was 2.5 × 10(5) (5.4-log). The recovery rates were around 99.78% for spiked MCF7 cells ranging in number from 10 to 90. The isolated single MCF7 cells were intact and could be used for subsequent downstream genetic assays, such as RT-PCR. Single-cell culture evaluation of the proliferation of MCF7 cells isolated by the SIM-Chip showed that 84.1% of cells at least doubled in 5 days. Consequently, the SIM-Chip could be used for single-cell isolation of rare target cells from whole blood with high purity and recovery without cell damage.
A single exercise bout augments adenovirus-specific T-cell mobilization and function.
Kunz, Hawley E; Spielmann, Guillaume; Agha, Nadia H; O'Connor, Daniel P; Bollard, Catherine M; Simpson, Richard J
2018-04-30
Adoptive transfer of virus-specific T-cells (VSTs) effectively treats viral infections following allogeneic hematopoietic stem cell transplantation (alloHSCT), but logistical difficulties have limited widespread availability of VSTs as a post-transplant therapeutic. A single exercise bout mobilizes VSTs specific for latent herpesviruses (i.e. CMV and EBV) to peripheral blood and augments their ex vivo expansion. We investigated whether exercise exerts similar effects on T-cells specific for a NON-latent virus such as adenovirus, which is a major contributor to infection-related morbidity and mortality after alloHSCT. Thirty minutes of cycling exercise increased circulating adenovirus-specific T-cells 2.0-fold and augmented their ex vivo expansion by ~33% compared to rest without altering antigen and MHC-specific autologous target cell killing capabilities. We conclude that exercise is a simple and economical adjuvant to boost the isolation and manufacture of therapeutic VSTs specific to latent and non-latent viruses from healthy donors. Copyright © 2018. Published by Elsevier Inc.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-09-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-01-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary. PMID:27785389
Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping
NASA Astrophysics Data System (ADS)
Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.
2018-05-01
Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.
Shen, Rui; Liu, Peipei; Zhang, Yiqiu; Yu, Zhao; Chen, Xuyue; Zhou, Lu; Nie, Baoqing; Żaczek, Anna; Chen, Jian; Liu, Jian
2018-04-03
As an important signaling molecule, hydrogen peroxide (H 2 O 2 ) secreted externally by the cells influences cell migration, immunity generation, and cellular communications. Herein, we have developed a microfluidic approach with droplets in combination with Au nanoclusters for the sensitive detection of H 2 O 2 secreted by a single cell. Isolated in the ultrasmall volume (4.2 nL) of a microdroplet, single-cell secreted H 2 O 2 can initiate dramatic fluorescence changes of horseradish peroxidase-Au nanoclusters. We have demonstrated an ultrahigh sensitivity (200-400 attomole H 2 O 2 directly measured from a single cell) with good specificity. It offers a useful research tool to study the cell-to-cell differences of H 2 O 2 secretion at the single-cell level.
A microfluidic device for label-free, physical capture of circulating tumor cell-clusters
Sarioglu, A. Fatih; Aceto, Nicola; Kojic, Nikola; Donaldson, Maria C.; Zeinali, Mahnaz; Hamza, Bashar; Engstrom, Amanda; Zhu, Huili; Sundaresan, Tilak K.; Miyamoto, David T.; Luo, Xi; Bardia, Aditya; Wittner, Ben S.; Ramaswamy, Sridhar; Shioda, Toshi; Ting, David T.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet
2015-01-01
Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC-clusters). Existing technologies for CTC enrichment are designed primarily to isolate single CTCs, and while CTC-clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here, we developed a microchip technology (Cluster-Chip) specifically designed to capture CTC-clusters independent of tumor-specific markers from unprocessed blood. CTC-clusters are isolated through specialized bifurcating traps under low shear-stress conditions that preserve their integrity and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identify CTC-clusters in 30–40% of patients with metastatic cancers of the breast, prostate and melanoma. RNA sequencing of CTC-clusters confirms their tumor origin and identifies leukocytes within the clusters as tissue-derived macrophages. Together, the development of a device for efficient capture of CTC-clusters will enable detailed characterization of their biological properties and role in cancer metastasis. PMID:25984697
[Isolation and identification of human periodontal ligament stem cells in vitro].
Shen, Tao; Chang, Hui-jun; Jian, Cong-xiang; Yang, Yan-chun; Zhou, Ji-xiang
2011-02-01
To isolate and identify human periodontal ligament stem cells (PDLSC) by improved methods and assess the characteristics of PDLSC ex vivo. The periodontal ligament cells were obtained from the healthy impacted third molars and teeth extracted for orthodontic purposes and used to isolate PDLSC by limiting dilution assay. PDLSC were cultured and expanded in alpha-MEM supplemented with 10% FBS. Colony-forming assay, immunohistochemistry, flow cytometry, osteogenic and adipogenic induction were used to identify PDLSC. The obtained cells had high colony-forming efficiency and were positive staining for vimentin and negative for pancytokeratin. Flow cytometry revealed that the isolated cells were positive for STRO-1 and CD146 antibodies and most were in the G0/G1 phase of cell cycle. Under specific conditions, they could differentiate to the osteoblast and adipocyte lineages in vitro. Limiting dilution assay is an effective method to isolate PDLSC and the single-cell-derived colonies demonstrate the properties of stem cells in vitro.
T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.
Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry
2016-03-01
Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Protein complex purification from Thermoplasma acidophilum using a phage display library.
Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István
2014-03-01
We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.
Expression cloning of human B cell immunoglobulins.
Wardemann, Hedda; Kofer, Juliane
2013-01-01
The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.
Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V
2018-01-01
To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.
Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes
Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan
2015-01-01
In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090
Kim, Kyu-Tae; Lee, Hye Won; Lee, Hae-Ock; Kim, Sang Cheol; Seo, Yun Jee; Chung, Woosung; Eum, Hye Hyeon; Nam, Do-Hyun; Kim, Junhyong; Joo, Kyeung Min; Park, Woong-Yang
2015-06-19
Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments. We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRAS(G12D), were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRAS(G12D) mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRAS(G12D) and low risk score. Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.
Yang, Liu; Wang, Zhihua; Deng, Yuliang; Li, Yan; Wei, Wei; Shi, Qihui
2016-11-15
Circulating tumor cells (CTCs) shed from tumor sites and represent the molecular characteristics of the tumor. Besides genetic and transcriptional characterization, it is important to profile a panel of proteins with single-cell precision for resolving CTCs' phenotype, organ-of-origin, and drug targets. We describe a new technology that enables profiling multiple protein markers of extraordinarily rare tumor cells at the single-cell level. This technology integrates a microchip consisting of 15000 60 pL-sized microwells and a novel beads-on-barcode antibody microarray (BOBarray). The BOBarray allows for multiplexed protein detection by assigning two independent identifiers (bead size and fluorescent color) of the beads to each protein. Four bead sizes (1.75, 3, 4.5, and 6 μm) and three colors (blue, green, and yellow) are utilized to encode up to 12 different proteins. The miniaturized BOBarray can fit an array of 60 pL-sized microwells that isolate single cells for cell lysis and the subsequent detection of protein markers. An enclosed 60 pL-sized microchamber defines a high concentration of proteins released from lysed single cells, leading to single-cell resolution of protein detection. The protein markers assayed in this study include organ-specific markers and drug targets that help to characterize the organ-of-origin and drug targets of isolated rare tumor cells from blood samples. This new approach enables handling a very small number of cells and achieves single-cell, multiplexed protein detection without loss of rare but clinically important tumor cells.
Khamenehfar, A; Beischlag, T V; Russell, P J; Ling, M T P; Nelson, C; Li, P C H
2015-11-01
Circulating tumor cells (CTCs) are found in the blood of patients with cancer. Although these cells are rare, they can provide useful information for chemotherapy. However, isolation of these rare cells from blood is technically challenging because they are small in numbers. An integrated microfluidic chip, dubbed CTC chip, was designed and fabricated for conducting tumor cell isolation. As CTCs usually show multidrug resistance (MDR), the effect of MDR inhibitors on chemotherapeutic drug accumulation in the isolated single tumor cell is measured. As a model of CTC isolation, human prostate cancer cells were mixed with mouse blood cells and the label-free isolation of the tumor cells was conducted based on cell size difference. The major advantages of the CTC chip are the ability for fast cell isolation, followed by multiple rounds of single-cell measurements, suggesting a potential assay for detecting the drug responses based on the liquid biopsy of cancer patients.
Aghebati-Maleki, Leili; Younesi, Vahid; Jadidi-Niaragh, Farhad; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi
2017-01-01
Receptor tyrosine kinase-like orphan receptor (ROR1) belongs to one of the families of receptor tyrosine kinases (RTKs). RTKs are involved in the various physiologic cellular functions including proliferation, migration, survival, signaling and differentiation. Several RTKs are deregulated in various cancers implying the targeting potential of these molecules in cancer therapy. ROR1 has recently been shown to be expressed in various types of cancer cells but not in normal adult cells. Hence a molecular inhibitor of extracellular domain of ROR1 that inhibits ROR1-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of ROR1, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I + J, against one specific synthetic oligopeptide from extracellular domain of ROR1 and selected scFvs were characterized using various immunological techniques. Several ROR1 specific scFvs were selected following five rounds of panning procedure. The scFvs showed specific binding to ROR1 using immunological techniques. Our results demonstrate successful isolation and characterization of specific ROR1 scFvs that may have great therapeutic potential in cancer immunotherapy.
Hao, Qiang; Chen, Xiao-Lin; Ma, Li; Wang, Tong-Tong; Hu, Yue; Zhao, Yuan-Li
2018-01-01
In this study, we successfully established a stable method for the isolation of endothelial cells (ECs) from human cerebral arteriovenous malformation (cAVM) tissues. Despite human cAVM tissues having a minor population of ECs, they play an important role in the manifestation and development of cAVM as well as in hemorrhagic stroke and thrombogenesis. To characterize and understand the biology of ECs in human cAVM (cAVM-ECs), methods for the isolation and purification of these cells are necessary. We have developed this method to reliably obtain pure populations of ECs from cAVMs. To obtain pure cell populations, cAVM tissues were mechanically and enzymatically digested and the resulting single cAVM-ECs suspensions were then labeled with antibodies of specific cell antigens and selected by flow cytometry. Purified ECs were detected using specific makers of ECs by immunostaining and used to study different cellular mechanisms. Compared to the different methods of isolating ECs from tissues, we could isolate ECs from cAVMs confidently, and the numbers of cAVM-ECs harvested were almost similar to the amounts present in vessel components. In addition to optimizing the protocol for isolation of ECs from human cAVM tissues, the protocol could also be applied to isolate ECs from other human neurovascular-diseased tissues. Depending on the tissues, the whole procedure could be completed in about 20 days.
Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation
Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim
2013-01-01
A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571
Rozas, Enrique E.; Albano, Rodolpho M.; Lôbo-Hajdu, Gisele; Müller, Werner E.G.; Schröder, Heinz-C.; Custódio, Márcio R.
2011-01-01
Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs) and single sponge cells (cytospins) and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs) and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques. PMID:24031790
Rozas, Enrique E; Albano, Rodolpho M; Lôbo-Hajdu, Gisele; Müller, Werner E G; Schröder, Heinz-C; Custódio, Márcio R
2011-10-01
Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs) and single sponge cells (cytospins) and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs) and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques.
We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined.
A High-Throughput Microenvironment for Single-Cell Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, A T; Buckley, P; Miles, R R
2003-01-07
This project was conducted as a feasibility study, in preparation for including this work in the forthcoming ''Instrumented Cell'' (IC) Strategic Initiative. The goal of the IC is to study individual cells; the goal of this feasibility study was to determine the best method for isolating large numbers of individual cells in a way that facilitates various types of environmental changes and intracellular measurements. We have the capability to do this with one cell, and sought to expand the number of cells that we could study simultaneously. Our specific goal for this feasibility study was to discover a way tomore » isolate individual cells, and impale them on a nanopipette. This would enable samples to be introduced into and removed from a cell.« less
Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells.
Kuriyama, Kentaro; Shintaku, Hirofumi; Santiago, Juan G
2015-07-01
There is a substantial need for simultaneous analyses of RNA and DNA from individual single cells. Such analysis provides unique evidence of cell-to-cell differences and the correlation between gene expression and genomic mutation in highly heterogeneous cell populations. We present a novel microfluidic system that leverages isotachophoresis to fractionate and isolate cytoplasmic RNA and genomic DNA (gDNA) from single cells. The system uniquely enables independent, sequence-specific analyses of these critical markers. Our system uses a microfluidic chip with a simple geometry and four end-channel electrodes, and completes the entire process in <5 min, including lysis, purification, fractionation, and delivery to DNA and RNA output reservoirs, each containing high quality and purity aliquots with no measurable cross-contamination of cytoplasmic RNA versus gDNA. We demonstrate our system with simultaneous, sequence-specific quantitation using off-chip RT-qPCR and qPCR for simultaneous cytoplasmic RNA and gDNA analyses, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling
2017-05-24
Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.
Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.
Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi
2017-12-01
The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.
A rapid single-tube protocol for HAV detection by nested real-time PCR.
Hu, Yuan; Arsov, Ivica
2014-09-01
Infections by food-borne viruses such as hepatitis A virus (HAV) and norovirus are significant public health concerns worldwide. Since food-borne viruses are rarely confirmed through direct isolation from contaminated samples, highly sensitive molecular techniques remain the methods of choice for the detection of viral genetic material. Our group has previously developed a specific nested real-time PCR (NRT-PCR) assay for HAV detection that improved overall sensitivity. Furthermore in this study, we have developed a single-tube NRT-PCR approach for HAV detection in food samples that reduces the likelihood of cross contamination between tubes during sample manipulation. HAV RNA was isolated from HAV-spiked food samples and HAV-infected cell cultures. All reactions following HAV RNA isolation, including conventional reverse transcriptase PCR, nested-PCR, and RT-PCR were performed in a single tube. Our results demonstrated that all the samples tested positive by RT-PCR and nested-PCR were also positive by a single-tube NRT-PCR. The detection limits observed for HAV-infected cell cultures and HAV-spiked green onions were 0.1 and 1 PFU, respectively. This novel method retained the specificity and robustness of the original NRT-PCR method, while greatly reducing sample manipulation, turnaround time, and the risk of carry-over contamination. Single-tube NRT-PCR thus represents a promising new tool that can potentially facilitate the detection of HAV in foods thereby improving food safety and public health.
A high-throughput screen for single gene activities: isolation of apoptosis inducers.
Albayrak, Timur; Grimm, Stefan
2003-05-16
We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.
Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G
2013-12-01
The clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen. In this study, we describe a mammalian T cell line screening protocol employing a 2A-based bicistronic retroviral vector to isolate functional scFvs. This approach involves expression of the scFv library in a chimeric antigen receptor, and is based on selection of clones capable of stimulating CD69 upregulation in a T cell line and has a number of advantages over previously described methods in that the use of a 2A cassette ensures the exclusion of nonexpressing scFvs and the screening using a chimeric receptor in a mammalian T cell line ensures selection in the optimum context for therapeutic use. Proof-of-principle experiments show that the protocol was capable of a 10(5)-fold enrichment of positive clones after three rounds of selection. Furthermore, an antigen-specific clone was successfully isolated from a partially enriched scFv library, confirming the strength of the protocol. This approach has the potential to identify novel scFvs of use in adoptive T cell therapy and, potentially, wider antibody-based applications.
Assessment of six different collagenase-based methods to isolate feline pancreatic islets.
Zini, Eric; Franchini, Marco; Guscetti, Franco; Osto, Melania; Kaufmann, Karin; Ackermann, Mathias; Lutz, Thomas A; Reusch, Claudia E
2009-12-01
Isolation of pancreatic islets is necessary to study the molecular mechanisms underlying beta-cell demise in diabetic cats. Six collagenase-based methods of isolation were compared in 10 cat pancreata, including single and double course of collagenase, followed or not by Ficoll centrifugation or accutase, and collagenase plus accutase. Morphometric analysis was performed to measure the relative area of islet and exocrine tissue. Islet specific mRNA transcripts were quantified in isolates by real-time PCR. The single and double course of collagenase digestion was successful in each cat and provided similar islet-to-exocrine tissue ratio. Quantities of insulin mRNA did not differ between the two methods. However, on histological examination either method yielded only approximately 2% of pure islets. The other methods provided disrupted islets or insufficient samples in 1-7 cats. Although pancreas digestion with single and double course of collagenase was superior, further studies are needed to improve islet isolation in cats.
Distinct Inflammatory Profiles of Myelin-Reactive T cells from Patients with Multiple Sclerosis
Cao, Yonghao; Goods, Brittany A.; Raddassi, Khadir; Nepom, Gerald T.; Kwok, William W.; Love, J. Christopher; Hafler, David A.
2015-01-01
Myelin-reactive T cells have been identified in patients with multiple sclerosis (MS) and healthy subjects with comparable frequencies, but the functional programs of self-reactive T cells that promote disease remain unknown. A total of 13,324 T cell libraries generated from blood of 23 patients and 22 healthy controls were interrogated for reactivity to myelin antigens. Libraries derived from CCR6+ myelin-reactive T cells from patients with MS exhibited significantly enhanced production of IFN-γ, IL-17, and GM-CSF compared to healthy controls. Single-cell clones isolated by MHC/peptide tetramers from CCR6+ T cell libraries also secreted more pro-inflammatory cytokines while clones isolated from controls secreted more IL-10. The transcriptomes of myelin-specific CCR6+ T cells from patients with MS were distinct from those derived from healthy controls, and of note, were enriched in Th17-induced experimental autoimmune encephalitis (EAE) gene signatures and gene signatures derived from Th17 cells isolated other human autoimmune diseases. These data, although not casual, imply that functional differences between antigen specific T cells from MS and healthy controls is fundamental to disease development and support the notion that IL-10 production from myelin-reactive T cells may act to limit disease progression, or even pathogenesis. PMID:25972006
NASA Astrophysics Data System (ADS)
Zordan, M. D.; Leary, James F.
2011-02-01
The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.
Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.
Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G
2011-12-23
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.
Identification and genetic analysis of cancer cells with PCR-activated cell sorting
Eastburn, Dennis J.; Sciambi, Adam; Abate, Adam R.
2014-01-01
Cell sorting is a central tool in life science research for analyzing cellular heterogeneity or enriching rare cells out of large populations. Although methods like FACS and FISH-FC can characterize and isolate cells from heterogeneous populations, they are limited by their reliance on antibodies, or the requirement to chemically fix cells. We introduce a new cell sorting technology that robustly sorts based on sequence-specific analysis of cellular nucleic acids. Our approach, PCR-activated cell sorting (PACS), uses TaqMan PCR to detect nucleic acids within single cells and trigger their sorting. With this method, we identified and sorted prostate cancer cells from a heterogeneous population by performing >132 000 simultaneous single-cell TaqMan RT-PCR reactions targeting vimentin mRNA. Following vimentin-positive droplet sorting and downstream analysis of recovered nucleic acids, we found that cancer-specific genomes and transcripts were significantly enriched. Additionally, we demonstrate that PACS can be used to sort and enrich cells via TaqMan PCR reactions targeting single-copy genomic DNA. PACS provides a general new technical capability that expands the application space of cell sorting by enabling sorting based on cellular information not amenable to existing approaches. PMID:25030902
Ueberberg, Sandra; Meier, Juris J.; Waengler, Carmen; Schechinger, Wolfgang; Dietrich, Johannes W.; Tannapfel, Andrea; Schmitz, Inge; Schirrmacher, Ralf; Köller, Manfred; Klein, Harald H.; Schneider, Stephan
2009-01-01
OBJECTIVE Noninvasive determination of pancreatic β-cell mass in vivo has been hampered by the lack of suitable β-cell–specific imaging agents. This report outlines an approach for the development of novel ligands homing selectively to islet cells in vivo. RESEARCH DESIGN AND METHODS To generate agents specifically binding to pancreatic islets, a phage library was screened for single-chain antibodies (SCAs) on rat islets using two different approaches. 1) The library was injected into rats in vivo, and islets were isolated after a circulation time of 5 min. 2) Pancreatic islets were directly isolated, and the library was panned in the islets in vitro. Subsequently, the identified SCAs were extensively characterized in vitro and in vivo. RESULTS We report the generation of SCAs that bind highly selective to either β- or α-cells. These SCAs are internalized by target cells, disappear rapidly from the vasculature, and exert no toxicity in vivo. Specific binding to β- or α-cells was detected in cell lines in vitro, in rats in vivo, and in human tissue in situ. Electron microscopy demonstrated binding of SCAs to the endoplasmatic reticulum and the secretory granules. Finally, in a biodistribution study the labeling intensity derived from [125I]-labeled SCAs after intravenous administration in rats strongly predicted the β-cell mass and was inversely related to the glucose excursions during an intraperitoneal glucose tolerance test. CONCLUSIONS Our data provide strong evidence that the presented SCAs are highly specific for pancreatic β-cells and enable imaging and quantification in vivo. PMID:19592622
Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K
2017-02-01
To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.
2016-09-01
The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.
Kusić, Dragana; Rösch, Petra; Popp, Jürgen
2016-03-01
Legionellae colonize biofilms, can form a biofilm by itself and multiply intracellularly within the protozoa commonly found in water distribution systems. Approximately half of the known species are pathogenic and have been connected to severe multisystem Legionnaires' disease. The detection methods for Legionella spp. in water samples are still based on cultivation, which is time consuming due to the slow growth of this bacterium. Here, we developed a cultivation-independent, label-free and fast detection method for legionellae in a biofilm matrix based on the Raman spectroscopic analysis of isolated single cells via immunomagnetic separation (IMS). A database comprising the Raman spectra of single bacterial cells captured and separated from the biofilms formed by each species was used to build the identification method based on a support vector machine (SVM) discriminative classifier. The complete method allows the detection of Legionella spp. in 100 min. Cross-reactivity of Legionella spp. specific immunomagnetic beads to the other studied genera was tested, where only small cell amounts of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli compared to the initial number of cells were isolated by the immunobeads. Nevertheless, the Raman spectra collected from isolated non-targeted bacteria were well-discriminated from the Raman spectra collected from isolated Legionella cells, whereby the Raman spectra of the independent dataset of Legionella strains were assigned with an accuracy of 98.6%. In addition, Raman spectroscopy was also used to differentiate between isolated Legionella species. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-03-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-01-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands. PMID:24670678
Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats.
Lee, Sang-Bok; Lee, Cil-Han; Kim, Se-Nyun; Chung, Ki-Myung; Cho, Young-Kyung; Kim, Kyung-Nyun
2009-12-01
Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCbeta2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.
Gavelis, Gregory S; White, Richard A; Suttle, Curtis A; Keeling, Patrick J; Leander, Brian S
2015-07-17
Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants. We applied spliced-leader targeted PCR (SLPCR) to obtain dinoflagellate-specific transcriptomes on single-cell isolates of P. lebouriae from marine sediments. Polykrikos lebouriae expressed nuclear-encoded photosynthetic genes that were characteristic of the peridinin-plastids of dinoflagellates, rather than those from a diatom of haptophyte. We confirmed these findings at the genomic level using multiple displacement amplification (MDA) to obtain a partial plastome of P. lebouriae. From these data, we infer that P. lebouriae has retained the peridinin plastids ancestral for dinoflagellates as a whole, while its closest relatives have lost photosynthesis multiple times independently. We discuss these losses with reference to mixotrophy in polykrikoid dinoflagellates. Our findings demonstrate new levels of variation associated with the peridinin plastids of dinoflagellates and the usefulness of SLPCR approaches on single cell isolates. Unlike other transcriptomic methods, SLPCR has taxonomic specificity, and can in principle be adapted to different splice-leader bearing groups.
Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian
2013-12-01
Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.
Cloning of Plasmodium falciparum by single-cell sorting
Miao, Jun; Li, Xiaolian; Cui, Liwang
2010-01-01
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K; Eckardt, Dominik
2015-01-01
Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications.
Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K.; Eckardt, Dominik
2015-01-01
Rationale Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. Methods and Results In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Conclusion Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications. PMID:26618511
Bakkar, Mohammed; Liu, Younan; Fang, Dongdong; Stegen, Camille; Su, Xinyun; Ramamoorthi, Murali; Lin, Li-Chieh; Kawasaki, Takako; Makhoul, Nicholas; Pham, Huan; Sumita, Yoshinori; Tran, Simon D
2017-01-01
This chapter describes a simplified method that allows the systematic isolation of multiple types of dental stem cells such as dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC), and stem cells of the apical papilla (SCAP) from a single tooth. Of specific interest is the modified laboratory approach to harvest/retrieve the dental pulp tissue by minimizing trauma to DPSC by continuous irrigation, reduction of frictional heat from the bur rotation, and reduction of the bur contact time with the dentin. Also, the use of a chisel and a mallet will maximize the number of live DPSC for culture. Steps demonstrating the potential for multiple cell differentiation lineages of each type of dental stem cell into either osteocytes, adipocytes, or chondrocytes are described. Flow cytometry, with a detailed strategy for cell gating and analysis, is described to verify characteristic markers of human mesenchymal multipotent stromal cells (MSC) from DPSC, PDLSC, or SCAP for subsequent experiments in cell therapy and in tissue engineering. Overall, this method can be adapted to any laboratory with a general setup for cell culture experiments.
Live cell isolation by laser microdissection with gravity transfer
NASA Astrophysics Data System (ADS)
Podgorny, Oleg V.
2013-05-01
Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.
Lipid extraction from isolated single nerve cells
NASA Technical Reports Server (NTRS)
Krasnov, I. V.
1977-01-01
A method of extracting lipids from single neurons isolated from lyophilized tissue is described. The method permits the simultaneous extraction of lipids from 30-40 nerve cells and for each cell provides equal conditions of solvent removal at the conclusion of extraction.
Technologies for Single-Cell Isolation
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-01-01
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926
Technologies for Single-Cell Isolation.
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-07-24
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.
Didar, Tohid Fatanat; Bowey, Kristen; Almazan, Guillermina; Tabrizian, Maryam
2014-02-01
Given that current cell isolation techniques are expensive, time consuming, yield low isolation purities, and/or alter target cell properties, a versatile, cost effective, and easy-to-operate microchip with the capability to simultaneously separate, capture, pattern, and culture rare and primary cells in vitro is developed. The platform is based on target cell adhesion onto the micro-fabricated interfaces produced by microcontact printing of cell-specific antibodies. Results show over 95% separation efficiency in less than 10 min for the separation of oligodendrocyte progenitor cells (OPCs) and cardiomyocytes from rat brain and heart mixtures, respectively. Target cell attachment and single cell spreading can be precisely controlled on the basis of the designed patterns. Both cell types can maintain their biofunctionality. Indeed, isolated OPCs can proliferate and differentiate into mature oligodendrocytes, while isolated cardiomyocytes retain their contractile properties on the separation platform. Successful separation of two dissimilar cell types present in varying concentrations in their respective cell mixtures and the demonstration of their integrity after separation open new avenues for time and cost-effective sorting of various cell types using the developed miniaturized platform. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici
McDonald, Megan C.; McGinness, Lachlan; Hane, James K.; Williams, Angela H.; Milgate, Andrew; Solomon, Peter S.
2016-01-01
Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which ∼10% had an effect on the coding regions of the genome. Furthermore, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method, we have identified < 100 candidate effector genes whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene. PMID:26837952
Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.
Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A
2017-07-07
The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.
Technical note: Method for isolation of the bovine sweat gland and conditions for in vitro culture.
Hamzaoui, S; Burger, C A; Collier, J L; Collier, R J
2018-05-01
Apocrine sweat glands in bovine skin are involved in thermoregulation. Human, horse, and sheep sweat gland epithelial cells have been isolated and grown in vitro. The present study was conducted to identify a method to isolate bovine sweat glands and culture apocrine bovine sweat gland epithelial cells in vitro. Mechanical shearing, collagenase digestion, centrifugation, and neutral red staining were used to identify and isolate the apocrine glands from skin. Bovine sweat glands in situ and after isolation comprised 2 major cell types consisting of a single layer of cuboidal epithelial cells resting on a layer of myoepithelial cells. In situ, the glands were embedded in a collagen matrix primarily comprising fibroblasts, and some of these cells were also present in the isolated material. The isolated material was transferred to complete medium (keratinocyte serum-free medium, bovine pituitary extract, and human recombinant epidermal growth factor + 2.5% fetal bovine serum) in a T 25 flask (Falcon, Franklin Lakes, NJ) with media film and then incubated at 37°C for 24 h. After sweat glands adhered to the bottom of the flask, an additional 2 mL of complete medium was added and the medium was changed every 3 d. Isolated apocrine sweat glands and bovine sweat gland epithelial cells were immunostained for cytokeratin and fibroblast specific protein, indicating fibroblast-free cultures. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Almeida, H V; Eswaramoorthy, R; Cunniffe, G M; Buckley, C T; O'Brien, F J; Kelly, D J
2016-05-01
Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-β3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-β3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The objective of this study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM micro-particles and the growth factor TGF-β3 as a therapeutic for articular cartilage regeneration. This study demonstrates that freshly isolated stromal cells generate cartilage tissue in vivo when incorporated into such a fibrin hydrogels functionalized with cartilage ECM particles. These findings open up new possibilities for in-theatre, single-stage, cell-based therapies for joint regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cloning of Plasmodium falciparum by single-cell sorting.
Miao, Jun; Li, Xiaolian; Cui, Liwang
2010-10-01
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.
Single-cell isolation using a DVD optical pickup
Kasukurti, A.; Potcoava, M.; Desai, S.A.; Eggleton, C.; Marr, D. W. M.
2011-01-01
A low-cost single-cell isolation system incorporating a digital versatile disc burner (DVD RW) optical pickup has been developed. We show that these readily available modules have the required laser power and focusing optics to provide a steady Gaussian beam capable of optically trapping micron-sized colloids and red blood cells. Utility of the pickup is demonstrated through the non-destructive isolation of such particles in a laminar-flow based microfluidic device that captures and translates single microscale objects across streamlines into designated channel exits. In this, the integrated objective lens focusing coils are used to steer the optical trap across the channel, resulting in the isolation of colloids and red blood cells using a very inexpensive off-the-shelf optical component. PMID:21643294
Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.
Zheng, Chunhong; Zheng, Liangtao; Yoo, Jae-Kwang; Guo, Huahu; Zhang, Yuanyuan; Guo, Xinyi; Kang, Boxi; Hu, Ruozhen; Huang, Julie Y; Zhang, Qiming; Liu, Zhouzerui; Dong, Minghui; Hu, Xueda; Ouyang, Wenjun; Peng, Jirun; Zhang, Zemin
2017-06-15
Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 single T cells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8 + T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8 + T cells and Tregs and represses the CD8 + T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers. Copyright © 2017 Elsevier Inc. All rights reserved.
On-chip activation and subsequent detection of individual antigen-specific T cells
Song, Qing; Han, Qing; Bradshaw, Elizabeth M.; Kent, Sally C.; Raddassi, Khadir; Nilsson, Björn; Nepom, Gerald T.; Hafler, David A.; Love, J. Christopher
2010-01-01
The frequencies of antigen-specific CD4+ T cells in samples of human tissue has been difficult to determine accurately ex vivo, particularly for autoimmune diseases such as multiple sclerosis or Type 1 diabetes. Conventional approaches involve the expansion of primary T cells in vitro to increase the numbers of cells, and a subsequent assessment of the frequencies of antigen-specific T cells in the expanded population by limiting dilution or by using fluorescently labeled tetramers of peptide-loaded major histocompatibility complex (MHC) receptors. Here we describe an alternative approach that uses arrays of subnanoliter wells coated with recombinant peptide-loaded MHC Class II monomers to isolate and stimulate individual CD4+ T cells in an antigen-specific manner. In these experiments, activation was monitored using microengraving to capture two cytokines (IFNγ and IL-17) released from single cells. This new method should enable direct enumeration of antigen-specific CD4+ T cells ex vivo from clinical samples. PMID:20000848
Single-cell transcriptomics for microbial eukaryotes.
Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J
2014-11-17
One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Shuonan; Mar, Jessica C
2018-06-19
A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms that were initially developed for data collected from bulk samples may not be suitable for single cells. Meanwhile, although methods that are specific for single cell data are now emerging, whether they have improved performance over general methods is unknown. In this study, we evaluate the applicability of five general methods and three single cell methods for inferring gene regulatory networks from both experimental single cell gene expression data and in silico simulated data. Standard evaluation metrics using ROC curves and Precision-Recall curves against reference sets sourced from the literature demonstrated that most of the methods performed poorly when they were applied to either experimental single cell data, or simulated single cell data, which demonstrates their lack of performance for this task. Using default settings, network methods were applied to the same datasets. Comparisons of the learned networks highlighted the uniqueness of some predicted edges for each method. The fact that different methods infer networks that vary substantially reflects the underlying mathematical rationale and assumptions that distinguish network methods from each other. This study provides a comprehensive evaluation of network modeling algorithms applied to experimental single cell gene expression data and in silico simulated datasets where the network structure is known. Comparisons demonstrate that most of these assessed network methods are not able to predict network structures from single cell expression data accurately, even if they are specifically developed for single cell methods. Also, single cell methods, which usually depend on more elaborative algorithms, in general have less similarity to each other in the sets of edges detected. The results from this study emphasize the importance for developing more accurate optimized network modeling methods that are compatible for single cell data. Newly-developed single cell methods may uniquely capture particular features of potential gene-gene relationships, and caution should be taken when we interpret these results.
Drug delivery systems--2. Site-specific drug delivery utilizing monoclonal antibodies.
Ranade, V V
1989-10-01
Monoclonal antibodies (MAbs) are purified antibodies produced by a single clone of cells. They are engineered to recognize and bind to a single specific antigen. Accordingly, when administered, MAbs home in on a particular circulating protein or on cells that bear the correct antigenic signature on their surfaces. It is the specificity of MAbs that has made them valuable tools for health professions. Following the discovery of Kohler and Milstein regarding the method of somatic cell hybridization, a number of investigators have successfully adopted this technique to obtain T-lymphocyte hybrid cell lines by fusion of activated T (thymus derived) lymphocytes with a T lymphoma cell line leading to an immortalization of a specific differentiated function. The hybrids thus obtained were subsequently shown to produce homogeneous effector molecules with a wide variety of immune functions such as enhancement or suppression of antibody responses, generation of helper T cells, suppressor T cells and cytotoxic T cells. Study of these regulatory molecules has been further shown to provide a greater insight into the genetic, biochemical and molecular mechanisms responsible for cellular development, and the interaction and triggering of various cell types. The successful application of hybridoma technology has now resulted into several advances in the understanding the mechanism and treatment of diseases, especially cancer and development of vaccines, promotion of organ transplantation and therapy against parasites as well. Since monoclonal antibodies could be made in unlimited supply, they have been used in genetic studies such as mRNA and gene isolation, chromosomal isolation of specific genes, immunoglobulin structure, detection of new or rare immunoglobulin gene products, structural studies of enzymes and other proteins and structural and population studies of protein polymorphisms. In some instances, the monoclonal antibodies have been found to replace conventional antisera for studies of chromosome structure and function, gene mapping, embryogenesis, characterization and biosynthesis of developmental and differentiation antigens. These antigens are those that are specific for various cell types and tissues, species specific antigen, antigens involved in chemotaxis, immunogenetics and clinical genetics including genetically inherited disorders, chromosome aberrations and transplantation antigens. Besides these monoclonal antibodies, their complexes have recently been investigated as exquisitely sensitive probes to be guided to target cells or organs. They have been used to deliver cytotoxic drugs to malignant cells or enzymes to specific cell types.(ABSTRACT TRUNCATED AT 400 WORDS)
Sununliganon, Laddawun; Singhatanadgit, Weerachai
2012-01-01
Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.
Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.
Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R
2017-07-01
The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.
Esfandiary, Lida; Gupta, Nirupama; Voigt, Alexandria; Wanchoo, Arun; Chan, Edward K L; Sukumaran, Sukesh; Nguyen, Cuong Q
2016-05-17
Anti-SSA/Ro60 and anti-SSB/La are essential serological biomarkers for rheumatic diseases, specifically Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). Currently, laboratory detection technology and platforms are designed with an emphasis on high-throughput methodology; therefore, the relationship of sensitivity with specificity remains a significant area for improvement. In this study, we used single-cell antibody nanowells (SCAN) technology to directly profile individual B cells producing antibodies against specific autoantigens such as SSA/Ro60 and SSB/La. Peripheral blood mononuclear cells were isolated using Ficoll gradient. Fluorescently labeled cells were added to fabricated nanowells and imaged using a high-speed epifluorescence microscope. The microengraving process was conducted using printed slides coated with immunoglobulins. Printed slides were hybridized with fluorescence-conjugated immunoglobulin G (IgG), SSA/Ro60, and SSB/La antigens. Microarray spots were analyzed for nanowells with single live B cells that produced antigen-specific autoantibodies. Our results indicate that SCAN can simultaneously detect high frequencies of anti-SSA/Ro60 and anti-SSB/La with a specific IgG isotype in peripheral blood mononuclear cells of patients, as well as measure their individual secretion levels. The data showed that patients with SS and SLE exhibited higher frequency and greater concentration of anti-SSA/Ro60- and anti-SSB/La-producing B cells in the IgG isotype. Furthermore, individual B cells of patients produced higher levels of IgG-specific anti-SSA/Ro60 autoantibody, but not IgG-specific anti-SSB/La autoantibody, compared with healthy control subjects. These results support the application of SCAN as a robust multiparametric analytical bioassay that can directly measure secretion of autoantibody and accurately report antigen-specific, autoantibody-producing cells.
Gene transfer and gene mapping in mammalian cells in culture.
Shows, T B; Sakaguchi, A Y
1980-01-01
The ability to transfer mammalian genes parasexually has opened new possibilities for gene mapping and fine structure mapping and offers great potential for contributing to several aspects of mammalian biology, including gene expression and genetic engineering. The DNA transferred has ranged from whole genomes to single genes and smaller segments of DNA. The transfer of whole genomes by cell fusion forms cell hybrids, which has promoted the extensive mapping of human and mouse genes. Transfer, by cell fusion, of rearranged chromosomes has contributed significantly to determining close linkage and the assignment of genes to specific chromosomal regions. Transfer of single chromosomes has been achieved utilizing microcells fused to recipient cells. Metaphase chromosomes have been isolated and used to transfer single-to-multigenic DNA segments. DNA-mediated gene transfer, simulating bacterial transformation, has achieved transfer of single-copy genes. By utilizing DNA cleaved with restriction endonucleases, gene transfer is being empolyed as a bioassay for the purification of genes. Gene mapping and the fate of transferred genes can be examined now at the molecular level using sequence-specific probles. Recently, single genes have been cloned into eucaryotic and procaryotic vectors for transfer into mammalian cells. Moreover, recombinant libraries in which entire mammalian genomes are represented collectively are a rich new source of transferable genes. Methodology for transferring mammalian genetic information and applications for mapping mammalian genes is presented and prospects for the future discussed.
Lakshmipathy, Uma; Verfaillie, Catherine
2005-01-01
The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.
Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai
2013-01-01
Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674
Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions.
Ponnusamy, Loganathan; Schal, Coby; Wesson, Dawn M; Arellano, Consuelo; Apperson, Charles S
2015-09-23
The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to potential oviposition sites. Attractive bacterial isolates, when formulated for sustained release of attractants, could be coupled with an ovitrap containing a toxicant to achieve area-wide management of Aedes mosquitoes.
Single-Cell Sequencing Technology in Oncology: Applications for Clinical Therapies and Research.
Ye, Baixin; Gao, Qingping; Zeng, Zhi; Stary, Creed M; Jian, Zhihong; Xiong, Xiaoxing; Gu, Lijuan
2016-01-01
Cellular heterogeneity is a fundamental characteristic of many cancers. A lack of cellular homogeneity contributes to difficulty in designing targeted oncological therapies. Therefore, the development of novel methods to determine and characterize oncologic cellular heterogeneity is a critical next step in the development of novel cancer therapies. Single-cell sequencing (SCS) technology has been recently employed for analyzing the genetic polymorphisms of individual cells at the genome-wide level. SCS requires (1) precise isolation of the single cell of interest; (2) isolation and amplification of genetic material; and (3) descriptive analysis of genomic, transcriptomic, and epigenomic data. In addition to targeted analysis of single cells isolated from tumor biopsies, SCS technology may be applied to circulating tumor cells, which may aid in predicting tumor progression and metastasis. In this paper, we provide an overview of SCS technology and review the current literature on the potential application of SCS to clinical oncology and research.
High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells.
Lin, Eric; Rivera-Báez, Lianette; Fouladdel, Shamileh; Yoon, Hyeun Joong; Guthrie, Stephanie; Wieger, Jacob; Deol, Yadwinder; Keller, Evan; Sahai, Vaibhav; Simeone, Diane M; Burness, Monika L; Azizi, Ebrahim; Wicha, Max S; Nagrath, Sunitha
2017-09-27
We present "Labyrinth," a label-free microfluidic device to isolate circulating tumor cells (CTCs) using the combination of long loops and sharp corners to focus both CTCs and white blood cells (WBCs) at a high throughput of 2.5 mL/min. The high yield (>90%) and purity (600 WBCs/mL) of Labyrinth enabled us to profile gene expression in CTCs. As proof of principle, we used previously established cancer stem cell gene signatures to profile single cells isolated from the blood of breast cancer patients. We observed heterogeneous subpopulations of CTCs expressing genes for stem cells, epithelial cells, mesenchymal cells, and cells transitioning between epithelial and mesenchymal. Labyrinth offers a cell-surface marker-independent single-cell isolation platform to study heterogeneous CTC subpopulations. Copyright © 2017 Elsevier Inc. All rights reserved.
Single cell isolation process with laser induced forward transfer.
Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying
2017-01-01
A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Clay, MR.; Tabor, M.; Owen, J.; Carey, TE.; Bradford, CR.; Wolf, GT.; Wicha, MS.; Prince, ME.
2010-01-01
Background According to the cancer stem cell (CSC) theory only a small subset of cancer cells are capable of forming tumors. We previously reported that CD44 isolates tumorigenic cells from HNSCC. Recent studies indicate that aldehyde dehydrogenase (ALDH) activity may represent a more specific marker of CSCs. Methods Six primary HNSCC were collected. Cells with high and low ALDH activity (ALDHhigh/ALDHlow) were isolated. ALDHhigh and ALDHlow populations were implanted into NOD/SCID mice and monitored for tumor development. Results ALDHhigh cells represented a small percentage of the tumor cells (1-7.8%). ALDHhigh cells formed tumors from as few as 500 cells in 24/45 implantations while only 3/37 implantations of ALDHlow cells formed tumors. Conclusions ALDHhigh cells comprise a subpopulation cells in HNSCC that are tumorigenic and capable of producing tumors at very low numbers. This finding indicates that ALDH activity on its own is a highly selective marker for CSCs in HNSCC. PMID:20073073
Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu
2017-01-01
Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887
Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu
2017-03-21
Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.
1986-08-01
Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.
Isolation by cell-column chromatography of immunoglobulins specific for cell surface carbohydrates
1977-01-01
A new method of affinity chromatography using glutaraldehyde-fixed cells immobilized on Sephadex beads has been used to isolate immunoglobulins (Ig's) specific for cell surface glycoproteins. Ig's that specifically bound and agglutinated the same cells as those originally fixed on the columns were isolated from nonimmune sera of various species. Periodate treatment of the cell-columns and the free cells destroyed their ability to bind the Ig's, and the binding of the Ig's to untreated cells was inhibited by monosaccharides such as D- galactose and sialic acid. The binding of antibodies directed against cell surfaces obtained by immunizing animals with the same mouse tumor cell lines used on the columns (P388 and EL4) was not inhibited by various saccharides. Surface glycoproteins obtained from the mouse tumor cells by immunoprecipitation with the column-isolated Ig's yielded specific electrophoretic patterns that differed from those obtained using Ig's from the sera of rabbits immunized with the tumor cells. The data suggest that the Ig's isolated by cell-column chromatography were directed against carbohydrates, probably those in terminal positions of the polysaccharide portions of the tumor cell surface glycoproteins. Column-isolated Ig's specific for carbohydrates were also useful in studies of cell interactions in nonmammalian systems including Dictyostelium discoideum and Saccharomyces cerevisiae. The cell-column method appears to be adaptable to the isolation of a variety of molecules in addition to antibodies. PMID:833547
Malecki, Marek; Tombokan, Xenia; Anderson, Mark; Malecki, Raf; Beauchaine, Michael
2013-01-01
Introduction Cancer of the testes is currently the most frequent neoplasm and a leading cause of morbidity in men 15–35 years of age. Its incidence is increasing. Embryonal carcinoma is its most malignant form, which either may be resistant or may develop resistance to therapies, which results in relapses. Cancer stem cells are hypothesized to be drivers of these phenomena. Specific aim The specific aim of this work was identification and isolation of spectra of single, living cancer stem cells, which were acquired directly from the patients’ biopsies, followed by testing of their pluripotency. Patients. Methods Biopsies were obtained from the patients with the clinical and histological diagnoses of the primary, pure embryonal carcinomas of the testes. The magnetic and fluorescent antibodies were genetically engineered. The SSEA-4 and TRA-1–60 cell surface display was analyzed by multiphoton fluorescence spectroscopy (MPFS), flow cytometry (FCM), immunoblotting (IB), nuclear magnetic resonance spectroscopy (NMRS), energy dispersive x-ray spectroscopy (EDXS), and total reflection x-ray spectroscopy (TRXFS). The single, living cells were isolated by magnetic or fluorescent sorting followed by their clonal expansion. The OCT4A, SOX2, and NANOG genes’ transcripts were analyzed by qRTPCR and the products by IB and MPFS. Results The clones of cells, with the strong surface display of TRA-1–60 and SSEA-4, were identified and isolated directly from the biopsies acquired from the patients diagnosed with the pure embryonal carcinomas of the testes. These cells demonstrated high levels of transcription and translation of the pluripotency genes: OCT4A, SOX2, and NANOG. They formed embryoid bodies, which differentiated into ectoderm, mesoderm, and endoderm. Conclusion In the pure embryonal carcinomas of the testes, acquired directly from the patients, we identified, isolated with high viability and selectivity, and profiled the clones of the pluripotent stem cells. These results may help in explaining therapy-resistance and relapses of these neoplasms, as well as, in designing targeted, personalized therapy. PMID:23772337
Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T
2015-07-01
Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.
Weber, Malte; Weiss, Etienne; Engel, Alfred M
2003-07-01
Scl-70 is the major antigen recognised by autoantibodies in the sera of patients with systemic sclerosis (SSc). The autoantibodies that specifically react with Scl-70 are highly characteristic of the disease and represent valuable markers for the diagnosis of SSc. We describe a novel strategy for cloning autoantibody fragments starting with a small blood sample from an SSc patient. B cells isolated from the collected peripheral blood mononuclear cells (PBMCs) were cultured in vitro using the EL4-B5 system. Anti-Scl-70 IgG-producing cells were pooled for RNA preparation followed by the generation of phagemid libraries of approximately 10(7) independent single-chain Fvs (scFvs). The screening of these libraries by phage display allowed us to isolate four anti-Scl-70 scFvs following three rounds of biopanning. About 10 times more starting blood material was needed to generate scFv libraries of similar size from PBMCs of an SSc patient and only two anti-Scl-70 scFvs were isolated after three rounds of phage selection. Together, this work shows that functional autoantibody fragments can be advantageously cloned after in vitro expansion of B cells. The isolated anti-Scl-70 autoantibody fragments represent useful tools for calibrating SSc diagnostic assays.
Mohammadzadeh, Sara; Rajabibazl, Masoumeh; Fourozandeh, Mehdi; Rasaee, Mohammad Javad; Rahbarizadeh, Fatemeh; Mohammadi, Mohammad
2014-02-01
Phage display has a fundamental role in protein isolation and engineering. Isolated proteins produced with this method can be modified for specific binding and affinity. P24 is the most produced protein during human immune deficiency virus (HIV) replication; especially in the early steps of HIV-1 infection, its evaluation may have diagnostic values. To test the HIV-1 infection, p24 antigen assay appears to be a very promising alternative to RNA assays. In this study, we have generated a recombinant mouse single chain antibody fragment against p24 of the HIV-1 with the use of phage display technology. After isolation of antibody variable-region (V) gene of B cells extracted from the spleen of an immunized mouse, a library of single chain Fv fragments (scFv) was constructed. The library was used in a series of bio-panning processes against recombinant p24 protein expressed from Escherichia coli. The isolated scFv antibody specifically recognizes the HIV-1 capsid protein p24. The affinity constant of the isolated scFv antibody (MF85) was found to be 2×10(-9) M. Our studies showed that the MF85 scFV antibody has similar properties as that of monoclonal antibodies produced by the hybridoma technology.
Genetic Diversity of Vibrio cholerae O1 in Argentina and Emergence of a New Variant
Pichel, Mariana; Rivas, Marta; Chinen, Isabel; Martín, Fernando; Ibarra, Cristina; Binsztein, Norma
2003-01-01
The genetic diversity of Vibrio cholerae O1 strains from Argentina was estimated by random amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE). Twenty-nine isolates carrying the virulence genes ctxA, zot, ace, and tcpA appeared to represent a single clone by both typing methods; while 11 strains lacking these virulence genes exhibited several heterogeneous RAPD and PFGE patterns. Among the last group, a set of isolates from the province Tucumán showed a single RAPD pattern and four closely related PFGE profiles. These strains, isolated from patients with diarrhea, did not produce the major V. cholerae O1 virulence determinants, yet cell supernatants of these isolates caused a heat-labile cytotoxic effect on Vero and Y-1 cells and elicited significant variations on the water flux and short-circuit current in human small intestine mounted in an Ussing chamber. All these effects were completely abolished by incubation with a specific antiserum against El Tor hemolysin, suggesting that this virulence factor was responsible for the toxic activity on both the epithelial cells and the small intestine specimens and may hence be involved in the development of diarrhea. We propose “Tucumán variant” as the designation for this new cluster of cholera toxin-negative V. cholerae O1 strains. PMID:12517837
Production and characterization of a high-affinity nanobody against human endoglin.
Ahmadvand, Davoud; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Mohammadi, Mohammad
2008-10-01
Abstract Antibodies or antibody fragments are almost exclusively applied in human therapy and diagnosis. The high affinity and specificity of antibodies makes them suitable for these applications. Nanobody, the variable domain of Camelidae heavy chain antibodies, have superior properties compared with conventional antibodies in that they are small, non-immunogenic, very stable, highly soluble, and easy to produce in large quantities. In the present study, we report the isolation and characterization of a high-affinity binder against human endoglin retrieved from camels' nanobody gene library. Endoglin (CD105), an accessory protein of the transforming growth factor beta receptor complex, has become an attractive molecule for the targeting of the tumor vasculature. Upregulation of endoglin on proliferating endothelial cells is associated with tumor neovascularization. Here, we generated two nanobody gene libraries displayed on phage particles. Some single-domain antibody fragments have been isolated that specifically recognize the recombinant extracellular domain of human endoglin. The other selected anti-endoglin nanobody (AR1-86) showed strong binding to human endoglin expressing endothelial cells (HUVECs), while no binding was observed with the endoglin-negative cell line (HEK293). This high-affinity single-domain antibody could be a good candidate for the generation of vascular or tumor targeting agents in cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkin, R.B.; Seliger, H.H.
1981-07-01
Short term rates of /sup 14/C uptake for single cells and small numbers of isolated algal cells of five phytoplankton species from natural populations were measured by liquid scintillation counting. Regression analysis of uptake rates per cell for cells isolated from unialgal cultures of seven species of dinoflagellates, ranging in volume from ca. 10/sup 3/ to 10/sup 7/ ..mu..m/sup 3/, gave results identical to uptake rates per cell measured by conventional /sup 14/C techniques. Relative standard errors or regression coefficients ranged between 3 and 10%, indicating that for any species there was little variation in photosynthesis per cell.
Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
Benavente-Babace, A; Gallego-Pérez, D; Hansford, D J; Arana, S; Pérez-Lorenzo, E; Mujika, M
2014-11-15
Lab on a chip (LOC) systems provide interesting and low-cost solutions for key studies and applications in the biomedical field. Along with microfluidics, these microdevices make single-cell manipulation possible with high spatial and temporal resolution. In this work we have designed, fabricated and characterized a versatile and inexpensive microfluidic platform for on-chip selective single-cell trapping and treatment using laminar co-flow. The combination of co-existing laminar flow manipulation and hydrodynamic single-cell trapping for selective treatment offers a cost-effective solution for studying the effect of novel drugs on single-cells. The operation of the whole system is experimentally simple, highly adaptable and requires no specific equipment. As a proof of concept, a cytotoxicity study of ethanol in isolated hepatocytes is presented. The developed microfluidic platform controlled by means of co-flow is an attractive and multipurpose solution for the study of new substances of high interest in cell biology research. In addition, this platform will pave the way for the study of cell behavior under dynamic and controllable fluidic conditions providing information at the individual cell level. Thus, this analysis device could also hold a great potential to easily use the trapped cells as sensing elements expanding its functionalities as a cell-based biosensor with single-cell resolution. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel approaches in function-driven single-cell genomics.
Doud, Devin F R; Woyke, Tanja
2017-07-01
Deeper sequencing and improved bioinformatics in conjunction with single-cell and metagenomic approaches continue to illuminate undercharacterized environmental microbial communities. This has propelled the 'who is there, and what might they be doing' paradigm to the uncultivated and has already radically changed the topology of the tree of life and provided key insights into the microbial contribution to biogeochemistry. While characterization of 'who' based on marker genes can describe a large fraction of the community, answering 'what are they doing' remains the elusive pinnacle for microbiology. Function-driven single-cell genomics provides a solution by using a function-based screen to subsample complex microbial communities in a targeted manner for the isolation and genome sequencing of single cells. This enables single-cell sequencing to be focused on cells with specific phenotypic or metabolic characteristics of interest. Recovered genomes are conclusively implicated for both encoding and exhibiting the feature of interest, improving downstream annotation and revealing activity levels within that environment. This emerging approach has already improved our understanding of microbial community functioning and facilitated the experimental analysis of uncharacterized gene product space. Here we provide a comprehensive review of strategies that have been applied for function-driven single-cell genomics and the future directions we envision. © FEMS 2017.
Novel approaches in function-driven single-cell genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doud, Devin F. R.; Woyke, Tanja
Deeper sequencing and improved bioinformatics in conjunction with single-cell and metagenomic approaches continue to illuminate undercharacterized environmental microbial communities. This has propelled the 'who is there, and what might they be doing' paradigm to the uncultivated and has already radically changed the topology of the tree of life and provided key insights into the microbial contribution to biogeochemistry. While characterization of 'who' based on marker genes can describe a large fraction of the community, answering 'what are they doing' remains the elusive pinnacle for microbiology. Function-driven single-cell genomics provides a solution by using a function-based screen to subsample complex microbialmore » communities in a targeted manner for the isolation and genome sequencing of single cells. This enables single-cell sequencing to be focused on cells with specific phenotypic or metabolic characteristics of interest. Recovered genomes are conclusively implicated for both encoding and exhibiting the feature of interest, improving downstream annotation and revealing activity levels within that environment. This emerging approach has already improved our understanding of microbial community functioning and facilitated the experimental analysis of uncharacterized gene product space. Here we provide a comprehensive review of strategies that have been applied for function-driven single-cell genomics and the future directions we envision.« less
Novel approaches in function-driven single-cell genomics
Doud, Devin F. R.; Woyke, Tanja
2017-06-07
Deeper sequencing and improved bioinformatics in conjunction with single-cell and metagenomic approaches continue to illuminate undercharacterized environmental microbial communities. This has propelled the 'who is there, and what might they be doing' paradigm to the uncultivated and has already radically changed the topology of the tree of life and provided key insights into the microbial contribution to biogeochemistry. While characterization of 'who' based on marker genes can describe a large fraction of the community, answering 'what are they doing' remains the elusive pinnacle for microbiology. Function-driven single-cell genomics provides a solution by using a function-based screen to subsample complex microbialmore » communities in a targeted manner for the isolation and genome sequencing of single cells. This enables single-cell sequencing to be focused on cells with specific phenotypic or metabolic characteristics of interest. Recovered genomes are conclusively implicated for both encoding and exhibiting the feature of interest, improving downstream annotation and revealing activity levels within that environment. This emerging approach has already improved our understanding of microbial community functioning and facilitated the experimental analysis of uncharacterized gene product space. Here we provide a comprehensive review of strategies that have been applied for function-driven single-cell genomics and the future directions we envision.« less
Xu, Yan; Xie, Jianhui; Chen, Ronghua; Cao, Yu; Ping, Yuan; Xu, Qingwen; Hu, Wei; Wu, Dan; Gu, Lihua; Zhou, Huaigu; Chen, Xin; Zhao, Ziqin; Zhong, Jiang; Li, Rui
2016-01-01
No effective method has been developed to distinguish sperm cells originating from different men in multi-suspect sexual assault cases. Here we combined MACS and FACS to isolate single donor sperm cells from forensic mixture samples including female vaginal epithelial cells and sperm cells from multiple contributors. Sperms from vaginal swab were isolated by MACS using FITC-conjugated A kinase anchor protein 3 (AKAP3) antibody; target individual sperm cells involving two or three donors were separated by FACS using FITC-labeled blood group A/B antigen antibody. This procedure was further tested in two mock multi-suspect sexual assault samples and one practical casework sample. Our results showed that complete single donor STR profiles could be successfully obtained from sperm/epithelial cell and sperm mixtures from two contributors. For unbalanced sperm/epithelial cells and sperm cells mixtures, sensitivity results revealed that target cells could be detected at as low as 1:32 and 1:8 mixed ratios, respectively. Although highly relies on cell number and blood types or secretor status of the individuals, this procedure would still be useful tools for forensic DNA analysis of multi-suspect sexual assault cases by the combined use of FACS and MACS based on sperm-specific AKAP3 antigen and human blood type antigen. PMID:27857155
Spielmann, Guillaume; Bollard, Catherine M.; Kunz, Hawley; Hanley, Patrick J.; Simpson, Richard J.
2016-01-01
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy. PMID:27181409
Spielmann, Guillaume; Bollard, Catherine M; Kunz, Hawley; Hanley, Patrick J; Simpson, Richard J
2016-05-16
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy.
Song, Er-Qun; Hu, Jun; Wen, Cong-Ying; Tian, Zhi-Quan; Yu, Xu; Zhang, Zhi-Ling; Shi, Yun-Bo; Pang, Dai-Wen
2011-01-01
Fluorescent-magnetic-biotargeting multifunctional nanobioprobes (FMBMNs) have attracted great attention in recent years due to their increasing, important applications in biomedical research, clinical diagnosis, and biomedicine. We have previously developed such nanobioprobes for the detection and isolation of a single kind of tumor cells. Detection and isolation of multiple tumor markers or tumor cells from complex samples sensitively and with high efficiency is critical for the early diagnosis of tumors, especially malignant tumors or cancers, which will improve clinical diagnosis outcomes and help to select effective treatment approaches. Here, we expanded the application of the monoclonal antibody (mAb)-coupled FMBMNs for multiplexed assays. Multiple types of cancer cells, such as leukemia cells and prostate cancer cells, were detected and collected from mixed samples within 25 minutes by using a magnet and an ordinary fluorescence microscope. The capture efficiencies of mAb-coupled FMBMNs for the above mentioned two types of cells were 96% and 97% respectively. Furthermore, by using the mAb-coupled FMBMNs, specific and sensitive detection and rapid separation of a small number of spiked leukemia cells and prostate cancer cells in a large population of cultured normal cells (about 0.01% were tumor cells) were achieved simply and inexpensively without any sample pretreatment before cell analysis. Therefore, mAb-coupled multicolour FMBMNs may be used for very sensitive detection and rapid isolation of multiple cancer cells in biomedical research and medical diagnostics. PMID:21250650
Lovatt, Ditte; Ruble, Brittani K.; Lee, Jaehee; Dueck, Hannah; Kim, Tae Kyung; Fisher, Stephen; Francis, Chantal; Spaethling, Jennifer M.; Wolf, John A.; Grady, M. Sean; Ulyanova, Alexandra V.; Yeldell, Sean B.; Griepenburg, Julianne C.; Buckley, Peter T.; Kim, Junhyong; Sul, Jai-Yoon; Dmochowski, Ivan J.; Eberwine, James
2014-01-01
Transcriptome profiling is an indispensable tool in advancing the understanding of single cell biology, but depends upon methods capable of isolating mRNA at the spatial resolution of a single cell. Current capture methods lack sufficient spatial resolution to isolate mRNA from individual in vivo resident cells without damaging adjacent tissue. Because of this limitation, it has been difficult to assess the influence of the microenvironment on the transcriptome of individual neurons. Here, we engineered a Transcriptome In Vivo Analysis (TIVA)-tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA-tag in combination with RNA-seq to analyze transcriptome variance among single dispersed cells and in vivo resident mouse and human neurons, we show that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology provides the first noninvasive approach for capturing mRNA from single cells in their natural microenvironment. PMID:24412976
Single-cell Genomics using Droplet-based Microfluidics
NASA Astrophysics Data System (ADS)
Basu, Anindita; Macosko, Evan; Shalek, Alex; McCarroll, Steven; Regev, Aviv; Weitz, Dave
2014-03-01
We develop a system to profile the transcriptome of mammalian cells in isolation using reverse emulsion droplet-based microfluidic techniques. This is accomplished by (a) encapsulating and lysing one cell per emulsion droplet, and (b) uniquely barcoding the RNA contents from each cell using unique DNA-barcoded microgel beads. This enables us to study the transcriptional behavior of a large number of cells at single-cell resolution. We then use these techniques to study transcriptional responses of isolated immune cells to precisely controlled chemical and pathological stimuli provided in the emulsion droplet.
NASA Astrophysics Data System (ADS)
Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan
1999-02-01
Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.
A Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells.
Gao, Xia; Li, Qiang; Wang, Fengchao; Liu, Xuehui; Liu, Dingbin
2018-06-22
We report a dual-responsive self-assembled monolayer (SAM) on a well-defined rough gold substrate for dynamic capture and release of live cells. By incorporating 5'-triphosphate (ATP) aptamer into a SAM, we can accurately isolate specific cell types and subsequently release captured cells at either population or desired-group (or even single-cell) levels. On one hand, the whole SAMs can be disassembled through addition of ATP solution, leading to the entire release of the captured cells from the supported substrate. On the other hand, desired cells can be selectively released by using near-infrared light (NIR) irradiation, with relatively high spatial and temporal precision. The proposed dual-responsive cell capture-and-release system is biologically friendly and is reusable with another round of modification, showing great usefulness in cancer diagnosis and molecular analysis.
Evolution of New cis-Regulatory Motifs Required for Cell-Specific Gene Expression in Caenorhabditis
Félix, Marie-Anne
2016-01-01
Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change—less than 30%—in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR) binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression. PMID:27588814
Giss, Dominic; Kemmerling, Simon; Dandey, Venkata; Stahlberg, Henning; Braun, Thomas
2014-05-20
Multimolecular protein complexes are important for many cellular processes. However, the stochastic nature of the cellular interactome makes the experimental detection of complex protein assemblies difficult and quantitative analysis at the single molecule level essential. Here, we present a fast and simple microfluidic method for (i) the quantitative isolation of endogenous levels of untagged protein complexes from minute volumes of cell lysates under close to physiological conditions and (ii) the labeling of specific components constituting these complexes. The method presented uses specific antibodies that are conjugated via a photocleavable linker to magnetic beads that are trapped in microcapillaries to immobilize the target proteins. Proteins are released by photocleavage, eluted, and subsequently analyzed by quantitative transmission electron microscopy at the single molecule level. Additionally, before photocleavage, immunogold can be employed to label proteins that interact with the primary target protein. Thus, the presented method provides a new way to study the interactome and, in combination with single molecule transmission electron microscopy, to structurally characterize the large, dynamic, heterogeneous multimolecular protein complexes formed.
Characterization of a novel variant of Mycobacterium chimaera.
van Ingen, J; Hoefsloot, W; Buijtels, P C A M; Tortoli, E; Supply, P; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D
2012-09-01
In this study, nonchromogenic mycobacteria were isolated from pulmonary samples of three patients in the Netherlands. All isolates had identical, unique 16S rRNA gene and 16S-23S ITS sequences, which were closely related to those of Mycobacterium chimaera and Mycobacterium marseillense. The biochemical features of the isolates differed slightly from those of M. chimaera, suggesting that the isolates may represent a possible separate species within the Mycobacterium avium complex (MAC). However, the cell-wall mycolic acid pattern, analysed by HPLC, and the partial sequences of the hsp65 and rpoB genes were identical to those of M. chimaera. We concluded that the isolates represent a novel variant of M. chimaera. The results of this analysis have led us to question the currently used methods of species definition for members of the genus Mycobacterium, which are based largely on 16S rRNA or rpoB gene sequencing. Definitions based on a single genetic target are likely to be insufficient. Genetic divergence, especially in the MAC, yields strains that cannot be confidently assigned to a specific species based on the analysis of a single genetic target.
Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian
2016-01-01
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB-sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases.
Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian
2016-01-01
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB–sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases. PMID:27442128
Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.
Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang
2014-10-01
Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.
Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation.
Stumpf, F; Schoendube, J; Gross, A; Rath, C; Niekrawietz, S; Koltay, P; Roth, G
2015-07-15
Single-cell analysis has developed into a key topic in cell biology with future applications in personalized medicine, tumor identification as well as tumor discovery (Editorial, 2013). Here we employ inkjet-like printing to isolate individual living single human B cells (Raji cell line) and load them directly into standard PCR tubes. Single cells are optically detected in the nozzle of the microfluidic piezoelectric dispenser chip to ensure printing of droplets with single cells only. The printing process has been characterized by using microbeads (10µm diameter) resulting in a single bead delivery in 27 out of 28 cases and relative positional precision of ±350µm at a printing distance of 6mm between nozzle and tube lid. Process-integrated optical imaging enabled to identify the printing failure as void droplet and to exclude it from downstream processing. PCR of truly single-cell DNA was performed without pre-amplification directly from single Raji cells with 33% success rate (N=197) and Cq values of 36.3±2.5. Additionally single cell whole genome amplification (WGA) was employed to pre-amplify the single-cell DNA by a factor of >1000. This facilitated subsequent PCR for the same gene yielding a success rate of 64% (N=33) which will allow more sophisticated downstream analysis like sequencing, electrophoresis or multiplexing. Copyright © 2015 Elsevier B.V. All rights reserved.
Aghebati-Maleki, Leili; Younesi, Vahid; Baradaran, Behzad; Abdolalizadeh, Jalal; Motallebnezhad, Morteza; Nickho, Hamid; Shanehbandi, Dariush; Majidi, Jafar; Yousefi, Mehdi
2017-04-01
Receptor tyrosine kinase-like orphan receptor (ROR) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including cell survival, differentiation, cell migration, cell communication, cell polarity, proliferation, metabolism, and angiogenesis. ROR1 has recently been shown to be expressed in various types of cancer cells but not normal cells. Pharmacokinetics and pharmacodynamics of single-chain Fragment variable (scFv) antibodies provide potential therapeutic advantages over whole antibody molecules. In the present study, scFvs against a specific peptide from the extracellular domain of ROR1 were selected using phage display technology. The selected scFvs were further characterized using polyclonal and monoclonal phage enzyme-linked immunosorbent assay (ELISA), soluble monoclonal ELISA, colony PCR, and sequencing. Antiproliferative and apoptotic effects of selected scFv antibodies were also evaluated in lymphoma and myeloma cancer cell lines using MTT and annexin V/PI assays. The results of ELISA indicated specific reactions of the isolated scFvs against the ROR1 peptide. Colony PCR confirmed the presence of full-length V H and Vκ inserts. The percentages of cell growth after 24 h of treatment of cells with individual scFv revealed that the scFv significantly inhibited the growth of the RPMI8226 and chronic lymphocytic leukemia (CLL) cells in comparison with the untreated cells ( p < 0.05). Interestingly, 24-h treatment with specific scFv induced apoptosis cell death in the RPMI8226 and CLL cells. Taken together, our results demonstrate that targeting of ROR1 using peptide-specific scFv can be an effective immunotherapy strategy in hematological malignancies.
Jiang, Wenzhi; Cossey, Sarah; Rosenberg, Julian N; Oyler, George A; Olson, Bradley J S C; Weeks, Donald P
2014-09-25
Cell walls are essential for most bacteria, archaea, fungi, algae and land plants to provide shape, structural integrity and protection from numerous biotic and abiotic environmental factors. In the case of eukaryotic algae, relatively little is known of the composition, structure or mechanisms of assembly of cell walls in individual species or between species and how these differences enable algae to inhabit a great diversity of environments. In this paper we describe the use of camelid antibody fragments (VHHs) and a streamlined ELISA assay as powerful new tools for obtaining mono-specific reagents for detecting individual algal cell wall components and for isolating algae that share a particular cell surface component. To develop new microalgal bioprospecting tools to aid in the search of environmental samples for algae that share similar cell wall and cell surface components, we have produced single-chain camelid antibodies raised against cell surface components of the single-cell alga, Chlamydomonas reinhardtii. We have cloned the variable-region domains (VHHs) from the camelid heavy-chain-only antibodies and overproduced tagged versions of these monoclonal-like antibodies in E. coli. Using these VHHs, we have developed an accurate, facile, low cost ELISA that uses live cells as a source of antigens in their native conformation and that requires less than 90 minutes to perform. This ELISA technique was demonstrated to be as accurate as standard ELISAs that employ proteins from cell lysates and that generally require >24 hours to complete. Among the cloned VHHs, VHH B11, exhibited the highest affinity (EC50 < 1 nM) for the C. reinhardtii cell surface. The live-cell ELISA procedure was employed to detect algae sharing cell surface components with C. reinhardtii in water samples from natural environments. In addition, mCherry-tagged VHH B11 was used along with fluorescence activated cell sorting (FACS) to select individual axenic isolates of presumed wild relatives of C. reinhardtii and other Chlorphyceae from the same environmental samples. Camelid antibody VHH domains provide a highly specific tool for detection of individual cell wall components of algae and for allowing the selection of algae that share a particular cell surface molecule from diverse ecosystems.
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.
Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D
2008-06-15
Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.
Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund
2017-05-31
Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.
Ao, Zheng; Liu, Xiaohe
2017-01-01
Circulating tumor cell (CTC) as an important component in "liquid biopsy" holds crucial clinical relevance in cancer prognosis, treatment efficiency evaluation, prediction and potentially early detection. Here, we present a Fiber-optic Array Scanning Technology (FAST) that enables antigen-agnostic, size-agnostic detection of CTC. By immunofluorescence staining detection of a combination of a panel of markers, FAST technology can be applied to detect rare CTC in non-small cell lung cancer (NSCLC) setting with high sensitivity and specificity. In combination with Automated Digital Microscopy (ADM) platform, companion markers on CTC such as Vimentin and Programmed death-ligand 1 (PD-L1) can also be analyzed to further characterize these CTCs. FAST data output is also compatible with downstream single cell picking platforms. Single cell can be isolated post ADM confirmation and used for "actionable" genetic mutations analysis.
Li, Dan; Peng, Shi-yun; Zhang, Zhen-wu; Feng, Rui-cheng; Li, Lu; Liang, Jie; Tai, Sheng; Teng, Chun-bo
2013-01-01
The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however, the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite. In this study, we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells. The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods. Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo. Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion. These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss, and can be used for the isolation and analysis of pancreatic stem/progenitor cells. PMID:23825145
A CD133-expressing murine liver oval cell population with bilineage potential.
Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M
2007-10-01
Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.
NASA Astrophysics Data System (ADS)
Prentice, Paul; MacDonald, Michael P.; Cuschieri, Alfred; Dholakia, Kishan; Campbell, Paul
2005-08-01
Cells that are exposed to varying amounts of ultrasonic energy in the presence of ultrasound contrast agent (UCA) may undergo either permanent cell membrane damage (lethal sonoporation), or a transient enhancement of membrane permeability (reversible or non lethal sonoporation). The merits of each mode are clear; lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Our working hypothesis for understanding this problem was that the root cause and effect in sonoporation involves the interaction of individual cells with single microbubbles, and to that end we devised an experiment that facilitates video rate observation of this specific scenario under well defined optical control. Specifically, we have constructed an innovative hybridization apparatus involving holographic optical trapping of single and multiple UCA microbubbles, together with the facility to irradiate with MHz pulsed ultrasound energy in the presence cancerous cells. This approach allows the isolation of a target microbubble from a resident population and the relocation to a [controllable] predetermined position relative to a cell within a monolayer. Frame extraction from standard framing rate video microscopy demonstrates the individuality of single microbubble-cell interactions. We describe a fluorescence microscopy protocol that will allow future study of the potential to deliver molecular species to cells, the dependence of the delivery on the initial microbubble-cell distance and to determine the targeted cell survival.
Beloki, Lorea; Ciaurriz, Miriam; Mansilla, Cristina; Zabalza, Amaya; Perez-Valderrama, Estela; Samuel, Edward R; Lowdell, Mark W; Ramirez, Natalia; Olavarria, Eduardo
2014-11-19
Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired alloreactive cell infusion.
Droplet microfluidics--a tool for single-cell analysis.
Joensson, Haakan N; Andersson Svahn, Helene
2012-12-03
Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith
2017-05-01
Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression networks. Stem Cells 2017;35:1273-1289. © 2017 AlphaMed Press.
Practical, microfabrication-free device for single-cell isolation.
Lin, Liang-I; Chao, Shih-Hui; Meldrum, Deirdre R
2009-08-21
Microfabricated devices have great potential in cell-level studies, but are not easily accessible for the broad biology community. This paper introduces the Microscale Oil-Covered Cell Array (MOCCA) as a low-cost device for high throughput single-cell analysis that can be easily produced by researchers without microengineering knowledge. Instead of using microfabricated structures to capture cells, MOCCA isolates cells in discrete aqueous droplets that are separated by oil on patterned hydrophilic areas across a relatively more hydrophobic substrate. The number of randomly seeded Escherichia coli bacteria in each discrete droplet approaches single-cell levels. The cell distribution on MOCCA is well-fit with Poisson distribution. In this pioneer study, we created an array of 900-picoliter droplets. The total time needed to seed cells in approximately 3000 droplets was less than 10 minutes. Compared to traditional microfabrication techniques, MOCCA dramatically lowers the cost of microscale cell arrays, yet enhances the fabrication and operational efficiency for single-cell analysis.
Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L
1992-01-01
We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the results of ongoing studies in which scanning electron microscopy and confocal laser scanning microscopy are being used to define MAC function in different immunological reactions, and examples of these observations are presented herein.
Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo
2017-10-25
We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.
How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives.
Dal Molin, Alessandra; Di Camillo, Barbara
2018-01-31
The sequencing of the transcriptome of single cells, or single-cell RNA-sequencing, has now become the dominant technology for the identification of novel cell types in heterogeneous cell populations or for the study of stochastic gene expression. In recent years, various experimental methods and computational tools for analysing single-cell RNA-sequencing data have been proposed. However, most of them are tailored to different experimental designs or biological questions, and in many cases, their performance has not been benchmarked yet, thus increasing the difficulty for a researcher to choose the optimal single-cell transcriptome sequencing (scRNA-seq) experiment and analysis workflow. In this review, we aim to provide an overview of the current available experimental and computational methods developed to handle single-cell RNA-sequencing data and, based on their peculiarities, we suggest possible analysis frameworks depending on specific experimental designs. Together, we propose an evaluation of challenges and open questions and future perspectives in the field. In particular, we go through the different steps of scRNA-seq experimental protocols such as cell isolation, messenger RNA capture, reverse transcription, amplification and use of quantitative standards such as spike-ins and Unique Molecular Identifiers (UMIs). We then analyse the current methodological challenges related to preprocessing, alignment, quantification, normalization, batch effect correction and methods to control for confounding effects. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Growth characteristics of a new methylomonad.
Chen, B J; Hirt, W; Lim, H C; Tsao, G T
1977-01-01
A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations. PMID:15510
Isolation, Identification, and Culture of Human Lymphatic Endothelial Cells.
Lokmic, Zerina
2016-01-01
A protocol describing the isolation of foreskin lymphatic endothelial cells (LECs) and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented herein. To isolate LECs and LM LECs, tissues are mechanically disrupted to make a single-cell suspension, which is then enzymatically digested in dispase and collagenase type II. LECs and LM LECs, in the resulting single-cell suspension, are then sequentially labeled with antibodies recognizing fibroblast and endothelial cell surface antigens CD34 and CD31 and separated from the remaining components in the cell suspension by capture with magnetic beads. Viable LECs and LM LECs are then seeded and expanded on fibronectin-coated flasks. LEC and LM LEC purity is determined immunohistochemically using cell surface markers CD31, CD34, podoplanin, VEGFR-3 and nuclear marker PROX-1. Cells whose purity is >98 % are used for experiments between passage 4 and 6.
Kolostova, Katarina; Broul, Marek; Schraml, Jan; Cegan, Martin; Matkowski, Rafal; Fiutowski, Marek; Bobek, Vladimir
2014-07-01
The most promising near-term application of circulating tumor cells (CTCs) monitoring relates to the development of targeted cancer therapies, and the need to tailor such treatments to individual tumor characteristics. A high number of new innovative technologies to improve methods for detecting CTCs, with extraordinarily high sensitivity, have recently been presented. The identification and characterization of CTCs require extremely sensitive and specific methods that are able to isolate CTCs with the possibility of cultivation and downstream analysis of in vitro culture of separated CTCs. In this original research paper, we demonstrate that it is possible to isolate human CTCs from a patient with prostate cancer, with subsequent cultivation and proliferation in vitro. We show that the use of a filtration device implemented by MetaCell® can fulfil all the requirements mentioned above. Fifty-five patients with localized prostate cancer have so far been enrolled into the study. CTCs were detected in the blood samples of 28 (52%) out of the 55 patients. We report successful isolation of CTCs from patients with prostate cancer, capturing cells with a proliferative capacity in 18 (64.3%) out of the 28 CTC-positive patients. Direct correlation with Gleason score and T stage was not proven. The cells, captured by a size-based filtration approach, remain in a good state, unaffected by any antibodies or lysing solutions. During the filtration process, no interactions occurred between antibodies and antigens on the surface of CTCs. This biological interaction is specific for immunomagnetic methods. The MetaCell device provides the possibility of reaching virgin CTCs suitable for subsequent cultivation or single-cell analysis. This aspect will have an important impact on the future design of clinical trials testing new drugs against targets expressed on metastatic cancer cells. In addition to measurement of CTC counts, future trials with targeted therapies should also include the assessment of the specific therapeutic target on CTCs. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud
2018-01-01
For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.
Isolation and analysis of group 2 innate lymphoid cells in mice.
Moro, Kazuyo; Ealey, Kafi N; Kabata, Hiroki; Koyasu, Shigeo
2015-05-01
Recent studies have identified distinct subsets of innate lymphocytes, collectively called innate lymphoid cells (ILCs), which lack antigen receptor expression but produce various effector cytokines. Group 2 ILCs (ILC2s) respond to epithelial cell-derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), produce large amounts of type 2 cytokines, and have a key role in anti-helminth innate immunity and in the pathophysiology of allergic inflammation. The reported phenotypic characteristics of mouse ILC2s vary, depending on the tissue source and preparation method. This protocol describes improved methods for tissue-specific isolation and analysis of mouse ILC2s of high purity and yield from fat tissue, lung, bronchoalveolar lavage fluid (BALF) and small intestine. These improved methods are the result of our thorough investigation of enzymes used for tissue digestion, methods for the elimination of undesired cells, and a combination of antibodies for the detection and isolation of ILC2s. In addition, this new protocol now enables the isolation of ILC2s of high yield, even from inflamed tissues. Depending on the tissue being analyzed, it takes ∼2-4 h for isolation and flow cytometric analysis of ILC2s from the various tissues of a single mouse and ∼4-8 h to sort purified ILC2s from pooled tissues of multiple mice.
MUC1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo.
Mukherjee, P; Ginardi, A R; Tinder, T L; Sterner, C J; Gendler, S J
2001-03-01
We have reported previously that MUC1 transgenic mice with spontaneous tumors of the pancreas (designated MET) naturally develop MHC class I-restricted, MUC1-specific CTLs as tumors progress (P. Mukherjee et al., J. Immunol., 165: 3451-3460, 2000). From these MET mice, we have isolated, expanded, and cloned naturally occurring MUC1-specific CTLs in vitro. In this report, we show that the CTL line is predominantly CD8+ T cells and expresses T-cell receptor Vbeta chains 5.1/5.2, 11, 13, and 2 and Valpha chains 2, 8.3, 3.2, and 11.1/11.2. These CTLs recognize several epitopes on the MUC1 tandem repeat with highest affinity to APGSTAPPA. The CTL clone, on the other hand, is 100% CD8+ cells and expresses a single Vbeta chain of 5.1/5.2 and Valpha2. It recognizes only the H-2Db class I-restricted epitope of MUC1, APGSTAPPA. When adoptively transferred, the CTLs were effective in eradicating MUC1-expressing injected tumor cells including mammary gland cells (C57mg) and B16 melanomas. These results suggest that MUC1-specific CTLs are capable of possibly preventing, or at least substantially delaying, MUC1-expressing tumor formation. To our knowledge, this is the first evidence that demonstrates that the naturally occurring MUC1-specific CTLs isolated from one tumor model has antitumor effects on other MUC1-expressing tumors in vivo. Therefore, our data confirm that MUC1 is an important tumor rejection antigen and can serve as a target for immunotherapy.
Neuenhahn, M; Albrecht, J; Odendahl, M; Schlott, F; Dössinger, G; Schiemann, M; Lakshmipathi, S; Martin, K; Bunjes, D; Harsdorf, S; Weissinger, E M; Menzel, H; Verbeek, M; Uharek, L; Kröger, N; Wagner, E; Kobbe, G; Schroeder, T; Schmitt, M; Held, G; Herr, W; Germeroth, L; Bonig, H; Tonn, T; Einsele, H; Busch, D H; Grigoleit, G U
2017-10-01
Cytomegalovirus (CMV) infection is a common, potentially life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We assessed prospectively the safety and efficacy of stem cell-donor- or third-party-donor-derived CMV-specific T cells for the treatment of persistent CMV infections after allo-HSCT in a phase I/IIa trial. Allo-HSCT patients with drug-refractory CMV infection and lacking virus-specific T cells were treated with a single dose of ex vivo major histocompatibility complex-Streptamer-isolated CMV epitope-specific donor T cells. Forty-four allo-HSCT patients receiving a T-cell-replete (D + repl; n=28) or T-cell-depleted (D + depl; n=16) graft from a CMV-seropositive donor were screened for CMV-specific T-cell immunity. Eight D + depl recipients received adoptive T-cell therapy from their stem cell donor. CMV epitope-specific T cells were well supported and became detectable in all treated patients. Complete and partial virological response rates were 62.5% and 25%, respectively. Owing to longsome third-party donor (TPD) identification, only 8 of the 57 CMV patients transplanted from CMV-seronegative donors (D - ) received antigen-specific T cells from partially human leukocyte antigen (HLA)-matched TPDs. In all but one, TPD-derived CMV-specific T cells remained undetectable. In summary, adoptive transfer correlated with functional virus-specific T-cell reconstitution in D + depl patients. Suboptimal HLA match may counteract expansion of TPD-derived virus-specific T cells in D - patients.
Kroneis, Thomas; El-Heliebi, Amin
2015-01-01
Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.
Uncovering stem-cell heterogeneity in the microniche with label-free microfluidics
NASA Astrophysics Data System (ADS)
Sohn, Lydia L.
2013-03-01
Better suited for large number of cells from bulk tissue, traditional cell-screening techniques, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, they rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. We have developed a label-free, single-cell analysis microfluidic platform capable of quantifying cell-surface marker expression of functional organ stem cells directly isolated from their micro-anatomical niche. With this platform, we have screened single quiescent muscle stem (satellite) cells derived from single myofibers, and we have uncovered an important heterogeneity in the surface-marker expression of these cells. By sorting the screened cells with our microfluidic device, we have determined what this heterogeneity means in terms of muscle stem-cell functionality. For instance, we show that the levels of beta1-integrin can predict the differentiation capacity of quiescent satellite cells, and in contrast to recent literature, that some CXCR4 + cells are not myogenic. Our results provide the first direct demonstration of a microniche-specific variation in gene expression in stem cells of the same lineage. Overall, our label-free, single-cell analysis and cell-sorting platform could be extended to other systems involving rare-cell subsets. This work was funded by the W. M. Keck Foundation, NIH, and California Institute of Regenerative Medicine
Schlüter, Daniela K; Ramis-Conde, Ignacio; Chaplain, Mark A J
2015-02-06
Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell-cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules.
Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh
NASA Astrophysics Data System (ADS)
Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.
2010-11-01
The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.
Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies.
Faria, Daniella Renata; Sakita, Karina Mayumi; Akimoto-Gunther, Luciene Setsuko; Kioshima, Érika Seki; Svidzinski, Terezinha Inez Estivalet; Bonfim-Mendonça, Patrícia de Souza
2017-08-01
The present study aimed to characterize cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. It was evaluated 12 clinical isolates of C. albicans from vaginal samples: 4 from asymptomatic women (AS), 4 from women with a single episode of vulvovaginal candidiasis (VVC) and 4 from women with recurrent vulvovaginal candidiasis (RVVC). We evaluated the ability of C. albicans to adhere to human cervical cancer cells (SiHa), the yeast-SiHa cell interactions and cell damage. All of the clinical isolates presented a high adhesion capacity on SiHa cells. However, clinical isolates from symptomatic women (VVC and RVVC) had higher filamentation after contact (24 h) with SiHa cells and a greater capacity to cause cell damage (>80 %). Clinical isolates from symptomatic women had greater potential to invade SiHa cells, suggesting that they are more pathogenic than AS isolates.
Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.
Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus
2011-06-06
Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Application of advanced cytometric and molecular technologies to minimal residual disease monitoring
NASA Astrophysics Data System (ADS)
Leary, James F.; He, Feng; Reece, Lisa M.
2000-04-01
Minimal residual disease monitoring presents a number of theoretical and practical challenges. Recently it has been possible to meet some of these challenges by combining a number of new advanced biotechnologies. To monitor the number of residual tumor cells requires complex cocktails of molecular probes that collectively provide sensitivities of detection on the order of one residual tumor cell per million total cells. Ultra-high-speed, multi parameter flow cytometry is capable of analyzing cells at rates in excess of 100,000 cells/sec. Residual tumor selection marker cocktails can be optimized by use of receiver operating characteristic analysis. New data minimizing techniques when combined with multi variate statistical or neural network classifications of tumor cells can more accurately predict residual tumor cell frequencies. The combination of these techniques can, under at least some circumstances, detect frequencies of tumor cells as low as one cell in a million with an accuracy of over 98 percent correct classification. Detection of mutations in tumor suppressor genes requires insolation of these rare tumor cells and single-cell DNA sequencing. Rare residual tumor cells can be isolated at single cell level by high-resolution single-cell cell sorting. Molecular characterization of tumor suppressor gene mutations can be accomplished using a combination of single- cell polymerase chain reaction amplification of specific gene sequences followed by TA cloning techniques and DNA sequencing. Mutations as small as a single base pair in a tumor suppressor gene of a single sorted tumor cell have been detected using these methods. Using new amplification procedures and DNA micro arrays it should be possible to extend the capabilities shown in this paper to screening of multiple DNA mutations in tumor suppressor and other genes on small numbers of sorted metastatic tumor cells.
Shemesh, Jonathan; Ben Arye, Tom; Avesar, Jonathan; Kang, Joo H; Fine, Amir; Super, Michael; Meller, Amit; Ingber, Donald E; Levenberg, Shulamit
2014-08-05
Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.
Shemesh, Jonathan; Ben Arye, Tom; Avesar, Jonathan; Kang, Joo H.; Fine, Amir; Super, Michael; Meller, Amit; Ingber, Donald E.; Levenberg, Shulamit
2014-01-01
Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required. PMID:25053808
Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A. J.
2015-01-01
Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell–cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules. PMID:25519994
Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry
Kim, Eun Young; Kim, Ji Won; Kim, Won Kon; Han, Baek Soo; Park, Sung Goo; Chung, Bong Hyun; Lee, Sang Chul; Bae, Kwang-Hee
2014-01-01
Background Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited. Methods and Results We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes. Conclusions These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity. PMID:24844710
Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes
Deb, Chandra; Howe, Charles L
2011-01-01
Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler’s virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8+ lymphocytes that are CD45hiCD44loCD62L− and a population of spinal cord infiltrating target effector memory CD8+ lymphocytes that are CD45hiCD44hiCD62L−. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler’s virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities. PMID:19596449
Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji
2017-01-01
Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa
2011-05-20
Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less
Adams, André A; Okagbare, Paul I; Feng, Juan; Hupert, Matuesz L; Patterson, Don; Göttert, Jost; McCarley, Robin L; Nikitopoulos, Dimitris; Murphy, Michael C; Soper, Steven A
2008-07-09
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.
Adams, André A.; Okagbare, Paul I.; Feng, Juan; Hupert, Matuesz L.; Patterson, Don; Göttert, Jost; McCarley, Robin L.; Nikitopoulos, Dimitris; Murphy, Michael C.; Soper, Steven A.
2008-01-01
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 μm width × 150 μm depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. PMID:18557614
Lawal, Nafi'u; Arshad, Siti Suri
2017-01-01
Two Malaysian very virulent infectious bursal disease virus (vvIBDV) strains UPM0081 and UPM190 (also known as UPMB00/81 and UPM04/190, respectively) isolated from local IBD outbreaks were serially passaged 12 times (EP12) in specific pathogen free (SPF) chicken embryonated eggs (CEE) by chorioallantoic membrane (CAM) route. The EP12 isolate was further adapted and serially propagated in BGM-70 cell line up to 20 passages (P20). Characteristic cytopathic effects (CPEs) were subtly observed at P1 in both isolates 72 hours postinoculation (pi). The CPE became prominent at P5 with cell rounding, cytoplasmic vacuoles, granulation, and detachment from flask starting from day 3 pi, up to 7 days pi with titers of 109.50 TCID50/mL and log109.80 TCID50/mL for UPM0081 and UPM190, respectively. The CPE became subtle at P17 and disappeared by P18 and P19 for UPM0081 and UPM190, respectively. However, the presence of IBDV was confirmed by immunoperoxidase, immunofluorescence, and RT-PCR techniques. Phylogenetic analysis showed that these two isolates were of the vvIBDV. It appears that a single mutation of UPM190 and UPM0081 IBDV isolates at D279N could facilitate vvIBDV strain adaptability in CEE and BGM-70 cultures. PMID:29230245
Isolation and clonal characterization of hematopoietic and liver stem cells.
Nakauchi, Hiromitsu
2004-11-01
Prospective isolation of stem cells is essential to understanding the mechanisms that control their proliferation and differentiation. Using 9 monoclonal antibodies and fluorescence-activated cell sorting (FACS), we have succeeded in prospectively identifying hematopoietic stem cells (HSCs) in adult mouse bone marrow. Mouse HSCs were exclusively enriched in CD34 negative, c-Kit Sca-1 Lineage Marker (CD34 KSL) cells representing 0.004% of bone marrow (BM) mononuclear cells. When single CD34-KSL cells were transplanted individually into a lethally irradiated mouse, 25% of the recipient mice survived and showed long-term reconstitution of the BM, providing evidence for multipotency and a self-renewal capacity of HSCs. Using a similar approach, we also prospectively identified hepatic stem cells with multilineage differentiation potential and self-renewal capability in the c-Met CD49f c-Kit CD45 Ter119 fraction of cells isolated from day 13.5 fetal mouse liver. On cell transplantation, these cells differentiated into hepatocytes and cholangiocytes. As an alternative to the antibody based stem cell isolation, Hoechst33342 staining is useful. To understand the mechanism responsible for SP phenotype, we performed an expression cloning and identified bcrp-1/ABCG2 gene, a member of ATP binding-cassette (ABC) transporter family. Bcrp-1 is almost exclusively expressed in CD34 KSL cells among blood cells; however their expression in other tissue specific stem cells remains to be studied. With the use of FACS and monoclonal antibodies, hematopoietic and liver stem cells were prospectively isolated and characterized. HSCs could also be purified by Hoechst 33342 staining. By expression cloning, we identify bcrp-1/ABCG2 transporter as a molecule responsible for SP phenotype. Elucidation of the physiological role of bcrp-1/ABCG2 in HSCs may provide us with clues to understand the molecular mechanisms of stem cell self-renewal and differentiation.
Orban, Tihamer; Farkas, Klara; Jalahej, Heyam; Kis, Janos; Treszl, Andras; Falk, Ben; Reijonen, Helena; Wolfsdorf, Joseph; Ricker, Alyne; Matthews, Jeffrey B.; Tchao, Nadio; Sayre, Peter; Bianchine, Pete
2009-01-01
There is a growing body of evidence to suggest that the autoimmunity observed in type 1 diabetes mellitus (T1DM) is the result of an imbalance between autoaggressive and regulatory cell subsets. Therapeutics that supplement or enhance the existing regulatory subset are therefore a much sought after goal in this indication. Here, we report the results of a double blind, placebo controlled, phase I clinical trial of a novel antigen-specific therapeutic in 12 subjects with recently diagnosed T1DM. Our primary objective was to test its safety. The study drug, human insulin B-chain in incomplete Freund’s adjuvant (IFA) was administered as a single intramuscular injection, with subjects followed for 2 years. All subjects completed therapy and all follow-up visits. The therapy was generally safe and well-tolerated. Mixed meal stimulated C-peptide responses, measured every 6 months, showed no statistical differences between arms. All patients vaccinated with the autoantigen, but none who received placebo, developed robust insulin-specific humoral and T cell responses. Up to two years following the single injection, in peripheral blood from subjects in the experimental arm, but not the control arm, insulin B-chain-specific CD4+ T cells could be isolated and cloned that showed phenotypic and functional characteristics of regulatory T cells. The induction of a lasting, robust immune response generating autoantigen-specific regulatory T cells provides strong justification for further testing of this therapy in type 1 diabetes. (clinicaltrials.gov identifier NCT00057499). PMID:19931408
Lo, Shih-Jie; Yao, Da-Jeng
2015-07-23
This review describes the microfluidic techniques developed for the analysis of a single cell. The characteristics of microfluidic (e.g., little sample amount required, high-throughput performance) make this tool suitable to answer and to solve biological questions of interest about a single cell. This review aims to introduce microfluidic related techniques for the isolation, trapping and manipulation of a single cell. The major approaches for detection in single-cell analysis are introduced; the applications of single-cell analysis are then summarized. The review concludes with discussions of the future directions and opportunities of microfluidic systems applied in analysis of a single cell.
Lo, Shih-Jie; Yao, Da-Jeng
2015-01-01
This review describes the microfluidic techniques developed for the analysis of a single cell. The characteristics of microfluidic (e.g., little sample amount required, high-throughput performance) make this tool suitable to answer and to solve biological questions of interest about a single cell. This review aims to introduce microfluidic related techniques for the isolation, trapping and manipulation of a single cell. The major approaches for detection in single-cell analysis are introduced; the applications of single-cell analysis are then summarized. The review concludes with discussions of the future directions and opportunities of microfluidic systems applied in analysis of a single cell. PMID:26213918
Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao
2017-12-07
Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Qing-Yuan; Akaike, Toshihiro
2013-03-01
Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells.
Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang
2018-01-01
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. © 2018 Han et al.; Published by Cold Spring Harbor Laboratory Press.
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells
Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang
2018-01-01
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. PMID:29208629
New Application of the Comet Assay
Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime
2011-01-01
The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337
Brezar, Vedran; Ruffin, Nicolas; Lévy, Yves; Seddiki, Nabila
2014-09-01
Regulatory T cells (Tregs) are pivotal in preventing autoimmunity. They play a major but still ambiguous role in cancer and viral infections. Functional studies of human Tregs are often hampered by numerous technical difficulties arising from imperfections in isolating and depleting protocols, together with the usual low cell number available from clinical samples. We standardized a simple procedure (Single Step Method, SSM), based on magnetic beads technology, in which both depletion and isolation of human Tregs with high purities are simultaneously achieved. SSM is suitable when using low cell numbers either fresh or frozen from both patients and healthy individuals. It allows simultaneous Tregs isolation and depletion that can be used for further functional work to monitor suppressive function of isolated Tregs (in vitro suppression assay) and also effector IFN-γ responses of Tregs-depleted cell fraction (OX40 assay). To our knowledge, there is no accurate standardized method for Tregs isolation and depletion in a clinical context. SSM could thus be used and easily standardized across different laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of a microdissection library from human chromosome region 3p14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardenheuer, W.; Szymanski, S.; Lux, A.
1994-01-15
Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094
Rauser, Georg; Einsele, Hermann; Sinzger, Christian; Wernet, Dorothee; Kuntz, Gabriele; Assenmacher, Mario; Campbell, John D M; Topp, Max S
2004-05-01
Adoptive transfer of cytomegalovirus (CMV)-specific T cells can restore long-lasting, virus-specific immunity and clear CMV viremia in recipients of allogeneic stem cell transplants if CD4(+) and CD8(+) CMV-specific T cells are detected in the recipient after transfer. Current protocols for generating virus-specific T cells use live virus, require leukapheresis of the donor, and are time consuming. To circumvent these limitations, a clinical-scale protocol was developed to generate CMV-specific T cells by using autologous cellular and serum components derived from a single 500-mL blood draw. CMV-specific T cells were stimulated simultaneously with CMV-specific major histocompatibility complex class I (MHC I)- restricted peptides and CMV antigen. Activated T cells were isolated with the interferon-gamma (IFN-gamma) secretion assay and expanded for 10 days. In 8 randomly selected, CMV-seropositive donors, 1.34 x 10(8) combined CD4(+) and CD8(+) CMV-specific T cells, on average, were generated, as determined by antigen-triggered IFN-gamma production. CMV-infected fibroblasts were efficiently lysed by the generated T cells, and CMV-specific CD4(+) and CD8(+) T cells expanded if they were stimulated with natural processed antigen. On the other hand, CD4(+) and CD8(+) T cell-mediated alloreactivity of generated CMV-specific T-cell lines was reduced compared with that of the starting population. In conclusion, the culture system developed allowed the rapid generation of allodepleted, highly enriched, combined CD4(+) and CD8(+) CMV-specific T cells under conditions mimicking good manufacturing practice.
Xavier, Miguel; Oreffo, Richard O C; Morgan, Hywel
2016-01-01
Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples. Copyright © 2016 Elsevier Inc. All rights reserved.
Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.
Toepfner, Nicole; Herold, Christoph; Otto, Oliver; Rosendahl, Philipp; Jacobi, Angela; Kräter, Martin; Stächele, Julia; Menschner, Leonhard; Herbig, Maik; Ciuffreda, Laura; Ranford-Cartwright, Lisa; Grzybek, Michal; Coskun, Ünal; Reithuber, Elisabeth; Garriss, Geneviève; Mellroth, Peter; Henriques-Normark, Birgitta; Tregay, Nicola; Suttorp, Meinolf; Bornhäuser, Martin; Chilvers, Edwin R; Berner, Reinhard; Guck, Jochen
2018-01-13
Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis. © 2018, Toepfner et al.
Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
Toepfner, Nicole; Herold, Christoph; Otto, Oliver; Rosendahl, Philipp; Jacobi, Angela; Kräter, Martin; Stächele, Julia; Menschner, Leonhard; Herbig, Maik; Ciuffreda, Laura; Ranford-Cartwright, Lisa; Grzybek, Michal; Coskun, Ünal; Reithuber, Elisabeth; Garriss, Geneviève; Mellroth, Peter; Henriques-Normark, Birgitta; Tregay, Nicola; Suttorp, Meinolf; Bornhäuser, Martin; Chilvers, Edwin R; Berner, Reinhard
2018-01-01
Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis. PMID:29331015
Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N
1998-10-01
Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.
Penter, Livius; Dietze, Kerstin; Bullinger, Lars; Westermann, Jörg; Rahn, Hans-Peter; Hansmann, Leo
2018-03-14
FACS index sorting allows the isolation of single cells with retrospective identification of each single cell's high-dimensional immune phenotype. We experimentally determine the error rate of index sorting and combine the technology with T cell receptor sequencing to identify clonal T cell expansion in aplastic anemia bone marrow as an example. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Platforms for Single-Cell Collection and Analysis.
Valihrach, Lukas; Androvic, Peter; Kubista, Mikael
2018-03-11
Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.
Platforms for Single-Cell Collection and Analysis
Valihrach, Lukas; Androvic, Peter; Kubista, Mikael
2018-01-01
Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments. PMID:29534489
Evaluation of digital real-time PCR assay as a molecular diagnostic tool for single-cell analysis.
Chang, Chia-Hao; Mau-Hsu, Daxen; Chen, Ke-Cheng; Wei, Cheng-Wey; Chiu, Chiung-Ying; Young, Tai-Horng
2018-02-21
In a single-cell study, isolating and identifying single cells are essential, but these processes often require a large investment of time or money. The aim of this study was to isolate and analyse single cells using a novel platform, the PanelChip™ Analysis System, which includes 2500 microwells chip and a digital real-time polymerase chain reaction (dqPCR) assay, in comparison with a standard PCR (qPCR) assay. Through the serial dilution of a known concentration standard, namely pUC19, the accuracy and sensitivity levels of two methodologies were compared. The two systems were tested on the basis of expression levels of the genetic markers vimentin, E-cadherin, N-cadherin and GAPDH in A549 lung carcinoma cells at two known concentrations. Furthermore, the influence of a known PCR inhibitor commonly found in blood samples, heparin, was evaluated in both methodologies. Finally, mathematical models were proposed and separation method of single cells was verified; moreover, gene expression levels during epithelial-mesenchymal transition in single cells under TGFβ1 treatment were measured. The drawn conclusion is that dqPCR performed using PanelChip™ is superior to the standard qPCR in terms of sensitivity, precision, and heparin tolerance. The dqPCR assay is a potential tool for clinical diagnosis and single-cell applications.
Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan
2014-01-01
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565
Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan
2014-08-01
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.
SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.Y.; Guatelli, S; Oborn, B
2014-06-01
Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less
Krishnamurthy, Akilan; Joshua, Vijay; Haj Hensvold, Aase; Jin, Tao; Sun, Meng; Vivar, Nancy; Ytterberg, A Jimmy; Engström, Marianne; Fernandes-Cerqueira, Cátia; Amara, Khaled; Magnusson, Malin; Wigerblad, Gustaf; Kato, Jungo; Jiménez-Andrade, Juan Miguel; Tyson, Kerry; Rapecki, Stephen; Lundberg, Karin; Catrina, Sergiu-Bogdan; Jakobsson, Per-Johan; Svensson, Camilla; Malmström, Vivianne; Klareskog, Lars; Wähämaa, Heidi; Catrina, Anca I
2016-04-01
Rheumatoid arthritis (RA)-specific anti-citrullinated protein/peptide antibodies (ACPAs) appear before disease onset and are associated with bone destruction. We aimed to dissect the role of ACPAs in osteoclast (OC) activation and to identify key cellular mediators in this process. Polyclonal ACPA were isolated from the synovial fluid (SF) and peripheral blood of patients with RA. Monoclonal ACPAs were isolated from single SF B-cells of patients with RA. OCs were developed from blood cell precursors with or without ACPAs. We analysed expression of citrullinated targets and peptidylarginine deiminases (PAD) enzymes by immunohistochemistry and cell supernatants by cytometric bead array. The effect of an anti-interleukin (IL)-8 neutralising antibody and a pan-PAD inhibitor was tested in the OC cultures. Monoclonal ACPAs were injected into mice and bone structure was analysed by micro-CT before and after CXCR1/2 blocking with reparixin. Protein citrullination by PADs is essential for OC differentiation. Polyclonal ACPAs enhance OC differentiation through a PAD-dependent IL-8-mediated autocrine loop that is completely abolished by IL-8 neutralisation. Some, but not all, human monoclonal ACPAs derived from single SF B-cells of patients with RA and exhibiting distinct epitope specificities promote OC differentiation in cell cultures. Transfer of the monoclonal ACPAs into mice induced bone loss that was completely reversed by the IL-8 antagonist reparixin. We provide novel insights into the key role of citrullination and PAD enzymes during OC differentiation and ACPA-induced OC activation. Our findings suggest that IL8-dependent OC activation may constitute an early event in the initiation of the joint specific inflammation in ACPA-positive RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Liu, Mingshan; Di, Jiabo; Liu, Yang; Su, Zhe; Jiang, Beihai; Wang, Zaozao; Su, Xiangqian
2018-03-26
Cancer stem cells (CSCs) are considered to be responsible for tumorigenesis and cancer relapse. EpCAM high CD44 + tumor cells are putative colorectal CSCs that express high levels of stem cell genes, while the EpCAM high CD44 - population mostly contains differentiated tumor cells (DTCs). This study aims to determine whether single CSC (EpCAM high CD44 + ) and DTC (EpCAM high CD44 - ) can be distinguished in terms of somatic copy number alterations (SCNAs). We applied fluorescence-activated cell sorting to isolate the CD45 - EpCAM high CD44 + and CD45 - EpCAM high CD44 - populations from two primary colon tumors, on which low-coverage single-cell whole-genome sequencing (WGS) was then performed ∼0.1x depth. We compared the SCNAs of the CSCs and DTCs at single-cell resolution. In total, 47 qualified single cells of the two populations underwent WGS. The single-cell SCNA profiles showed that there were obvious SCNAs in both the CSCs and DTCs of each patient, and each patient had a specific copy number alteration pattern. Hierarchical clustering and correlation analysis both showed that the SCNA profiles of CSCs and DTCs from the same patient had similar SCNA pattern, while there were regional differences in the CSCs and DTCs in certain patient. SCNAs of CSCs in the same patient were highly reproducible. Our data suggest that major SCNAs occurred at an early stage and were inherited steadily. The similarity of ubiquitous SCNAs between the CSCs and DTCs might have arisen from lineage differentiation. CSCs from the same patient had reproducible SCNA profiles, indicating that gain or loss in certain chromosome is required for colon cancer development.
NASA Astrophysics Data System (ADS)
Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji
2016-11-01
We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml blood) in this first nanotube-CTC chip study.
Ashili, Shashanka P.; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen B.; Forrester, Jessica; Kumar, Ashok; Anis, Yasser H.; Paulson, Thomas G.; Youngbull, Cody A.; Tian, Yanqing; Holl, Mark R.; Johnson, Roger H.; Meldrum, Deirdre R.
2012-01-01
Abstract. Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system’s capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates. PMID:22502580
Kelbauskas, Laimonas; Ashili, Shashanka P; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen B; Forrester, Jessica; Kumar, Ashok; Anis, Yasser H; Paulson, Thomas G; Youngbull, Cody A; Tian, Yanqing; Holl, Mark R; Johnson, Roger H; Meldrum, Deirdre R
2012-03-01
Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells
Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.
2016-01-01
Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082
Biarylmethoxy Nicotinamides As Novel and Specific Inhibitors of Mycobacterium tuberculosis.
Kedari, Chaitanya Kumar; Roy Choudhury, Nilanjana; Sharma, Sreevalli; Kaur, Parvinder; Guptha, Supreeth; Panda, Manoranjan; Mukerjee, Kakoli; Ramachandran, Vasanthi; Bandodkar, Balachandra; Ramachandran, Sreekanth; Tantry, Subramanyam J
2014-05-08
A whole cell based screening effort on a focused library from corporate collection resulted in the identification of biarylmethoxy nicotinamides as novel inhibitors of M. tuberculosis (Mtu) H37Rv. The series exhibited tangible structure-activity relationships, and during hit to lead exploration, a cellular potency of 100 nM was achieved, which is an improvement of >200-fold from the starting point. The series is very specific to Mtu and noncytotoxic up to 250 μM as measured in the mammalian cell line THP-1 based cytotoxicity assay. This compound class retains its potency on several drug sensitive and single drug resistant clinical isolates, which indicate that the compounds could be acting through a novel mode of action.
Zhang, H; Bolton, T B
1995-01-01
1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693
Gronthos, Stan; McCarty, Rosa; Mrozik, Krzysztof; Fitter, Stephen; Paton, Sharon; Menicanin, Danijela; Itescu, Silviu; Bartold, P Mark; Xian, Cory; Zannettino, Andrew C W
2009-11-01
Mesenchymal stromal cells (MSCs) and their precursor cells (MPCs) can proliferate and differentiate into multiple mesodermal and some ectodermal and endodermal tissues. Culture-expanded MSCs are currently being evaluated as a possible cell therapy to replace/repair injured or diseased tissues. While a number of mAb reagents with specificity to human MSCs, including STRO-1, STRO-3 (BLK ALP), CD71 (SH2, SH3), CD106 (VCAM-1), CD166, and CD271, have facilitated the isolation of purified populations of human MSCs from primary tissues, few if any mAb reagents have been described that can be used to isolate equivalent cells from other species. This is of particular relevance when assessing the tissue regenerative efficacy of MSCs in large immunocompetent, preclinical animal models of disease. In light of this, we sought to generate novel monoclonal antibodies (mAb) with specific reactivity against a cell surface molecule that is expressed at high levels by MSCs from different species. Using CD106 (VCAM-1)-selected ovine MSCs as an immunogen, mAb-producing hybridomas were selected for their reactivity to both human and ovine MSCs. One such hybridoma, termed STRO-4, produced an IgG mAb that reacted with <5% of human and ovine bone marrow (BM) mononuclear cells. As a single selection reagent, STRO-4 mAb was able to enrich colony-forming fibroblasts (CFU-F) in both human and ovine BM by 16- and 8-folds, respectively. Cells isolated with STRO-4 exhibited reactivity with markers commonly associated with MSCs isolated by plastic adherence including CD29, CD44, and CD166. Moreover, when placed in inductive culture conditions in vitro, STRO-4(+) MSCs exhibited multilineage differentiation potential and were capable of forming a mineralized matrix, lipid-filled adipocytes, and chondrocytes capable of forming a glycosaminoglycan-rich matrix. Biochemical analysis revealed that STRO-4 identified the beta isoform of heat shock protein-90 (Hsp90beta). In addition to identifying an antibody reagent that identifies a highly conserved epitope expressed by MSCs from different species, our study also points to a potential role for Hsp90beta in MSC biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae
Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression ofmore » surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.« less
Cottle, Beverley J; Lewis, Fiona C; Shone, Victoria; Ellison-Hughes, Georgina M
2017-07-04
The development of cellular therapies to treat muscle wastage with disease or age is paramount. Resident muscle satellite cells are not currently regarded as a viable cell source due to their limited migration and growth capability ex vivo. This study investigated the potential of muscle-derived PW1 + /Pax7 - interstitial progenitor cells (PICs) as a source of tissue-specific stem/progenitor cells with stem cell properties and multipotency. Sca-1 + /PW1 + PICs were identified on tissue sections from hind limb muscle of 21-day-old mice, isolated by magnetic-activated cell sorting (MACS) technology and their phenotype and characteristics assessed over time in culture. Green fluorescent protein (GFP)-labelled PICs were used to determine multipotency in vivo in a tumour formation assay. Isolated PICs expressed markers of pluripotency (Oct3/4, Sox2, and Nanog), were clonogenic, and self-renewing with >60 population doublings, and a population doubling time of 15.8 ± 2.9 h. PICs demonstrated an ability to generate both striated and smooth muscle, whilst also displaying the potential to differentiate into cell types of the three germ layers both in vitro and in vivo. Moreover, PICs did not form tumours in vivo. These findings open new avenues for a variety of solid tissue engineering and regeneration approaches, utilising a single multipotent stem cell type isolated from an easily accessible source such as skeletal muscle.
Stephen, Michael J; Poindexter, Brian J; Moolman, Johan A; Sheikh-Hamad, David; Bick, Roger J
2009-01-01
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape. Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made. All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a ‘dormant’ or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle. Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183). PMID:19430572
Volumetric Stress-Strain Analysis of Optohydrodynamically Suspended Biological Cells
Liang, Yu; Saha, Asit K.
2011-01-01
Ongoing investigations are exploring the biomechanical properties of isolated and suspended biological cells in pursuit of understanding single-cell mechanobiology. An optical tweezer with minimal applied laser power has positioned biologic cells at the geometric center of a microfluidic cross-junction, creating a novel optohydrodynamic trap. The resulting fluid flow environment facilitates unique multiaxial loading of single cells with site-specific normal and shear stresses resulting in a physical albeit extensional state. A recent two-dimensional analysis has explored the cytoskeletal strain response due to these fluid-induced stresses [Wilson and Kohles, 2010, “Two-Dimensional Modeling of Nanomechanical Stresses-Strains in Healthy and Diseased Single-Cells During Microfluidic Manipulation,” J Nanotechnol Eng Med, 1(2), p. 021005]. Results described a microfluidic environment having controlled nanometer and piconewton resolution. In this present study, computational fluid dynamics combined with multiphysics modeling has further characterized the applied fluid stress environment and the solid cellular strain response in three dimensions to accompany experimental cell stimulation. A volumetric stress-strain analysis was applied to representative living cell biomechanical data. The presented normal and shear stress surface maps will guide future microfluidic experiments as well as provide a framework for characterizing cytoskeletal structure influencing the stress to strain response. PMID:21186894
One Bacterial Cell, One Complete Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos
2010-04-26
While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated frommore » the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.« less
Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.
Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J
2009-04-07
The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.
Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Dariushnejad, Hassan; Hosseini, Mohammad Kazem
2016-12-01
EGFRvIII, a mutant form of epidermal growth factor receptor is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. This tumor specific antigen has emerged as a promising candidate for antibody based therapy of several cancers. The aim of the present study was isolation and characterization of a human single chain antibody against EGFRvIII as a promising target for cancer therapy. For this, a synthetic peptide corresponding to EGFRvIII protein was used for screening the naive human scFv phage library. Selection was performed using a novel screening strategy for enrichment of rare specific clones. After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, a clone with an amber mutation in VH CDR2 coding sequence showed higher reactivity. The mutation was corrected through site directed mutagenesis and then scFv fragment was expressed after subcloning into the bacterial expression vector. Expression in BL21 pLysS resulted in a highly soluble scFv appeared in soluble fraction of E. coli lysate. Bioinformatic in silico analysis between scFv and EGFRvIII sequences confirmed specific binding of desired scFv to EGFRvIII in CDR regions. The specific reactivity of the purified scFv with native EGFRvIII was confirmed by cell based ELISA and western blot. In conclusion, human anti- EGFRvIII scFv isolated from a scFv phage library displayed high reactivity with EGFRvIII. The scFv isolated in this study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A
1990-01-01
The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254
Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J
1994-01-01
We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096
Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J
1994-02-01
We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.
Compartmental genomics in living cells revealed by single-cell nanobiopsy.
Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader
2014-01-28
The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.
Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus.
Gomez, M P; Segura, J
1996-08-01
Single cells were mechanically isolated from leaf-derived callus of mature Juniperus oxycedrus L. These cells divided and gave rise to callus when plated on medium containing growth regulators. Best plating efficiency was obtained on a modified Schenk and Hildebrandt medium supplemented with 0.6 micro M 2,4-dichlorophenoxyacetic acid and 100 mg l(-1) casein hydrolyzate. Although single-cell-derived callus showed poor morphogenic potential, both adventitious shoots and embryogenic tissues differentiated from the callus. We also achieved induction of somatic embryogenesis in leaf explants of mature J. oxycedrus trees cultured in the presence of 6.0 or 10.0 micro M 2,4-dichlorophenoxyacetic acid or picloram. Frequency of embryogenic callus ranged from 6 to 18%; however, under the culture conditions tested, isolated embryos failed to develop into plants.
Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn
2011-10-01
A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.
Marcy, Yann; Ouverney, Cleber; Bik, Elisabeth M.; Lösekann, Tina; Ivanova, Natalia; Martin, Hector Garcia; Szeto, Ernest; Platt, Darren; Hugenholtz, Philip; Relman, David A.; Quake, Stephen R.
2007-01-01
We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community. PMID:17620602
Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S
2017-08-01
Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Huys, Geert Rb; Raes, Jeroen
2018-06-13
With the vast majority of the microbial world still considered unculturable or undiscovered, microbiologists not only require more fundamental insights concerning microbial growth requirements but also need to implement miniaturized, versatile and high-throughput technologies to upscale current microbial isolation strategies. In this respect, single-cell-based approaches are increasingly finding their way to the microbiology lab. A number of recent studies have demonstrated that analysis and separation of free microbial cells by flow-based sorting as well as physical stochastic confinement of individual cells in microenvironment compartments can facilitate the isolation of previously uncultured species and the discovery of novel microbial taxa. Still, while most of these methods give immediate access to downstream whole genome sequencing, upscaling to higher cell densities as required for metabolic readouts and preservation purposes can remain challenging. Provided that these and other technological challenges are addressed in future innovation rounds, integration of single-cell tools in commercially available benchtop instruments and service platforms is expected to trigger more targeted explorations in the microbial dark matter at a depth comparable to metagenomics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Engineering intracellular active transport systems as in vivo biomolecular tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachand, George David; Carroll-Portillo, Amanda
2006-11-01
Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptionalmore » regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further development could potentially enable selective capture of intracellular antigens, targeted delivery of therapeutic agents, or disruption of the transport systems and consequently the infection and pathogenesis cycle of biothreat agents.« less
Potentials of single-cell biology in identification and validation of disease biomarkers.
Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong
2016-09-01
Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Rugged Single Domain Antibody Detection Elements for Bacillus anthracis Spores and Vegetative Cells
Walper, Scott A.; Anderson, George P.; Brozozog Lee, P. Audrey; Glaven, Richard H.; Liu, Jinny L.; Bernstein, Rachel D.; Zabetakis, Dan; Johnson, Linwood; Czarnecki, Jill M.; Goldman, Ellen R.
2012-01-01
Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors. PMID:22412927
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
A Tupaia paramyxovirus vector system for targeting and transgene expression.
Engeland, Christine E; Bossow, Sascha; Hudacek, Andrew W; Hoyler, Birgit; Förster, Judith; Veinalde, Rūta; Jäger, Dirk; Cattaneo, Roberto; Ungerechts, Guy; Springfeld, Christoph
2017-09-01
Viruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.
Single-Cell Genomic Analysis in Plants
Hu, Haifei; Scheben, Armin; Edwards, David
2018-01-01
Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790
Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells
Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.
2014-01-01
Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137
Single-cell genomics for the masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Susannah G.
In this issue of Nature Biotechnology, Lan et al. describe a new tool in the toolkit for studying uncultivated microbial communities, enabling orders of magnitude higher single cell genome throughput than previous methods. This is achieved by a complex droplet microfluidics workflow encompassing steps from physical cell isolation through genome sequencing, producing tens of thousands of lowcoverage genomes from individual cells.
Single-cell genomics for the masses
Tringe, Susannah G.
2017-07-12
In this issue of Nature Biotechnology, Lan et al. describe a new tool in the toolkit for studying uncultivated microbial communities, enabling orders of magnitude higher single cell genome throughput than previous methods. This is achieved by a complex droplet microfluidics workflow encompassing steps from physical cell isolation through genome sequencing, producing tens of thousands of lowcoverage genomes from individual cells.
Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.
Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa
2016-07-11
Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A
2017-07-01
Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete separation of cells with outstanding precision. In all examined cases, DEPArray™ technology proves to be a groundbreaking technology for the resolution of forensic biological mixtures, through the precise isolation of pure cells for an incontrovertible attribution of the obtained genetic profiles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.
Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora
2017-01-01
Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.
Isolation and characterization of an RNA aptamer for the HPV-16 E7 oncoprotein.
Toscano-Garibay, Julia D; Benítez-Hess, María L; Alvarez-Salas, Luis M
2011-02-01
Cervical cancer is a common neoplastic disease affecting women worldwide. Expression of human papillomavirus type 16 (HPV-16) E6/E7 genes is frequently associated with cervical cancer, representing ideal targets for diagnostic and therapeutic strategies. Aptamers are oligonucleotide ligands capable of binding with high affinity and specificity to relevant markers in therapeutics and disease detection. The aim of the study was to isolate an RNA aptamer specific for the HPV-16 E7 protein. Aptamers were selected from a randomized oligonucleotide library using a modified SELEX method and recombinant HPV-16 E7 protein. Isolated aptamers were cloned and sequenced for in silico analysis. Interaction and electromobility shift assays (EMSA) were performed to establish aptamer specificity and affinity for E7. RNase footprinting and serial deletions of the aptamer and the E7 protein were made to characterize the aptamer-protein complex. Sandwich slot-blot assays were used for K(D) determination. After several rounds of SELEX, an aptamer (G5α3N.4) exhibited specificity for E7 using cell-free and protein extracts. G5α3N.4 binding yielded a K(D) comparable to aptamers directed to other small targets. Enzymatic and genetic analysis of G5α3N.4 binding showed a secondary structure with two stem-loop domains joined by single-stranded region contacting E7 in a clamp-like manner. The G5α3N.4 aptamer also produced specific complexes in HPV-positive cervical carcinoma cells. The affinity and specificity of G5α3N.4 binding domains for the HPV-16 E7 protein may be used for the detection of papillomavirus infection and cervical cancer. Copyright © 2011 IMSS. Published by Elsevier Inc. All rights reserved.
Splitting a droplet for femtoliter liquid patterns and single cell isolation.
Li, Huizeng; Yang, Qiang; Li, Guannan; Li, Mingzhu; Wang, Shutao; Song, Yanlin
2015-05-06
Well-defined microdroplet generation has attracted great interest, which is important for the high-resolution patterning and matrix distribution for chemical reactions and biological assays. By sliding a droplet on a patterned superhydrophilic/superhydrophobic substrate, tiny microdroplet arrays low to femtoliter were achieved with uniform volume and composition. Using this method, cells were successfully isolated, resulting in a single cell array. The droplet-splitting method is facile, sample-effective, and low-cost, which will be of great potential for the development of microdroplet arrays for biological analysis as well as patterning system and devices.
Electrical isolation of component cells in monolithically interconnected modules
Wanlass, Mark W.
2001-01-01
A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.
Castro, Rafaela A.; Kubitschek-Barreira, Paula H.; Teixeira, Pedro A. C.; Sanches, Glenda F.; Teixeira, Marcus M.; Quintella, Leonardo P.; Almeida, Sandro R.; Costa, Rosane O.; Camargo, Zoilo P.; Felipe, Maria S. S.; de Souza, Wanderley; Lopes-Bezerra, Leila M.
2013-01-01
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes. PMID:24116065
Neumann, Martin Horst Dieter; Schneck, Helen; Decker, Yvonne; Schömer, Susanne; Franken, André; Endris, Volker; Pfarr, Nicole; Weichert, Wilko; Niederacher, Dieter; Fehm, Tanja; Neubauer, Hans
2017-01-01
Circulating tumor cells (CTC) are rare cells which have left the primary tumor to enter the blood stream. Although only a small CTC subgroup is capable of extravasating, the presence of CTCs is associated with an increased risk of metastasis and a shorter overall survival. Understanding the heterogeneous CTC biology will optimize treatment decisions and will thereby improve patient outcome. For this, robust workflows for detection and isolation of CTCs are urgently required. Here, we present a workflow to characterize CTCs by combining the advantages of both the CellSearch ® and the CellCelector™ micromanipulation system. CTCs were isolated from CellSearch ® cartridges using the CellCelector™ system and were deposited into PCR tubes for subsequent molecular analysis (whole genome amplification (WGA) and massive parallel multigene sequencing). By a CellCelector™ screen we reidentified 97% of CellSearch ® SKBR-3 cells. Furthermore, we isolated 97% of CellSearch ® -proven patient CTCs using the CellCelector™ system. Therein, we found an almost perfect correlation of R 2 = 0.98 (Spearman's rho correlation, n = 20, p < 0.00001) between the CellSearch ® CTC count (n = 271) and the CellCelector™ detected CTCs (n = 252). Isolated CTCs were analyzed by WGA and massive parallel multigene sequencing. In total, single nucleotide polymorphisms (SNPs) could be detected in 50 genes in seven CTCs, 12 MCF-7, and 3 T47D cells, respectively. Taken together, CTC quantification via the CellCelector™ system ensures a comprehensive detection of CTCs preidentified by the CellSearch ® system. Moreover, the isolation of CTCs after CellSearch ® using the CellCelector™ system guarantees for CTC enrichment without any contaminants enabling subsequent high throughput genomic analyses on single cell level. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:125-132, 2017. © 2016 American Institute of Chemical Engineers.
De Bellis, A; Dello Iacovo, A; Bellastella, G; Savoia, A; Cozzolino, D; Sinisi, A A; Bizzarro, A; Bellastella, A; Giugliano, D
2014-10-01
Detection of antipituitary antibodies (APA) at high levels and with a particular immunofluorescence pattern in patients with autoimmune polyendocrine syndromes may indicate a possible future autoimmune pituitary involvement. This longitudinal study was aimed at characterizing in patients with a single organ-specific autoimmune disease the pituitary cells targeted by APA at start, verifying whether this characterization allows to foresee the kind of possible subsequent hypopituitarism. Thirty-six APA positive and 40 APA negative patients with isolated autoimmune diseases participated in the study. None of them had pituitary dysfunction at entry. Characterization by four-layer immunofluorescence of pituitary cells targeted by APA in APA positive patients at entry and study of pituitary function in all patients were performed every 6 months during a 5 year follow-up. Antipituitary antibodies immunostained selectively one type of pituitary-secreting cells in 21 patients (58.3 %, group 1), and several types of pituitary cells in the remaining 15 (41.7 %, group 2). All patients in group 1 showed subsequently a pituitary insufficiency, corresponding to the type of cells targeted by APA in 18 of them (85.7 %). Only 8 out of 15 patients in group 2 (53.3 %) showed a hypopituitarism, isolated in 7 and combined in the other one. None of APA negative patients showed hypopituitarism. The characterization of pituitary cells targeted by APA in patients with isolated autoimmune diseases, when the pituitary function is still normal, may help to foresee the kind of subsequent hypopituitarism, especially when APA immunostained selectively only one type of pituitary cells. A careful follow-up of pituitary function in these patients is advisable to allow an early diagnosis of hypopituitarism, even in subclinical phase and a consequent timely replacement therapy.
Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel
2017-08-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.
2017-01-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. PMID:28835540
Statistical Modeling of Single Target Cell Encapsulation
Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548
Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells.
Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic
2015-08-12
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells
Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic
2015-01-01
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954
Compartmental Genomics in Living Cells Revealed by Single-Cell Nanobiopsy
Actis, Paolo; Maalouf, Michelle; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader
2014-01-01
The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis. PMID:24279711
Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering
Syverud, Brian C; Lee, Jonah D; VanDusen, Keith W; Larkin, Lisa M
2015-01-01
Engineered skeletal muscle holds promise as a source of graft tissue for the repair of traumatic injuries such as volumetric muscle loss. The resident skeletal muscle stem cell, the satellite cell, has been identified as an ideal progenitor for tissue engineering due to its role as an essential player in the potent skeletal muscle regeneration mechanism. A significant challenge facing tissue engineers, however, is the isolation of sufficiently large satellite cell populations with high purity. The two common isolation techniques, single fiber explant culture and enzymatic dissociation, can yield either a highly pure satellite cell population or a suitably large number or cells but fail to do both simultaneously. As a result, it is often necessary to use a purification technique such as pre-plating or cell sorting to enrich the satellite cell population post-isolation. Furthermore, the absence of complex chemical and biophysical cues influencing the in vivo satellite cell “niche” complicates the culture of isolated satellite cells. Techniques under investigation to maximize myogenic proliferation and differentiation in vitro are described in this article, along with current methods for isolating and purifying satellite cells. PMID:26413555
Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process.
Stremmel, W
1988-01-01
The mechanism by which fatty acids enter cardiomyocytes is unclear. Therefore, the influx kinetics of [3H]oleate into isolated rat heart myocytes were examined. Cells were incubated at 37 degrees C with [3H]oleate bound to albumin in various molar ratios and the initial rate of uptake (V0) was determined as a function of the unbound oleate concentration in the medium. V0 was saturable with increasing oleate concentrations incubated (Km 78 nM; Vmax 1.9 nmol X min-1 per 10(6) cells) and temperature dependent with an optimum at 37 degrees C. Furthermore, binding of [3H]oleate to isolated plasma membranes of cardiomyocytes was saturable, revealing a KD of 42 nM, and was inhibited by heat denaturation or trypsin pretreatment of the membranes. From these membranes a single 40-kD protein with high affinity for a variety of long chain fatty acids was isolated. With a monospecific antibody to this membrane protein, binding as well as cellular influx of [3H]oleate was selectively inhibited. These data indicate that at least a portion of myocardial fatty acid uptake is mediated by a specific membrane protein. Images PMID:3343344
Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L; Wetsel, Rick A; Wang, Dachun
2014-02-01
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types are still major obstacles. Here we report a novel strategy using a single nonviral site-specific targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific Neomycin(R) transgene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of β-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc, and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random integration-free and exogenous reprogramming factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultrastructural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. © 2013 AlphaMed Press.
Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L.; Wetsel, Rick A.; Wang, Dachun
2013-01-01
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector-integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types, are still major obstacles. Here we report a novel strategy using a single non-viral site-specific-targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific NeomycinR trangene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of beta-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random-integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random-integration-free and exogenous reprogramming-factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultra-structural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. PMID:24123810
Restoration of Viral Immunity in Immunodeficient Humans by the Adoptive Transfer of T Cell Clones
NASA Astrophysics Data System (ADS)
Riddell, Stanley R.; Watanabe, Kathe S.; Goodrich, James M.; Li, Cheng R.; Agha, Mounzer E.; Greenberg, Philip D.
1992-07-01
The adoptive transfer of antigen-specific T cells to establish immunity is an effective therapy for viral infections and tumors in animal models. The application of this approach to human disease would require the isolation and in vitro expansion of human antigen-specific T cells and evidence that such T cells persist and function in vivo after transfer. Cytomegalovirus-specific CD8^+ cytotoxic T cell (CTL) clones could be isolated from bone marrow donors, propagated in vitro, and adoptively transferred to immunodeficient bone marrow transplant recipients. No toxicity developed and the clones provided persistent reconstitution of CD8^+ cytomegalovirus-specific CTL responses.
Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters.
Bithi, Swastika S; Vanapalli, Siva A
2017-02-02
Drug assays with patient-derived cells such as circulating tumor cells requires manipulating small sample volumes without loss of rare disease-causing cells. Here, we report an effective technology for isolating and analyzing individual tumor cells and their clusters from minute sample volumes using an optimized microfluidic device integrated with pipettes. The method involves using hand pipetting to create an array of cell-laden nanoliter-sized droplets immobilized in a microfluidic device without loss of tumor cells during the pipetting process. Using this technology, we demonstrate single-cell analysis of tumor cell response to the chemotherapy drug doxorubicin. We find that even though individual tumor cells display diverse uptake profiles of the drug, the onset of apoptosis is determined by accumulation of a critical intracellular concentration of doxorubicin. Experiments with clusters of tumor cells compartmentalized in microfluidic drops reveal that cells within a cluster have higher viability than their single-cell counterparts when exposed to doxorubicin. This result suggests that circulating tumor cell clusters might be able to better survive chemotherapy drug treatment. Our technology is a promising tool for understanding tumor cell-drug interactions in patient-derived samples including rare cells.
Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.
2000-01-01
A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389
Li, Zhen; Pérez-Osorio, Ailyn; Wang, Yu; Eckmann, Kaye; Glover, William A; Allard, Marc W; Brown, Eric W; Chen, Yi
2017-06-15
In 2015, in addition to a United States multistate outbreak linked to contaminated ice cream, another outbreak linked to ice cream was reported in the Pacific Northwest of the United States. It was a hospital-acquired outbreak linked to milkshakes, made from contaminated ice cream mixes and milkshake maker, served to patients. Here we performed multiple analyses on isolates associated with this outbreak: pulsed-field gel electrophoresis (PFGE), whole genome single nucleotide polymorphism (SNP) analysis, species-specific core genome multilocus sequence typing (cgMLST), lineage-specific cgMLST and whole genome-specific MLST (wgsMLST)/outbreak-specific cgMLST. We also analyzed the prophages and virulence genes. The outbreak isolates belonged to sequence type 1038, clonal complex 101, genetic lineage II. There were no pre-mature stop codons in inlA. Isolates contained Listeria Pathogenicity Island 1 and multiple internalins. PFGE and multiple whole genome sequencing (WGS) analyses all clustered together food, environmental and clinical isolates when compared to outgroup from the same clonal complex, which supported the finding that L. monocytogenes likely persisted in the soft serve ice cream/milkshake maker from November 2014 to November 2015 and caused 3 illnesses, and that the outbreak strain was transmitted between two ice cream production facilities. The whole genome SNP analysis, one of the two species-specific cgMLST, the lineage II-specific cgMLST and the wgsMLST/outbreak-specific cgMLST showed that L. monocytogenes cells persistent in the milkshake maker for a year formed a unique clade inside the outbreak cluster. This clustering was consistent with the cleaning practice after the outbreak was initially recognized in late 2014 and early 2015. Putative prophages were conserved among prophage-containing isolates. The loss of a putative prophage in two isolates resulted in the loss of the AscI restriction site in the prophage, which contributed to their AscI-PFGE banding pattern differences from other isolates. The high resolution of WGS analyses allowed the differentiation of epidemiologically unrelated isolates, as well as the elucidation of the microevolution and persistence of isolates within the scope of one outbreak. We applied a wgsMLST scheme which is essentially the outbreak-specific cgMLST. This scheme can be combined with lineage-specific cgMLST and species-specific cgMLST to maximize the resolution of WGS.
Characterization of cultivated murine lacrimal gland epithelial cells
Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo
2012-01-01
Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974
Functional heterogeneity and heritability in CHO cell populations.
Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C
2013-01-01
In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and isolate CHO cell variants with improved functional properties in vitro. Copyright © 2012 Wiley Periodicals, Inc.
Peng, Xiong-Bo; Sun, Meng-Xiang; Yang, Hong-Yuan
2009-08-01
Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium in the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca(2+)-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca(2+) in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca(2+) signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 microM Fluo-3 for 30 min at 30 degrees C. Under these conditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects on the [Ca(2+)](cyt) of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol-fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.
Liljeqvist, Jan-Åke; Svennerholm, Bo; Bergström, Tomas
1999-01-01
Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation. PMID:10559290
Wu, Liang; Chen, Pu; Dong, Yingsong; Feng, Xiaojun; Liu, Bi-Feng
2013-06-01
Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.
Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.
Takayama, Jun; Faumont, Serge; Kunitomo, Hirofumi; Lockery, Shawn R; Iino, Yuichi
2010-01-01
The nervous system is composed of a wide variety of neurons. A description of the transcriptional profiles of each neuron would yield enormous information about the molecular mechanisms that define morphological or functional characteristics. Here we show that RNA isolation from single neurons is feasible by using an optimized mRNA tagging method. This method extracts transcripts in the target cells by co-immunoprecipitation of the complexes of RNA and epitope-tagged poly(A) binding protein expressed specifically in the cells. With this method and genome-wide microarray, we compared the transcriptional profiles of two functionally different neurons in the main C. elegans gustatory neuron class ASE. Eight of the 13 known subtype-specific genes were successfully detected. Additionally, we identified nine novel genes including a receptor guanylyl cyclase, secreted proteins, a TRPC channel and uncharacterized genes conserved among nematodes, suggesting the two neurons are substantially different than previously thought. The expression of these novel genes was controlled by the previously known regulatory network for subtype differentiation. We also describe unique motif organization within individual gene groups classified by the expression patterns in ASE. Our study paves the way to the complete catalog of the expression profiles of individual C. elegans neurons.
Bulun, S E; Mahendroo, M S; Simpson, E R
1993-06-01
It has been proposed that the biosynthesis of estrogens by the human endometrium may be of physiological significance during the menstrual cycle. Local estrogen production was also suggested to be important in the development of endometrial cancer; however, the presence or absence of aromatase enzyme activity in normal human endometrium is controversial. To address this issue, we used a sensitive technique capable of detecting mRNA transcripts present in only very low copy number. The polymerase chain reaction linked to reverse transcription (RT-PCR) was used to evaluate the presence or absence of aromatase cytochrome P450 (P450arom) transcripts in endometrial tissues (n = 7) and endometrial stromal cells (n = 9) under various culture conditions. RNA was isolated from four proliferative and three secretory tissue samples and from cultured endometrial stromal cells isolated from seven proliferative and two secretory endometria. Five sets of cultures were treated with medroxyprogesterone acetate (MPA), estradiol (E2), and forskolin. Additionally, RNA was isolated from decidualized endometrium obtained from a patient with tubal pregnancy. A single stranded cDNA was synthesized from total RNA using Moloney murine leukemia virus reverse transcriptase and a P450arom-specific oligonucleotide. The single stranded cDNA was used as a template for PCR and was amplified for 20-35 cycles using P450arom-specific primers. RNA from adipose tissue and placenta was amplified to provide positive controls, whereas myometrial RNA was used as a negative control. In two experiments involving two endometrial tissues and three sets of cells in culture, a rat P450arom cRNA was coamplified in each sample as an internal control to demonstrate that the remote possibility of RT-PCR failures in individual test samples cannot account for our negative results. By Southern or slot blot hybridization of the amplified fragments using human and rat P450arom-specific probes, we found no evidence for the presence of P450arom transcripts in normal endometrium, decidualized endometrium, or endometrial stromal cells in culture. In our hands, assay of aromatase activity using [3H]water release from [3H]androstenedione by endometrial stromal cells in culture treated with MPA and E2, did not reveal any detectable aromatase activity. The same cells responded to MPA plus E2 treatment by a significant increase in PRL secretion into the culture medium. Presently, RT-PCR is the most sensitive method available for the detection of specific mRNA species in low copy numbers. These findings are indicative of the absence of P450arom transcripts in normal human endometrium.
Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.
Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina
2013-01-01
In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.
Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.
Verméglio, André; Lavergne, Jérôme; Rappaport, Fabrice
2016-01-01
The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.
A Novel Unit Cell for Active Switches in the Millimeter-Wave Frequency Range
NASA Astrophysics Data System (ADS)
Müller, Daniel; Scherer, Gunnar; Lewark, Ulrich J.; Massler, Hermann; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar
2018-02-01
This paper presents a novel transistor unit cell which is intended to realize compact active switches in the high millimeter-wave frequency range. The unit cell consists of the combination of shunt and common gate transistor within a four-finger transistor cell, achieving gain in the amplifying state as well as good isolation in the isolating state. Gate width-dependent characteristics of the unit cell as well as the design of actual switch implementations are discussed in detail. To verify the concept, two switches, a single pole double throw (SPDT) switch and single pole quadruple throw (SP4T) switch, intended for the WR3 frequency range (220-325 GHz) were manufactured and characterized. The measured gain at 250 GHz is 4.6 and 2.2 dB for the SPDT and SP4T switch, respectively. An isolation of more than 24 dB for the SPDT switch and 12.8 dB for the SP4T switch was achieved.
Random breakup of microdroplets for single-cell encapsulation
NASA Astrophysics Data System (ADS)
Um, Eujin; Lee, Seung-Goo; Park, Je-Kyun
2010-10-01
Microfluidic droplet-based technology enables encapsulation of cells in the isolated aqueous chambers surrounded by immiscible fluid but single-cell encapsulation efficiency is usually less than 30%. In this letter, we introduce a simple microgroove structure to break droplets into random sizes which further allows collecting of single-cell [Escherichia coli (E. coli)] containing droplets by their size differences. Pinched-flow separation method is integrated to sort out droplets of certain sizes which have high probability of containing one cell. Consequently, we were able to obtain more than 50% of droplets having single E. coli inside, keeping the proportion of multiple-cell containing droplets less than 16%.
Swanzey, Emily; Stadtfeld, Matthias
2016-11-15
Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this 'imprinting reporter mouse' can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. © 2016. Published by The Company of Biologists Ltd.
A single-chain TALEN architecture for genome engineering.
Sun, Ning; Zhao, Huimin
2014-03-04
Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.
Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò
2018-01-01
Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.
Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich
2015-09-01
Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Boukadida, Celia; Torres-Flores, Jesús M; Yocupicio-Monroy, Martha; Piten-Isidro, Elvira; Rivero-Arrieta, Amaranta Y; Luna-Villalobos, Yara A; Martínez-Vargas, Liliane; Alcaraz-Estrada, Sofía L; Torres, Klintsy J; Lira, Rosalia; Reyes-Terán, Gustavo; Sevilla-Reyes, Edgar E
2017-03-23
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus associated with severe congenital malformations and neurological complications. Although the ZIKV genome is well characterized, there is limited information regarding changes after cell isolation and culture adaptation. We isolated, and passaged in Vero cells, ZIKV from the serum of a symptomatic male patient and compared the viral genomes before and after culture. Single nucleotide polymorphisms were characteristic among serum-circulating genomes, while such diversity decreased after cell culture. Copyright © 2017 Boukadida et al.
Lab-on-a-chip for the isolation and characterization of circulating tumor cells.
Stakenborg, Tim; Liu, Chengxu; Henry, Olivier; O'Sullivan, Ciara K; Fermer, Christian; Roeser, Tina; Ritzi-Lehnert, Marion; Hauch, Sigfried; Borgen, Elin; Laddach, Nadja; Lagae, Liesbet
2010-01-01
A smart miniaturized system is being proposed for the isolation and characterization of circulating tumor cells (CTCs) directly from blood. Different microfluidic modules have been designed for cell enrichment and -counting, multiplex mRNA amplification as well as DNA detection. With the different modules at hand, future effort will focus on the integration of the modules in a fully automated, single platform.
NASA Astrophysics Data System (ADS)
Gates, R. D.; Muscatine, L.
1992-09-01
Three maceration methods are described for the isolation of single endoderm cells from marine cnidarians. Two are enzymatic treatments suitable for fleshy anthozoans such as sea anemones and zoanthids. The third employs calcium free sea water and is suitable for stony corals. The viability and morphology of the endoderm cells is described using fluorogenic dyes and scanning and transmission electron microscopy.
Liadov, V K; Skrypnikova, M A; Popova, O P
2014-01-01
There is evidence of the importance of circulating tumor cells in bloodstream as a factor of poor prognosis of cancer. The optimum method for isolating and studying of these cells is not defined. The most common methods are either based on the isolation of tumor genetic material from blood or on immune-mediated isolation of epithelial tumor cells. The first group of methods is characterized by a lack of specificity, while the latter do not allow identifying a pool of cells undergone in bloodstream epithelial-mesenchymal transformation. There is presented an overview of results of clinical trials of a new technique of isolation of tumor cells from bloodstream based on the patients' blood filtration through a membrane with defined pore sizes (ISET-Isolation by SizE of Tumor cells).
FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.
Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A
2009-06-01
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.
Klisch, K; Contreras, D A; Sun, X; Brehm, R; Bergmann, M; Alberio, R
2011-11-01
Spermatogonia are a potential source of adult pluripotent stem cells and can be used for testis germ cell transplantation. Markers for the isolation of these cells are of great importance for biomedical applications. Primordial germ cells and prepubertal spermatogonia in many species can be identified by their binding of Dolichos biflorus agglutinin (DBA). This lectin binds to two different types of glycans, which are α-linked N-acetylgalactosamine (GalNac) and β-linked GalNac, if this is part of the Sda or GM2 glycotopes. We used the MAB CT1, which is specific for the trisaccharides motif NeuAcα2-3(GalNAcβ1-4)Galβ1-, which is common to both Sda and GM2 glycotopes, to further define the glycosylation of DBA binding germ cells. In porcine embryos, CT1 bound to migratory germ cells and gonocytes. CT1/DBA double staining showed that the mesonephros was CT1 negative but contained DBA-positive cells. Gonocytes in the female gonad became CT1 negative, while male gonocytes remained CT1 positive. In immunohistological double staining of cattle, pig, horse and llama testis, DBA and CT1 staining was generally colocalised in a subpopulation of spermatogonia. These spermatogonia were mainly single, sometimes paired or formed chains of up to four cells. Our data show that the Sda/GM2 glycotope is present in developing germ cells and spermatogonia in several species. Owing to the narrower specificity of the CT1 antibody, compared with DBA, the former is likely to be a useful tool for labelling and isolation of these cells.
Volkenstein, S; Brors, D; Hansen, S; Mlynski, R; Dinger, T C; Müller, A M; Dazert, S
2008-03-01
Utilising the enormous proliferation and multi-lineage differentiation potentials of somatic stem cells represents a possible therapeutical strategy for diseases of non-regenerative tissues like the inner ear. In the current study, the possibility of murine neural stem cells to contribute to the developing inner ear following blastocyst injection was investigated. Fetal brain-derived neural stem cells from the embryonic day 14 cortex of male mice were isolated and expanded for four weeks in neurobasal media supplemented with bFGF and EGF. Neural stem cells of male animals were harvested, injected into blastocysts and the blastocysts were transferred into pseudo-pregnant foster animals. Each blastocyst was injected with 5-15 microspheres growing from single cell suspension from neurospheres dissociated the day before. The resulting mice were investigated six months POST PARTUM for the presence of donor cells. Brainstem evoked response audiometry (BERA) was performed in six animals. To visualize donor cells Lac-Z staining was performed on sliced cochleas of two animals. In addition, the cochleas of four female animals were isolated and genomic DNA of the entire cochlea was analyzed for donor contribution by Y-chromosome-specific PCR. All animals had normal thresholds in brainstem evoked response audiometry. The male-specific PCR product indicating the presence of male donor cells were detected in the cochleas of three of the four female animals investigated. In two animals, male donor cells were detected unilateral, in one animal bilateral. The results suggest that descendants of neural stem cells are detectable in the inner ear after injection into blastocysts and possess the ability to integrate into the developing inner ear without obvious loss in hearing function.
Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda.
Liu, Yuliang; Liu, Yang; Yie, Shangmian; Lan, Jingchao; Pi, Jinkui; Zhang, Zhihe; Huang, He; Cai, Zhigang; Zhang, Ming; Cai, Kailai; Wang, Hairui; Hou, Rong
2013-09-01
In present study, we report on bone marrow (BM) mesenchymal stem cells (MSCs) that are isolated from giant pandas. Cells were collected from the BM of two stillborn giant pandas. The cells were cultured and expanded in 10% fetal bovine serum medium. Cell morphology was observed under an inverted microscopy, and the proliferation potential of the cells was evaluated by counting cell numbers for eight consecutive days. Differentiation potentials of the cells were determined by using a variety of differentiation protocols for osteocytes, adipocytes, neuron cells, and cardiomyocytes. Meanwhile, the specific gene expressions for MSCs or differentiated cells were analyzed by RT-PCR. The isolated cells exhibited a fibroblast-like morphology; expressed mesenchymal specific markers such as cluster of differentiation 73 (CD73), SRY (sex determining region Y)-box 2 (SOX-2), guanine nucleotide-binding protein-like 3 (GNL3), and stem cell factor receptor (SCFR); and could be differentiated into osteocytes and adipocytes that were characterized by Alizarin Red and Oil Red O staining. Under appropriate induction conditions, these cells were also able to differentiate into neuroglial-like or myocardial-like cells that expressed specific myocardial markers such as GATA transcription factors 4 (GATA-4), cardiac troponin T (cTnT), and myosin heavy chain 7B (MYH7B), or neural specific markers such as Nestin and glial fibrillary acidic protein (GFAP). This study demonstrated stem cells recovery and growth from giant pandas. The findings suggest that cells isolated from the BM of giant pandas have a high proliferative capacity and multiple differentiation potential in vitro which might aid conservation efforts.
Zhang, Yu; Tang, Yin; Sun, Shuai; Wang, Zhihua; Wu, Wenjun; Zhao, Xiaodong; Czajkowsky, Daniel M; Li, Yan; Tian, Jianhui; Xu, Ling; Wei, Wei; Deng, Yuliang; Shi, Qihui
2015-10-06
The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis.
Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.
Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin
2016-01-01
Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines.
Liu, Jun-Jun; Shamoun, Simon Francis; Leal, Isabel; Kowbel, Robert; Sumampong, Grace; Zamany, Arezoo
2018-05-01
Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals.
Li, J; Gonzalez, J M; Walker, D K; Hersom, M J; Ealy, A D; Johnson, S E
2011-06-01
Satellite cells are a heterogeneous population of myogenic precursors responsible for muscle growth and repair in mammals. The objectives of the experiment were to examine the growth rates and degree of heterogeneity within bovine satellite cells (BSC) isolated from young and adult animals. The BSC were harvested from the semimembranosus of young (4.3 ± 0.5 d) and adult (estimated 24 to 27 mo) cattle and cultured en masse. Young animal BSC re-enter the cell cycle sooner and reach maximal 5-ethynyl-2'-deoxyuridine (EdU) incorporation earlier (P < 0.05) than adult contemporaries. Adult BSC contain fewer (P < 0.05) MyoD and myogenin immunopositive nuclei than BSC isolated from young animals after 3, 4, and 5 d in culture. These results indicate that BSC from young animals activate, proliferate, and differentiate sooner than isolates from adult animals. Lineage heterogeneity within BSC was examined using antibodies specific for Pax7 and Myf5, lineage markers of satellite cells, and myoblasts. Immunocytochemistry revealed the majority of Pax7-expressing BSC also express Myf5; a minor population (~5%) fails to exhibit Myf5 immunoreactivity. The percentage of Pax7:Myf5 BSC from young animals decreases sooner (P < 0.05) in culture than adult BSC, indicating a more rapid rate of muscle fiber formation. A subpopulation immunopositive for Myf5 only was identified in both ages of BSC isolates. The growth kinetics and heterogeneity of young BSC was further evaluated by clonal analysis. Single cell clones were established and analyzed after 10 d. Colonies segregated into 2 groups based upon population doubling time. Immunostaining of the slow-growing colonies (population doubling time ≥ 3 d) revealed that a portion exhibited asymmetric distribution of the lineage markers Pax7 and Myf5, similar to self-renewable mouse muscle stem cells. In summary, these results offer insight into the heterogeneity of BSC and provide evidence for subtle differences between rodent and bovine myogenic precursors.
Repeated sampling of genes from a single cell - implications for gravitropism research
NASA Astrophysics Data System (ADS)
Scherp, P.; Hasenstein, K. H.
The need for repeated but independent extractions of mRNA from single cells and plant tissues prompted the development of Solid Phase Gene Extraction (SPGE, patent pending). Oligo dT18 coated glass needles hybridize during a 2 to 3 min sampling time with the poly A+ mRNA. The needle is withdrawn and can be used directly for RT-PCR. Because of the small probe size, no cytoplasm is lost and repeated sampling of the same cell is possible. SPGE of Chara rhizoids and internodal cells showed fluctuations of type and quantity of mRNA in specific areas of the cytoplasm of rhizoids and time-dependent gene expression in internodal cells as a function of light/dark intervals. Despite extensive cytoplasmic streaming, mRNA-samples taken in the vicinity of the nucleus revealed a higher variability than the distal ends of the cell. In rhizoids, the mRNA/cDNA varied between the different zones of cytoplasm. In Arabidopsis, we isolated cDNA species from root tips, shoots and leaves and determined their sequences. Growth studies on SPGE-sampled individuals showed that after a short recovery period, all sampled plants resumed growth with normal growth rates and graviresponse. The data indicate that SPGE is a powerful method to study gene expression in single cells and in tissues of higher plants with high spatial and temporal resolution. Supported by NASA: NAG 2-1423
Salvianti, Francesca; Rotunno, Giada; Galardi, Francesca; De Luca, Francesca; Pestrin, Marta; Vannucchi, Alessandro Maria; Di Leo, Angelo; Pazzagli, Mario; Pinzani, Pamela
2015-09-01
The purpose of the study was to explore the feasibility of a protocol for the isolation and molecular characterization of single circulating tumor cells (CTCs) from cancer patients using a single-cell next generation sequencing (NGS) approach. To reach this goal we used as a model an artificial sample obtained by spiking a breast cancer cell line (MDA-MB-231) into the blood of a healthy donor. Tumor cells were enriched and enumerated by CellSearch(®) and subsequently isolated by DEPArray™ to obtain single or pooled pure samples to be submitted to the analysis of the mutational status of multiple genes involved in cancer. Upon whole genome amplification, samples were analysed by NGS on the Ion Torrent PGM™ system (Life Technologies) using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies), designed to investigate genomic "hot spot" regions of 50 oncogenes and tumor suppressor genes. We successfully sequenced five single cells, a pool of 5 cells and DNA from a cellular pellet of the same cell line with a mean depth of the sequencing reaction ranging from 1581 to 3479 reads. We found 27 sequence variants in 18 genes, 15 of which already reported in the COSMIC or dbSNP databases. We confirmed the presence of two somatic mutations, in the BRAF and TP53 gene, which had been already reported for this cells line, but also found new mutations and single nucleotide polymorphisms. Three variants were common to all the analysed samples, while 18 were present only in a single cell suggesting a high heterogeneity within the same cell line. This paper presents an optimized workflow for the molecular characterization of multiple genes in single cells by NGS. The described pipeline can be easily transferred to the study of single CTCs from oncologic patients.
i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4*
Dolezal, Olan; Cao, Benjamin; See, Heng B.; Pfleger, Kevin D. G.; Gorry, Paul R.; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G. C.; Chang, Denison H. C.; Murray-Rust, Thomas; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L.; Nuttall, Stewart D.; Foley, Michael
2016-01-01
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an “i-body,” the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor. PMID:27036939
Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman
2014-02-05
The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*10(5) MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts.
FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL
Etzkorn, James R.; McQuaide, Sarah C.; Anderson, Judy B.; Meldrum, Deirdre R.; Parviz, Babak A.
2010-01-01
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing “single-cell” biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells. PMID:20694048
High affinity ligands from in vitro selection: Complex targets
Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry
1998-01-01
Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188
Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis
Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.
2013-01-01
Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116
Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.
Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter
2017-02-10
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Laser-mediated perforation of plant cells
NASA Astrophysics Data System (ADS)
Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan
2007-07-01
The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.
Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles
Park, Ki Ho; Brotto, Leticia; Lehoang, Oanh; Brotto, Marco; Ma, Jianjie; Zhao, Xiaoli
2012-01-01
Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle. PMID:23149471
Amsbaugh, D F; Li, Z M; Shahin, R D
1993-01-01
Systemic and mucosal B-cell-mediated immune responses to purified filamentous hemagglutinin (FHA) in mice were analyzed at different times following a single respiratory infection with Bordetella pertussis. Serum immunoglobulin G (IgG) anti-FHA and respiratory IgG and IgA anti-FHA antibodies were first detected at 3 weeks postinfection, reached high levels by 8 weeks postinfection, and remained at high levels 12 to 32 weeks postinfection. FHA-specific B lymphocytes isolated from the spleens or lungs of uninfected control mice or mice convalescing from B. pertussis respiratory infection were analyzed in limiting-dilution cultures. Analysis of culture supernatants for the production of antibodies to FHA revealed an increased frequency of FHA-specific B cells of both the IgG- and the IgA-secreting classes in the lungs and tracheas of aerosol-challenged mice; these levels remained high as late as 25 weeks postinfection, compared with those in uninfected controls. No corresponding increase in the frequency of FHA-specific B cells in the spleens of aerosol-infected mice was observed. This long-lasting response observed in cultured cells was radiation resistant, a result suggesting that this response was due to B cells already activated in vivo. Polymerase chain reaction analysis revealed low but detectable levels of B. pertussis chromosomal DNA in 75% of mice tested at 8 weeks postinfection and 37.5% of mice tested at 26 weeks postinfection, at which times high levels of anti-FHA antibody were detected. One explanation for these data may be that, in this animal model, a major adhesin of B. pertussis can persist and interact with components of the immune system to stimulate the production of specific antibody in the respiratory tract many weeks after a single B. pertussis infection. PMID:8454349
2013-01-01
Background For years Plasmodium vivax has been considered the cause of benign malaria. Nevertheless, it has been observed that this parasite can produce a severe disease comparable to Plasmodium falciparum. It has been suggested that some physiopathogenic processes might be shared by these two species, such as cytoadherence. Recently, it has been demonstrated that P. vivax-infected erythrocytes (Pv-iEs) have the capacity to adhere to endothelial cells, in which intercellular adhesion molecule-1 (ICAM-1) seems to be involved in this process. Methods Adherence capacity of 21 Colombian isolates, from patients with P. vivax mono-infection to a microvascular line of human lung endothelium (HMVEC-L) was assessed in static conditions and binding was evaluated at basal levels or in tumor necrosis factor (TNF) stimulated cells. The adherence specificity for the ICAM-1 receptor was determined through inhibition with an anti-CD54 monoclonal antibody. Results The majority of P. vivax isolates, 13 out of 21 (61.9%), adhered to the HMVEC-L cells, but P. vivax adherence was at least seven times lower when compared to the four P. falciparum isolates. Moreover, HMVEC-L stimulation with TNF led to an increase of 1.6-fold in P. vivax cytoadhesion, similar to P. falciparum isolates (1.8-fold) at comparable conditions. Also, blockage of ICAM-1 receptor with specific antibodies showed a significant 50% adherence reduction. Conclusions Plasmodium vivax isolates found in Colombia are also capable of adhering specifically in vitro to lung endothelial cells, via ICAM-1 cell receptor, both at basal state and after cell stimulation with TNF. Collectively, these findings reinforce the concept of cytoadherence for P. vivax, but here, to a different endothelial cell line and using geographical distinct isolates, thus contributing to understanding P. vivax biology. PMID:24080027
Lee, HyungJae; Jeon, SeungHyun; Seo, Jin-Suck; Goh, Sung-Ho; Han, Ji-Youn; Cho, Youngnam
2016-09-01
We have developed a reusable nanostructured polypyrrole nanochip and demonstrated its use in the electric field-mediated recovery of circulating cell-free DNA (cfDNA) from the plasma of lung cancer patients. Although cfDNA has been recognized and widely studied as a versatile and promising biomarker for the diagnosis and prognosis of cancers, the lack of efficient strategies to directly isolate cfDNA from the plasma has become a great hindrance to its potential clinical use. As a proof-of-concept study, we demonstrated a technique for the rapid and efficient isolation of cfDNA with high yield and purity. In particular, the synergistic effects of the electro-activity and the nanostructured features of the polypyrrole polymer enabled repeated retrieval of cfDNA using a single platform. Moreover, polypyrrole nanochip facilitated the amplification of tumor-specific DNA fragments from the plasma samples of patients with lung cancer characterized by mutations in exons 21 of the epidermal growth factor receptor gene (EGFR). Overall, the proposed polypyrrole nanochip has enormous potential for industrial and clinical applications with significantly enhanced efficiency in the recovery of tumor-associated circulating cfDNA. This may ultimately contribute to more robust and reliable evaluation of gene mutations in peripheral blood. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sensitive Optical and Microfluidic Systems for Cellular Analyses
NASA Astrophysics Data System (ADS)
Schiro, Perry G.
Investigating rare cells and heterogeneous subpopulations is challenging for a myriad reasons. This dissertation describes novel techniques to analyze single molecules, synaptic vesicles, and rare circulating tumor cells. The eDAR platform for isolating rare cells in fluids provides a new method to monitor breast cancer status in patients as well as to guide research for personalized treatment and efficacy. In a side-by-side comparison with CellSearch, eDAR detected CTCs in all 20 Stage IV metastatic breast cancer patients while the CellSearch system found CTCs in just 8 patients. The single-molecule capillary electrophoresis technology is a method to characterize an entire sample one molecule at a time, providing detailed information about the absolute number and nature of molecules present in a sample. The nFASS platform has the potential to apply the advantages that currently exist in flow cytometry to the study of items on a much smaller scale such as subcellular organelles and nanometer-sized objects. For example, the isolation of subpopulations of synaptic vesicles will allow for detailed protein quantification and identification in the study of neurological diseases. These tools facilitate fundamental investigation of objects ranging from single molecules to single cells.
Deng, Yu; Huang, Zhigang; Wang, Wenbing; Chen, Yinghuai; Guo, Zhongning; Chen, Ying
2017-01-01
Aiming to improve the laser-induced forward transfer (LIFT) cell isolation process, a polydimethylsiloxane (PDMS) layer with micro-hole arrays was employed to improve the cell separation precision, and a microchip with heater was developed to maintain the working area at 100% humidity and 37°C with the purpose to preserve the viability of the isolated cells. A series of experiments were conducted to verify the contributions of the optimization to LIFT cell isolation process as well as to study the effect of laser pulse energy, laser spot size and the titanium thickness on cell isolation. With 40µm laser spot size and 40nm thick of titanium, laser energy threshold for 100% single cell isolating succeed ratio is 7µJ. According to the staining images and proliferation ratios, the chip did help to improve the cell availability and the cells can recover from the juries at least a day earlier comparing to the samples processed without the chip. With a Lattice Boltzmann model, the cell isolation process is numerically studied and it turns out that the micro-hole makes the isolation process shift to a micro-syringe injection model leading to the lower laser energy threshold for cell separation and fewer injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Tome-Garcia, Jessica; Doetsch, Fiona; Tsankova, Nadejda M.
2018-01-01
Direct isolation of human neural and glioma stem cells from fresh tissues permits their biological study without prior culture and may capture novel aspects of their molecular phenotype in their native state. Recently, we demonstrated the ability to prospectively isolate stem cell populations from fresh human germinal matrix and glioblastoma samples, exploiting the ability of cells to bind the Epidermal Growth Factor (EGF) ligand in fluorescence-activated cell sorting (FACS). We demonstrated that FACS-isolated EGF-bound neural and glioblastoma populations encompass the sphere-forming colonies in vitro, and are capable of both self-renewal and multilineage differentiation. Here we describe in detail the purification methodology of EGF-bound (i.e., EGFR+) human neural and glioma cells with stem cell properties from fresh postmortem and surgical tissues. The ability to prospectively isolate stem cell populations using native ligand-binding ability opens new doors for understanding both normal and tumor cell biology in uncultured conditions, and is applicable for various downstream molecular sequencing studies at both population and single-cell resolution. PMID:29516026
Single-cell sequencing technologies: current and future.
Liang, Jialong; Cai, Wanshi; Sun, Zhongsheng
2014-10-20
Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Epigenetics reloaded: the single-cell revolution.
Bheda, Poonam; Schneider, Robert
2014-11-01
Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Yu; Liu, Huiying; Sun, Bin; Zhao, Linlin; Ge, Naijian; Qian, Haihua; Yang, Yefa; Wu, Mengchao; Yin, Zhengfeng
2014-01-01
Background Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. Methods The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. Results ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. Conclusions Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection. PMID:24763545
Nerurkar, Vidya; Kattungal, Sushma; Bhatia, Simi
2016-01-01
Clinical presentation of Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) infections may or may not be the same, but the treatment is always different. Hence accurate differentiation between MTBC and NTM is of utmost importance. To assess in parallel, the utility of MPT64 antigen immunochromatography assay (MPT64 ICT) and bacillary morphology on liquid culture smear, for rapid differentiation between MTBC and NTM in clinical isolates. Private sector reference laboratory, prospective. Thousand and ninety-three mycobacterial isolates, recovered using Mycobacteria Growth Indicator Tube 960 liquid culture system (BD, USA), were subjected to MPT64 ICT (Standard Diagnostics Inc., Korea), para amino nitrobenzoicacid (PNB), niacin, and nitrate reduction tests. Smears prepared from culture vials were subjected to Ziehl-Neelsen staining and observed microscopically for typical patterns (chords, single cells, etc.,). PNB, nitrate and niacin tests served as the reference method for MTBC identification. Thousand and fourteen and 79 isolates were identified as MTBC and NTM, respectively. MPT64 ICT correctly identified 955/1014 MTBC and all NTM isolates, yielding sensitivity and specificity of 94.2% and 100%, respectively. 936/1014 (92.3%) MTBC isolates revealed characteristic serpentine chording on culture smear including 56/59 MPT64 ICT negative isolates. Sensitivity and specificity of liquid culture smear were 98.1% and 82.3%, respectively. Correlation of MPT64 ICT results with liquid culture smear was useful, especially in MPT64 ICT negative isolates, where the latter could help to determine need and/or type of additional confirmatory testing. Liquid culture smear, however, lacked specificity and cannot be used as a stand alone test.
Cellular Decision Making by Non-Integrative Processing of TLR Inputs.
Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş
2017-04-04
Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?
Murlidhar, Vasudha; Rivera-Báez, Lianette; Nagrath, Sunitha
2016-09-01
The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin
2015-01-01
T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538
Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus
Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi
1971-01-01
Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590
Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser.
Deka, Gitanjal; Okano, Kazunori; Kao, Fu-Jen
2014-01-01
Cellular micropattering has been increasingly adopted in quantitative biological experiments. A Q-switched pulsed neodymium-doped yttrium ortho-vanadate (Nd∶YVO4) laser directed in-situ microfabrication technique for cell patterning is presented. A platform is designed uniquely to achieve laser ablation. The platform is comprised of thin gold coating over a glass surface that functions as a thermal transducer and is over-layered by a cell repellant polymer layer. Micropatterns are engraved on the platform, subsequently exposing specific cell adhesive micro-domains by ablating the gold-polymer coating photothermally. Experimental results indicate that the proposed approach is applicable under culture conditions, viable toward cells, and has a higher engraving speed. Possible uses in arraying isolated single cells on the platform are also shown. Additionally, based on those micro-patterns, dynamic cellular morphological changes and migrational speed in response to geometrical barriers are studied to demonstrate the potential applications of the proposed approach. Our results further demonstrate that cells in narrower geometry had elongated shapes and higher migrational speed than those in wider geometry. Importantly, the proposed approach will provide a valuable reference for efforts to study single cell dynamics and cellular migration related processes for areas such as cell division, wound healing, and cancer invasion.
Huynh, Tien T.; Thomson, Richard; Mclean, Cassandra B.; Lawrie, Ann C.
2009-01-01
Background and Aims Mycorrhizal associations are essential to the plant kingdom. The largest flowering plant family, the Orchidaceae, relies on mycorrhizal fungi for germination, growth and survival. Evidence suggests varying degrees of fungal-host specificity based on a single fungal isolate from a single plant. This paper shows for the first time the diversity of endophytes colonizing in a single plant over consecutive years and the functional significance of this diversity. Methods Stem-collars of Caladenia formosa were collected in different seasons and years. Mycorrhizal fungi isolated were tested for their efficacy to induce leafing and genetically determined using ITS-RFLP and sequencing. Results Multiple mycorrhizal fungi were repeatedly isolated from a single collar that displayed varying effectiveness in germination percentages and adult leaf length. Additional factors contributed to the isolation of effective mycorrhizal fungi; fungal collection season, year of collection and individual isolates. Surface sterilization only improved the number of isolated mycorrhizal fungi. Dual inoculation did not increase germination. All 59 mycorrhizal fungi effective in germinating seed belonged to one clearly defined ITS (internal transcribed spacer) clade and clustered close to Sebacina vermifera (79–89 % homology). Isolates resulting in the greatest germination were not necessarily those resulting in the greatest survival and growth 1 year after germination. Conclusion Single orchid plants contained multiple mycorrhizal fungal strains of one species that had diverse functional differences. These results suggest that our current knowledge of fungal–host specificity may be incomplete due to experimental and analytical limitations. It also suggests that the long-term effectiveness of a mycorrhizal fungus or fungi could only be found by germination and longer-term growth tests rather than genetically. PMID:19561011
Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko
2014-02-01
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy
Berdien, Belinda; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Kröger, Nicolaus; Atanackovic, Djordje; Fehse, Boris
2013-01-01
Adoptive transfer of T lymphocytes equipped with tumor-antigen specific T-cell receptors (TCRs) represents a promising strategy in cancer immunotherapy, but the approach remains technically demanding. Using influenza virus (Flu)-specific T-cell responses as a model system we compared different methods for the generation of T-cell clones and isolation of antigen-specific TCRs. Altogether, we generated 12 CD8+ T-cell clones reacting to the Flu matrix protein (Flu-M) and 6 CD4+ T-cell clones reacting to the Flu nucleoprotein (Flu-NP) from 4 healthy donors. IFN-γ-secretion-based enrichment of antigen-specific cells, optionally combined with tetramer staining, was the most efficient way for generating T-cell clones. In contrast, the commonly used limiting dilution approach was least efficient. TCR genes were isolated from T-cell clones and cloned into both a previously used gammaretroviral LTR-vector, MP91 and the novel lentiviral self-inactivating vector LeGO-MP that contains MP91-derived promotor and regulatory elements. To directly compare their functional efficiencies, we in parallel transduced T-cell lines and primary T cells with the two vectors encoding identical TCRs. Transduction efficiencies were approximately twice higher with the gammaretroviral vector. Secretion of high amounts of IFN-γ, IL-2 and TNF-α by transduced cells after exposure to the respective influenza target epitope proved efficient specificity transfer of the isolated TCRs to primary T-cells for both vectors, at the same time indicating superior functionality of MP91-transduced cells. In conclusion, we have developed optimized strategies to obtain and transfer antigen-specific TCRs as well as designed a novel lentiviral vector for TCR-gene transfer. Our data may help to improve adoptive T-cell therapies. PMID:23428899
McGuire, Michael J; Samli, Kausar N; Chang, Ya-Ching; Brown, Kathlynn C
2006-04-01
Lymphoma and leukemia account for nearly 8% of cancer fatalities each year. Present treatments do not differentiate between normal and malignant cells. New reagents that distinguish malignant cells and enable the isolation of these cells from the normal background will enhance the molecular characterization of disease and specificity of treatment. Peptide ligands were selected from a phage-displayed peptide library by biopanning on the B-cell lymphoma line, A20. The isolated peptides were assessed as reagents for identification and isolation of lymphoma cells by flow cytometry and cell capture with magnetic beads. Two novel peptides and one obtained previously on cardiomyocytes were selected. A20 cells bind phage displaying these peptides 250- to 450-fold over control phage. These phage bind to other bone marrow-derived cancel lines including some macrophage and T cells but do not bind to normal splenocytes. Synthetic constructs of these peptides have binding affinities comparable to B-cell-specific antibodies. Similar to antibodies, these peptides can be used in flow cytometry and magnetic bead capture to distinguish lymphoma cells from normal splenocytes. Bone marrow-derived malignant cells express cell surface markers that can be used to distinguish them from normal cells. These results demonstrate the ability to use an unbiased screen to rapidly generate high-affinity peptide ligands for identification and isolation of lymphoma cells.
Carbonetti, Sara; Oliver, Brian G; Vigdorovich, Vladimir; Dambrauskas, Nicholas; Sack, Brandon; Bergl, Emilee; Kappe, Stefan H I; Sather, D Noah
2017-09-01
Monoclonal antibody technologies have enabled dramatic advances in immunology, the study of infectious disease, and modern medicine over the past 40years. However, many monoclonal antibody discovery procedures are labor- and time-intensive, low efficiency, and expensive. Here we describe an optimized mAb discovery platform for the rapid and efficient isolation, cloning and characterization of monoclonal antibodies in murine systems. In this platform, antigen-binding splenic B cells from immunized mice are isolated by FACS and cocultured with CD40L positive cells to induce proliferation and mAb production. After 12days of coculture, cell culture supernatants are screened for antigen, and IgG positivity and RNA is isolated for reverse-transcription. Positive-well cDNA is then amplified by PCR and the resulting amplicons can be cloned into ligation-independent expression vectors, which are then used directly to transfect HEK293 cells for recombinant antibody production. After 4days of growth, conditioned medium can be screened using biolayer interferometry for antigen binding and affinity measurements. Using this method, we were able to isolate six unique, functional monoclonal antibodies against an antigen of the human malaria parasite Plasmodium falciparum. Importantly, this method incorporates several important advances that circumvent the need for single-cell PCR, restriction cloning, and large scale protein production, and can be applied to a wide array of protein antigens. Copyright © 2017 Elsevier B.V. All rights reserved.
Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis.
Kim, Samuel C; Clark, Iain C; Shahi, Payam; Abate, Adam R
2018-01-16
Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.
Cell selection and characterization of a novel human endothelial cell specific nanobody.
Ahmadvand, Davoud; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Kontermann, Roland E; Sheikholislami, Farzaneh
2009-05-01
Antibody-based targeting of angiogenesis and vascular targeting therapy of cancer are extremely attractive conceptually and open new important diagnostic and therapeutic opportunities. Compelling evidence suggests that CD105 represents an ideal target for anti-angiogenic therapy and its presence in solid tumor vasculature has prognostic value. Camelids produce functional antibodies devoid of light chains and constant heavy chain domain (CH1). Nanobodies, the antigen-binding fragments of such heavy chain antibodies, are therefore comprised in one single domain. The aim of this study was to explore the possibilities of using anti-endoglin nanobody as an angiogenesis inhibitor. The anti-CD105 nanobody (AR-86a) was isolated from immune library by selections on purified antigens and target cells. Immunocytochemistry and FACS analysis showed that the purified nanobody reacted specifically with human umbilical vein endothelial cells (HUVECs) but not with other cell lines such as MDA-MB-453, Mel III, T-47D, MCF-7, AGO and HT 29. Further, selected nanobody potently inhibited proliferation of human endothelial cells and formation of capillary-like structures. This selected high affinity anti-endoglin nanobody may offer high specificity towards tumors with reduced side effects, and may be less likely to elicit drug resistance compared to conventional therapy.
Mani, Jiju; Jin, Nan; Schmitt, Michael
2014-10-01
Immunosuppression of patients after hematopoietic stem cell or kidney transplantation potentially leads to reactivation of JC and BK polyomaviruses. In hematopoietic stem cell transplantation, the reactivation rate of BKV can be up to 60%, resulting in severe complications of the urogenital tract, particularly hemorrhagic cystitis and renal dysfunction. After kidney transplantation, BKV reactivation can cause a loss of the graft. JCV can cause progressive multifocal leukoencephalopathy, a lethal disease. Adoptive transfer of donor-derived polyomavirus-specific T cells is an attractive and promising treatment that restores virus-specific cellular immunity. Pioneering work in the early 1990s on the reconstitution of cellular immunity against cytomegalovirus and recent development in the field of monitoring and isolation of antigen-specific T cells paved the way toward a personalized T-cell therapy. Multimer technology and magnetic beads are available to produce untouched T cells in a single-step, good manufacturing practice-compliant procedure. Another exciting aspect of T-cell therapy against polyomaviruses is the fact that both JCV and BKV can be targeted simultaneously because of their high sequence homology. Finally, "designer T cells" can be redirected to recognize polyomavirus antigens with high-affinity T-cell receptors. This review summarizes the state-of-the art technologies and gives an outlook of future developments in the field. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Brown, William R. A.; Liti, Gianni; Rosa, Carlos; James, Steve; Roberts, Ian; Robert, Vincent; Jolly, Neil; Tang, Wen; Baumann, Peter; Green, Carter; Schlegel, Kristina; Young, Jonathan; Hirchaud, Fabienne; Leek, Spencer; Thomas, Geraint; Blomberg, Anders; Warringer, Jonas
2011-01-01
The fission yeast Schizosaccharomyces pombe has been widely used to study eukaryotic cell biology, but almost all of this work has used derivatives of a single strain. We have studied 81 independent natural isolates and 3 designated laboratory strains of Schizosaccharomyces pombe. Schizosaccharomyces pombe varies significantly in size but shows only limited variation in proliferation in different environments compared with Saccharomyces cerevisiae. Nucleotide diversity, π, at a near neutral site, the central core of the centromere of chromosome II is approximately 0.7%. Approximately 20% of the isolates showed karyotypic rearrangements as detected by pulsed field gel electrophoresis and filter hybridization analysis. One translocation, found in 6 different isolates, including the type strain, has a geographically widespread distribution and a unique haplotype and may be a marker of an incipient speciation event. All of the other translocations are unique. Exploitation of this karyotypic diversity may cast new light on both the biology of telomeres and centromeres and on isolating mechanisms in single-celled eukaryotes. PMID:22384373
Dichosa, Armand E. K.; Davenport, Karen W.; Li, Po-E; ...
2015-03-19
In this study, we report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species.
Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin
Rozkalne, Anete; Adkin, Carl; Meng, Jinhong; Lapan, Ariya; Morgan, Jennifer E.
2014-01-01
Abstract Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1nullmdx5cv, NOD/LtSz-scid IL2Rγnull mice, or mdx nude mice, irrespective of whether they were injected with human cells. These “reactive” clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies. PMID:24152287
Kobayashi, Naoki; Maeda, Eriko; Saito, Shioko; Furukawa, Ichiro; Ohnishi, Takahiro; Watanabe, Maiko; Terajima, Jun; Hara-Kudo, Yukiko
2016-01-01
The characteristics of 11 strains of Stx1-producing and Stx2-non-producing STEC O103:H2 were analyzed to investigate the differences in virulence in a single serotype of Shiga toxin (Stx) -producing Escherichia coli (STEC). Differences in the cell-adhesion activity to Caco-2 cells were observed among the strains. The activity of the one strain, isolated from a patient with hemolytic uremic syndrome was 4-20-fold higher than those of the other strains. Although the strains with high cell-adhesion activity showed high expressions of eae, espB, espD, and tir in the locus of enterocyte effacement related with cell-adhesion, those were not specific for this strain. In addition, the Stx1 production level of the strain was not particularly high. It was indicated that the high adhesion activity might be a potential factor to associate serious symptom.
Lab-on-a-chip technologies for proteomic analysis from isolated cells.
Sedgwick, H; Caron, F; Monaghan, P B; Kolch, W; Cooper, J M
2008-10-06
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy.
Reece, Kimberly S; Scott, Gail P; Dang, Cécile; Dungan, Christopher F
2017-09-01
A monoclonal Perkinsus chesapeaki isolate was established from 1 of 10 infected Australian Anadara trapezia cockles. Morphological features were similar to those of described P. chesapeaki isolates, and also included a unique vermiform schizont cell-type. Perkinsus olseni-specific PCR primers amplified DNAs from all 10 cockles. Perkinsus chesapeaki-specific primers also amplified DNAs from 4/10 cockles, including DNA from the isolate source cockle. Three different sets of DNA sequences from the monoclonal isolate grouped with the homologous, previously deposited, P. chesapeaki sequences in phylogenetic analyses. In situ hybridization assays detected both P. chesapeaki and P. olseni cells in histological sections from the source cockle for monoclonal isolate ATCC PRA-425. Copyright © 2017 Elsevier Inc. All rights reserved.
Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.
Gong, Haibiao; Do, Devin; Ramakrishnan, Ramesh
2018-01-01
Single-cell mRNA-seq is a valuable tool to dissect expression profiles and to understand the regulatory network of genes. Microfluidics is well suited for single-cell analysis owing both to the small volume of the reaction chambers and easiness of automation. Here we describe the workflow of single-cell mRNA-seq using C1 IFC, which can isolate and process up to 96 cells. Both on-chip procedure (lysis, reverse transcription, and preamplification PCR) and off-chip sequencing library preparation protocols are described. The workflow generates full-length mRNA information, which is more valuable compared to 3' end counting method for many applications.
Central role of the cell in microbial ecology.
Zengler, Karsten
2009-12-01
Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.
Early impact of social isolation and breast tumor progression in mice.
Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B
2013-03-01
Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the tumor-promoting effects of social isolation, and to determine the contributions of increased tumor macrophages to tumor pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin
2009-07-01
Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.
[Isolation and identification of dog periodontal ligament stem cells].
Chang, Xiu-Mei; Liu, Hong-Wei; Jin, Yan; Liu, Yuan; He, Hui-Xia
2009-02-01
To isolate, culture and identify a dog periodontal ligament stem cells (PDLSC) line in vitro. The adult dog periodontal ligament cells were isolated by limited dilution of culture cell for single cell clone. Cells originated from one of these clones were assessed through colony-forming efficiency and immunocytochemistry assay and alkaline phosphatase stain was used to identify the source of adult dog periodontal stem cells, at the same time, PDLSC were induced with mineralizatin solution and was found to have long protrude like an osteoblast. Differentiation of PDLSC were assessed. Mineralized potential was studied by Von-Kossa staining. The dog PDLSC expressed STRO-1, which was the marker of mesenchymal stem cells. Also Vimentin, osteoblast-like marker alkaline phosphatase and Collagen-I expressed weakly. Cells were clonegenic, highly proliferative cells and capable of differentiating into osteoblasts/cementoblasts. The evidence suggests that the cultured cells were stem cells from adult dog periodontal ligament.
Single cell transcriptomics of neighboring hyphae of Aspergillus niger
2011-01-01
Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052
Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken
2014-04-15
Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Akatsuka, Yoshiki; Nishida, Tetsuya; Kondo, Eisei; Miyazaki, Mikinori; Taji, Hirohumi; Iida, Hiroatsu; Tsujimura, Kunio; Yazaki, Makoto; Naoe, Tomoki; Morishima, Yasuo; Kodera, Yoshihisa; Kuzushima, Kiyotaka; Takahashi, Toshitada
2003-01-01
We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1. PMID:12771180
Sardesai, Varda S.; Shafiee, Abbas; Fisk, Nicholas M.
2017-01-01
Abstract Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender‐discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi‐derived MSC (CV‐MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV‐MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070–1084 PMID:28205414
Programmable single-cell mammalian biocomputers.
Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin
2012-07-05
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.
Novel method for the rapid isolation of RPE cells specifically for RNA extraction and analysis
Wang, Cynthia Xin-Zhao; Zhang, Kaiyan; Aredo, Bogale; Lu, Hua; Ufret-Vincenty, Rafael L.
2012-01-01
RPE cells are involved in the pathogenesis of many retinal diseases. Accurate analysis of RPE gene expression profiles in different scenarios will increase our understanding of disease mechanisms. Our objective in this study was to develop an improved method for the isolation of RPE cells, specifically for RNA analysis. Mouse RPE cells were isolated using different techniques, including mechanical dissociation techniques and a new technique we refer to here as “Simultaneous RPE cell Isolation and RNA Stabilization” (SRIRS method). RNA was extracted from the RPE cells. An RNA bioanalyzer was used to determine the quantity and quality of RNA. qPCR was used to determine contamination with non-RPE-derived RNA. Several parameters with a potential impact on the isolation protocol were studied and optimized. A marked improvement in the quantity and quality of RPE-derived RNA was obtained with the SRIRS technique. We could get the RPE in direct contact with the RNA protecting agent within 1 minute of enucleation, and the RPE isolated within 11 minutes of enucleation. There was no significant contamination with vascular, choroidal or scleral-derived RNA. We have developed a fast, easy and reliable method for the isolation of RPE cells that leads to a high yield of RPE-derived RNA while preserving its quality. We believe this technique will be useful for future studies looking at gene expression profiles of RPE cells and their role in the pathophysiology of retinal diseases. PMID:22721721
Surface engineered biosensors for the early detection of cancer
NASA Astrophysics Data System (ADS)
Islam, Muhymin
Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was integrated with current measurement facilities in a single biochip to discriminate tumor cells from blood with higher efficiency and selectivity. This biochip can be an implemented as a point-of-care device for the early detection of cancer at cellular level.
Laser microsurgery of higher plant cell walls permits patch-clamp access
NASA Technical Reports Server (NTRS)
Henriksen, G. H.; Taylor, A. R.; Brownlee, C.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
1996-01-01
Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometers in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K(+)-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue.
Lu, Yusheng; Liang, Haiyan; Yu, Ting; Xie, Jingjing; Chen, Shuming; Dong, Haiyan; Sinko, Patrick J; Lian, Shu; Xu, Jianguo; Wang, Jichuang; Yu, Suhong; Shao, Jingwei; Yuan, Bo; Wang, Lie; Jia, Lee
2015-09-01
This study was aimed at establishing a sensitive and specific isolation, characterization, and enumeration method for living circulating tumor cells (CTCs) in patients with colorectal carcinoma. Quantitative isolation and characterization of CTCs were performed through a combination of immunomagnetic negative enrichment and fluorescence-activated cell sorting. Isolated CTCs were identified by immunofluorescence staining. The viability and purity of the sorted cells were determined by flow cytometry. Blood samples spiked with HCT116 cells (range, 3-250 cells) were used to determine specificity, recovery, and sensitivity. The method was used to enumerate, characterize, and isolate living CTCs in 10 mL of blood from patients with colorectal carcinoma. The average recovery of HCT116 cells was 61% or more at each spiking level, and the correlation coefficient was 0.992. An analysis of samples from all 18 patients with colorectal carcinoma revealed that 94.4% were positive for CTCs with an average of 33 ± 24 CTCs per 10 mL of blood and with a diameter of 14 to 20 μm (vs 8-12 μm for lymphoma). All patients were CD47(+) , with only 4.3% to 61.2% being CD44(+) . The number of CTCs was well correlated with the patient TNM stage and could be detected in patients at an early cancer stage. The sorted cells could be recultured, and their viability was preserved. This method provides a novel technique for highly sensitive and specific detection and isolation of CTCs in patients with colorectal carcinoma. This method complements the existing approaches for the de novo functional identification of a wide variety of CTC types. It is likely to help in predicting a patient's disease progression and potentially in selecting the appropriate treatment. © 2015 American Cancer Society.
Technical challenges in the isolation and analysis of circulating tumor cells.
van der Toom, Emma E; Verdone, James E; Gorin, Michael A; Pienta, Kenneth J
2016-09-20
Increasing evidence suggests that cancer cells display dynamic molecular changes in response to systemic therapy. Circulating tumor cells (CTCs) in the peripheral blood represent a readily available source of cancer cells with which to measure this dynamic process. To date, a large number of strategies to isolate and characterize CTCs have been described. These techniques, however, each have unique limitations in their ability to sensitively and specifically detect these rare cells. In this review we focus on the technical limitations and pitfalls of the most common CTC isolation and detection strategies. Additionally, we emphasize the difficulties in correctly classifying rare cells as CTCs using common biomarkers. As for assays developed in the future, the first step must be a uniform and clear definition of the criteria for assigning an object as a CTC based on disease-specific biomarkers.
Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.
Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul
2016-04-01
Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iino, Ryota; Matsumoto, Yoshimi; Nishino, Kunihiko; Yamaguchi, Akihito; Noji, Hiroyuki
2013-01-01
Single-cell analysis is a powerful method to assess the heterogeneity among individual cells, enabling the identification of very rare cells with properties that differ from those of the majority. In this Methods Article, we describe the use of a large-scale femtoliter droplet array to enclose, isolate, and analyze individual bacterial cells. As a first example, we describe the single-cell detection of drug-tolerant persisters of Pseudomonas aeruginosa treated with the antibiotic carbenicillin. As a second example, this method was applied to the single-cell evaluation of drug efflux activity, which causes acquired antibiotic resistance of bacteria. The activity of the MexAB-OprM multidrug efflux pump system from Pseudomonas aeruginosa was expressed in Escherichia coli and the effect of an inhibitor D13-9001 were assessed at the single cell level.
2012-01-01
Background Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1. The strain was able to utilize cheap renewable substrates viz., sugarcane bagasse, grape stalk, groundnut shells and cheese whey for SCO production. Conclusion Our study suggests that SCOs of oleaginous fungi from the mangrove wetlands of the Indian west coast could be used as a potential feedstock for biodiesel production with Aspergillus terreus IBB M1 as a promising candidate. PMID:22646719
Khot, Mahesh; Kamat, Srijay; Zinjarde, Smita; Pant, Aditi; Chopade, Balu; Ravikumar, Ameeta
2012-05-30
Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1. The strain was able to utilize cheap renewable substrates viz., sugarcane bagasse, grape stalk, groundnut shells and cheese whey for SCO production. Our study suggests that SCOs of oleaginous fungi from the mangrove wetlands of the Indian west coast could be used as a potential feedstock for biodiesel production with Aspergillus terreus IBB M1 as a promising candidate.
Morphological Identification and Single-Cell Genomics of Marine Diplonemids.
Gawryluk, Ryan M R; Del Campo, Javier; Okamoto, Noriko; Strassert, Jürgen F H; Lukeš, Julius; Richards, Thomas A; Worden, Alexandra Z; Santoro, Alyson E; Keeling, Patrick J
2016-11-21
Recent global surveys of marine biodiversity have revealed that a group of organisms known as "marine diplonemids" constitutes one of the most abundant and diverse planktonic lineages [1]. Though discovered over a decade ago [2, 3], their potential importance was unrecognized, and our knowledge remains restricted to a single gene amplified from environmental DNA, the 18S rRNA gene (small subunit [SSU]). Here, we use single-cell genomics (SCG) and microscopy to characterize ten marine diplonemids, isolated from a range of depths in the eastern North Pacific Ocean. Phylogenetic analysis confirms that the isolates reflect the entire range of marine diplonemid diversity, and comparisons to environmental SSU surveys show that sequences from the isolates range from rare to superabundant, including the single most common marine diplonemid known. SCG generated a total of ∼915 Mbp of assembled sequence across all ten cells and ∼4,000 protein-coding genes with homologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology database, distributed across categories expected for heterotrophic protists. Models of highly conserved genes indicate a high density of non-canonical introns, lacking conventional GT-AG splice sites. Mapping metagenomic datasets [4] to SCG assemblies reveals virtually no overlap, suggesting that nuclear genomic diversity is too great for representative SCG data to provide meaningful phylogenetic context to metagenomic datasets. This work provides an entry point to the future identification, isolation, and cultivation of these elusive yet ecologically important cells. The high density of nonconventional introns, however, also portends difficulty in generating accurate gene models and highlights the need for the establishment of stable cultures and transcriptomic analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Production of a novel camel single-domain antibody specific for the type III mutant EGFR.
Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Golmakani, N
2004-01-01
Camelids have a unique immune system capable of producing single-domain heavy-chain antibodies. The antigen-specific domain of these heavy-chain IgGs (VHH) are the smallest binding units produced by the immune system. In this study, we report the isolation and characterization of several binders against the epidermal growth factor receptor (EGFR) vIII retrieved from immune library of camels (Camelus bactrianus and Camelus dromedarius). The EGFRvIII is a ligand-independent, constitutively active, mutated form of the wild-type EGFR. The expression of EGFRvIII has been demonstrated in a wide range of human malignancies, including gliomas, and breast, prostate, ovarian and lung cancer. Camels were immunized with a synthetic peptide corresponding to a mutated sequence and tissue homogenates. Single-domain antibodies (VHH) were directly selected by panning a phage display library on successively decreasing amounts of synthetic peptide immobilized on magnetic beads. The anti-EGFRvIII camel single-domain antibodies selectively bound to the EGFRvIII peptide and reacted specifically with the immunoaffinity-purified antigen from a non-small cell lung cancer patient. These antibodies with affinities in the nanomolar range recognized the EGFRvIII peptide and affinity-purified mutated receptor. We concluded that using the phage display technique, antigen-specific VHH antibody fragments are readily accessible from the camelids. These antibodies may be good candidates for tumor-diagnostic and therapeutic applications. Copyright 2004 S. Karger AG, Basel.
Ito, Katsuhiko; Kidokoro, Kurako; Katsuma, Susumu; Sezutsu, Hideki; Uchino, Keiro; Kobayashi, Isao; Tamura, Toshiki; Yamamoto, Kimiko; Mita, Kazuei; Shimada, Toru; Kadono-Okuda, Keiko
2018-05-09
Bombyx mori densovirus type 1 (BmDV) is a pathogen that causes flacherie disease in the silkworm. The absolute nonsusceptibility to BmDV among certain silkworm strains is determined independently by two genes, nsd-1 and Nid-1. However, neither of these genes has been molecularly identified to date. Here, we isolated the nsd-1 gene by positional cloning and characterized the properties of its product, NSD-1. Sequence and biochemical analyses revealed that this gene encodes a Bombyx-specific mucin-like glycoprotein with a single transmembrane domain. The NSD-1 protein was specifically expressed in the larval midgut epithelium, the known infection site of BmDV. Sequence analysis of the nsd-1 gene from 13 resistant and 12 susceptible strains suggested that a specific arginine residue in the extracellular tail of the NSD-1 protein was common among susceptible strains. Germline transformation of the susceptible-type nsd-1 (with a single nucleotide substitution) conferred partial susceptibility to resistant larvae, indicating that the + nsd-1 gene is required for the susceptibility of B. mori larvae to BmDV and the susceptibility is solely a result of the substitution of a single amino acid with arginine. Taken together, our results provide striking evidence that a novel membrane-bound mucin-like protein functions as a cell-surface receptor for a densovirus.
NASA Astrophysics Data System (ADS)
Ueki, Takayuki; Yoshihara, Akifumi; Teramura, Yuji; Takai, Madoka
2016-01-01
Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.
Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution
2017-08-01
SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project is to sequence the exomes of single tumor cells from tumors in order to construct evolutionary trees...dissociation, tumor cell isolation, whole genome amplification, and exome sequencing. We have begun to sequence the exomes of single cells and to...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree. The more diverse a tumor’s phylogenetic tree
Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore
2011-01-01
p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.
Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore
2011-01-01
p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53. PMID:22162658
Maclaren, Oliver J.; Sneyd, James; Crampin, Edmund J.
2012-01-01
Secretion from the salivary glands is driven by osmosis following the establishment of osmotic gradients between the lumen, the cell and the interstitium by active ion transport. We consider a dynamic model of osmotically-driven primary saliva secretion, and use singular perturbation approaches and scaling assumptions to reduce the model. Our analysis shows that isosmotic secretion is the most efficient secretion regime, and that this holds for single isolated cells and for multiple cells assembled into an acinus. For typical parameter variations, we rule out any significant synergistic effect on total water secretion of an acinar arrangement of cells about a single shared lumen. Conditions for the attainment of isosmotic secretion are considered, and we derive an expression for how the concentration gradient between the interstitium and the lumen scales with water and chloride transport parameters. Aquaporin knockout studies are interpreted in the context of our analysis and further investigated using simulations of transport efficiency with different membrane water permeabilities. We conclude that recent claims that aquaporin knockout studies can be interpreted as evidence against a simple osmotic mechanism are not supported by our work. Many of the results that we obtain are independent of specific transporter details, and our analysis can be easily extended to apply to models that use other proposed ionic mechanisms of saliva secretion. PMID:22258315
Ruedl, C; Frühwirth, M; Wick, G; Wolf, H
1994-01-01
We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system. PMID:7496936
Ruedl, C; Frühwirth, M; Wick, G; Wolf, H
1994-03-01
We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.
Stoebner, Pierre E; Rahmoun, Massilva; Ferrand, Christophe; Meunier, Laurent; Yssel, Hans; Pène, Jérôme
2006-08-01
Solar ultraviolet (UV) radiation has hazardous effects on human health that are, in part, associated with its immunosuppressive effects via the induction of interleukin (IL)-10 production. Although IL-10 is produced by both T helper type 2 (Th2) cells and T-regulatory type 1 (Tr1) cells, the relative contribution of either subset in UV radiation-induced immunosuppression has not been established. Here, we show that T cells isolated from non-treated allergic contact dermatitis (ACD) reactions, 48 h following nickel challenge and propagated for 7-10 days in the presence of IL-2, were mainly CD4(+) and produced IL-10, but little interferon-gamma. A single sub-erythematous solar-simulated radiation (SSR) prior to antigen challenge exposure resulted in a clinical attenuation of the intensity of ACD reactions which was associated with a significant increase in both the magnitude of IL-10 production by skin-infiltrating T cells and the frequency of IL-10-producing Tr1 cells. Skin-infiltrating T cells in SSR-exposed, as well as non-exposed, ACD reactions showed a perturbed T-cell receptor (TCR)-Vbeta repertoire, without overexpression of a particular TCR-Vbeta gene product, indicating the presence of high frequencies of nickel non-specific T cells in ACD reactions. These results show that a single sub-erythematous SSR induces immunosuppression via the cutaneous infiltration of IL-10-producing Tr1, and to a lesser extent, Th2 cells.
Drew, Richard John; Walsh, Anne; Laoi, Bairbre Ni; Crowley, Brendan
2012-07-01
BK polyomavirus (family Polyomaviridae) may cause hemorrhagic cystitis (BKV-HC) in hematopoietic stem cell transplant recipients. Eleven complete BKV genomes (GenBank accession numbers: JN192431-JN192441) were sequenced from urine samples of allogenic hematopoietic stem cell transplant recipients and compared to complete BKV genomes in the published literature. Of the 11 isolates, seven (64%) were subgroup Ib-1, three (27%) isolates belonged to subgroup Ib-2 and a single isolate belonged to subtype III. The analysis of single-nucleotide polymorphisms in this study showed that isolates could be subclassified into subtypes I-IV and subgroups Ib-1 and Ib-2 on the basis of VP1 of the first part of the Large T-antigen (LTag). The non-coding control region (NCCR) of the 11 isolates was also sequenced. These sequences showed that there was consistent sequence homology within subgroups Ib-1 and Ib-2. Two new mutations were described in the isolates, G→C at O(84) in isolate SJH-LG-310, and a deletion at R(2-7) in isolate SJH-LG-309. No known transcription factor is thought to be present at the site of either of these mutations. There were no rearrangements seen in isolates and this may be because the patients were not followed up over time. There were five nucleotide positions at which subgroup Ib-1 isolated differed from subgroup Ib-2 isolates in the NCCR sequence, O(41) , P(18) , P(31) , R(4) , and S(18) . The mutation O(41) is present in the promoter granulocyte/macrophage stimulating factor) gene and the P(31) mutation is present in the NF-1 gene. Copyright © 2012 Wiley Periodicals, Inc.
Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells.
Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang
2015-01-01
Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.
Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai
2016-01-01
ABSTRACT H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. IMPORTANCE Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse. Our findings suggest that more attention should be given to the H9N2 AIVs with HA-190V during surveillance due to their potential threat to mammals, including humans. PMID:27558420
Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai; Ma, Wenjun; Li, Zejun
2016-11-01
H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse. Our findings suggest that more attention should be given to the H9N2 AIVs with HA-190V during surveillance due to their potential threat to mammals, including humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent
2016-01-01
Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936
Droplet electric separator microfluidic device for cell sorting
NASA Astrophysics Data System (ADS)
Guo, Feng; Ji, Xing-Hu; Liu, Kan; He, Rong-Xiang; Zhao, Li-Bo; Guo, Zhi-Xiao; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong
2010-05-01
A simple and effective droplet electric separator microfluidic device was developed for cell sorting. The aqueous droplet without precharging operation was influenced to move a distance in the channel along the electric field direction by applying dc voltage on the electrodes beside the channel, which made the target droplet flowing to the collector. Single droplet can be isolated in a sorting rate of ˜100 Hz with microelectrodes under a required pulse. Single or multiple mammalian cell (HePG2) encapsulated in the surfactant free alginate droplet could be sorted out respectively. This method may be used for single cell operation or analysis.
Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum-coated Dynabeads.
Hoffmann, S; Spee, C; Murata, T; Cui, J Z; Ryan, S J; Hinton, D R
1998-10-01
In vitro studies of choroidal endothelial cells may be critical for understanding the pathogenesis of neovascularization in age-related macular degeneration, since endothelial cells from different sites are highly heterogeneous in their morphology and behavior. Isolation of choroidal endothelial cells is complicated and labor intensive because of the small size of the choroid and the difficulty of excluding contaminating cells. We describe a rapid, simplified method for the isolation of bovine choroidal endothelial cells using microdissection followed by the use of superparamagnetic beads (Dynabeads) coated with the endothelial cell-specific lectin Lycopersicon esculentum, which selectively binds to fucose residues on the endothelial cell surface. Cells bound to beads are isolated using a magnetic particle concentrator. Isolated cells grew to confluence in a monolayer with a cobblestone morphology and were shown to be endothelial cells by their greater than 95% immunoreactivity to von Willebrand factor and phagocytosis of dil-acetylated LDL. Isolated cells grew as tubes in three-dimensional cultures. This method markedly reduces the time needed for pure culture of cells and makes the in vitro study of choroidal endothelial cells practical and reproducible.
Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns.
Lin, Laiyi; Chu, Yeh-Shiu; Thiery, Jean Paul; Lim, Chwee Teck; Rodriguez, Isabel
2013-02-21
Adhesive micropattern arrays permit the continuous monitoring and systematic study of the behavior of spatially confined cells of well-defined shape and size in ordered configurations. This technique has contributed to defining mechanisms that control cell polarity and cell functions, including proliferation, apoptosis, differentiation and migration in two-dimensional cell culture systems. These micropattern studies often involve isolating a single cell on one adhesive protein micropattern using random seeding methods. Random seeding has been successful for isolated and, to a lesser degree, paired patterns, where two patterns are placed in close proximity. Using this method, we found that the probability of obtaining one cell per pattern decreases significantly as the number of micropatterns in a cluster increases, from 16% for paired micropatterns to 0.3% for clusters of 6 micropatterns. This work presents a simple yet effective platform based on a microfludic sieve-like trap array to exert precise control over the positioning of single cells on micropatterns. We observed a 4-fold improvement over random seeding in the efficiency of placing a pair of single cells on paired micropattern and a 40-fold improvement for 6-pattern clusters. The controlled nature of this platform can also allow the juxtaposition of two different cell populations through a simple modification in the trap arrangement. With excellent control of the identity, number and position of neighbouring cells, this cell-positioning platform provides a unique opportunity for the extension of two-dimensional micropattern studies beyond paired micropatterns to organizations containing many cells or different cell types.
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange
Hmelo, Laura R.; Borlee, Bradley R.; Almblad, Henrik; Love, Michelle E.; Randall, Trevor E.; Tseng, Boo Shan; Lin, Chuyang; Irie, Yasuhiko; Storek, Kelly M.; Yang, Jaeun Jane; Siehnel, Richard J.; Howell, P. Lynne; Singh, Pradeep K.; Tolker-Nielsen, Tim; Parsek, Matthew R.; Schweizer, Herbert P.; Harrison, Joe J.
2016-01-01
Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knockins, as well as single nucleotide insertions, deletions and substitutions in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selection are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ~2 weeks. PMID:26492139
Malta, Tathiane Maistro; de Deus Wagatsuma, Virgínia Mara; Palma, Patrícia Viana Bonini; Araújo, Amélia Goes; Ribeiro Malmegrim, Kelen Cristina; Morato de Oliveira, Fábio; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima Haddad, Simone; Covas, Dimas Tadeu
2015-01-01
Mesenchymal stromal cells (MSCs) are cultured cells that can give rise to mature mesenchymal cells under appropriate conditions and secrete a number of biologically relevant molecules that may play an important role in regenerative medicine. Evidence indicates that pericytes (PCs) correspond to mesenchymal stem cells in vivo and can give rise to MSCs when cultured, but a comparison between the gene expression profiles of cultured PCs (cPCs) and MSCs is lacking. We have devised a novel methodology to isolate PCs from human adipose tissue and compared cPCs to MSCs obtained through traditional methods. Freshly isolated PCs expressed CD34, CD140b, and CD271 on their surface, but not CD146. Both MSCs and cPCs were able to differentiate along mesenchymal pathways in vitro, displayed an essentially identical surface immunophenotype, and exhibited the ability to suppress CD3+ lymphocyte proliferation in vitro. Microarray expression data of cPCs and MSCs formed a single cluster among other cell types. Further analyses showed that the gene expression profiles of cPCs and MSCs are extremely similar, although MSCs differentially expressed endothelial cell (EC)-specific transcripts. These results confirm, using the power of transcriptomic analysis, that PCs give rise to MSCs and suggest that low levels of ECs may persist in MSC cultures established using traditional protocols. PMID:26192741
Bioprospecting microbes for single-cell oil production from starchy wastes.
Chaturvedi, Shivani; Kumari, Arti; Nain, Lata; Khare, Sunil K
2018-03-16
Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g -1 of biomass) followed by R. mucilaginosa (0.022 g g -1 of biomass) and G. wiiroense (0.020 g g -1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g -1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.
Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R
2016-05-17
Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.
Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells.
Leong, Sai Mun; Tan, Karen Mei-Ling; Chua, Hui Wen; Huang, Mo-Chao; Cheong, Wai Chye; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn Siew-Chuan
2017-03-01
Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA) ® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses. © 2016 American Association for Clinical Chemistry.
Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.
Nagano, Takashi; Wingett, Steven W; Fraser, Peter
2017-01-01
Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.
Jenkins, G; Redwood, K L; Meadows, L; Green, M R
1999-07-01
Mechanical forces are known to play an important role in regulating cell function in a wide range of biological systems. This is of particular relevance to dermal fibroblast function, given that the skin is known to be held under an intrinsic natural tension. To understand more about the generation of force by dermal fibroblasts and their ability to respond to changes in it, we have studied the role of the beta1 integrin receptors expressed by dermal fibroblasts in their ability to generate tensional forces within a collagen type I matrix and the effect of altered tensional force on integrin expression by dermal fibroblasts. Using a purpose-built culture force monitor, function-blocking antibodies directed towards the beta1 receptors dramatically reduced the tensional forces generated by dermal fibroblasts in a 3D collagen I matrix. However, the specific involvement of alpha1 or alpha2 subunits could not be demonstrated. Analysis of cellular response demonstrated that cells isolated from contracting collagen gels expressed fourfold higher levels of alpha2 mRNA than cells isolated from fully restrained gels. The levels of beta1 messenger RNA were relatively unaffected by reductions in force. Cells exposed to single reductions in force, however, did not exhibit alterations in either alpha1 or beta1 mRNA levels. We propose, therefore that alpha2beta1 integrin receptor levels in dermal fibroblasts are not altered in response to single reductions of gel tension, but do change following a continual change in force and associated matrix re-organization
Gupta, Pratima; Parkhey, Piyush; Joshi, Komal; Mahilkar, Anjali
2013-10-01
Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.
Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman
2014-01-01
The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*105 MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts. Abbreviations: CTC – circulating tumour cells, CxCa – cervical cancer, DD-RT-PCR – Digital-Direct Reverse Transcriptase PCR, HPV – Human Papilloma Virus, MNBC – mononuclear blood cells, ICC – immunocytochemistry. PMID:24496006
NASA Astrophysics Data System (ADS)
Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.
2012-02-01
Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.
Universal nucleic acids sample preparation method for cells, spores and their mixture
Bavykin, Sergei [Darien, IL
2011-01-18
The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.
Lampignano, Rita; Yang, Liwen; Neumann, Martin H. D.; Franken, André; Fehm, Tanja; Niederacher, Dieter; Neubauer, Hans
2017-01-01
Circulating tumor cells (CTCs), potential precursors of most epithelial solid tumors, are mainly enriched by epithelial cell adhesion molecule (EpCAM)-dependent technologies. Hence, these approaches may overlook mesenchymal CTCs, considered highly malignant. Our aim was to establish a workflow to enrich and isolate patient-matched EpCAMhigh and EpCAMlow/negative CTCs within the same blood samples, and to investigate the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutational status within single CTCs. We sequentially processed metastatic breast cancer (MBC) blood samples via CellSearch® (EpCAM-based) and via Parsortix™ (size-based) systems. After enrichment, cells captured in Parsortix™ cassettes were stained in situ for nuclei, cytokeratins, EpCAM and CD45. Afterwards, sorted cells were isolated via CellCelector™ micromanipulator and their genomes were amplified. Lastly, PIK3CA mutational status was analyzed by combining an amplicon-based approach with Sanger sequencing. In 54% of patients′ blood samples both EpCAMhigh and EpCAMlow/negative cells were identified and successfully isolated. High genomic integrity was observed in 8% of amplified genomes of EpCAMlow/negative cells vs. 28% of EpCAMhigh cells suggesting an increased apoptosis in the first CTC-subpopulation. Furthermore, PIK3CA hotspot mutations were detected in both EpCAMhigh and EpCAMlow/negative CTCs. Our workflow is suitable for single CTC analysis, permitting—for the first time—assessment of the heterogeneity of PIK3CA mutational status within patient-matched EpCAMhigh and EpCAMlow/negative CTCs. PMID:28858218
Kabir, S
1995-02-01
Jackfruit extracts contain a protein termed jacalin which possesses diverse biological properties. A detailed analysis of its charge properties has been lacking. The present investigation was initiated to study isoelectric properties of jacalin in detail and to isolate a single isoform of jacalin. Jacalin was isolated from jackfruit extracts by affinity chromatography on immunoglobulin-A immobilised to Sepharose 4B. Various techniques such as ion-exchange chromatography, isoelectric focusing (IEF) on polyacrylamide gels and preparative liquid IEF with the Rotofor cell were used. When analysed by IEF on thin layer polyacrylamide gels, jacalin was resolved into 35 bands over a pH range of 5.0-8.5. Upon SDS-PAGE in the second dimension all these charge species gave rise to only two-bands at 12 and 15.4 kDa. The lectin was mostly eluted with 50 and 100 mM sodium chloride when jackfruit extracts were fractionated on an anion-exchange column of DEAE-cellulose. In a single 6 hour run by preparative IEF with the Rotofor cell in the pH range of 3-9.5, it has been possible to isolate pure jacalin fractions containing fewer number of charged isomers. A single jacalin isoform was isolated by subjecting a Rotofor fraction containing fewer charged species to preparative IEF on thin layer polyacrylamide gel and eluting the band of interest from the gel. The isolated jacalin isoform was biologically active as it agglutinated erythrocytes. The study reveals the complexity of jacalin as it exists as multiple charge isomers over a broad pH range. By performing preparative IEF in solution as well as in thin layer polyacrylamide gels, it was possible to isolate a single jacalin isoform with the retention of biological activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brachvogel, Bent; Pausch, Friederike; Farlie, Peter
2007-07-15
Pericytes are closely associated with endothelial cells, contribute to vascular stability and represent a potential source of mesenchymal progenitor cells. Using the specifically expressed annexin A5-LacZ fusion gene (Anxa5-LacZ), it became possible to isolate perivascular cells (PVC) from mouse tissues. These cells proliferate and can be cultured without undergoing senescence for multiple passages. PVC display phenotypic characteristics of pericytes, as they express pericyte-specific markers (NG2-proteoglycan, desmin, {alpha}SMA, PDGFR-{beta}). They also express stem cell marker Sca-1, whereas endothelial (PECAM), hematopoietic (CD45) or myeloid (F4/80, CD11b) lineage markers are not detectable. These characteristics are in common with the pericyte-like cell line 10T1/2.more » PVC also display a phagocytoic activity higher than 10T1/2 cells. During coculture with endothelial cells both cell types stimulate angiogenic processes indicated by an increased expression of PECAM in endothelial cells and specific deposition of basement membrane proteins. PVC show a significantly increased induction of endothelial specific PECAM expression compared to 10T1/2 cells. Accordingly, in vivo grafts of PVC aggregates onto chorioallantoic membranes of quail embryos recruit endothelial cells, get highly vascularized and deposit basement membrane components. These data demonstrate that isolated Anxa5-LacZ{sup +} PVC from mouse meninges retain their capacity for differentiation to pericyte-like cells and contribute to angiogenic processes.« less
Droplet barcoding for single cell transcriptomics applied to embryonic stem cells
Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W
2015-01-01
Summary It has long been the dream of biologists to map gene expression at the single cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after LIF withdrawal. The reproducibility of these high-throughput single cell data allowed us to deconstruct cell populations and infer gene expression relationships. PMID:26000487
Massively parallel digital transcriptional profiling of single cells
Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.
2017-01-01
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601
Muthusamy, Thangaselvam; Mukherjee, Odity; Menon, Radhika; Megha, P.B.; Panicker, Mitradas M.
2014-01-01
Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies. PMID:25068130
NASA Astrophysics Data System (ADS)
Durand-Smet, P.; Gauquelin, E.; Chastrette, N.; Boudaoud, A.; Asnacios, A.
2017-10-01
While plant growth is well known to rely on turgor pressure, it is challenging to quantify the contribution of turgor pressure to plant cell rheology. Here we used a custom-made micro-rheometer to quantify the viscoelastic behavior of isolated plant cells while varying their internal turgor pressure. To get insight into how plant cells adapt their internal pressure to the osmolarity of their medium, we compared the mechanical behavior of single plant cells to that of a simple, passive, pressurized shell: a soccer ball. While both systems exhibited the same qualitative behavior, a simple mechanical model allowed us to quantify turgor pressure regulation at the single cell scale.
Lab-on-a-chip technologies for proteomic analysis from isolated cells
Sedgwick, H.; Caron, F.; Monaghan, P.B.; Kolch, W.; Cooper, J.M.
2008-01-01
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy. PMID:18534931
Terakawa, Maki; Muneoka, Satoshi; Nagahira, Kazuhiro; Nagane, Yuriko; Yamate, Jyoji; Motomura, Masakatsu; Utsugisawa, Kimiaki
2017-01-01
The majority of patients with myasthenia gravis (MG), an organ-specific autoimmune disease, harbor autoantibodies that attack the nicotinic acetylcholine receptor (nAChR-Abs) at the neuromuscular junction of skeletal muscles, resulting in muscle weakness. Single cell manipulation technologies coupled with genetic engineering are very powerful tools to examine T cell and B cell repertoires and the dynamics of adaptive immunity. These tools have been utilized to develop mAbs in parallel with hybridomas, phage display technologies and B-cell immortalization. By applying a single cell technology and novel high-throughput cell-based binding assays, we identified peripheral B cells that produce pathogenic nAChR-Abs in patients with MG. Although anti-nAChR antibodies produced by individual peripheral B cells generally exhibited low binding affinity for the α-subunit of the nAChR and great sequence diversity, a small fraction of these antibodies bound with high affinity to native-structured nAChRs on cell surfaces. B12L, one such Ab isolated here, competed with a rat Ab (mAb35) for binding to the human nAChR and thus considered to recognize the main immunogenic region (MIR). By evaluating the Ab in in vitro cell-based assays and an in vivo rat passive transfer model, B12L was found to act as a pathogenic Ab in rodents and presumably in humans.These findings suggest that B cells in peripheral blood may impact MG pathogenicity. Our methodology can be applied not only to validate pathogenic Abs as molecular target of MG treatment, but also to discover and analyze Ab production systems in other human diseases. PMID:29040265
Makino, Tomohiro; Nakamura, Ryuichi; Terakawa, Maki; Muneoka, Satoshi; Nagahira, Kazuhiro; Nagane, Yuriko; Yamate, Jyoji; Motomura, Masakatsu; Utsugisawa, Kimiaki
2017-01-01
The majority of patients with myasthenia gravis (MG), an organ-specific autoimmune disease, harbor autoantibodies that attack the nicotinic acetylcholine receptor (nAChR-Abs) at the neuromuscular junction of skeletal muscles, resulting in muscle weakness. Single cell manipulation technologies coupled with genetic engineering are very powerful tools to examine T cell and B cell repertoires and the dynamics of adaptive immunity. These tools have been utilized to develop mAbs in parallel with hybridomas, phage display technologies and B-cell immortalization. By applying a single cell technology and novel high-throughput cell-based binding assays, we identified peripheral B cells that produce pathogenic nAChR-Abs in patients with MG. Although anti-nAChR antibodies produced by individual peripheral B cells generally exhibited low binding affinity for the α-subunit of the nAChR and great sequence diversity, a small fraction of these antibodies bound with high affinity to native-structured nAChRs on cell surfaces. B12L, one such Ab isolated here, competed with a rat Ab (mAb35) for binding to the human nAChR and thus considered to recognize the main immunogenic region (MIR). By evaluating the Ab in in vitro cell-based assays and an in vivo rat passive transfer model, B12L was found to act as a pathogenic Ab in rodents and presumably in humans.These findings suggest that B cells in peripheral blood may impact MG pathogenicity. Our methodology can be applied not only to validate pathogenic Abs as molecular target of MG treatment, but also to discover and analyze Ab production systems in other human diseases.
Khajanchi, Bijay K; Hasan, Nur A; Choi, Seon Young; Han, Jing; Zhao, Shaohua; Colwell, Rita R; Cerniglia, Carl E; Foley, Steven L
2017-08-02
The degree to which the chromosomal mediated iron acquisition system contributes to virulence of many bacterial pathogens is well defined. However, the functional roles of plasmid encoded iron acquisition systems, specifically Sit and aerobactin, have yet to be determined for Salmonella spp. In a recent study, Salmonella enterica strains isolated from different food sources were sequenced on the Illumina MiSeq platform and found to harbor the incompatibility group (Inc) FIB plasmid. In this study, we examined sequence diversity and the contribution of factors encoded on the IncFIB plasmid to the virulence of S. enterica. Whole genome sequences of seven S. enterica isolates were compared to genomes of serovars of S. enterica isolated from food, animal, and human sources. SeqSero analysis predicted that six strains were serovar Typhimurium and one was Heidelberg. Among the S. Typhimurium strains, single nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that five of the isolates clustered as a single monophyletic S. Typhimurium subclade, while one of the other strains branched with S. Typhimurium from a bovine source. DNA sequence based phylogenetic diversity analyses showed that the IncFIB plasmid-encoded Sit and aerobactin iron acquisition systems are conserved among bacterial species including S. enterica. The IncFIB plasmid was transferred to an IncFIB plasmid deficient strain of S. enterica by conjugation. The transconjugant SE819::IncFIB persisted in human intestinal epithelial (Caco-2) cells at a higher rate than the recipient SE819. Genes of the Sit and aerobactin operons in the IncFIB plasmid were differentially expressed in iron-rich and iron-depleted growth media. Minimal sequence diversity was detected in the Sit and aerobactin operons in the IncFIB plasmids present among different bacterial species, including foodborne Salmonella strains. IncFIB plasmid encoded factors play a role during infection under low-iron conditions in host cells.
A dual V t disturb-free subthreshold SRAM with write-assist and read isolation
NASA Astrophysics Data System (ADS)
Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata
2018-02-01
This paper presents a new dual V t 8T SRAM cell having single bit-line read and write, in addition to Write Assist and Read Isolation (WARI). Also a faster write back scheme is proposed for the half selected cells. A high V t device is used for interrupting the supply to one of the inverters for weakening the feedback loop for assisted write. The proposed cell provides an improved read static noise margin (RSNM) due to the bit-line isolation during the read. Static noise margins for data read (RSNM), write (WSNM), read delay, write delay, data retention voltage (DRV), leakage and average powers have been calculated. The proposed cell was found to operate properly at a supply voltage as small as 0.41 V. A new write back scheme has been suggested for half-selected cells, which uses a single NMOS access device and provides reduced delay, pulse timing hardware requirements and power consumption. The proposed new WARI 8T cell shows better performance in terms of easier write, improved read noise margin, reduced leakage power, and less delay as compared to the existing schemes that have been available so far. It was also observed that with proper adjustment of the cell ratio the supply voltage can further be reduced to 0.2 V.
Identification and isolation of adult liver stem/progenitor cells.
Tanaka, Minoru; Miyajima, Atsushi
2012-01-01
Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.
Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates.
Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M; van Helden, Paul D; van der Merwe, Ruben G; Gey van Pittius, Nicolaas C; Pain, Arnab; Sampson, Samantha L; Tabb, David L
2017-10-06
Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.
Qi, Hui-Xin; Gharbawie, Omar A; Wong, Peiyan; Kaas, Jon H
2011-03-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1-5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1-5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. Copyright © 2010 Wiley-Liss, Inc.
Qi, Hui-Xin; Gharbawie, Omar A.; Wong, Peiyan; Kaas, Jon H.
2013-01-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1–5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1–5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. J. Comp. Neurol. 519:738–758, 2011. PMID:21246552
Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundberg, Derek; Woyke, Tanja; Tringe, Susannah
2014-03-19
Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the fewmore » ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.« less
Yamamoto, T; Yamato, E; Taniguchi, H; Shimoda, M; Tashiro, F; Hosoi, M; Sato, T; Fujii, S; Miyazaki, J-I
2006-10-01
Duct cells of the pancreas are thought to include latent progenitors of islet endocrine cells that can be induced to differentiate by appropriate morphogens. Here we developed a method for isolating pancreatic ductal epithelial cells from adult mice that overcomes the shortcomings of previous methods. Pancreatic ductal cells were grown in serum-free DMEM/F12 medium in the presence of cholera toxin or 8-bromo-cyclic adenosine monophosphate, which is known to be an intracellular cAMP generator. Single cell cloning was performed by limiting dilution in serum-free medium. The isolated clonal cells expressed high levels of cytokeratin and Ipf1 (formerly known as Pdx-1). Adenovirus-mediated expression of ngn3 (also known as Neurog3) and Ptf1a in these cells induced expression of insulin and somatostatin, and of carboxypeptidase A, respectively. Furthermore, albumin production was induced by dexamethasone or by long-term culture in serum-containing medium. Stimulation of the cAMP-dependent signalling allowed us to isolate clonal pancreatic ductal cells from adult mice. These cells are able to partially differentiate into endocrine cells, exocrine cells and hepatocyte-like cells and are therefore considered to have the characteristics of endodermal progenitor cells.
Isolation of Precursor Cells from Waste Solid Fat Tissue
NASA Technical Reports Server (NTRS)
Byerly, Diane; Sognier, Marguerite A.
2009-01-01
A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.
Cai, Qing; Bonfanti, Paola; Sambathkumar, Rangarajan; Vanuytsel, Kim; Vanhove, Jolien; Gysemans, Conny; Debiec-Rychter, Maria; Raitano, Susanna; Heimberg, Harry; Ordovas, Laura; Verfaillie, Catherine M
2014-04-01
Pancreatic endocrine progenitors obtained from human embryonic stem cells (hESCs) represent a promising source to develop cell-based therapies for diabetes. Although endocrine pancreas progenitor cells have been isolated from mouse pancreata on the basis of Ngn3 expression, human endocrine progenitors have not been isolated yet. As substantial differences exist between human and murine pancreas biology, we investigated whether it is possible to isolate pancreatic endocrine progenitors from differentiating hESC cultures by lineage tracing of NGN3. We targeted the 3' end of NGN3 using zinc finger nuclease-mediated homologous recombination to allow selection of NGN3eGFP(+) cells without disrupting the coding sequence of the gene. Isolated NGN3eGFP(+) cells express PDX1, NKX6.1, and chromogranin A and differentiate in vivo toward insulin, glucagon, and somatostatin single hormone-expressing cells but not to ductal or exocrine pancreatic cells or other endodermal, mesodermal, or ectodermal lineages. This confirms that NGN3(+) cells represent pancreatic endocrine progenitors in humans. In addition, this hESC reporter line constitutes a unique tool that may aid in gaining insight into the developmental mechanisms underlying fate choices in human pancreas and in developing cell-based therapies.
Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells
NASA Astrophysics Data System (ADS)
Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji
2008-11-01
Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times smaller than a cancer cell that functions in a drop of fresh blood.
ent-Kaurane Diterpenoids with Neuroprotective Properties from Corn Silk ( Zea mays).
Qi, Xiao-Li; Zhang, Ying-Ying; Zhao, Peng; Zhou, Le; Wang, Xiao-Bo; Huang, Xiao-Xiao; Lin, Bin; Song, Shao-Jiang
2018-05-25
Thirteen new ent-kaurane diterpenoids, stigmaydenes A-M (1-13), together with two known compounds (14, 15), were isolated from the crude extract of corn silk ( Zea mays). The structures of the compounds were confirmed by comprehensive spectroscopic analyses. The absolute configuration of compound 1 was defined by single-crystal X-ray diffraction. The absolute configurations of the compounds were also confirmed by comparison of experimental and calculated specific rotations. The compounds were evaluated for their neuroprotective effects against H 2 O 2 -induced SH-SY5Y cell injury, and compound 8 was active at 100 μM, as determined by flow cytometry (annexin V-FITC/PI staining) and Hoechst 33258 staining. The results suggested that compound 8 could protect neuronal cells from H 2 O 2 -induced injury by inhibiting apoptosis in SH-SY5Y cells.
Integration of Magnetic Bead-Based Cell Selection into Complex Isolations
2018-01-01
Magnetic bead-based analyte capture has emerged as a ubiquitous method in cell isolation, enabling the highly specific capture of target populations through simple magnetic manipulation. To date, no “one-size fits all” magnetic bead has been widely adopted leading to an overwhelming number of commercial beads. Ultimately, the ideal bead is one that not only facilitates cell isolation but also proves compatible with the widest range of downstream applications and analytic endpoints. Despite the diverse offering of sizes, coatings, and conjugation chemistries, few studies exist to benchmark the performance characteristics of different commercially available beads; importantly, these bead characteristics ultimately determine the ability of a bead to integrate into the user’s assay. In this report, we evaluate bead-based cell isolation considerations, approaches, and results across a subset of commercially available magnetic beads (Dynabeads FlowComps, Dynabeads CELLection, GE Healthcare Sera-Mag SpeedBeads streptavidin-blocked magnetic particles, Dynabeads M-270s, Dynabeads M-280s) to compare and contrast both capture-specific traits (i.e., purity, capture efficacy, and contaminant isolations) and endpoint compatibility (i.e., protein localization, fluorescence imaging, and nucleic acid extraction). We identify specific advantages and contexts of use in which distinct bead products may facilitate experimental goals and integrate into downstream applications. PMID:29732449
Magbanua, Mark Jesus M; Park, John W
2013-12-01
Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Advances in single-cell RNA sequencing and its applications in cancer research.
Zhu, Sibo; Qing, Tao; Zheng, Yuanting; Jin, Li; Shi, Leming
2017-08-08
Unlike population-level approaches, single-cell RNA sequencing enables transcriptomic analysis of an individual cell. Through the combination of high-throughput sequencing and bioinformatic tools, single-cell RNA-seq can detect more than 10,000 transcripts in one cell to distinguish cell subsets and dynamic cellular changes. After several years' development, single-cell RNA-seq can now achieve massively parallel, full-length mRNA sequencing as well as in situ sequencing and even has potential for multi-omic detection. One appealing area of single-cell RNA-seq is cancer research, and it is regarded as a promising way to enhance prognosis and provide more precise target therapy by identifying druggable subclones. Indeed, progresses have been made regarding solid tumor analysis to reveal intratumoral heterogeneity, correlations between signaling pathways, stemness, drug resistance, and tumor architecture shaping the microenvironment. Furthermore, through investigation into circulating tumor cells, many genes have been shown to promote a propensity toward stemness and the epithelial-mesenchymal transition, to enhance anchoring and adhesion, and to be involved in mechanisms of anoikis resistance and drug resistance. This review focuses on advances and progresses of single-cell RNA-seq with regard to the following aspects: 1. Methodologies of single-cell RNA-seq 2. Single-cell isolation techniques 3. Single-cell RNA-seq in solid tumor research 4. Single-cell RNA-seq in circulating tumor cell research 5.
Advances in single-cell RNA sequencing and its applications in cancer research
Zhu, Sibo; Qing, Tao; Zheng, Yuanting; Jin, Li; Shi, Leming
2017-01-01
Unlike population-level approaches, single-cell RNA sequencing enables transcriptomic analysis of an individual cell. Through the combination of high-throughput sequencing and bioinformatic tools, single-cell RNA-seq can detect more than 10,000 transcripts in one cell to distinguish cell subsets and dynamic cellular changes. After several years’ development, single-cell RNA-seq can now achieve massively parallel, full-length mRNA sequencing as well as in situ sequencing and even has potential for multi-omic detection. One appealing area of single-cell RNA-seq is cancer research, and it is regarded as a promising way to enhance prognosis and provide more precise target therapy by identifying druggable subclones. Indeed, progresses have been made regarding solid tumor analysis to reveal intratumoral heterogeneity, correlations between signaling pathways, stemness, drug resistance, and tumor architecture shaping the microenvironment. Furthermore, through investigation into circulating tumor cells, many genes have been shown to promote a propensity toward stemness and the epithelial-mesenchymal transition, to enhance anchoring and adhesion, and to be involved in mechanisms of anoikis resistance and drug resistance. This review focuses on advances and progresses of single-cell RNA-seq with regard to the following aspects: 1. Methodologies of single-cell RNA-seq 2. Single-cell isolation techniques 3. Single-cell RNA-seq in solid tumor research 4. Single-cell RNA-seq in circulating tumor cell research 5. Perspectives PMID:28881849
van Poelgeest, Mariëtte I E; Visconti, Valeria V; Aghai, Zohara; van Ham, Vanessa J; Heusinkveld, Moniek; Zandvliet, Maarten L; Valentijn, A Rob P M; Goedemans, Renske; van der Minne, Caroline E; Verdegaal, Els M E; Trimbos, J Baptist M Z; van der Burg, Sjoerd H; Welters, Marij J P
2016-12-01
Adoptive transfer of tumor-specific T cells, expanded from tumor-infiltrating lymphocytes or from peripheral blood, is a promising immunotherapeutic approach for the treatment of cancer. Here, we studied whether the tumor-draining lymph nodes (TDLN) of patients with human papillomavirus (HPV)-induced cervical cancer can be used as a source for ACT. The objectives were to isolate lymph node mononuclear cells (LNMC) from TDLN and optimally expand HPV-specific CD4+ and CD8+ T cells under clinical grade conditions. TDLN were isolated from 11 patients with early-stage cervical cancer during radical surgery. Isolated lymphocytes were expanded in the presence of HPV16 E6 and E7 clinical grade synthetic long peptides and IL-2 for 22 days and then analyzed for HPV16 specificity by proliferation assay, multiparameter flow cytometry and cytokine analysis as well as for CD25 and FoxP3 expression. Stimulation of LNMC resulted in expansion of polyclonal HPV-specific T cells in all patients. On average a 36-fold expansion of a CD4+ and/or CD8+ HPV16-specific T cell population was observed, which maintained its capacity for secondary expansion. The T helper type 1 cytokine IFNγ was produced in all cell cultures and in some cases also the Th2 cytokines IL-10 and IL-5. The procedure was highly reproducible, as evidenced by complete repeats of the stimulation procedures under research and under full good manufacturing practice conditions. In conclusion, TDLN represent a rich source of polyclonal HPV16 E6- and E7-specific T cells, which can be expanded under clinical grade conditions for adoptive immunotherapy in patients with cervical cancer.
Silvestris, Erica; Cafforio, Paola; D'Oronzo, Stella; Felici, Claudia; Silvestris, Franco; Loverro, Giuseppe
2018-01-03
Are the large cells derived from cultured DEAD box polypeptide 4 (DDX4)-positive oogonial stem cells (OSCs), isolated from the ovarian cortex of non-menopausal and menopausal women, oocyte-like cells? Under appropriate culture conditions, DDX4-positive OSCs from non-menopausal and menopausal women differentiate into large haploid oocyte-like cells expressing the major oocyte markers growth differentiation factor 9 (GDF-9) and synaptonemal complex protein 3 (SYCP3) and then enter meiosis. The recent reports of OSCs in the ovaries of non-menopausal and menopausal women suggest that neo-oogenesis is inducible during ovarian senescence. However, several questions remain regarding the isolation of these cells, their spontaneous maturation in vitro, and the final differentiation state of the resulting putative oocytes. DDX4-positive OSCs were obtained from 19 menopausal and 13 non-menopausal women (who underwent hysterectomy for uterine fibroma, ovarian cyst, or other benign pathologies) and cultured for up to 3 weeks. Large and small cells were individually isolated and typed for early and late differentiation markers. Ovarian cortex fragments were processed by immuno-magnetic separation using a rabbit anti-human DDX4 antibody and the positive populations were measured by assessing both FRAGILIS and stage-specific embryonic antigen 4 (SSEA-4) expression. After 3 weeks in culture, large oocyte-like cells were individually isolated by DEPArray based on PKH26 red staining and cell size determination. GDF-9 and SYCP3 as final, and developmental pluripotency-associated protein 3 (DPPA3) as primordial, germline markers were measured by droplet digital PCR. The haploid versus diploid chromosomal content of chromosomes X and 5 was investigated using fluorescence in situ hybridization (FISH). SSEA-4+ and FRAGILIS+ subsets of DDX4-positive populations were present at lower mean levels in menopausal (SSEA-4+: 46.7%; FRAGILIS+: 47.5%) than in non-menopausal (SSEA-4+: 64.9%; FRAGILIS+: 64.8) women (P < 0.05). A comparison of the women's age with the ratio of DDX4-positive cells/cm3 of ovarian cortex revealed an inverse correlation with OSC number (P < 0.05). Once cultured, cells from both groups differentiated to form large (up to 80 μm) mature oocyte-like cells with typical oocyte morphology. Despite the higher numbers of these cells in cultures from non-menopausal women (37.4 versus 23.7/well; P < 0.001), the intra-culture percentages of large oocyte-like cells did not differ significantly between the two groups. Single large oocyte-like cells isolated from non-menopausal and menopausal women expressed equivalent levels of GDF-9 (e.g. 2.0 and 2.6 copies/μl RNA, respectively) and SYCP3 (e.g. 1.2 and 1.5 copies/μl RNA, respectively) mRNA. The remaining small cells isolated from the cultures expressed large amounts of DPPA3 mRNA (e.g. 5.0 and 5.1 copies/μl RNA, from menopausal and non-menopausal women, respectively), which was undetectable in the large oocyte-like cells. FISH analysis of the large and small cells using probes for chromosomes X and 5 revealed a single signal in the large cells, indicative of chromosome haploidy, whereas in the small cells two distinct signals for each chromosome indicated diploidy. Not applicable. Our study demonstrated the final differentiation of OSCs, collected from the ovarian cortex of adult women, to oocyte-like cells. However, because the rate of differentiation was low, a major role of the stem cell niche housing these OSCs cannot be ruled out. Since the ability of OSCs to generate mature oocytes in vitro is highly variable, the viability of these cells in the ovarian cortex of non-menopausal and menopausal women may well be determined by the stem cell niche and the woman's concurrent reproductive state. Our study showed that the oocyte-like cells obtained by OSC differentiation in vitro, including those from the OSCs of menopausal women, express markers of meiosis. This model of ovarian neo-oogenesis will contribute to the development of approaches to treat female infertility. The study was funded by Italian Association for Cancer Research (IG grant 17536), and from the Apulia Region ('Oncogenomic Project' and 'Jonico-Salentino Project'). All Authors declare no competing interests. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Penaranda, M.M.D.; Wargo, A.R.; Kurath, G.
2011-01-01
The relationship between virulence and overall within-host fitness of the fish rhabdovirus Infectious hematopoietic necrosis virus (IHNV) was empirically investigated in vivo for two virus isolates belonging to different IHNV genogroups that exhibit opposing host-specific virulence. U group isolates are more virulent in sockeye salmon and M group isolates are more virulent in rainbow trout. In both single and mixed infections in the two fish hosts, the more virulent IHNV type exhibited higher prevalence and higher viral load than the less virulent type. Thus, a positive correlation was observed between higher in vivo fitness and higher host-specific virulence in sockeye salmon and rainbow trout. Comparisons of mean viral loads in single and mixed infections revealed no evidence for limitation due to competition effects between U and M viruses in either rainbow trout or sockeye salmon co-infections.
Verkoczy, L K; Berinstein, N L
1998-10-01
Differential display PCR (DD RT-PCR) has been extensively used for analysis of differential gene expression, but continues to be hampered by technical limitations that impair its effectiveness. In order to isolate novel genes co-expressing with human RAG1, we have developed an effective, multi-tiered screening/purification approach which effectively complements the standard DD RT-PCR methodology. In 'primary' screens, standard DD RT-PCR was used, detecting 22 reproducible differentially expressed amplicons between clonally related cell variants with differential constitutive expression of RAG mRNAs. 'Secondary' screens used differential display (DD) amplicons as probes in low and high stringency northern blotting. Eight of 22 independent DD amplicons detected nine independent differentially expressed transcripts. 'Tertiary' screens used reconfirmed amplicons as probes in northern analysis of multiple RAG-and RAG+sources. Reconfirmed DD amplicons detected six independent RAG co-expressing transcripts. All DD amplicons reconfirmed by northern blot were a heterogeneous mixture of cDNAs, necessitating further purification to isolate single cDNAs prior to subcloning and sequencing. To effectively select the appropriate cDNAs from DD amplicons, we excised and eluted the cDNA(s) directly from regions of prior northern blots in which differentially expressed transcripts were detected. Sequences of six purified cDNA clones specifically detecting RAG co-expressing transcripts included matches to portions of the human RAG2 and BSAP regions and to four novel partial cDNAs (three with homologies to human ESTs). Overall, our results also suggest that even when using clonally related variants from the same cell line in addition to all appropriate internal controls previously reported, further screening and purification steps are still required in order to efficiently and specifically isolate differentially expressed genes by DD RT-PCR.
Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis.
Huber, R; Burggraf, S; Mayer, T; Barns, S M; Rossnagel, P; Stetter, K O
1995-07-06
A variety of hyperthermophilic bacteria and archaea have been isolated from high-temperature environments by plating and serial dilutions. However, these techniques allow only the small percentage of organisms able to form colonies, or those that are predominant within environmental samples, to be obtained in pure culture. Recently, in situ 16S ribosomal RNA analyses of samples from the Obsidian hot pool at Yellowstone National Park, Wyoming, revealed a variety of archaeal sequences, which were all different from those of previously isolated species. This suggests substantial diversity of archaea with so far unknown morphological, physiological and biochemical features, which may play an important part within high-temperature ecosystems. Here we describe a procedure to obtain pure cultures of unknown organisms harbouring specific 16S rRNA sequences identified previously within the environment. It combines visual recognition of single cells by phylogenetic staining and cloning by 'optical tweezers'. Our result validates polymerase chain reaction data on the existence of large archael communities.
Stiefel, Philipp; Zambelli, Tomaso
2013-01-01
In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907
Methods for transforming and expression screening of filamentous fungal cells with a DNA library
Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie
2015-06-02
The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.
Mason, Olivia U; Hazen, Terry C; Borglin, Sharon; Chain, Patrick S G; Dubinsky, Eric A; Fortney, Julian L; Han, James; Holman, Hoi-Ying N; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M; Tringe, Susannah G; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M; Jansson, Janet K
2012-09-01
The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon
The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility,more » chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.« less
Essone, Jean Claude Biteghe Bi; N'Dilimabaka, Nadine; Ondzaga, Julien; Lekana-Douki, Jean Bernard; Mba, Dieudonné Nkoghe; Deloron, Philippe; Mazier, Dominique; Gay, Frédrérick; Touré Ndouo, Fousseyni S
2017-06-27
Plasmodium falciparum infection can progress unpredictably to severe forms including respiratory distress and cerebral malaria. The mechanisms underlying the variable natural course of malaria remain elusive. The cerebral microvascular endothelial cells-D3 and lung endothelial cells both from human were cultured separately and challenged with P. falciparum field isolates taken directly from malaria patients or 3D7 strain (in vitro maintained culture). The capacity of these P. falciparum isolates to induce endothelial cell apoptosis via cytoadherence or not was then assessed. Overall, 27 P. falciparum isolates were collected from patients with uncomplicated malaria (n = 25) or severe malaria (n = 2). About half the isolates (n = 17) were able to bind brain endothelial cells (12 isolates, 44%) or lung endothelial cells (17 isolates, 63%) or both (12 isolates, 44%). Sixteen (59%) of the 27 isolates were apoptogenic for brain and/or lung endothelial cells. The apoptosis stimulus could be cytoadherence, direct cell-cell contact without cytoadherence, or diffusible soluble factors. While some of the apoptogenic isolates used two stimuli (direct contact with or without cytoadherence, plus soluble factors) to induce apoptosis, others used only one. Among the 16 apoptogenic isolates, eight specifically targeted brain endothelial cells, one lung endothelial cells, and seven both. These results indicate that the brain microvascular cell line was more susceptible to apoptosis triggered by P. falciparum than the primary pulmonary endothelial cells and may have relevance to host-parasite interaction.
Möhlendick, Birte; Bartenhagen, Christoph; Behrens, Bianca; Honisch, Ellen; Raba, Katharina; Knoefel, Wolfram T; Stoecklein, Nikolas H
2013-01-01
Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.
Biodegradable nano-films for capture and non-invasive release of circulating tumor cells.
Li, Wei; Reátegui, Eduardo; Park, Myoung-Hwan; Castleberry, Steven; Deng, Jason Z; Hsu, Bryan; Mayner, Sarah; Jensen, Anne E; Sequist, Lecia V; Maheswaran, Shyamala; Haber, Daniel A; Toner, Mehmet; Stott, Shannon L; Hammond, Paula T
2015-10-01
Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips. Published by Elsevier Ltd.
Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao
2014-01-01
Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941
Rapid herpes simplex virus detection in clinical samples submitted to a state virology laboratory.
Mayo, D R; Brennan, T; Egbertson, S H; Moore, D F
1985-05-01
Of 16,779 specimens received for herpes simplex virus (HSV) isolation since 1982, 4,465 (26.6%) were positive for HSV by either standard tissue culture or an antigen detection system (peroxidase-antiperoxidase; PAP). The overall isolation rate for genital vesicle specimens was lower (26.1%) than that for nongenital specimens (29.3%). Monthly isolation rates ranged from 19 to 32% for genital specimens and from 20 to 44% for nongenital specimens. Increasing demands for HSV isolation led to comparison of tissue culture with PAP. In the first comparison, HSV was isolated in single human fibroblast cell cultures from 1,019 of 4,261 specimens (23.9%), whereas single human fibroblast wells stained at 24 and 72 h postinoculation were PAP positive for 1,007 of 4,261 specimens (23.6%). In the second comparison, HSV was isolated from 225 of 1,026 (21.9%) specimens and duplicate human foreskin fibroblast cell wells stained at 24 and 72 h were PAP positive in 241 of 1,026 (23.5%). With the dual-well PAP system, all results were reported within 72 h, approximately 70% of positives were reported within 24 h, and considerable savings in time and materials resulted.
Mathur, Ankita; Kumari, Jyoti; Parashar, Abhinav; T., Lavanya; Chandrasekaran, N.; Mukherjee, Amitava
2015-01-01
This study is aimed to explore the toxicity of TiO2 nanoparticles at low concentrations (0.25, 0.50 & 1.00 μg/ml); on five bacterial isolates and their consortium in waste water medium both in dark and UVA conditions. To critically examine the toxic effects of nanoparticles and the response mechanism(s) offered by microbes, several aspects were monitored viz. cell viability, ROS generation, SOD activity, membrane permeability, EPS release and biofilm formation. A dose and time dependent loss in viability was observed for treated isolates and the consortium. At the highest dose, after 24h, oxidative stress was examined which conclusively showed more ROS generation & cell permeability and less SOD activity in single isolates as compared to the consortium. As a defense mechanism, EPS release was enhanced in case of the consortium against the single isolates, and was observed to be dose dependent. Similar results were noticed for biofilm formation, which substantially increased at highest dose of nanoparticle exposure. Concluding, the consortium showed more resistance against the toxic effects of the TiO2 nanoparticles compared to the individual isolates. PMID:26496250
[Quorum sensing in bacteria and yeast].
March Rosselló, Gabriel Alberto; Eiros Bouza, José María
2013-10-19
Bacterial sets are complex dynamic systems, which interact with each other and through the interaction, bacteria coexist, collaborate, compete and share information in a coordinated manner. A way of bacterial communication is quorum sensing. Through this mechanism the bacteria can recognize its concentration in a given environment and they can decide the time at which the expression of a particular set of genes should be started for developing a specific and simultaneous response. The result of these interconnections raises properties that cannot be explained from a single isolated bacterial cell. Copyright © 2012 Elsevier España, S.L. All rights reserved.
A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures
Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.
2014-01-01
The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932
Vdovin, A S; Filkin, S Y; Yefimova, P R; Sheetikov, S A; Kapranov, N M; Davydova, Y O; Egorov, E S; Khamaganova, E G; Drokov, M Y; Kuzmina, L A; Parovichnikova, E N; Efimov, G A; Savchenko, V G
2016-11-01
Patients undergoing allogeneic hematopoietic stem cell transplantation have a high risk of cytomegalovirus reactivation, which in the absence of T-cell immunity can result in the development of an acute inflammatory reaction and damage of internal organs. Transfusion of the virus-specific donor T-lymphocytes represents an alternative to a highly toxic and often ineffective antiviral therapy. Potentially promising cell therapy approach comprises transfusion of cytotoxic T-lymphocytes, specific to the viral antigens, immediately after their isolation from the donor's blood circulation without any in vitro expansion. Specific T-cells could be separated from potentially alloreactive lymphocytes using recombinant major histocompatibility complex (MHC) multimers, carrying synthetic viral peptides. Rapid transfusion of virus-specific T-cells to patients has several crucial advantages in comparison with methods based on the in vitro expansion of the cells. About 30% of hematopoietic stem cell donors and 46% of transplant recipients at the National Research Center for Hematology were carriers of the HLA-A*02 allele. Moreover, 94% of Russian donors have an immune response against the cytomegalovirus (CMV). Using recombinant HLA-A*02 multimers carrying an immunodominant cytomegalovirus peptide (NLV), we have shown that the majority of healthy donors have pronounced T-cell immunity against this antigen, whereas shortly after the transplantation the patients do not have specific T-lymphocytes. The donor cells have the immune phenotype of memory cells and can be activated and proliferate after stimulation with the specific antigen. Donor lymphocytes can be substantially enriched to significant purity by magnetic separation with recombinant MHC multimers and are not activated upon cocultivation with the antigen-presenting cells from HLA-incompatible donors without addition of the specific antigen. This study demonstrated that strong immune response to CMV of healthy donors and prevalence of HLA-A*02 allele in the Russian population make it possible to isolate a significant number of virus-specific cells using HLA-A*02-NLV multimers. After the transfusion, these cells should protect patients from CMV without development of allogeneic immune response.
Lymphocyte receptors for pertussis toxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.G.; Armstrong, G.D.
1990-12-01
We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, andmore » Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.« less
Register, Karen B; Ivanov, Yury V; Harvill, Eric T; Davison, Nick; Foster, Geoffrey
2015-03-01
During a succession of phocine morbillivirus outbreaks spanning the past 25 years, Bordetella bronchiseptica was identified as a frequent secondary invader and cause of death. The goal of this study was to evaluate genetic diversity and the molecular basis for host specificity among seal isolates from these outbreaks. MLST and PvuII ribotyping of 54 isolates from Scottish, English or Danish coasts of the Atlantic or North Sea revealed a single, host-restricted genotype. A single, novel genotype, unique from that of the Atlantic and North Sea isolates, was found in isolates from an outbreak in the Caspian Sea. Phylogenetic analysis based either on MLST sequence, ribotype patterns or genome-wide SNPs consistently placed both seal-specific genotypes within the same major clade but indicates a distinct evolutionary history for each. An additional isolate from the intestinal tract of a seal on the south-west coast of England has a genotype otherwise found in rabbit, guinea pig and pig isolates. To investigate the molecular basis for host specificity, DNA and predicted protein sequences of virulence genes that mediate host interactions were used in comparisons between a North Sea isolate, a Caspian Sea isolate and each of their closest relatives as inferred from genome-wide SNP analysis. Despite their phylogenetic divergence, fewer nucleotide and amino acid substitutions were found in comparisons of the two seal isolates than in comparisons with closely related strains. These data indicate isolates of B. bronchiseptica associated with respiratory disease in seals comprise unique, host-adapted and highly clonal populations. © 2015 The Authors.
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen
2015-11-01
Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models.
Koch, P J; Goldschmidt, M D; Walsh, M J; Zimbelmann, R; Schmelz, M; Franke, W W
1991-05-01
Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.
Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level
Chen, Zixi; Chen, Lei; Zhang, Weiwen
2017-01-01
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented. PMID:28979258
NASA Astrophysics Data System (ADS)
Lagus, Todd P.; Edd, Jon F.
2013-03-01
Most cell biology experiments are performed in bulk cell suspensions where cell secretions become diluted and mixed in a contiguous sample. Confinement of single cells to small, picoliter-sized droplets within a continuous phase of oil provides chemical isolation of each cell, creating individual microreactors where rare cell qualities are highlighted and otherwise undetectable signals can be concentrated to measurable levels. Recent work in microfluidics has yielded methods for the encapsulation of cells in aqueous droplets and hydrogels at kilohertz rates, creating the potential for millions of parallel single-cell experiments. However, commercial applications of high-throughput microdroplet generation and downstream sensing and actuation methods are still emerging for cells. Using fluorescence-activated cell sorting (FACS) as a benchmark for commercially available high-throughput screening, this focused review discusses the fluid physics of droplet formation, methods for cell encapsulation in liquids and hydrogels, sensors and actuators and notable biological applications of high-throughput single-cell droplet microfluidics.
NASA Astrophysics Data System (ADS)
Banerjee, Shashwat S.; Jalota-Badhwar, Archana; Zope, Khushbu R.; Todkar, Kiran J.; Mascarenhas, Russel R.; Chate, Govind P.; Khutale, Ganesh V.; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J.
2015-05-01
Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01797a
Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.
Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen
2014-12-02
A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.
Iridovirus disease in two ornamental tropical freshwater fishes: African lampeye and dwarf gourami.
Sudthongkong, Chaiwud; Miyata, Masato; Miyazaki, Teruo
2002-04-05
Many species of ornamental freshwater fishes are imported into Japan from all over the world. We found African lampeye Aplocheilichthys normani and dwarf gourami Colisa lalia suffering from an iridovirus infection just after being imported by tropical fish wholesalers from Singapore. African lampeye were cultured on the Indonesian Island of Sumatra and dwarf gourami were cultured in Malaysia before export. Diseased fishes displayed distinct histopathological signs of iridovirus infection: systemic appearance of inclusion body-bearing cells, and necrosis of splenocytes and hematopoietic cells. Electron microscopy revealed viral particles (African lampeye:180 to 200 nm in edge to edge diameter; dwarf gourami: 140 to 150 nm in diameter) in an inclusion body within the cytoplasm of inclusion body-bearing cells as well as in the cytoplasm of necrotized cells. Experimental infection with an iridovirus isolate from African lampeye (ALIV) revealed pathogenicity of ALIV to African lampeye and pearl gourami Trichogaster leeri. Polymerase chain reaction (PCR) products from ALIV and an iridovirus isolate from dwarf gourami (DGIV) using iridovirus-specific primers were indistinguishable. The nucleotide sequence of PCR products derived from ALIV (696 base pairs) and DGIV (701 base pairs) had 95.3% identity. These results indicate that ALIV and DGIV have a single origin.
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-04-01
The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Yamamuro, Kazuhiko; Yoshino, Hiroki; Ogawa, Yoichi; Makinodan, Manabu; Toritsuka, Michihiro; Yamashita, Masayuki; Corfas, Gabriel; Kishimoto, Toshifumi
2018-03-01
Juvenile social experience is crucial for the functional development of forebrain regions, especially the prefrontal cortex (PFC). We previously reported that social isolation for 2 weeks after weaning induces prefrontal cortex dysfunction and hypomyelination. However, the effect of social isolation on physiological properties of PFC neuronal circuit remained unknown. Since hypomyelination due to isolation is prominent in deep-layer of medial PFC (mPFC), we focused on 2 types of Layer-5 pyramidal cells in the mPFC: prominent h-current (PH) cells and nonprominent h-current (non-PH) cells. We found that a 2-week social isolation after weaning leads to a specific deterioration in action potential properties and reduction in excitatory synaptic inputs in PH cells. The effects of social isolation on PH cells, which involve reduction in functional glutamatergic synapses and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate charge ratio, are specific to the 2 weeks after weaning and to the mPFC. We conclude that juvenile social experience plays crucial roles in the functional development in a subtype of Layer-5 pyramidal cells in the mPFC. Since these neurons project to subcortical structures, a deficit in social experience during the critical period may result in immature neural circuitry between mPFC and subcortical targets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G
2018-01-01
Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.
NASA Astrophysics Data System (ADS)
Gao, Xiaoling; Butler, Ian S.; Kremer, Richard
2005-01-01
We report here the use of near-infrared (NIR) Fourier transform (FT) Raman spectroscopy to analyze normal human epidermal keratinocytes prior to and following malignant transformation. Our analysis indicates specific Raman spectral differences between immortalized (HPK1A) and malignant ras transformed (HPK1A- ras) cells. In addition, striking spectral differences are seen in the DNA isolated from these cells and particularly in the 843/810 cm -1 ratio with values of 1.6 ± 0.13 in HPK1A cells and 0.68 ± 0.09 in HPK1A- ras cells (mean ± S.D., n = 12, P < 0.001) indicating specific alterations in the backbone conformation markers following malignant transformation. Subsequently, we analysed the effect of a strong inhibitor of keratinocyte growth, the Vitamin D analog EB1089, on the Raman spectra of intact cells and on the 843/810 cm -1 ratio in the DNA isolated from both cell lines. Specific changes were observed in intact cells in the 1300-750 cm -1 region. Furthermore, the 843/810cm -1 ratio of isolated DNA from HPK1A cells was not affected by EB1089 but significantly increased in DNA isolated from HPK1A-ras cells so much that it became closer to the value observed for HPK1A cells (1.07 ± 0.10). Our data suggest that Raman analysis of DNA and in particular the 843/810cm -1 ratio can provide useful indices of malignant transformation and efficacy of anticancer agents.
Characterization and Multilineage Potential of Cells Derived from Isolated Microvascular Fragments
2014-05-24
three in vitro human ’angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 2001;4:113. [18] Gimble JM, Katz AJ , Bunnell BA. Adipose derived...Cell Cycle 2005;4:1338. [31] Rosenblatt JD, Lunt AI, Parry DJ, et al. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell
Alderton, M R; Smith, S C; Coloe, P J
1993-01-01
A monoclonal antibody to Serpulina hyodysenteriae 8930 was produced and was used to probe pronase-treated cell lysates of S. hyodysenteriae isolates in immunblots. The results showed that the monoclonal antibody was specific for only five closely related S. hyodysenteriae isolates: 8930, 5380, 70A, RMIT 88, and RMIT 97. Images PMID:8501237
Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects.
Zhang, Xiaoyan; Marjani, Sadie L; Hu, Zhaoyang; Weissman, Sherman M; Pan, Xinghua; Wu, Shixiu
2016-03-15
Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing. ©2016 American Association for Cancer Research.
Ota, F; Ota, M; Mahmud, Z H; Mohammad, A; Yamato, M; Kassu, A; Kato, Y; Tomotake, H; Batoni, G; Campa, M
2006-01-01
A set of monoclonal antibodies were prepared by the conventional cell fusion of myeloma cells (SP2/0-Ag14) with spleen cells from BALB/c mice immunised with whole cells of a strain of mutans streptococci. Their specificities were examined against 35 reference strains of mutans streptococci, 34 reference strains of other oral streptococci and 8 reference strains of other microorganisms often inhabiting the oral cavity. Specificity was examined by enzyme immunoassay using whole cells. A total of 52 strains, consisting of 19 strains isolated in Japan, 19 strains isolated in Italy and 14 strains isolated in England, were characterised by conventional physiological and biochemical tests and then serotyped by the use of 8 monoclonal antibodies with different specificities. They were also confirmed by guanine-plus-cytosine contents of their nucleic acid and DNA-DNA hybridisation test. The results indicated that all monoclonal antibodies are useful for identification of 8 serotypes of the mutans streptococci responsible for dental caries. They also suggest the existence of more serological varieties among mutans species.
A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.
Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar
2015-11-04
With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.
Przekora, Agata; Zarnowski, Tomasz; Ginalska, Grazyna
2017-01-01
Human Tenon's fibroblasts (HTFs) play a crucial role in wound healing. They cause postoperative scarring of the filtering bleb and are thus responsible for trabeculectomy failure. This study aimed to find an effective and fast protocol for HTF isolation from trabeculectomy biopsies. The protocol was compared with the commonly recommended HTF isolation procedure, which uses Dulbecco's modified Eagle's medium (DMEM). We used Eagle's minimum essential medium (EMEM) enriched with fibroblast growth factor (FGF), which selectively promoted the proliferation of HTF cells. A secondary goal was to compare HTF morphology, metabolism and growth during parallel cultivation of the isolated cells in FGF-enriched EMEM and DMEM. Standard procedures for HTF isolation from tissue biopsies require a 20- to 30-day culture of the explants to obtain the first monolayer. Our protocol yielded the first monolayer after approx. 15 days. More importantly, the majority of the cells were fibroblasts with only individual epithelium-derived cells present. Using FGF-enriched EMEM allowed 1.3 × 10 6 vimentin-positive fibroblasts to be obtained from a single biopsy within approx. 25 days. Using DMEM resulted in isolation failure and required exchange to FGF-enriched medium to recover the fibroblast culture. HTFs maintained in FGF-enriched EMEM also showed faster proliferation and a different type I collagen production ability compared to HTFs cultured in DMEM. Thus, FGF-enriched EMEM is recommended for fast propagation of HTFs unless the aim of the study is to assess the effect of a tested agent on proliferation ability or type I collagen production. Our fast protocol for HTF isolation allows easy setup of cell banks by researchers under laboratory conditions and could be very useful during testing of novel ophthalmologic anti-fibrotic agents in vitro. Molecular analysis of HTFs isolated from patients with known treatment histories may provide valuable information on the effects of some medications taken before glaucoma surgery on the subsequent wound-healing process and potential for trabeculectomy failure.
Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon
2011-10-23
To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.
Gene Expression by Mouse Inner Ear Hair Cells during Development
Scheffer, Déborah I.; Shen, Jun
2015-01-01
Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789
Schachner, Anna; Marek, Ana; Grafl, Beatrice; Hess, Michael
2016-04-15
Forty-eight fowl aviadenoviruses (FAdVs) isolated from recent IBH outbreaks across Europe were investigated, by utilizing for the first time the two major adenoviral antigenic domains, hexon loop-1 and fiber, for compound molecular characterization of IBH-associated FAdVs. Successful target gene amplification, following virus isolation in cell culture or from FTA-card samples, demonstrated presence of FAdVs in all cases indicative for IBH. Based on hexon loop-1 analysis, 31 European field isolates exhibited highest nucleotide identity (>97.2%) to reference strains FAdV-2 or -11 representing FAdV-D, while 16 and one European isolates shared >96.0% nucleotide identity with FAdV-8a and -8b, or FAdV-7, the prototype strains representing FAdV-E. These results extend recognition of specific FAdV-D and FAdV-E affiliate genotypes as causative agents of IBH to the European continent. In all isolates, species specificity determined by fiber gene analysis correlated with hexon-based typing. A threshold of 72.0% intraspecies nucleotide identity between fibers from investigated prototype and field strains corresponded with demarcation criteria proposed for hexon, suggesting fiber-based analysis as a complementary tool for molecular FAdV typing. A limited number of strains exhibited inconsistencies between hexon and fiber subclustering, indicating potential constraints for single-gene based typing of those FAdVs. Within FAdV-D, field isolate fibers shared a high degree of nucleotide (>96.7%) and aa (>95.8%) identity, while FAdV-E field isolate fibers displayed greater nucleotide divergence of up to 22.6%, resulting in lower aa identities of >81.7%. Furthermore, comparison with FAdVs from IBH outbreaks outside Europe revealed close genetic relationship in the fiber, independent of the strains' geographic origin. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik
2016-06-01
Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J; Khan, Shahid Yar; Tariq, Muhammad Akram; Dayn, Yelena; Vaske, Charles Joseph; Radenbaugh, Amie J; Kim, Hyunsung John; Emerson, Beverly M; Pourmand, Nader
2014-11-04
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy.
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J.; Khan, Shahid Yar; Tariq, Muhammad Akram; Dayn, Yelena; Vaske, Charles Joseph; Radenbaugh, Amie J.; Kim, Hyunsung John; Emerson, Beverly M.; Pourmand, Nader
2014-01-01
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy. PMID:25339441
Sun, Zhang-Hua; Liang, Fa-Liang; Wu, Wen; Chen, Yu-Chan; Pan, Qing-Ling; Li, Hao-Hua; Ye, Wei; Liu, Hong-Xin; Li, Sai-Ni; Tan, Guo-Hui; Zhang, Wei-Min
2015-12-21
Four new meroterpenoids, guignardones P-S (1-4), and three known analogues (5-7) were isolated from the endophytic fungal strain Guignardia mangiferae A348. Their structures were elucidated on the basis of spectroscopic analysis and single crystal X-ray diffraction. All the isolated compounds were evaluated for their inhibitory effects on SF-268, MCF-7, and NCI-H460 human cancer cell lines. Compounds 2 and 4 exhibited weak inhibitions of cell proliferation against MCF-7 cell line.
Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul
2014-01-01
CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967
Lian, Gewei; Wang, Chengyan; Teng, Chunbo; Zhang, Cong; Du, Liying; Zhong, Qian; Miao, Chenglin; Ding, Mingxiao; Deng, Hongkui
2006-03-01
Whether bone marrow (BM) hematopoietic stem/progenitor cells can directly differentiate into nonhematopoietic cells remains controversial. The aim of this study is to further investigate the potentiality of BM hematopoietic progenitor cells to convert into hepatocytes in vitro. Different subsets of BM cells from C57/BL6 mice were isolated using markers of hematopoietic stem cells by magnetic cell sorting and by flow cytometry. These cells were induced to transdifferentiate to hepatocytes in vitro in the presence of various cytokines or of hepatocytes (or tissue) from damaged liver, which have been reported to stimulate the conversion. Hepatic gene markers in freshly isolated or cultured BM cells were determined by reverse transcriptase polymerase chain reaction and immunofluorescence. Freshly isolated hematopoietic progenitor cells (HPC) expressed a low level of messenger RNAs of hepatic cell-specific markers including albumin and alpha-fetoprotein (AFP), but did not significantly upregulate expression of these markers, even in the presence of cytokines or cocultured hepatocytes (or tissue). HPCs induced in vitro did not express the message of alpha-anti-trypsin-a mature hepatocyte marker. At protein level, the specific staining of AFP was not detected in the HPCs, either freshly isolated or in vitro induced. Albumin protein was detected in freshly isolated albumin mRNA-positive and -negative BM cell subpopulations. Albumin-stained BM cells disappeared after being induced for 5 days, but restained if mouse serum was supplemented in medium for a 24-hour extended culture, suggesting that albumin was absorbed by BM cells instead of de novo expression. HPCs expressed mRNAs of hepatic cell markers, but could not efficiently convert into hepatocytes in vitro under our experimental conditions. Our observation raises a cautionary note in determining whether in vitro transdifferentiation of BM cells to hepatocytes can actually take place.
Integrated sequencing of exome and mRNA of large-sized single cells.
Wang, Lily Yan; Guo, Jiajie; Cao, Wei; Zhang, Meng; He, Jiankui; Li, Zhoufang
2018-01-10
Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.
Gerlach, Jörg C; Johnen, Christa; Ottomann, Christian; Ottoman, Christian; Bräutigam, Kirsten; Plettig, Jörn; Belfekroun, Claudia; Münch, Sandra; Hartmann, Bernd
2011-03-01
There is a therapeutic gap for patients with deep partial thickness wounds (Grade IIb) of moderate size that were initially not treated with split- or mesh grafting to avoid overgrafting, but developed delayed wound healing around two weeks after injury--at which time grafting is typically not indicated anymore. Delayed wound healing is often associated with esthetically unsatisfactory results and sometimes functional problems. An innovative cell isolation method for cell spray transplantation at the point of care, which eliminates cell culture prior to treatment, was implemented for this population of burn patients in our center. Autologous skin cell spray transplantation was initiated by taking healthy skin. The dermal/epidermal layers were separated using enzymatic digestion with 40 min dispase application, followed by 15 min trypsin application for basal kerationcyte isolation, 7 min cell washing by centrifugation, followed by transferring the cells for spraying into Ringer lactate solution. The procedure was performed on site in a single session immediately following the biopsy. After sharp wound debridement, cells were immediately transplanted by deposition with a cell sprayer for even distribution of the cell suspension. Eight patients were treated (mean age 30.3 years, mean burn total body surface area 14%, mean Abbreviated Burn Severity Index (5 points). The mean time to complete re-epithelialization was 12.6 days. All patients exhibited wound healing with improved esthetic and functional quality. Our initial experience for the use of non-cultured cells using a two-enzyme approach with cell washing suggests shortened time for wound closure, suggesting that the method may potentially avoid longer-term complications.
Toward the Clonotype Analysis of Alopecia Areata-Specific, Intralesional Human CD8+ T Lymphocytes.
Bertolini, Marta; Uchida, Youhei; Paus, Ralf
2015-11-01
Alopecia areata (AA) is an organ-restricted autoimmune disease that mainly affects the hair follicle (HF). Several findings support a key primary effector role of CD8+ T cells in the disease pathogenesis. Autoreactive CD8+ T cells are not only present in the characteristic peribulbar inflammatory cell infiltrate of lesional AA HFs but are also found to be infiltrating in lesional HF epithelium where they are thought to recognize major histocompatibility complex class I-presented (auto-)antigens. However, the latter still remain unidentified. Therefore, one key aim in AA research is to identify the clonotypes of autoaggressive, intralesional CD8+ T cells. Therapeutically, this is important (a) so that these lymphocytes can be selectively eliminated or inhibited, (b) to identify the-as yet elusive-key (auto-)antigens in AA, and/or (c) to induce peripheral tolerance against the latter. Therefore, we have recently embarked on a National Alopecia Areata Foundation-supported project that attempts to isolate disease-specific, intralesional CD8+ T cells from AA skin in order to determine their TCR clonotype, using two complementary strategies. The first method is based on the enzymatic skin digestion from lesional AA skin, followed by either MACS technology and single-cell picking or FACS cell sorting, while the second method on laser microdissection. The identification of disease-specific TCRs can serve as a basis for specific AA immunotherapy along the lines sketched above and may possibly also provide prognostic biomarkers. If successful, this research strategy promises to permit, at long last, the causal therapy of AA.
Moazamian, Elham; Bahador, Nima; Azarpira, Negar; Rasouli, Manoochehr
2018-04-23
Bacillus thuringiensis is one of the most important microorganisms used against cancer cell lines in latest studies all over the world. This study aims to perform the isolation, molecular identification, and to identify novel B. thuringiensis strains that specifically targeting human cancer cell-killing activities in Iran. A total of 88 B. thuringiensis isolates were recovered from Iran. Upon the treatment of the non-hemolytic crystal proteins by proteinase K, five isolates belonging to three biotypes, thuringiensis, kurstaki and sotto of B. thuringiensis are found to have different cytotoxicity toward HCT-116 and CCRF-CEM cell lines. Digested inclusions of the isolates consisted of one major poly peptide of 34-kDa, as estimated by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. The structure, molecular identification, and functionality of five isolates inclusion proteins have shown to be closely like to parasporin-2 but their size of activated protein is not similar to this parasporin. It is unclear that discovered damaging proteins are parasporin-2. This 34-kD protein exhibited varying degrees of cytocidal activity toward human colon and blood cancer cells and caused cell swelling and the formation of blebs in the surface of the cells or alteration in cytoskeleton. The soil in the humid and temperate climates of Iran is a good reservoir for parasporin producing B. thuringiensis. The isolated B. thuringiensis strains exhibit specific and different cytocidal activities against human colon and blood cancer cells. Parasporin is a novel cytotoxic protein to human cancer cells produced by B. thuringiensis and these toxins appeared to attack an identical target on human cancer cells.
Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
Hyun, Kyung-A; Lee, Tae Yoon; Lee, Su Hyun; Jung, Hyo-Il
2015-05-15
Over the past few decades, circulating tumor cells (CTCs) have been studied as a means of overcoming cancer. However, the rarity and heterogeneity of CTCs have been the most significant hurdles in CTC research. Many techniques for CTC isolation have been developed and can be classified into positive enrichment (i.e., specifically isolating target cells using cell size, surface protein expression, and so on) and negative enrichment (i.e., specifically eluting non-target cells). Positive enrichment methods lead to high purity, but could be biased by their selection criteria, while the negative enrichment methods have relatively low purity, but can isolate heterogeneous CTCs. To compensate for the known disadvantages of the positive and negative enrichments, in this study we introduced a two-stage microfluidic chip. The first stage involves a microfluidic magnetic activated cell sorting (μ-MACS) chip to elute white blood cells (WBCs). The second stage involves a geometrically activated surface interaction (GASI) chip for the selective isolation of CTCs. We observed up to 763-fold enrichment in cancer cells spiked into 5 mL of blood sample using the μ-MACS chip at 400 μL/min flow rate. Cancer cells were successfully separated with separation efficiencies ranging from 10.19% to 22.91% based on their EpCAM or HER2 surface protein expression using the GASI chip at a 100 μL/min flow rate. Our two-stage microfluidic chips not only isolated CTCs from blood cells, but also classified heterogeneous CTCs based on their characteristics. Therefore, our chips can contribute to research on CTC heterogeneity of CTCs, and, by extension, personalized cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Allgaier, Achim; Goethe, Ralph; Wisselink, Henk J.; Smith, Hilde E.; Valentin-Weigand, Peter
2001-01-01
We evaluated the genetic diversity of Streptococcus suis isolates of different serotypes by macrorestriction analysis and elucidated possible relationships between the genetic background, expression of potential virulence traits, and source of isolation. Virulence traits included expression of serotype-specific polysaccharides, muramidase-released protein (MRP), extracellular protein factor (EF), hemolysin activity, and adherence to epithelial cells. Macrorestriction analysis of streptococcal DNA digested with restriction enzymes SmaI and ApaI allowed differentiation of single isolates that could be assigned to four major clusters, named A1, A2, B1, and B2. Comparison of the genotypic and phenotypic features of the isolates with their source of isolation showed that (i) the S. suis population examined, which originated mainly from German pigs, exhibited a genetic diversity and phenotypic patterns comparable to those found for isolates from other European countries; (ii) certain phenotypic features, such as the presence of capsular antigens of serotypes 2, 1, and 9, expression of MRP and EF, and hemolysin activity (and in particular, combinations of these features), were strongly associated with the clinical background of meningitis and septicemia; and (iii) isolates from pigs with meningitis and septicemia showed a significantly higher degree of genetic homogeneity compared to that for isolates from pigs with pneumonia and healthy pigs. Since the former isolates are considered highly virulent, this supports the theory of a clonal relationship among highly virulent strains. PMID:11158088
Muralidharan, Bhavana
2018-01-01
We established an efficient cell culture assay that permits combinatorial genetic perturbations in hippocampal progenitors to examine cell-autonomous mechanisms of fate specification. The procedure begins with ex vivo electroporation of isolated, intact embryonic brains, in a manner similar to in utero electroporation but with greatly improved access and targeting. The electroporated region is then dissected and transiently maintained in organotypic explant culture, followed by dissociation and plating of cells on coverslips for in vitro culture. This assay recapitulates data obtained in vivo with respect to the neuron-glia cell fate switch and can be effectively used to test intrinsic or extrinsic factors that regulate this process. The advantages of this ex vivo procedure over in utero electroporation include the fact that distinct combinations of perturbative reagents can be introduced in different embryos from a single litter, and issues related to embryonic lethality of transgenic animals can be circumvented. PMID:29760561
Muralidharan, Bhavana; D'Souza, Leora; Tole, Shubha
2018-01-01
We established an efficient cell culture assay that permits combinatorial genetic perturbations in hippocampal progenitors to examine cell-autonomous mechanisms of fate specification. The procedure begins with ex vivo electroporation of isolated, intact embryonic brains, in a manner similar to in utero electroporation but with greatly improved access and targeting. The electroporated region is then dissected and transiently maintained in organotypic explant culture, followed by dissociation and plating of cells on coverslips for in vitro culture. This assay recapitulates data obtained in vivo with respect to the neuron-glia cell fate switch and can be effectively used to test intrinsic or extrinsic factors that regulate this process. The advantages of this ex vivo procedure over in utero electroporation include the fact that distinct combinations of perturbative reagents can be introduced in different embryos from a single litter, and issues related to embryonic lethality of transgenic animals can be circumvented.
Functional Analysis of the Anti-adalimumab Response Using Patient-derived Monoclonal Antibodies♦
van Schouwenburg, Pauline A.; Kruithof, Simone; Votsmeier, Christian; van Schie, Karin; Hart, Margreet H.; de Jong, Rob N.; van Buren, Esther E. L.; van Ham, Marieke; Aarden, Lucien; Wolbink, Gertjan; Wouters, Diana; Rispens, Theo
2014-01-01
The production of antibodies to adalimumab in autoimmune patients treated with adalimumab is shown to diminish treatment efficacy. We previously showed that these antibodies are almost exclusively neutralizing, indicating a restricted response. Here, we investigated the characteristics of a panel of patient-derived monoclonal antibodies for binding to adalimumab. Single B-cells were isolated from two patients, cultured, and screened for adalimumab specificity. Analysis of variable region sequences of 16 clones suggests that the immune response against adalimumab is broad, involving multiple B-cell clones each using different combinations of V(D)J segments. A strong bias for replacement mutations in the complementarity determining regions was found, indicating an antigen-driven response. We recombinantly expressed 11 different monoclonal antibodies and investigated their affinity and specificity. All clones except one are of high affinity (Kd between 0.6 and 233 pm) and compete with TNF as well as each other for binding to adalimumab. However, binding to a panel of single-point mutants of adalimumab indicates markedly different fine specificities that also result in a differential tendency of each clone to form dimeric and multimeric immune complexes. We conclude that although all anti-adalimumab antibodies compete for binding to TNF, the response is clonally diverse and involves multiple epitopes on adalimumab. These results are important for understanding the relationship between self and non-self or idiotypic determinants on therapeutic antibodies and their potential immunogenicity. PMID:25326381
Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer.
Mu, Zhaomei; Benali-Furet, Naoual; Uzan, Georges; Znaty, Anaëlle; Ye, Zhong; Paolillo, Carmela; Wang, Chun; Austin, Laura; Rossi, Giovanna; Fortina, Paolo; Yang, Hushan; Cristofanilli, Massimo
2016-09-30
The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial-mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.
Measurement of glucuronidation by isolated rat liver cells using [14C]fructose.
Dawson, J; Knowles, R G; Pogson, C I
1992-03-03
We have developed a simple and sensitive method for the study of the relative rates of glucuronidation of compounds, in isolated liver cells, based on the incorporation of 14C from fructose into glucuronide conjugates. Liver cells from fasted rats are used to minimize any reduction of the specific activity by glycogenolysis. Although rates of glucuronidation are lower in isolated liver cells from fasted rats than in those from fed rats, because of a reduction in the concentration of UDP-glucuronic acid, it is possible to compare the rates of glucuronidation of different compounds. Radiolabelled glucuronides are separated from [14C]fructose and [14C]glucose, produced by the liver cells, by normal-phase HPLC on a polar amino-cyano column. The specific activity of the glucuronide was found to be approximately 50% of that of the [14C]fructose. Absolute amounts of glucuronide can be determined by measuring the specific activity of the [14C]glucose, also produced by liver cells from fructose, which reflects that of the glucose-6-phosphate and hence the UDP-glucuronic acid used for glucuronidation, although for the measurement of relative rates this would not be necessary. We have used this method to examine the kinetics of the glucuronidation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The method should be applicable to the study of the rates of glucuronidation of a range of aglycones and, unlike other methods, does not require glucuronide standards or radiolabelled aglycone.
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W
2015-05-21
It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology.
Wu, Jianbo; Hunt, Samuel D; Xue, Haipeng; Liu, Ying; Darabi, Radbod
2016-03-01
Directed differentiation of iPS cells toward various tissue progenitors has been the focus of recent research. Therefore, generation of tissue-specific reporter iPS cell lines provides better understanding of developmental stages in iPS cells. This technical report describes an efficient strategy for generation and validation of knock-in reporter lines in human iPS cells using the Cas9-nickase system. Here, we have generated a knock-in human iPS cell line for the early myogenic lineage specification gene of PAX7. By introduction of site-specific double-stranded breaks (DSB) in the genomic locus of PAX7 using CRISPR/Cas9 nickase pairs, a 2A-GFP reporter with selection markers has been incorporated before the stop codon of the PAX7 gene at the last exon. After positive and negative selection, single cell-derived human iPS clones have been isolated and sequenced for in-frame positioning of the reporter construct. Finally, by using a nuclease-dead Cas9 activator (dCas9-VP160) system, the promoter region of PAX7 has been targeted for transient gene induction to validate the GFP reporter activity. This was confirmed by flow cytometry analysis and immunostaining for PAX7 and GFP. This technical report provides a practical guideline for generation and validation of knock-in reporters using CRISPR/Cas9 system. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook
2007-06-29
Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less
Paper-based device for separation and cultivation of single microalga.
Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng
2015-12-01
Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable. Copyright © 2015 Elsevier B.V. All rights reserved.
Sadeqzadeh, Elham; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J; Parhamifar, Ladan; Moghimi, S Moein
2011-11-30
We provide evidence for combining a single domain antibody (nanobody)-based targeting approach with transcriptional targeting as a safe way to deliver lethal transgenes to MUC1 over-expressing cancer cells. From a nanobody immune library, we have isolated an anti-DF3/Mucin1 (MUC1) nanobody with high specificity for the MUC1 antigen, which is an aberrantly glycosylated glycoprotein over-expressed in tumours of epithelial origin. The anti-MUC1 nanobody was covalently linked to the distal end of poly(ethylene glycol)(3500) (PEG(3500)) in PEG(3500)-25kDa polyethylenimine (PEI) conjugates and the resultant macromolecular entity successfully condensed plasmids coding a transcriptionally targeted truncated-Bid (tBid) killer gene under the control of the cancer-specific MUC1 promoter. The engineered polyplexes exhibited favourable physicochemical characteristics for transfection and dramatically elevated the level of Bid/tBid expression in both MUC1 over-expressing caspase 3-deficient (MCF7 cells) and caspase 3-positive (T47D and SKBR3) tumour cell lines and, concomitantly, induced considerable cell death. Neither transgene expression nor cell death occurred when the MUC1 promoter was replaced with the CNS-specific synapsin I promoter. Since PEGylated PEI was only responsible for DNA compaction and played no significant role in direct transfection and cell killing, our attempts overcome previously reported PEI-mediated apoptotic and necrotic cell death, which is advantageous for future in vivo transcriptional targeting as this will minimize (or eliminate) non-targeted cell damage. Copyright © 2011 Elsevier B.V. All rights reserved.
van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M
2018-05-01
Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4-) expressed the highest very late antigen-4 levels and selectively accumulated in natalizumab-treated patients who remained free of clinical relapses. This was not found in patients who experienced relapses during natalizumab treatment. The enhanced potential of Th17.1 cells to infiltrate the central nervous system was supported by their predominance in cerebrospinal fluid of early multiple sclerosis patients and their preferential transmigration across human brain endothelial layers. These findings reveal a dominant contribution of Th1-like Th17 subpopulations, in particular Th17.1 cells, to clinical disease activity and provide a strong rationale for more specific and earlier use of T cell-targeted therapy in multiple sclerosis.
Mode of action and membrane specificity of the antimicrobial peptide snakin-2
Herbel, Vera
2016-01-01
Antimicrobial peptides (AMPs) are a diverse group of short, cationic peptides which are naturally occurring molecules in the first-line defense of most living organisms. They represent promising candidates for the treatment of pathogenic microorganisms. Snakin-2 (SN2) from tomato (Solanum lycopersicum) is stabilized through six intramolecular disulphide bridges; it shows broad-spectrum antimicrobial activity against bacteria and fungi, and it agglomerates single cells prior to killing. In this study, we further characterized SN2 by providing time-kill curves and corresponding growth inhibition analysis of model organisms, such as E. coli or B. subtilis. SN2 was produced recombinantly in E. coli with thioredoxin as fusion protein, which was removed after affinity purification by proteolytic digestion. Furthermore, the target specificity of SN2 was investigated by means of hemolysis and hemagglutination assays; its effect on plant cell membranes of isolated protoplasts was investigated by microscopy. SN2 shows a non-specific pore-forming effect in all tested membranes. We suggest that SN2 could be useful as a preservative agent to protect food, pharmaceuticals, or cosmetics from decomposition by microbes. PMID:27190708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
The number of genomes from uncultivated microbes will soon surpass the number of isolate genomes in public databases (Hugenholtz, Skarshewski, & Parks, 2016). Technological advancements in high-throughput sequencing and assembly, including single-cell genomics and the computational extraction of genomes from metagenomes (GFMs), are largely responsible. Here we propose community standards for reporting the Minimum Information about a Single-Cell Genome (MIxS-SCG) and Minimum Information about Genomes extracted From Metagenomes (MIxS-GFM) specific for Bacteria and Archaea. The standards have been developed in the context of the International Genomics Standards Consortium (GSC) community (Field et al., 2014) and can be viewed as amore » supplement to other GSC checklists including the Minimum Information about a Genome Sequence (MIGS), Minimum information about a Metagenomic Sequence(s) (MIMS) (Field et al., 2008) and Minimum Information about a Marker Gene Sequence (MIMARKS) (P. Yilmaz et al., 2011). Community-wide acceptance of MIxS-SCG and MIxS-GFM for Bacteria and Archaea will enable broad comparative analyses of genomes from the majority of taxa that remain uncultivated, improving our understanding of microbial function, ecology, and evolution.« less
Single cell transcriptome profiling of developing chick retinal cells.
Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M
2017-08-15
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.
Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community
Zhang, Dayi; Berry, James P; Zhu, Di; Wang, Yun; Chen, Yin; Jiang, Bo; Huang, Shi; Langford, Harry; Li, Guanghe; Davison, Paul A; Xu, Jian; Aries, Eric; Huang, Wei E
2015-01-01
Although uncultured microorganisms have important roles in ecosystems, their ecophysiology in situ remains elusive owing to the difficulty of obtaining live cells from their natural habitats. In this study, we employed a novel magnetic nanoparticle-mediated isolation (MMI) method to recover metabolically active cells of a group of previously uncultured phenol degraders, Burkholderiales spp., from coking plant wastewater biosludge; five other culturable phenol degraders—Rhodococcus sp., Chryseobacterium sp. and three different Pseudomonas spp.—were also isolated from the same biosludge using traditional methods. The kinetics of phenol degradation by MMI-recovered cells (MRCs) was similar to that of the original sludge. Stable isotope probing (SIP) and pyrosequencing of the 16S rRNA from the ‘heavy' DNA (13C-DNA) fractions indicated that Burkholderiales spp. were the key phenol degraders in situ in the biosludge, consistent with the results of MRCs. Single-cell Raman micro-spectroscopy was applied to probe individual bacteria in the MRCs obtained from the SIP experiment and showed that 79% of them were fully 13C-labelled. Biolog assays on the MRCs revealed the impact of various carbon and nitrogen substrates on the efficiency of phenol degradation in the wastewater treatment plant biosludge. Specifically, hydroxylamine, a metabolite of ammonia oxidisation, but not nitrite, nitrate or ammonia, inhibited phenol degradation in the biosludge. Our results provided a novel insight into the occasional abrupt failure events that occur in the wastewater treatment plant. This study demonstrated that MMI is a powerful tool to recover live and functional cells in situ from a complex microbial community to enable further characterisation of their physiology. PMID:25191996
Contributions of PTCH Gene Variants to Isolated Cleft Lip and Palate
Mansilla, M.A.; Cooper, M.E.; Goldstein, T.; Castilla, E.E.; Camelo, J.S. Lopez; Marazita, M.L.; Murray, J.C.
2007-01-01
Objective Mutations in patched (PTCH) cause the nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome. Nevoid basal cell carcinoma syndrome may present with developmental anomalies, including rib and craniofacial abnormalities, and predisposes to several tumor types, including basal cell carcinoma and medulloblastoma. Cleft palate is found in 4% of individuals with nevoid basal cell carcinoma syndrome. Because there might be specific sequence alterations in PTCH that limit expression to orofacial clefting, a genetic study of PTCH was undertaken in cases with cleft lip and/or palate (CL/P) known not to have nevoid basal cell carcinoma syndrome. Results Seven new normal variants spread along the entire gene and three missense mutations were found among cases with cleft lip and/or palate. One of these variants (P295S) was not found in any of 1188 control samples. A second variant was found in a case and also in 1 of 1119 controls. The third missense (S827G) was found in 5 of 1369 cases and in 5 of 1104 controls and is likely a rare normal variant. Linkage and linkage desequilibrium also was assessed using normal variants in and adjacent to the PTCH gene in 220 families (1776 individuals), each with two or more individuals with isolated clefting. Although no statistically significant evidence of linkage (multipoint HLOD peak = 2.36) was uncovered, there was borderline evidence of significant transmission distortion for one haplotype of two single nucleotide polymorphisms located within the PTCH gene (p = .08). Conclusion Missense mutations in PTCH may be rare causes of isolated cleft lip and/or palate. An as yet unidentified variant near PTCH may act as a modifier of cleft lip and/or palate. PMID:16405370
Neutrophilic leukocyte membrane proteins. I. Isolation.
Hawkins, D; Sauvé, M
1978-03-01
Rabbit exudate-derived PMN were homogenized and the cell membranes isolated on a two-phase aqueous system. Glycoproteins were extracted from cell membranes with lithium diiodosalicylate. SDS polyacrylamide gel electrophoretic analysis showed a consistent pattern of three major glycoprotein entities. Cells radioiodinated supravitally showed most of the radioactivity associated with larger glycoprotein entities whereas PMN membranes radiolabeled after isolation yielded a single major peak of radioactivity associated with a much smaller protein entity. Heterologous antisera against rabbit PMN, PMN membranes, and membrane glycoproteins were all cytotoxic for PMN in the presence of complement, and all bound to the PMN surface as demonstrated with immunocolloidal gold on electron microscopy. The data suggest that one or more glycoprotein entities are membrane-associated ectoglycoproteins which can be radiolabeled supravitally.
Nanoliter reactors improve multiple displacement amplification of genomes from single cells.
Marcy, Yann; Ishoey, Thomas; Lasken, Roger S; Stockwell, Timothy B; Walenz, Brian P; Halpern, Aaron L; Beeson, Karen Y; Goldberg, Susanne M D; Quake, Stephen R
2007-09-01
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.
Influence of E. coli endotoxin on ACTH induced adrenal cell steroidogenesis.
Garcia, R; Viloria, M D; Municio, A M
1985-03-01
The effect of endotoxin (lipopolysaccharide from E. coli) on isolated adrenocortical cells was examined. Lipopolysaccharide decreased the ACTH-induced steroidogenesis. This effect was shown by all corticotropin concentrations studied, and the longer the incubation time, the higher the effect produced. The rate of decrease of ACTH-induced steroidogenesis was dependent on the concentration of lipopolysaccharide in the medium. Binding of [125I]ACTH to adrenocortical cells was modified by lipopolysaccharide; this modification was related to a decrease of the ACTH-induced steroidogenesis. This effect supports the hypothesis of a direct interaction between lipopolysaccharide and the cell membrane with a concomitant distortion of the cell surface affecting the ACTH receptor sites of their environment. [14C]Lipopolysaccharide binds to isolated adrenocortical cells. Binding specificity was investigated by competitive experiments in the presence of various types of endotoxins, polypeptide hormones and proteins. Unlabelled lipopolysaccharide from the same bacterial strain and isolated under identical conditions than the labelled lipopolysaccharide exerted the strongest inhibitory activity. Unlabelled lipopolysaccharide of various strains different from that originating the labelled lipopolysaccharide exerted the less displacement. It would imply a certain kind of specificity but the decrease in the binding of lipopolysaccharide produced by ACTH and glucagon suggests the existence of non-specific interactions between lipopolysaccharide and cell membrane.
Goodwin, B J; Moore, J O; Weinberg, J B
1984-02-01
Freshly isolated human leukemia cells have been shown in the past to display varying in vitro responses to phorbol diesters, depending on their cell type. Specific receptors for the phorbol diesters have been demonstrated on numerous different cells. This study was designed to characterize the receptors for phorbol diesters on leukemia cells freshly isolated from patients with different kinds of leukemia and to determine if differences in binding characteristics for tritium-labeled phorbol 12,13-dibutyrate (3H-PDBu) accounted for the different cellular responses elicited in vitro by phorbol diesters. Cells from 26 patients with different kinds of leukemia were studied. PDBu or phorbol 12-myristate 13-acetate (PMA) caused cells from patients with acute myeloblastic leukemia (AML), acute promyelocytic (APML), acute myelomonocytic (AMML), acute monocytic (AMoL), acute erythroleukemia (AEL), chronic myelocytic leukemia (CML) in blast crisis (myeloid), acute undifferentiated leukemia (AUL), and hairy cell leukemia (HCL) (n = 15) to adhere to plastic and spread. However, they caused no adherence or spreading and only slight aggregation of cells from patients with acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or CML-blast crisis (lymphoid) (n = 11). All leukemia cells studied, irrespective of cellular type, displayed specific receptors for 3H-PDBu. The time courses for binding by all leukemia types were similar, with peak binding at 5-10 min at 37 degrees C and 120 min at 4 degrees C. The binding affinities were similar for patients with ALL (96 +/- 32 nM, n = 4), CLL (126 +/- 32 nM, n = 6), and acute nonlymphoid leukemia (73 +/- 14 nM, n = 11). Likewise, the numbers of specific binding sites/cell were comparable for the patients with ALL (6.2 +/- 1.3 X 10(5) sites/cell, n = 4), CLL (5.0 +/- 2.0 X 10(5) sites/cell, n = 6), and acute nonlymphoid leukemia (4.4 +/- 1.9 X 10(5) sites/cell, n = 11). Thus, the differing responses to phorbol diesters of various types of freshly isolated leukemia cells appear to be due to differences other than initial ligand-receptor binding.
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei.
Lee, Choong H; Bengtsson, Niclas; Chrzanowski, Stephen M; Flint, Jeremy J; Walter, Glenn A; Blackband, Stephen J
2017-01-03
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies.
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei
Lee, Choong H.; Bengtsson, Niclas; Chrzanowski, Stephen M.; Flint, Jeremy J.; Walter, Glenn A.; Blackband, Stephen J.
2017-01-01
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies. PMID:28045071
Varadarajan, Navin; Julg, Boris; Yamanaka, Yvonne J.; Chen, Huabiao; Ogunniyi, Adebola O.; McAndrew, Elizabeth; Porter, Lindsay C.; Piechocka-Trocha, Alicja; Hill, Brenna J.; Douek, Daniel C.; Pereyra, Florencia; Walker, Bruce D.; Love, J. Christopher
2011-01-01
CD8+ T cells are a key component of the adaptive immune response to viral infection. An inadequate CD8+ T cell response is thought to be partly responsible for the persistent chronic infection that arises following infection with HIV. It is therefore critical to identify ways to define what constitutes an adequate or inadequate response. IFN-γ production has been used as a measure of T cell function, but the relationship between cytokine production and the ability of a cell to lyse virus-infected cells is not clear. Moreover, the ability to assess multiple CD8+ T cell functions with single-cell resolution using freshly isolated blood samples, and subsequently to recover these cells for further functional analyses, has not been achieved. As described here, to address this need, we have developed a high-throughput, automated assay in 125-pl microwells to simultaneously evaluate the ability of thousands of individual CD8+ T cells from HIV-infected patients to mediate lysis and to produce cytokines. This concurrent, direct analysis enabled us to investigate the correlation between immediate cytotoxic activity and short-term cytokine secretion. The majority of in vivo primed, circulating HIV-specific CD8+ T cells were discordant for cytolysis and cytokine secretion, notably IFN-γ, when encountering cognate antigen presented on defined numbers of cells. Our approach should facilitate determination of signatures of functional variance among individual effector CD8+ T cells, including those from mucosal samples and those induced by vaccines. PMID:21965332
Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd
2017-04-01
Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/g cell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 g product /L, 86% yield (based on UDP), and a total turnover number of 103 g UDP-glc /g cell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Leisegang, Matthias; Engels, Boris; Schreiber, Karin; Yew, Poh Yin; Kiyotani, Kazuma; Idel, Christian; Arina, Ainhoa; Duraiswamy, Jaikumar; Weichselbaum, Ralph R; Uckert, Wolfgang; Nakamura, Yusuke; Schreiber, Hans
2016-06-01
Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602. ©2015 American Association for Cancer Research.
uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.
Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina
2014-01-01
Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.
Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L
2014-04-15
Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.
The Hawaiian bobtail squid as a model system for selective particle capture in microfluidic systems.
NASA Astrophysics Data System (ADS)
Nawroth, Janna; McFall-Ngai, Margaret; Dabiri, John
2013-11-01
Juvenile Hawaiian bobtail squids reliably capture and isolate a single species of bacteria, Vibrio fischeri, from inhaled coastal water containing a huge background of living and non-living particles of comparable size. Biochemical mechanisms orchestrate a chain of specific interactions as soon as V.fischeri attach to the squid's internal light organ. It remains unclear, however, how the bacteria carried by the squid's ventilation currents are initially attracted to the light organ's surface. Here we present preliminary experimental data showing how arrangement and coordination of the cilia covering the light organ create a 3D flow field that facilitates advection, sieving and selective retention of flow-borne particles. These studies may inspire novel microfluidic tools for detection and capture of specific cells and particles.
Laget, Sophie; Broncy, Lucile; Hormigos, Katia; Dhingra, Dalia M; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia
2017-01-01
Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.
Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.
2012-01-01
In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870
Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing
NASA Astrophysics Data System (ADS)
Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación
2016-05-01
A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00926c
A novel, tissue-specific, Drosophila homeobox gene.
Barad, M; Jack, T; Chadwick, R; McGinnis, W
1988-07-01
The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen.
Roberts, C H; Turino, C; Madrigal, J A; Marsh, S G E
2007-06-01
DNA enrichment by allele-specific hybridization (DEASH) was used as a means to isolate individual alleles of the killer cell immunoglobulin-like receptor (KIR2DL4) gene from heterozygous genomic DNA. Using long-template polymerase chain reaction (LT-PCR), the complete KIR2DL4 gene was amplified from a cell line that had previously been characterized for its KIR gene content by PCR using sequence-specific primers (PCR-SSP). The whole gene amplicons were sequenced and we identified two heterozygous positions in accordance with the predictions of the PCR-SSP. The amplicons were then hybridized to allele-specific, biotinylated oligonucleotide probes and through binding to streptavidin-coated beads, the targeted alleles were enriched. A second PCR amplified only the exonic regions of the enriched allele, and these were then sequenced in full. We show DEASH to be capable of enriching single alleles from a heterozygous PCR product, and through sequencing the enriched DNA, we are able to produce complete coding sequences of the KIR2DL4 alleles in accordance with the typing predicted by PCR-SSP.
Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers
Cha, Jung-Joon; Park, Yangkyu; Yun, Joho; Kim, Hyeon Woo; Park, Chang-Ju; Kang, Giseok; Jung, Minhyun; Pak, Boryeong; Jin, Suk-Won
2016-01-01
Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells. PMID:27812531
Phagocytic response of astrocytes to damaged neighboring cells
Cruz, Gladys Mae S.; Ro, Clarissa C.; Moncada, Emmanuel G.; Khatibzadeh, Nima; Flanagan, Lisa A.; Berns, Michael W.
2018-01-01
This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane). In addition to the presence (or lack) of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue. PMID:29708987
Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A
2009-07-21
A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.
Douglas, Erik S.; Hsiao, Sonny C.; Onoe, Hiroaki; Bertozzi, Carolyn R.; Francis, Matthew B.; Mathies, Richard A.
2010-01-01
A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min−1, while primary T cells exhibited only 2 milli-pH min−1. This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties. PMID:19568668
Methods of cell purification: a critical juncture for laboratory research and translational science.
Amos, Peter J; Cagavi Bozkulak, Esra; Qyang, Yibing
2012-01-01
Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells. Copyright © 2011 S. Karger AG, Basel.
Grula, Marjori A.; Buller, Patricia L.; Weaver, Robert F.
1981-01-01
[3H]RNA was synthesized in nuclei isolated at various times postinfection from the fat bodies of Heliothis zea larvae infected with H. zea nuclear polyhedrosis virus and from cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. To detect virus-specific RNA synthesis, the [3H]RNA was hybridized to denatured viral DNA immobilized on nitrocellulose filters. Nuclear polyhedrosis virus-specific RNA synthesis in the infected nuclei isolated from H. zea larval fat bodies and S. frugiperda cells was only inhibited 20 to 25% by concentrations of α-amanitin sufficient to inhibit the host RNA polymerase II. In addition, a productive nuclear polyhedrosis virus infection was obtained in S. frugiperda cells grown in the presence of an α-amanitin concentration that inhibited 90% of the cellular RNA polymerase II activity. The cellular RNA polymerase II enzyme remained sensitive to α-amanitin during infection, and there was no evidence that a virus-coded, α-amanitin-resistant enzyme was synthesized after the onset of infection. The data suggest that the bulk of nuclear polyhedrosis virus-specific RNA synthesis in isolated nuclei is transcribed by an enzyme other than the host RNA polymerase II. PMID:16789208
Krenn, V; Hensel, F; Kim, H J; Souto Carneiro, M M; Starostik, P; Ristow, G; König, A; Vollmers, H P; Müller-Hermelink, H K
1999-11-01
In osteoarthritis (OA), the synovial tissue exhibits a nonfollicular inflammatory infiltration with a characteristic arrangement of lymphocytes and plasma cells. These arrangements are either small perivascular aggregates with plasma cells surrounding the lymphocytes or small groups of plasma cells, located in the vicinity of small blood vessels. These patterns suggest that B lymphocytes directly differentiate into plasma cells. To understand the B-cell response in OA, we analyzed the V(H) genes from B cells of synovial tissue of nine OA patients (average age, 71.5+/-10.5 years; six female and three male). V(H) gene repertoires were determined from RNA prepared from tissue cryosections and from DNA of single isolated B lymphocytes and plasma cells. The inflammatory infiltrate was analyzed immunohistochemically by detecting CD20, Ki-M4 (follicular dendritic cells), CD4, IgG, IgM, IgA, Ki-67, and by simultaneous demonstration of the plasma-cell-specific antigen CD138 (syndecan-1) and factor VIII. The molecular data demonstrate B cells with a high number of somatic mutations (average, 16.5 to 19.8), and high ratios of replacement to silent mutations in the small lymphocytic/plasmacellular aggregates of OA. In the tissue cryosections, the values of the sigmaR/sigmaS at the complementarity determining regions were 5.3 and 2.0 in the framework regions. For both the isolated B lymphocytes and plasma cells, the value of this ratio in the complementarity determining regions was 3.5. In the framework regions, the values of this ratio were 2.0 for the isolated B cells and 1.8 for the plasma cells. B lymphocytes and plasma cells exhibited a distribution not described thus far. Two patterns of B-cell distribution could be observed: (a) Centrally located CD20+ B and CD4+ and CD8+ T lymphocytes were surrounded directly by IgG (predominantly) or IgA and IgM plasma cells. No proliferating Ki-67-positive cells and no follicular dendritic cells (germinal centers) could be detected in the aggregates; (b) Plasma cells (predominantly IgG) were located directly near endothelial cells of small blood vessels. The finding of highly mutated V(H) genes in B lymphocytes and the characteristic arrangement of B lymphocytes and plasma cells suggests that B cells, which participate in OA synovialitis, have undergone germinal center reaction at different sites. This may explain the low inflammatory infiltration without germinal centers in OA, which is a feature of this primarily degenerative joint disease.
Habaza, Mor; Kirschbaum, Michael; Guernth‐Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus
2016-01-01
A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label‐free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive‐index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive‐index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label‐free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label‐free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids. PMID:28251046
RAPID CLONING OF HIGH AFFINITY HUMAN MONOCLONAL ANTIBODIES AGAINST INFLUENZA VIRUS
Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, Trey; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M.; Capra, J. Donald; Ahmed, Rafi; Wilson, Patrick C.
2008-01-01
Pre-existing neutralizing antibody provides the first line of defense against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14 to 21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B cell receptor (BCR) repertoire that in some donors were dominated by only a few B cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over fifty human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high affinity mAbs from humans within a month after vaccination. The panel of influenza virus specific human mAbs allowed us to address the issue of original antigenic sin (OAS) - the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared to the virus strain present in the vaccine1. However, we found that the vast majority of the influenza virus specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal healthy adults receiving influenza vaccination. PMID:18449194
Rapid cloning of high-affinity human monoclonal antibodies against influenza virus.
Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, William A; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M; Capra, J Donald; Ahmed, Rafi; Wilson, Patrick C
2008-05-29
Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14-21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.
NASA Astrophysics Data System (ADS)
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-06
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147