Sample records for specific size range

  1. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  2. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  3. Testing the 'island rule' for a tenebrionid beetle (Coleoptera, Tenebrionidae)

    NASA Astrophysics Data System (ADS)

    Palmer, Miquel

    2002-05-01

    Insular populations and their closest mainland counterparts commonly display body size differences that are considered to fit the island rule, a theoretical framework to explain both dwarfism and gigantism in isolated animal populations. The island rule is used to explain the pattern of change of body size at the inter-specific level. But the model implicitly makes also a prediction for the body size of isolated populations of a single species. It suggests that, for a hypothetical species covering a wide range of island sizes, there exists a specific island size where this species reaches the largest body size. Body size would be small (in relative terms) in the smallest islets of the species range. It would increase with island size, and reach a maximum at some specific island size. However, additional increases from such a specific island size would instead promote body size reduction, and small (in relative terms) body sizes would be found again on the largest islands. The biogeographical patterns predicted by the island rule have been described and analysed for vertebrates only (mainly mammals), but remain largely untested for insects or other invertebrates. I analyse here the pattern of body size variation between seven isolated insular populations of a flightless beetle, Asida planipennis (Coleoptera, Tenebrionidae). This is an endemic species of Mallorca, Menorca and a number of islands and islets in the Balearic archipelago (western Mediterranean). The study covers seven of the 15 known populations (i.e., there are only 15 islands or islets inhabited by the species). The populations studied fit the pattern advanced above and we could, therefore, extrapolate the island rule to a very different kind of organism. However, the small sample size of some of the populations invites some caution at this early stage.

  4. Microzooplankton grazing and selective feeding during bloom periods in the Tolo Harbour area as revealed by HPLC pigment analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangjiang; Tang, Chi Hung; Wong, Chong Kim

    2014-07-01

    Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5-20, 20-200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d- 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d- 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5-20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63-5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.

  5. SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To compare size-specific dose estimate (SSDE) in abdominal fat quantitative CT with another dose estimate D{sub size,L} that also takes into account scan length. Methods: This study complied with the requirements of the Health Insurance Portability and Accountability Act. At our institution, abdominal fat CT is performed with scan length = 1 cm and CTDI{sub vol} = 4.66 mGy (referenced to body CTDI phantom). A previously developed CT simulation program was used to simulate single rotation axial scans of 6–55 cm diameter water cylinders, and dose integral of the longitudinal dose profile over the central 1 cm length wasmore » used to predict the dose at the center of one-cm scan range. SSDE and D{sub size,L} were assessed for 182 consecutive abdominal fat CT examinations with mean water-equivalent diameter (WED) of 27.8 cm ± 6.0 (range, 17.9 - 42.2 cm). Patient age ranged from 18 to 75 years, and weight ranged from 39 to 163 kg. Results: Mean SSDE was 6.37 mGy ± 1.33 (range, 3.67–8.95 mGy); mean D{sub size,L} was 2.99 mGy ± 0.85 (range, 1.48 - 4.88 mGy); and mean D{sub size,L}/SSDE ratio was 0.46 ± 0.04 (range, 0.40 - 0.55). Conclusion: The conversion factors for size-specific dose estimate in AAPM Report No. 204 were generated using 15 - 30 cm scan lengths. One needs to be cautious in applying SSDE to small length CT scans. For abdominal fat CT, SSDE was 80–150% higher than the dose of 1 cm scan length.« less

  6. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  7. Identification of Low-Latency Obfuscated Traffic Using Multi-Attribute Analysis

    DTIC Science & Technology

    2017-03-01

    the distribution of common Tor packet sizes. Herrmann et al. also contend that the remaining variations in observed packet sizes are caused by OS...specific fragmentation and that Tor’s variation in packet size provides an additional level of protection as the false positive rate (FPR) using packet...three pre-filter variations , the observed FPR for non-Tor ranged from 94.4 percent to 7.2 percent, and the observed FNR for Tor ranged from 61.3

  8. A study of the Huntington's disease associated trinucleotide repeat in the Scottish population.

    PubMed Central

    Barron, L H; Warner, J P; Porteous, M; Holloway, S; Simpson, S; Davidson, R; Brock, D J

    1993-01-01

    Accurate measurements of a specific CAG repeat sequence in the Huntington's disease (HD) gene in 337 HD patients and 229 normal controls from the Scottish population showed a range from 35 to 62 repeats in affected subjects and eight to 33 in normal subjects. A link between early onset of symptoms and very high repeat number was seen. For HD patients with the most common affected allele sizes (39 to 42 repeats) absolute repeat size was a poor index for the age at onset of symptoms. There was variability in the transmitted repeat size for both sexes in the HD size range. We observed a significant increase of repeat size for paternal transmission of the disease and greater instability for paternally transmitted CAG repeats in the HD size range. Images PMID:8133495

  9. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice

    NASA Astrophysics Data System (ADS)

    Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-03-01

    Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.

  10. Construction of human chromosome 21-specific yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtainedmore » from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.« less

  11. Specific surface area of a crushed welded tuff before and after aqueous dissolution

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1994-01-01

    Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.

  12. Role of specific IgE and skin-prick testing in predicting food challenge results to baked egg.

    PubMed

    Cortot, Catherine F; Sheehan, William J; Permaul, Perdita; Friedlander, James L; Baxi, Sachin N; Gaffin, Jonathan M; Dioun, Anahita F; Hoffman, Elaine B; Schneider, Lynda C; Phipatanakul, Wanda

    2012-01-01

    Previous studies suggest that children with egg allergy may be able to tolerate baked egg. Reliable predictors of a successful baked egg challenge are not well established. We examined egg white-specific IgE levels, skin-prick test (SPT) results, and age as predictors of baked egg oral food challenge (OFC) outcomes. We conducted a retrospective chart review of children, aged 2-18 years, receiving an egg white-specific IgE level, SPT, and OFC to baked egg from 2008 to 2010. Fifty-two oral baked egg challenges were conducted. Of the 52 challenges, 83% (n = 43) passed and 17% (n = 9) failed, including 2 having anaphylaxis. Median SPT wheal size was 12 mm (range, 0-35 mm) for passed challenges and 17 mm (range, 10-30 mm) for failed challenges (p = 0.091). The negative predictive value for passing the OFC was 100% (9 of 9) if SPT wheal size was <10 mm. Median egg white-specific IgE was 2.02 kU/L (range, <0.35-13.00 kU/L) for passed challenges and 1.52 kU/L (range, 0.51-6.10 kU/L) for failed challenges (p = 0.660). Receiver operating characteristic (ROC) curve analysis for SPT revealed an area under the curve (AUC) of 0.64. ROC curve analysis for egg white-specific IgE revealed an AUC of 0.63. There was no significant difference in age between patients who failed and those who passed (median = 8.8 years versus 7.0 years; p = 0.721). Based on our sample, SPT, egg white-specific IgE and age are not good predictors of passing a baked egg challenge. However, there was a trend for more predictability with SPT wheal size.

  13. Specific surface area as a maturity index of lunar fines

    NASA Technical Reports Server (NTRS)

    Gammage, R. B.; Holmes, H. F.

    1975-01-01

    Mature surface fines have an equilibrium specific surface area of about 0.6 sq m/g the equivalent mean particle size being about 3 microns. The adsorption behavior of inert gases (reversible isotherms) indicates that the particles are also nonporous in the size range of pores from 10 to 3000 A. Apparently, in mature soils there is a balance in the forces which cause fining, attrition, pore filling, and growth of lunar dust grains. Immature, lightly irradiated soils usually have coarser grains which reduce in size as aging proceeds. The specific surface area, determined by nitrogen or krypton sorption at 77 K, is a valuable index of soil maturity.

  14. Optimal group size in a highly social mammal

    PubMed Central

    Markham, A. Catherine; Gesquiere, Laurence R.; Alberts, Susan C.; Altmann, Jeanne

    2015-01-01

    Group size is an important trait of social animals, affecting how individuals allocate time and use space, and influencing both an individual’s fitness and the collective, cooperative behaviors of the group as a whole. Here we tested predictions motivated by the ecological constraints model of group size, examining the effects of group size on ranging patterns and adult female glucocorticoid (stress hormone) concentrations in five social groups of wild baboons (Papio cynocephalus) over an 11-y period. Strikingly, we found evidence that intermediate-sized groups have energetically optimal space-use strategies; both large and small groups experience ranging disadvantages, in contrast to the commonly reported positive linear relationship between group size and home range area and daily travel distance, which depict a disadvantage only in large groups. Specifically, we observed a U-shaped relationship between group size and home range area, average daily distance traveled, evenness of space use within the home range, and glucocorticoid concentrations. We propose that a likely explanation for these U-shaped patterns is that large, socially dominant groups are constrained by within-group competition, whereas small, socially subordinate groups are constrained by between-group competition and predation pressures. Overall, our results provide testable hypotheses for evaluating group-size constraints in other group-living species, in which the costs of intra- and intergroup competition vary as a function of group size. PMID:26504236

  15. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    PubMed

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-05

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.

  16. Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?

    PubMed

    Koprivnikar, J; Randhawa, H S

    2013-04-01

    The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.

  17. The relationship between mammal faunas and climatic instability since the Last Glacial Maximum: A Nearctic vs. Western Palearctic comparison

    NASA Astrophysics Data System (ADS)

    Torres-Romero, Erik Joaquín; Varela, Sara; Fisher, Jason T.; Olalla-Tárraga, Miguel Á.

    2017-07-01

    Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions - defined on the basis of climatic change velocity since the Last Glacial Maximum - in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on particular life-history traits.

  18. Filtering analysis of a direct numerical simulation of the turbulent Rayleigh-Benard problem

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.

    1990-01-01

    A filtering analysis of a turbulent flow was developed which provides details of the path of the kinetic energy of the flow from its creation via thermal production to its dissipation. A low-pass spatial filter is used to split the velocity and the temperature field into a filtered component (composed mainly of scales larger than a specific size, nominally the filter width) and a fluctuation component (scales smaller than a specific size). Variables derived from these fields can fall into one of the above two ranges or be composed of a mixture of scales dominated by scales near the specific size. The filter is used to split the kinetic energy equation into three equations corresponding to the three scale ranges described above. The data from a direct simulation of the Rayleigh-Benard problem for conditions where the flow is turbulent are used to calculate the individual terms in the three kinetic energy equations. This is done for a range of filter widths. These results are used to study the spatial location and the scale range of the thermal energy production, the cascading of kinetic energy, the diffusion of kinetic energy, and the energy dissipation. These results are used to evaluate two subgrid models typically used in large-eddy simulations of turbulence. Subgrid models attempt to model the energy below the filter width that is removed by a low-pass filter.

  19. Does size matter? A test of size-specific mortality in Atlantic salmon Salmo salar smolts tagged with acoustic transmitters.

    PubMed

    Newton, M; Barry, J; Dodd, J A; Lucas, M C; Boylan, P; Adams, C E

    2016-09-01

    Mortality rates of wild Atlantic salmon Salmo salar smolts implanted with acoustic transmitters were assessed to determine if mortality was size dependent. The routinely accepted, but widely debated, '2% transmitter mass: body mass' rule in biotelemetry was tested by extending the transmitter burden up to 12·7% of body mass in small [mean fork length (LF ) 138·3 mm, range 115-168 mm] downstream migrating S. salar smolts. Over the short timescale of emigration (range 11·9-44·5 days) through the lower river and estuary, mortality was not related to S. salar size, nor was a relationship found between mortality probability and transmitter mass: body mass or transmitter length: LF ratios. This study provides further evidence that smolt migration studies can deviate from the '2% rule' of thumb, to more appropriate study-specific measures, which enables the use of fishes representative of the body size in natural populations without undue effects. © 2016 The Fisheries Society of the British Isles.

  20. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    PubMed

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be greatly influenced by these factors. Furthermore, the results also confirmed the hypothesis that smaller particles generate more ROS activity and should be evaluated carefully for risk assessment.

  1. Size-Frequency Distributions of Dust - Size Debris from the Impact Disruption of Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Flynn, George J.; Sandel, L. Erica; Strait, Melissa M.

    2007-01-01

    We present mass-frequency data for fragments from the impact disruption of four chondritic meteorites, extending to masses several orders of magnitude smaller the mass-frequency data that are usually measured in similar impact experiments. Masses of mm- to cm-scale fragments were determined by directly weighing debris collected from the floor of the Ames Vertical Gun Range impact chamber. Masses of sub-mm to dust-size fragments were determined from analysis of foil penetration data. The mass-frequency distributions display a range of morphologies ranging from nearly linear power-law distributions to `broken' power laws with progressively shallower slopes at smaller fragment masses, apparently dependent on the magnitude of the impact specific energy.

  2. Size and Morphology Controlled Synthesis of Boehmite Nanoplates and Crystal Growth Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Cui, Wenwen; Page, Katharine L.

    The aluminum oxyhydroxide boehmite is an important crystalline phase in nature and industry. We report development of a flexible additive-free hydrothermal synthesis method to prepare high quality boehmite nanoplates with sizes ranging from under 20 nm to 5 um via using hydrated alumina gels and amorphous powders as precursors. The size and morphology of the boehmite nanoplates was systematically varied between hexagonal and rhombic by adjusting precursor concentrations, pH, and the synthesis temperature, due to face-specific effects. The transformation mechanism is consistent with dissolution and reprecipitation, and involves transitory initial appearance of metastable gibbsite that is later consumed upon nucleationmore » of boehmite. Detailed X-ray pair distribution characterization of the solids over time showed similarities in short-range order that suggest linkages in local chemistry and bonding topology between the precursors and product boehmite, yet also that precursor-specific differences in long-range order appear to manifest subtle changes in resulting boehmite characteristics, suggesting that the rate and extent of water release or differences in the resulting solubilized aluminate speciation leads to slightly different polymerization and condensation pathways. The findings suggest that during dissolution of the precursor that precursor-specific dehydration or solution speciation could be important aspects of the transformation impacting the molecular level details of boehmite nucleation and growth.« less

  3. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2012-06-01

    Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.

  4. Data communications in a parallel active messaging interface of a parallel computer

    DOEpatents

    Davis, Kristan D.; Faraj, Daniel A.

    2014-07-22

    Algorithm selection for data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including specifications of a client, a context, and a task, endpoints coupled for data communications through the PAMI, including associating in the PAMI data communications algorithms and ranges of message sizes so that each algorithm is associated with a separate range of message sizes; receiving in an origin endpoint of the PAMI a data communications instruction, the instruction specifying transmission of a data communications message from the origin endpoint to a target endpoint, the data communications message characterized by a message size; selecting, from among the associated algorithms and ranges, a data communications algorithm in dependence upon the message size; and transmitting, according to the selected data communications algorithm from the origin endpoint to the target endpoint, the data communications message.

  5. Data communications in a parallel active messaging interface of a parallel computer

    DOEpatents

    Davis, Kristan D; Faraj, Daniel A

    2013-07-09

    Algorithm selection for data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including specifications of a client, a context, and a task, endpoints coupled for data communications through the PAMI, including associating in the PAMI data communications algorithms and ranges of message sizes so that each algorithm is associated with a separate range of message sizes; receiving in an origin endpoint of the PAMI a data communications instruction, the instruction specifying transmission of a data communications message from the origin endpoint to a target endpoint, the data communications message characterized by a message size; selecting, from among the associated algorithms and ranges, a data communications algorithm in dependence upon the message size; and transmitting, according to the selected data communications algorithm from the origin endpoint to the target endpoint, the data communications message.

  6. Role of specific IgE and skin-prick testing in predicting food challenge results to baked egg

    PubMed Central

    Cortot, Catherine F.; Sheehan, William J.; Permaul, Perdita; Friedlander, James L.; Baxi, Sachin N.; Gaffin, Jonathan M.; Dioun, Anahita F.; Hoffman, Elaine B.; Schneider, Lynda C.

    2012-01-01

    Previous studies suggest that children with egg allergy may be able to tolerate baked egg. Reliable predictors of a successful baked egg challenge are not well established. We examined egg white–specific IgE levels, skin-prick test (SPT) results, and age as predictors of baked egg oral food challenge (OFC) outcomes. We conducted a retrospective chart review of children, aged 2–18 years, receiving an egg white–specific IgE level, SPT, and OFC to baked egg from 2008 to 2010. Fifty-two oral baked egg challenges were conducted. Of the 52 challenges, 83% (n = 43) passed and 17% (n = 9) failed, including 2 having anaphylaxis. Median SPT wheal size was 12 mm (range, 0–35 mm) for passed challenges and 17 mm (range, 10–30 mm) for failed challenges (p = 0.091). The negative predictive value for passing the OFC was 100% (9 of 9) if SPT wheal size was <10 mm. Median egg white–specific IgE was 2.02 kU/L (range, <0.35–13.00 kU/L) for passed challenges and 1.52 kU/L (range, 0.51–6.10 kU/L) for failed challenges (p = 0.660). Receiver operating characteristic (ROC) curve analysis for SPT revealed an area under the curve (AUC) of 0.64. ROC curve analysis for egg white–specific IgE revealed an AUC of 0.63. There was no significant difference in age between patients who failed and those who passed (median = 8.8 years versus 7.0 years; p = 0.721). Based on our sample, SPT, egg white–specific IgE and age are not good predictors of passing a baked egg challenge. However, there was a trend for more predictability with SPT wheal size. PMID:22584194

  7. Invasiveness of plants is predicted by size and fecundity in the native range

    PubMed Central

    Jelbert, Kim; Stott, Iain; McDonald, Robbie A; Hodgson, Dave

    2015-01-01

    An important goal for invasive species research is to find key traits of species that predispose them to being invasive outside their native range. Comparative studies have revealed phenotypic and demographic traits that correlate with invasiveness among plants. However, all but a few previous studies have been performed in the invaded range, an approach which potentially conflates predictors of invasiveness with changes that happen during the invasion process itself. Here, we focus on wild plants in their native range to compare life-history traits of species known to be invasive elsewhere, with their exported but noninvasive relatives. Specifically, we test four hypotheses: that invasive plant species (1) are larger; (2) are more fecund; (3) exhibit higher fecundity for a given size; and (4) attempt to make seed more frequently, than their noninvasive relatives in the native range. We control for the effects of environment and phylogeny using sympatric congeneric or confamilial pairs in the native range. We find that invasive species are larger than noninvasive relatives. Greater size yields greater fecundity, but we also find that invasives are more fecund per-unit-size. Synthesis: We provide the first multispecies, taxonomically controlled comparison of size, and fecundity of invasive versus noninvasive plants in their native range. We find that invasive species are bigger, and produce more seeds, even when we account for their differences in size. Our findings demonstrate that invasive plant species are likely to be invasive as a result of both greater size and constitutively higher fecundity. This suggests that size and fecundity, relative to related species, could be used to predict which plants should be quarantined. PMID:26045946

  8. A study on the trinucleotide repeat associated with Huntington`s disease in the Chinese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bing-wen Soong; Jih-tsuu Wang

    1994-09-01

    Analysis of the polymorphic (CAG)n repeat in the hungingtin gene in the chinese confirmed the presence of an expanded repeat on all Huntington`s disease chromosomes. Measurement of the specific CAG repeat sequence in 34 HD chromosomes from 15 unrelated families and 190 control chromosomes from the Chinese population showed a range from 9 to 29 repeats in normal subjects and 40 to 58 in affected subjects. The size distributions of normal and affected alleles did not overlap. A clear correlation bewteen early onset of symptoms and very high repeat number was seen, but the spread of the age-at-onset in themore » major repeat range producing characteristic HD it too wide to be of diagnostic value. There was also variability in the transmitted repeat size for both sexes in the HD size range. Maternal HD alleles showed a moderate instability with a preponderance of size decrease, while paternal HD alleles had a tendency to increase in repeat size on transmission, the degree of which appeared proportional to the initial size.« less

  9. Measurement of variation in soil solute tracer concentration across a range of effective pore sizes

    USGS Publications Warehouse

    Harvey, Judson W.

    1993-01-01

    Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.

  10. Size-effect of oligomeric cholesteric liquid-crystal microlenses on the optical specifications.

    PubMed

    Bayon, Chloé; Agez, Gonzague; Mitov, Michel

    2015-10-15

    In cholesteric liquid-crystalline microlenses, we have studied the role of the microlens size on the focused light intensity and the focal length. We have found that the intensity is maximized by aiming a specific range for the diameter and the thickness of microlenses and that the focal length is adjusted by controlling the diameter and the annealing time of the optical film. Cholesteric microlenses may be used as wavelength-tunable directional light sources in organic soft-matter circuits.

  11. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.

    The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less

  12. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    PubMed

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Body size mediated coexistence of consumers competing for resources in space

    USGS Publications Warehouse

    Basset, A.; Angelis, D.L.

    2007-01-01

    Body size is a major phenotypic trait of individuals that commonly differentiates co-occurring species. We analyzed inter-specific competitive interactions between a large consumer and smaller competitors, whose energetics, selection and giving-up behaviour on identical resource patches scaled with individual body size. The aim was to investigate whether pure metabolic constraints on patch behaviour of vagile species can determine coexistence conditions consistent with existing theoretical and experimental evidence. We used an individual-based spatially explicit simulation model at a spatial scale defined by the home range of the large consumer, which was assumed to be parthenogenic and semelparous. Under exploitative conditions, competitive coexistence occurred in a range of body size ratios between 2 and 10. Asymmetrical competition and the mechanism underlying asymmetry, determined by the scaling of energetics and patch behaviour with consumer body size, were the proximate determinant of inter-specific coexistence. The small consumer exploited patches more efficiently, but searched for profitable patches less effectively than the larger competitor. Therefore, body-size related constraints induced niche partitioning, allowing competitive coexistence within a set of conditions where the large consumer maintained control over the small consumer and resource dynamics. The model summarises and extends the existing evidence of species coexistence on a limiting resource, and provides a mechanistic explanation for decoding the size-abundance distribution patterns commonly observed at guild and community levels. ?? Oikos.

  14. WE-DE-207B-11: Implementation of Size-Specific 3D Beam Modulation Filters On a Dedicated Breast CT Platform Using Breast Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, A; Boone, J

    Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically.more » These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less

  15. Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity.

    PubMed

    Arrieta-Montiel, Maria P; Shedge, Vikas; Davila, Jaime; Christensen, Alan C; Mackenzie, Sally A

    2009-12-01

    The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.

  16. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  17. Small image laser range finder for planetary rover

    NASA Technical Reports Server (NTRS)

    Wakabayashi, Yasufumi; Honda, Masahisa; Adachi, Tadashi; Iijima, Takahiko

    1994-01-01

    A variety of technical subjects need to be solved before planetary rover navigation could be a part of future missions. The sensors which will perceive terrain environment around the rover will require critical development efforts. The image laser range finder (ILRF) discussed here is one of the candidate sensors because of its advantage in providing range data required for its navigation. The authors developed a new compact-sized ILRF which is a quarter of the size of conventional ones. Instead of the current two directional scanning system which is comprised of nodding and polygon mirrors, the new ILRF is equipped with the new concept of a direct polygon mirror driving system, which successfully made its size compact to accommodate the design requirements. The paper reports on the design concept and preliminary technical specifications established in the current development phase.

  18. Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven

    2017-03-01

    Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.

  19. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics.

    PubMed

    Perkins, Elizabeth L; Basu, Saikat; Garcia, Guilherme J M; Buckmire, Robert A; Shah, Rupali N; Kimbell, Julia S

    2018-03-01

    Objectives Vocal fold granulomas are benign lesions of the larynx commonly caused by gastroesophageal reflux, intubation, and phonotrauma. Current medical therapy includes inhaled corticosteroids to target inflammation that leads to granuloma formation. Particle sizes of commonly prescribed inhalers range over 1 to 4 µm. The study objective was to use computational fluid dynamics to investigate deposition patterns over a range of particle sizes of inhaled corticosteroids targeting the larynx and vocal fold granulomas. Study Design Retrospective, case-specific computational study. Setting Tertiary academic center. Subjects/Methods A 3-dimensional anatomically realistic computational model of a normal adult airway from mouth to trachea was constructed from 3 computed tomography scans. Virtual granulomas of varying sizes and positions along the vocal fold were incorporated into the base model. Assuming steady-state, inspiratory, turbulent airflow at 30 L/min, computational fluid dynamics was used to simulate respiratory transport and deposition of inhaled corticosteroid particles ranging over 1 to 20 µm. Results Laryngeal deposition in the base model peaked for particle sizes 8 to 10 µm (2.8%-3.5%). Ideal sizes ranged over 6 to 10, 7 to 13, and 7 to 14 µm for small, medium, and large granuloma sizes, respectively. Glottic deposition was maximal at 10.8% for 9-µm-sized particles for the large posterior granuloma, 3 times the normal model (3.5%). Conclusion As the virtual granuloma size increased and the location became more posterior, glottic deposition and ideal particle size generally increased. This preliminary study suggests that inhalers with larger particle sizes, such as fluticasone propionate dry-powder inhaler, may improve laryngeal drug deposition. Most commercially available inhalers have smaller particles than suggested here.

  20. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    PubMed

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  1. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  2. Effects of population reduction on white-tailed deer home-range dynamics

    USGS Publications Warehouse

    Crimmins, Shawn M.; Edwards, John W.; Campbell, Tyler A; Ford, W. Mark; Keyser, Patrick D.; Miller, Brad F.; Miller, Karl V.

    2015-01-01

    Management strategies designed to reduce the negative impacts of overabundant Odocoileus virginianus (White-tailed Deer) populations on forest regeneration may be influenced by changes in both population density and timber harvest. However, there is conflicting evidence as to how such changes in per capita resource availability influence home-range patterns. We compared home-range patterns of 33 female White-tailed Deer from a low-density population at a site with abundant browse to patterns of a sample of >100 females prior to a 75% reduction in population density and a doubling in timber harvest area. Home-range and core-area sizes were approximately 3 times larger than were found prior to population decline and timber harvest increase, consistent with predictions related to intraspecific competition. We also observed greater site fidelity than previously exhibited, although this may be an artifact of increased home-range sizes. Our results support previous research suggesting that White-tailed Deer home-range size is inversely related to population density and is driven, in part, by intraspecific competition for resources. Relationships among population density, resource availability, and home-range patterns among female White-tailed Deer appear to be complex and context specific.

  3. Determining size-specific emission factors for environmental tobacco smoke particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less

  4. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  5. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    PubMed

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-12

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  6. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  7. Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.

    2013-10-01

    Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.

  8. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  9. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    PubMed

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period (SDA coefficient) ranged from approximately 7-13% of the total DE intake while the proportion of total energy expended on SDA above RMR ranged from approximately 16-27%.

  10. High temperature stability of anatase in titania-alumina semiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid.

    PubMed

    López-Granada, G; Barceinas-Sánchez, J D O; López, R; Gómez, R

    2013-12-15

    The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    PubMed Central

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm−3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  12. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    NASA Astrophysics Data System (ADS)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm-3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown.

  13. Heating efficiency dependency on size and morphology of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Parekh, Kinnari; Parmar, Harshida; Sharma, Vinay; Ramanujan, R. V.

    2018-04-01

    Different size magnetite nanoparticles ranging from superparamagnetic (9 nm) to single domain (27 nm) and multi domain (53 nm) were synthesized using chemical route. Morphology of these particles as seen from TEM images indicates shape change from spherical to cubic with the growth of particles. The saturation magnetization (σs) and Specific Loss Power (SLP) showed maximum for single domain size, 72 emu/g and 102 W/g, respectively then those of multi domain size particles. These samples show higher SLP at relatively low concentration, low frequency and low amplitude compared to samples prepared by other routes.

  14. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies

    PubMed Central

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E. L.

    2012-01-01

    Background and Aims Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Methods Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Key Results Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Conclusions Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits. PMID:22337079

  15. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  16. Understanding the evolution of Mammalian brain structures; the need for a (new) cerebrotype approach.

    PubMed

    Willemet, Romain

    2012-05-18

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.

  17. Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach

    PubMed Central

    Willemet, Romain

    2012-01-01

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772

  18. Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.

    PubMed

    Al-Nimry, Suhair S; Alkhamis, Khouloud A

    2018-04-01

    Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range < 63 μm (surface area 55.4 m 2 /g). The rate of degradation at moisture content < 3% was 0.4547 h -1 , almost two times higher than that (0.2594 h -1 ) at moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.

  19. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.

    PubMed

    Chevillotte, Fabien; Perrot, Camille

    2017-08-01

    The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.

  20. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion.

    PubMed

    Riley, Megan E; Griffen, Blaine D

    2017-01-01

    Range shifts and expansions resulting from global climate change have the potential to create novel communities with unique plant-animal interactions. Organisms expanding their range into novel biotic and abiotic environments may encounter selection pressures that alter traditional biogeographic patterns of life history traits. Here, we used field surveys to examine latitudinal patterns of life history traits in a broadly distributed ectotherm (mangrove tree crab Aratus pisonii) that has recently experienced a climate change-induced range expansion into a novel habitat type. Additionally, we conducted laboratory and field experiments to investigate characteristics associated with these life history traits (e.g. fecundity, offspring quality, and potential selection pressures). We compared these characteristics in native mangrove habitats in which the species has historically dwelled and novel salt marsh habitats into which the species has recently expanded its range. Consistent with traditional biogeographic concepts (i.e. Bergmann's clines), size at maturity and mean body size of reproductive females increased with latitude within the native habitat. However, they decreased significantly in novel habitats at the highest latitudes of the species' range, which was consistent with habitat-specific differences in both biotic (predation) and abiotic (temperature) selection pressures. Although initial maternal investment (egg volume and weight) did not differ between habitats, fecundity was lower in novel habitats as a result of differences in size at reproduction. Offspring quality, as measured by larval starvation resistance, was likewise diminished in novel habitats relative to native habitats. These differences in offspring quality may have enduring consequences for species success and persistence in novel habitats. Life history characteristics such as those investigated here are fundamental organismal traits; consequently, understanding the potential impacts of climate change responses on latitudinal patterns of these traits is key to understanding climate change impacts on natural systems.

  1. Establishment of a Universal Size Standard Strain for Use with the PulseNet Standardized Pulsed-Field Gel Electrophoresis Protocols: Converting the National Databases to the New Size Standard

    PubMed Central

    Hunter, Susan B.; Vauterin, Paul; Lambert-Fair, Mary Ann; Van Duyne, M. Susan; Kubota, Kristy; Graves, Lewis; Wrigley, Donna; Barrett, Timothy; Ribot, Efrain

    2005-01-01

    The PulseNet National Database, established by the Centers for Disease Control and Prevention in 1996, consists of pulsed-field gel electrophoresis (PFGE) patterns obtained from isolates of food-borne pathogens (currently Escherichia coli O157:H7, Salmonella, Shigella, and Listeria) and textual information about the isolates. Electronic images and accompanying text are submitted from over 60 U.S. public health and food regulatory agency laboratories. The PFGE patterns are generated according to highly standardized PFGE protocols. Normalization and accurate comparison of gel images require the use of a well-characterized size standard in at least three lanes of each gel. Originally, a well-characterized strain of each organism was chosen as the reference standard for that particular database. The increasing number of databases, difficulty in identifying an organism-specific standard for each database, the increased range of band sizes generated by the use of additional restriction endonucleases, and the maintenance of many different organism-specific strains encouraged us to search for a more versatile and universal DNA size marker. A Salmonella serotype Braenderup strain (H9812) was chosen as the universal size standard. This strain was subjected to rigorous testing in our laboratories to ensure that it met the desired criteria, including coverage of a wide range of DNA fragment sizes, even distribution of bands, and stability of the PFGE pattern. The strategy used to convert and compare data generated by the new and old reference standards is described. PMID:15750058

  2. Effects of CO{sub 2} activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation hadmore » developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.« less

  3. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  4. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null-hypothesis that simulating the presence of a large mass fraction of phyllosilicates in dust aerosols in the size range 2 m, in comparison to a simple model assumption where this is neglected, does not yield a significant effect on the magnitude and geographical distribution of the predicted IFN number. Results from sensitivity experiments are presented as well.

  5. Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min

    2016-04-04

    Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensemblesmore » with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.« less

  6. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes

    PubMed Central

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for. PMID:27067389

  7. Birds on the move in the face of climate change: High species turnover in northern Europe.

    PubMed

    Virkkala, Raimo; Lehikoinen, Aleksi

    2017-10-01

    Species richness is predicted to increase in the northern latitudes in the warming climate due to ranges of many southern species expanding northwards. We studied changes in the composition of the whole avifauna and in bird species richness in a period of already warming climate in Finland (in northern Europe) covering 1,100 km in south-north gradient across the boreal zone (over 300,000 km 2 ). We compared bird species richness and species-specific changes (for all 235 bird species that occur in Finland) in range size (number of squares occupied) and range shifts (measured as median of area of occupancy) based on bird atlas studies between 1974-1989 and 2006-2010. In addition, we tested how the habitat preference and migration strategy of species explain species-specific variation in the change of the range size. The study was carried out in 10 km squares with similar research intensity in both time periods. The species richness did not change significantly between the two time periods. The composition of the bird fauna, however, changed considerably with 37.0% of species showing an increase and 34.9% a decrease in the numbers of occupied squares, that is, about equal number of species gained and lost their range. Altogether 95.7% of all species (225/235) showed changes either in the numbers of occupied squares or they experienced a range shift (or both). The range size of archipelago birds increased and long-distance migrants declined significantly. Range loss observed in long-distance migrants is in line with the observed population declines of long-distance migrants in the whole Europe. The results show that there is an ongoing considerable species turnover due to climate change and due to land use and other direct human influence. High bird species turnover observed in northern Europe may also affect the functional diversity of species communities.

  8. Enzyme specificity under dynamic control

    NASA Astrophysics Data System (ADS)

    Ota, Nobuyuki; Agard, David A.

    2002-03-01

    The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.

  9. BODY SIZE-SPECIFIC EFFECTIVE DOSE CONVERSION COEFFICIENTS FOR CT SCANS.

    PubMed

    Romanyukha, Anna; Folio, Les; Lamart, Stephanie; Simon, Steven L; Lee, Choonsik

    2016-12-01

    Effective dose from computed tomography (CT) examinations is usually estimated using the scanner-provided dose-length product and using conversion factors, also known as k-factors, which correspond to scan regions and differ by age according to five categories: 0, 1, 5, 10 y and adult. However, patients often deviate from the standard body size on which the conversion factor is based. In this study, a method for deriving body size-specific k-factors is presented, which can be determined from a simple regression curve based on patient diameter at the centre of the scan range. Using the International Commission on Radiological Protection reference paediatric and adult computational phantoms paired with Monte Carlo simulation of CT X-ray beams, the authors derived a regression-based k-factor model for the following CT scan types: head-neck, head, neck, chest, abdomen, pelvis, abdomen-pelvis (AP) and chest-abdomen-pelvis (CAP). The resulting regression functions were applied to a total of 105 paediatric and 279 adult CT scans randomly sampled from patients who underwent chest, AP and CAP scans at the National Institutes of Health Clinical Center. The authors have calculated and compared the effective doses derived from the conventional age-specific k-factors with the values computed using their body size-specific k-factor. They found that by using the age-specific k-factor, paediatric patients tend to have underestimates (up to 3-fold) of effective dose, while underweight and overweight adult patients tend to have underestimates (up to 2.6-fold) and overestimates (up to 4.6-fold) of effective dose, respectively, compared with the effective dose determined from their body size-dependent factors. The authors present these size-specific k-factors as an alternative to the existing age-specific factors. The body size-specific k-factor will assess effective dose more precisely and on a more individual level than the conventional age-specific k-factors and, hence, improve awareness of the true exposure, which is important for the clinical community to understand. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid

    NASA Astrophysics Data System (ADS)

    Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim

    Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.

  11. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  12. Minimizing the Maximum Expected Sample Size in Two-Stage Phase II Clinical Trials with Continuous Outcomes

    PubMed Central

    Wason, James M. S.; Mander, Adrian P.

    2012-01-01

    Two-stage designs are commonly used for Phase II trials. Optimal two-stage designs have the lowest expected sample size for a specific treatment effect, for example, the null value, but can perform poorly if the true treatment effect differs. Here we introduce a design for continuous treatment responses that minimizes the maximum expected sample size across all possible treatment effects. The proposed design performs well for a wider range of treatment effects and so is useful for Phase II trials. We compare the design to a previously used optimal design and show it has superior expected sample size properties. PMID:22651118

  13. Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds

    NASA Astrophysics Data System (ADS)

    Boitel, G.; Fedala, D.; Myon, N.

    2016-11-01

    Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.

  14. Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.

    PubMed

    Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke

    2015-12-01

    We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.

  15. Spaceflight Human System Standards

    NASA Technical Reports Server (NTRS)

    Holubec, Keith; Tillman, Barry; Connolly, Jan

    2009-01-01

    NASA created a new approach for human system integration and human performance standards. NASA created two documents a standard and a reference handbook. The standard is titled NASA Space Flight Human-System Standard (SFHSS) and consists of two-volumes: Volume 1- Crew Health This volume covers standards needed to support astronaut health (medical care, nutrition, sleep, exercise, etc.) Volume 2 Human Factors, Habitability and Environmental Health This volume covers the standards for system design that will maintain astronaut performance (ie., environmental factors, design of facilities, layout of workstations, and lighting requirements). It includes classic human factors requirements. The new standards document is written in terms so that it is applicable to a broad range of present and future NASA systems. The document states that all new programs prepare system-specific requirements that will meet the general standards. For example, the new standard does not specify a design should accommodate specific percentiles of a defined population. Rather, NASA-STD-3001, Volume 2 states that all programs shall prepare program-specific requirements that define the user population and their size ranges. The design shall then accommodate the full size range of those users. The companion reference handbook, Human Integration Design Handbook (HIDH), was developed to capture the design consideration information from NASA-STD-3000, and adds spaceflight lessons learned, gaps in knowledge, example solutions, and suggests research to further mature specific disciplines. The HIDH serves two major purposes: HIDH is the reference document for writing human factors requirements for specific systems. HIDH contains design guidance information that helps insure that designers create systems which safely and effectively accommodate the capabilities and limitations of space flight crews.

  16. Reproductive consequences of farmland heterogeneity in little owls (Athene noctua).

    PubMed

    Michel, Vanja T; Naef-Daenzer, Beat; Keil, Herbert; Grüebler, Martin U

    2017-04-01

    The amount of high-quality habitat patches, their distribution, and the resource accessibility therein play a key role in regulating habitat effects on reproductive success. Heterogeneous habitats offer non-substitutable resources (e.g. nest sites and food) and substitutable resources (e.g. different types of food) in close proximity, thereby facilitating landscape complementation and supplementation. However, it remains poorly understood how spatial resource separation in homogeneous agricultural landscapes affects reproductive success. To fill this gap, we investigated the relationships between farmland heterogeneity and little owl (Athene noctua) reproductive success, including potential indirect effects of the heterogeneity-dependent home-range size on reproduction. Little owl home-ranges were related to field heterogeneity in summer and to structural heterogeneity in winter. Clutch size was correlated with the amount of food-rich habitat close to the nest irrespective of female home-range size, suggesting importance of landscape complementation. Nestling survival was positively correlated with male home-range size, suggesting importance of landscape supplementation. At the same time, fledgling condition was negatively correlated with male home-range size. We conclude that decreasing farmland heterogeneity constrains population productivity by two processes: increasing separation of food resources from nest or roost sites results in low landscape complementation, and reduction of alternative food resources limits landscape supplementation. Our results suggest that structural heterogeneity affects landscape complementation, whereas the heterogeneity and management of farmland fields affect landscape supplementation. Thus, to what extent a reduction of the heterogeneity within agricultural landscapes results in species-specific habitat degradation depends on the ecological processes (i.e. landscape complementation or supplementation) which are affected.

  17. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.

  18. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    PubMed

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  19. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    PubMed

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  20. Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands

    PubMed Central

    Wanjari, Piyush P.; Gibb, Bruce C.; Ashbaugh, Henry S.

    2013-01-01

    Biomimetic deep-cavity cavitand hosts possess unique recognition and encapsulation properties that make them capable of selectively binding a range of non-polar guests within their hydrophobic pocket. Adamantane based derivatives which snuggly fit within the pocket of octa-acid deep cavity cavitands exhibit some of the strongest host binding. Here we explore the roles of guest size and attractiveness on optimizing guest binding to form 1:1 complexes with octa-acid cavitands in water. Specifically we simulate the water-mediated interactions of the cavitand with adamantane and a range of simple Lennard-Jones guests of varying diameter and attractive well-depth. Initial simulations performed with methane indicate hydrated methanes preferentially reside within the host pocket, although these guests frequently trade places with water and other methanes in bulk solution. The interaction strength of hydrophobic guests increases with increasing size from sizes slightly smaller than methane to Lennard-Jones guests comparable in size to adamantane. Over this guest size range the preferential guest binding location migrates from the bottom of the host pocket upwards. For guests larger than adamantane, however, binding becomes less favorable as the minimum in the potential-of-mean force shifts to the cavitand face around the portal. For a fixed guest diameter, the Lennard-Jones well-depth is found to systematically shift the guest-host potential-of-mean force to lower free energies, however, the optimal guest size is found to be insensitive to increasing well-depth. Ultimately our simulations show that adamantane lies within the optimal range of guest sizes with significant attractive interactions to match the most tightly bound Lennard-Jones guests studied. PMID:24359375

  1. Effect of Habitat Conditions and Plant Traits on Leaf Damage in the Carduoideae Subfamily

    PubMed Central

    Münzbergová, Zuzana; Skuhrovec, Jiří

    2013-01-01

    Plant traits are the key factors that determine herbivore foraging selection. The traits serving as defense traits against herbivores represent a wide range of traits, such as chemical, physiological, morphological and life-history traits. While many studies considered plant defense traits at the within-species scale, much less is known from comparisons of a wide range of closely related species. The aim of this study was to identify factors responsible for the intensity of leaf damage in the Carduoideae subfamily of Asteraceae, which hosts many invasive species and thus is potential candidate plant species that could be controlled by biological control. Specifically, we wanted to see the relative importance of habitat characteristics, plant size and plants traits in determining the degree of folivory. The study identified several defense traits able to explain differences in herbivory between species after accounting for differences in the habitats in which the species occur and the plant size. Specifically, the most important traits were traits related to the quality of the leaf tissue expressed as the content of phosphorus, water and specific leaf area, which suggests that the leaf quality had a more important effect on the degree of herbivory than the presence of specific defense mechanisms such as spines and hair. Leaf quality is thus a candidate factor that drives herbivore choice when selecting which plant to feed on and should be considered when assessing the danger that a herbivore will switch hosts when introduced to a new range. PMID:23717643

  2. Goniometric reliability in a clinical setting. Shoulder measurements.

    PubMed

    Riddle, D L; Rothstein, J M; Lamb, R L

    1987-05-01

    The purpose of this study was to examine the intratester and intertester reliabilities for clinical goniometric measurements of shoulder passive range of motion (PROM) using two different sizes of universal goniometers. Patients were measured without controlling therapist goniometric placement technique or patient position during measurements. Repeated PROM measurements of shoulder flexion, extension, abduction, shoulder horizontal abduction, horizontal adduction, lateral (external) rotation, and medial (internal) rotation were taken of two groups of 50 subjects each. The intratester intraclass correlation coefficients (ICCs) for all motions ranged from .87 to .99. The ICCs for the intertester reliability of PROM measurements of horizontal abduction, horizontal adduction, extension, and medial rotation ranged from .26 to .55. The intertester ICCs for PROM measurements of flexion, abduction, and lateral rotation ranged from .84 to .90. Goniometric PROM measurements for the shoulder appear to be highly reliable when taken by the same physical therapist, regardless of the size of the goniometer used. The degree of intertester reliability for these measurements appears to be range-of-motion specific.

  3. Temperature-Dependent Growth and Fission Rate Plasticity Drive Seasonal and Geographic Changes in Body Size in a Clonal Sea Anemone.

    PubMed

    Ryan, Will H

    2018-02-01

    The temperature-size rule is a commonly observed pattern where adult body size is negatively correlated with developmental temperature. In part, this may occur as a consequence of allometric scaling, where changes in the ratio of surface area to mass limit oxygen diffusion as body size increases. As oxygen demand increases with temperature, a smaller body should be favored as temperature increases. For clonal animals, small changes in growth and/or fission rate can rapidly alter the average body size of clonal descendants. Here I test the hypothesis that the clonal sea anemone Diadumene lineata is able to track an optimal body size through seasonal temperature changes using fission rate plasticity. Individuals from three regions (Florida, Georgia, and Massachusetts) across the species' latitudinal range were grown in a year-long reciprocal common garden experiment mimicking seasonal temperature changes at three sites. Average body size was found to be smaller and fission rates higher in warmer conditions, consistent with the temperature-size rule pattern. However, seasonal size and fission patterns reflect a complex interaction between region-specific thermal reaction norms and the local temperature regime. These details provide insight into both the range of conditions required for oxygen limitation to contribute to a negative correlation between body size and temperature and the role that fission rate plasticity can play in tracking a rapidly changing optimal phenotype.

  4. Quantitative determination of rarity of freshwater fishes and implications for imperiled-species designations.

    PubMed

    Pritt, Jeremy J; Frimpong, Emmanuel A

    2010-10-01

    Conserving rare species and protecting biodiversity and ecosystem functioning depends on sound information on the nature of rarity. Rarity is multidimensional and has a variety of definitions, which presents the need for a quantitative classification scheme with which to categorize species as rare or common. We constructed such a classification for North American freshwater fishes to better describe rarity in fishes and provide researchers and managers with a tool to streamline conservation efforts. We used data on range extents, habitat specificities, and local population sizes of North American freshwater fishes and a variety of quantitative methods and statistical decision criteria, including quantile regression and a cost-function algorithm to determine thresholds for categorizing a species as rare or common. Species fell into eight groups that conform to an established framework for rarity. Fishes listed by the American Fisheries Society (AFS) as endangered, threatened, or vulnerable were most often rare because their local population sizes were low, ranges were small, and they had specific habitat needs, in that order, whereas unlisted species were most often considered common on the basis of these three factors. Species with large ranges generally had few specific habitat needs, whereas those with small ranges tended to have narrow habitat specificities. We identified 30 species not designated as imperiled by AFS that were rare along all dimensions of rarity and may warrant further study or protection, and we found three designated species that were common along all dimensions and may require a review of their imperilment status. Our approach could be applied to other taxa to aid conservation decisions and serve as a useful tool for future revisions of listings of fish species. © 2010 Society for Conservation Biology.

  5. Opening wedge and anatomic-specific plates in foot and ankle applications.

    PubMed

    Kluesner, Andrew J; Morris, Jason B

    2011-08-01

    As surgeons continually push to improve techniques and outcomes, anatomic-specific and procedure-specific fixation options are becoming increasingly available. The unique size, shape, and function of the foot provide an ideal framework for the use of anatomic-specific plates. These distinctive plate characteristics range from anatomic contouring and screw placements to incorporated step-offs and wedges. By optimizing support, compression, and stabilization, patients may return to weight bearing and activity sooner, improving outcomes. This article discusses anatomic-specific plates and their use in forefoot and rearfoot surgical procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Fungal synthesis of size-defined nanoparticles

    NASA Astrophysics Data System (ADS)

    Zielonka, Aleksandra; Klimek-Ochab, Magdalena

    2017-12-01

    Fungi with metabolic capacities can efficiently synthesize a wide range of nanoparticles (NPs). This biotransformation process and its product have extensive applications especially for industry, agriculture and medicine, where NPs size and shape is essential and can be defined by specific analytical methods. Fungi cultivation and further bioconversion can be fully controlled to obtain the desired nanoparticles. Additionally, this review provides information about the fungus F. oxysporum, which is able to synthesize the largest amount of different types of NPs.

  7. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  8. New Technology/Old Technology: Comparing Lunar Grain Size Distribution Data and Methods

    NASA Technical Reports Server (NTRS)

    Fruland, R. M.; Cooper, Bonnie L.; Gonzalexz, C. P.; McKay, David S.

    2011-01-01

    Laser diffraction technology generates reproducible grain size distributions and reveals new structures not apparent in old sieve data. The comparison of specific sieve fractions with the Microtrac distribution curve generated for those specific fractions shows a reasonable match for the mean of each fraction between the two techniques, giving us confidence that the large existing body of sieve data can be cross-correlated with new data based on laser diffraction. It is well-suited for lunar soils, which have as much as 25% of the material in the less than 20 micrometer fraction. The fines in this range are of particular interest because they may contain a record of important space weathering processes.

  9. Conceptual development of a ground-based radio-beacon navigation system for use on the surface of the moon

    NASA Technical Reports Server (NTRS)

    Beggins, Andrew J.; Canney, Lora M.; Dolezal, Anna Belle

    1988-01-01

    A spread-spectrum radio-beacon navigation system for use on the lunar surface is described. The subjects discussed are principle of operation and specifications to include power requirements, operating frequencies, weight, size, and range.

  10. Sizes of particles formed during municipal wastewater treatment.

    PubMed

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  11. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve; González, Gema; Tovar, Leidy M.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity,more » respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.« less

  12. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    USGS Publications Warehouse

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2017-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  13. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.

    PubMed

    Raghupathi, Krishna R; Koodali, Ranjit T; Manna, Adhar C

    2011-04-05

    The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.

  14. Online alcohol interventions: a systematic review.

    PubMed

    White, Angela; Kavanagh, David; Stallman, Helen; Klein, Britt; Kay-Lambkin, Frances; Proudfoot, Judy; Drennan, Judy; Connor, Jason; Baker, Amanda; Hines, Emily; Young, Ross

    2010-12-19

    There has been a significant increase in the availability of online programs for alcohol problems. A systematic review of the research evidence underpinning these programs is timely. Our objective was to review the efficacy of online interventions for alcohol misuse. Systematic searches of Medline, PsycINFO, Web of Science, and Scopus were conducted for English abstracts (excluding dissertations) published from 1998 onward. Search terms were: (1) Internet, Web*; (2) online, computer*; (3) alcohol*; and (4) E\\effect*, trial*, random* (where * denotes a wildcard). Forward and backward searches from identified papers were also conducted. Articles were included if (1) the primary intervention was delivered and accessed via the Internet, (2) the intervention focused on moderating or stopping alcohol consumption, and (3) the study was a randomized controlled trial of an alcohol-related screen, assessment, or intervention. The literature search initially yielded 31 randomized controlled trials (RCTs), 17 of which met inclusion criteria. Of these 17 studies, 12 (70.6%) were conducted with university students, and 11 (64.7%) specifically focused on at-risk, heavy, or binge drinkers. Sample sizes ranged from 40 to 3216 (median 261), with 12 (70.6%) studies predominantly involving brief personalized feedback interventions. Using published data, effect sizes could be extracted from 8 of the 17 studies. In relation to alcohol units per week or month and based on 5 RCTs where a measure of alcohol units per week or month could be extracted, differential effect sizes to posttreatment ranged from 0.02 to 0.81 (mean 0.42, median 0.54). Pre-post effect sizes for brief personalized feedback interventions ranged from 0.02 to 0.81, and in 2 multi-session modularized interventions, a pre-post effect size of 0.56 was obtained in both. Pre-post differential effect sizes for peak blood alcohol concentrations (BAC) ranged from 0.22 to 0.88, with a mean effect size of 0.66. The available evidence suggests that users can benefit from online alcohol interventions and that this approach could be particularly useful for groups less likely to access traditional alcohol-related services, such as women, young people, and at-risk users. However, caution should be exercised given the limited number of studies allowing extraction of effect sizes, the heterogeneity of outcome measures and follow-up periods, and the large proportion of student-based studies. More extensive RCTs in community samples are required to better understand the efficacy of specific online alcohol approaches, program dosage, the additive effect of telephone or face-to-face interventions, and effective strategies for their dissemination and marketing.

  15. Online Alcohol Interventions: A Systematic Review

    PubMed Central

    Kavanagh, David; Stallman, Helen; Klein, Britt; Kay-Lambkin, Frances; Proudfoot, Judy; Drennan, Judy; Connor, Jason; Baker, Amanda; Hines, Emily; Young, Ross

    2010-01-01

    Background There has been a significant increase in the availability of online programs for alcohol problems. A systematic review of the research evidence underpinning these programs is timely. Objectives Our objective was to review the efficacy of online interventions for alcohol misuse. Systematic searches of Medline, PsycINFO, Web of Science, and Scopus were conducted for English abstracts (excluding dissertations) published from 1998 onward. Search terms were: (1) Internet, Web*; (2) online, computer*; (3) alcohol*; and (4) E\\effect*, trial*, random* (where * denotes a wildcard). Forward and backward searches from identified papers were also conducted. Articles were included if (1) the primary intervention was delivered and accessed via the Internet, (2) the intervention focused on moderating or stopping alcohol consumption, and (3) the study was a randomized controlled trial of an alcohol-related screen, assessment, or intervention. Results The literature search initially yielded 31 randomized controlled trials (RCTs), 17 of which met inclusion criteria. Of these 17 studies, 12 (70.6%) were conducted with university students, and 11 (64.7%) specifically focused on at-risk, heavy, or binge drinkers. Sample sizes ranged from 40 to 3216 (median 261), with 12 (70.6%) studies predominantly involving brief personalized feedback interventions. Using published data, effect sizes could be extracted from 8 of the 17 studies. In relation to alcohol units per week or month and based on 5 RCTs where a measure of alcohol units per week or month could be extracted, differential effect sizes to posttreatment ranged from 0.02 to 0.81 (mean 0.42, median 0.54). Pre-post effect sizes for brief personalized feedback interventions ranged from 0.02 to 0.81, and in 2 multi-session modularized interventions, a pre-post effect size of 0.56 was obtained in both. Pre-post differential effect sizes for peak blood alcohol concentrations (BAC) ranged from 0.22 to 0.88, with a mean effect size of 0.66. Conclusions The available evidence suggests that users can benefit from online alcohol interventions and that this approach could be particularly useful for groups less likely to access traditional alcohol-related services, such as women, young people, and at-risk users. However, caution should be exercised given the limited number of studies allowing extraction of effect sizes, the heterogeneity of outcome measures and follow-up periods, and the large proportion of student-based studies. More extensive RCTs in community samples are required to better understand the efficacy of specific online alcohol approaches, program dosage, the additive effect of telephone or face-to-face interventions, and effective strategies for their dissemination and marketing. PMID:21169175

  16. The Radiological Physics Center's standard dataset for small field size output factors.

    PubMed

    Followill, David S; Kry, Stephen F; Qin, Lihong; Lowenstein, Jessica; Molineu, Andrea; Alvarez, Paola; Aguirre, Jose Francisco; Ibbott, Geoffrey S

    2012-08-08

    Delivery of accurate intensity-modulated radiation therapy (IMRT) or stereotactic radiotherapy depends on a multitude of steps in the treatment delivery process. These steps range from imaging of the patient to dose calculation to machine delivery of the treatment plan. Within the treatment planning system's (TPS) dose calculation algorithm, various unique small field dosimetry parameters are essential, such as multileaf collimator modeling and field size dependence of the output. One of the largest challenges in this process is determining accurate small field size output factors. The Radiological Physics Center (RPC), as part of its mission to ensure that institutions deliver comparable and consistent radiation doses to their patients, conducts on-site dosimetry review visits to institutions. As a part of the on-site audit, the RPC measures the small field size output factors as might be used in IMRT treatments, and compares the resulting field size dependent output factors to values calculated by the institution's treatment planning system (TPS). The RPC has gathered multiple small field size output factor datasets for X-ray energies ranging from 6 to 18 MV from Varian, Siemens and Elekta linear accelerators. These datasets were measured at 10 cm depth and ranged from 10 × 10 cm(2) to 2 × 2 cm(2). The field sizes were defined by the MLC and for the Varian machines the secondary jaws were maintained at a 10 × 10 cm(2). The RPC measurements were made with a micro-ion chamber whose volume was small enough to gather a full ionization reading even for the 2 × 2 cm(2) field size. The RPC-measured output factors are tabulated and are reproducible with standard deviations (SD) ranging from 0.1% to 1.5%, while the institutions' calculated values had a much larger SD range, ranging up to 7.9% [corrected].The absolute average percent differences were greater for the 2 × 2 cm(2) than for the other field sizes. The RPC's measured small field output factors provide institutions with a standard dataset against which to compare their TPS calculated values. Any discrepancies noted between the standard dataset and calculated values should be investigated with careful measurements and with attention to the specific beam model.

  17. Nanoparticle Distributions in Cancer and other Cells from Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the optical properties of whole cells and lysates using light transmission spectroscopy (LTS). LTS provides both the optical extinction coefficient in the wavelength range from 220 to 1100 nm and (by spectral inversion using a Mie model) the particle distribution density in the size range from 1 to 3000 nm. Our current work involves whole cells and lysates of cultured human oral cells and other plant and animal cells. We have found systematic differences in the optical extinction between cancer and normal whole cells and lysates, which translate to different particle size distributions (PSDs) for these materials. We have also found specific power-law dependences of particle density with particle diameter for cell lysates. This suggests a universality of the packing distribution in cells that can be compared to ideal Apollonian packing, with the cell modeled as a fractal body comprised of spheres on all size scales.

  18. Fuel spray data with LDV. [solar laser morphokinetomer capabilities in combustion research

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Meier, J. G.

    1979-01-01

    Droplet size and two component velocities in the severe environment of an operating gas turbine combustor system can be measured simultaneously using the solar laser morphokinetomer (SLM) which incorporates the following capabilities: (1) measurement of a true two-dimensional velocity vector with a range of + or - (0.01-200 m/sec); (2) measurement of particle size (range 5 to 300 micron m) simultaneously with the measurement of velocity; (3) specification of probe volume position coordinates with a high degree of accuracy (+ or - 0.5 mm); (4) immediate on-line data checks; and (5) rapid computer storage of acquired data. The optical system of the SLM incorporates an ultrasonic beam splitter to allow the measurement of a two-dimensional velocity vector simultaneously with particle size. A microprocessor with a limited storage capability permits immediate analysis of test data in the test cell.

  19. Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective

    PubMed Central

    Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke

    2015-01-01

    Objective We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Background Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. Method An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. Results The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. Conclusion This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. Application The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model–based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. PMID:26169309

  20. Study into the correlation of dominant pore throat size and SIP relaxation frequency

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett

    2016-12-01

    There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.

  1. Contrast-Enhanced Spectral Mammography is Comparable to MRI in the Assessment of Residual Breast Cancer Following Neoadjuvant Systemic Therapy.

    PubMed

    Patel, Bhavika K; Hilal, Talal; Covington, Matthew; Zhang, Nan; Kosiorek, Heidi E; Lobbes, Marc; Northfelt, Donald W; Pockaj, Barbara A

    2018-05-01

    To evaluate the performance of contrast-enhanced spectral mammography (CESM) compared to MRI in the assessment of tumor response in breast cancer patients undergoing neoadjuvant systemic therapy (NST). The institutional review board approved this study. From September 2014 to June 2017, we identified patients with pathologically confirmed invasive breast cancer who underwent NST. All patients had both CESM and MRI performed pre- and post-NST with pathological assessment after surgical management. Size of residual malignancy on post-NST CESM and MRI was compared with surgical pathology. Lin concordance and Pearson correlation coefficient were used to assess agreement. Bland-Altman plots were used to visualize the differences between tumor size on imaging and pathology. Sixty-five patients were identified. Mean age was 52.7 (range 30-76) years. Type of NST included chemotherapy in 53 (82%) and endocrine therapy in 12 (18%). Mean tumor size after NST was 14.6 (range 0-105) mm for CESM and 14.2 mm (range 0-75 mm) for MRI compared with 19.6 (range 0-100) mm on final surgical pathology. Equivalence tests demonstrated that mean tumor size measured by CESM (p = 0.009) or by MRI (p = 0.01) was equivalent to the mean tumor size measured by pathology within - 1 and 1-cm range. Comparing CESM versus MRI for assessment of complete response, the sensitivity was 95% versus 95%, specificity 66.7% versus 68.9%, positive predictive value 55.9% versus 57.6%, and negative predictive value 96.7% versus 96.9% respectively. CESM was comparable to MRI in assessing residual malignancy after completion of NST.

  2. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.

    PubMed

    Cui, Zaixu; Gong, Gaolang

    2018-06-02

    Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    PubMed

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  4. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D. T.

    2009-01-01

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria. PMID:19903886

  5. Experimental validation of the intrinsic spatial efficiency method over a wide range of sizes for cylindrical sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe; Camilla, S.

    The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the referencemore » material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.« less

  6. A comparison study of size-specific dose estimate calculation methods.

    PubMed

    Parikh, Roshni A; Wien, Michael A; Novak, Ronald D; Jordan, David W; Klahr, Paul; Soriano, Stephanie; Ciancibello, Leslie; Berlin, Sheila C

    2018-01-01

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ c ) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI vol, there was poor correlation, ρ c <0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide acceptable dose estimates for pediatric patients <30 cm in body width. Body weight provides a quick and practical method to identify conversion factors that can be used to estimate SSDE with reasonable accuracy in pediatric patients with body width ≥20 cm.

  7. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Nithiyanantham, U.; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-06-01

    A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 +/- 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g-1 was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 +/- 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g-1 was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water. Electronic supplementary information (ESI) available: The details about the instrument used for various characterizations and figures related to FE-SEM analysis, EDS analysis, photoluminescence (PL) and LASER Raman study are provided. Table related to FT-IR analysis is also provided. See DOI: 10.1039/c4nr01836b

  8. Contrasted patterns of age-specific reproduction in long-lived seabirds.

    PubMed

    Berman, M; Gaillard, J-M; Weimerskirch, H

    2009-01-22

    While the number of studies providing evidence of actuarial senescence is increasing, and covers a wide range of taxa, the process of reproductive senescence remains poorly understood. In fact, quite high reproductive output until the last years of life has been reported in several vertebrate species, so that whether or not reproductive senescence is widespread remains unknown. We compared age-specific changes of reproductive parameters between two closely related species of long-lived seabirds: the small-sized snow petrel Pagodroma nivea, and the medium-sized southern fulmar Fulmarus glacialoides. Both are sympatric in Antarctica. We used an exceptional dataset collected over more than 40 years to assess age-specific variations of both breeding probability and breeding success. We found contrasted age-specific reproductive patterns between the two species. Reproductive senescence clearly occurred from 21 years of age onwards in the southern fulmar, in both breeding probability and success, whereas we did not report any decline in the breeding success of the snow petrel, although a very late decrease in the proportion of breeders occurred at 34 years. Such a contrasted age-specific reproductive pattern was rather unexpected. Differences in life history including size or migratory behaviour are the most likely candidates to account for the difference we reported in reproductive senescence between these sympatric seabird species.

  9. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges.

    PubMed

    Sieber, Michael; Gudelj, Ivana

    2014-04-01

    In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. © 2014 John Wiley & Sons Ltd/CNRS.

  10. 46 CFR 164.023-5 - Performance; standard thread.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specification Material Type Class Ticket No. or size range V-T-285E Polyester I or II 1 E, F, FF. V-T-295E Nylon I or II A E, F, FF. MIL-T-43624A Polyester 24 through 12. MIL-T-43548C Polyester covered only 24...

  11. 46 CFR 164.023-5 - Performance; standard thread.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specification Material Type Class Ticket No. or size range V-T-285E Polyester I or II 1 E, F, FF. V-T-295E Nylon I or II A E, F, FF. MIL-T-43624A Polyester 24 through 12. MIL-T-43548C Polyester covered only 24...

  12. How to Make Money out of RLVs

    NASA Astrophysics Data System (ADS)

    Parkinson, B.

    A successful reusable launch vehicle (RLV) will need to launch payloads at lower prices than competing expendable launch vehicles (ELVs). Existing ELVs have the advantage of written off development costs, and support a range of payload sizes through dual launch and launcher modularity - features not expected to be shared by an RLV. However, the majority of ELV launch costs are expendable hardware, while for RLVs many costs are fixed annual costs. Starting with a per-flight cost below that of competing ELVs, an RLV can support a range of payload sizes at a fixed cost/kg. Since the cost of adding an extra flight to the annual operations (“marginal cost”) is also very much less than the “full recovery” cost, it is possible to extend the range of economic payload sizes downwards. This can provide the customer with a flexible, constant specific cost launcher, while giving the operator a strategy allowing recovery of the development and initial fleet production costs. An estimate for the probability distribution of future payloads (to LEO, GTO and polar orbits) is presented. This can then be used to optimize the vehicle market capture to maximise the operator's profit, or to identify a minimum market size for which an RLV will be profitable.

  13. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  14. Specific Radiological Imaging Findings in Patients With Hereditary Pancreatitis During a Long Follow-up of Disease.

    PubMed

    van Esch, Aura A J; Drenth, Joost P H; Hermans, John J

    2017-03-01

    Hereditary pancreatitis (HP) is characterized by recurrent episodes of inflammation of the pancreas. Radiological imaging is used to diagnose HP and to monitor complications. The aim of this study was to describe specific imaging findings in HP. We retrospectively collected data of HP patients with serial imaging and reviewed all radiological imaging studies (transabdominal ultrasonography, computed tomography, and magnetic resonance imaging). We included 15 HP patients, with a mean age of 32.5 years (range, 9-61 years) and mean disease duration of 24.1 years (range, 6-42 years). In total, 152 imaging studies were reviewed. Seventy-three percent of patients had a dilated main pancreatic duct (MPD) (width 3.5-18 mm). The MPD varied in size during disease course, with temporary reduction in diameter after drainage procedures. A severe dilated MPD (>10 mm) often coincided with presence of intraductal calcifications (size, 1-12 mm). In 73% of patients, pancreatic parenchyma atrophy occurred, which did not correlate with presence of exocrine or endocrine insufficiency. In HP, the MPD diameter increases with time, mostly without dilated side branches, and is often accompanied by large intraductal calcifications. The size of the MPD is independent of disease state. Atrophy of pancreatic parenchyma is not correlated with exocrine or endocrine insufficiency.

  15. Forest dynamics and its driving forces of sub-tropical forest in South China.

    PubMed

    Ma, Lei; Lian, Juyu; Lin, Guojun; Cao, Honglin; Huang, Zhongliang; Guan, Dongsheng

    2016-03-04

    Tree mortality and recruitment are key factors influencing forest dynamics, but the driving mechanisms of these processes remain unclear. To better understand these driving mechanisms, we studied forest dynamics over a 5-year period in a 20-ha sub-tropical forest in the Dinghushan Nature Reserve, South China. The goal was to identify determinants of tree mortality/recruitment at the local scale using neighborhood analyses on some locally dominant tree species. Results show that the study plot was more dynamic than some temperate and tropical forests in a comparison to large, long-term forest dynamics plots. Over the 5-year period, mortality rates ranged from 1.67 to 12.33% per year while recruitment rates ranged from 0 to 20.26% per year. Tree size had the most consistent effect on mortality across species. Recruitment into the ≥1-cm size class consistently occurred where local con-specific density was high. This suggests that recruitment may be limited by seed dispersal. Hetero-specific individuals also influenced recruitment significantly for some species. Canopy species had low recruitment into the ≥1-cm size class over the 5-year period. In conclusion, tree mortality and recruitment for sixteen species in this plot was likely limited by seed dispersal and density-dependence.

  16. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Knopf, Daniel A.; Miller, Ron L.; García-Pando, Carlos Perez

    2017-01-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number.

  17. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Fridlind, A. M.; Knopf, D. A.; Miller, R. L.; Pérez García-Pando, C.

    2017-12-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 2-4 μm contributes the largest INP number.

  18. Controlling chitosan-based encapsulation for protein and vaccine delivery

    PubMed Central

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  19. The Cost-Optimal Size of Future Reusable Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.

  20. Colonial, more widely distributed and less abundant bird species undergo wider population fluctuations independent of their population trend

    PubMed Central

    Møller, Anders P.

    2017-01-01

    Understanding temporal variability in population size is important for conservation biology because wide population fluctuations increase the risk of extinction. Previous studies suggested that certain ecological, demographic, life-history and genetic characteristics of species might be related to the degree of their population fluctuations. We checked whether that was the case in a large sample of 231 European breeding bird species while taking a number of potentially confounding factors such as population trends or similarities among species due to common descent into account. When species-specific characteristics were analysed one by one, the magnitude of population fluctuations was positively related to coloniality, habitat, total breeding range, heterogeneity of breeding distribution and natal dispersal, and negatively related to urbanisation, abundance, relative number of subspecies, parasitism and proportion of polymorphic loci. However, when abundance (population size) was included in the analyses of the other parameters, only coloniality, habitat, total breeding range and abundance remained significantly related to population fluctuations. The analysis including all these predictors simultaneously showed that population size fluctuated more in colonial, less abundant species with larger breeding ranges. Other parameters seemed to be related to population fluctuations only because of their association with abundance or coloniality. The unexpected positive relationship between population fluctuations and total breeding range did not seem to be mediated by abundance. The link between population fluctuations and coloniality suggests a previously unrecognized cost of coloniality. The negative relationship between population size and population fluctuations might be explained by at least three types of non-mutually exclusive stochastic processes: demographic, environmental and genetic stochasticity. Measurement error in population indices, which was unknown, may have contributed to the negative relationship between population size and fluctuations, but apparently only to a minor extent. The association between population size and fluctuations suggests that populations might be stabilized by increasing population size. PMID:28253345

  1. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications.

    PubMed

    Nithiyanantham, U; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-07-21

    A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.

  2. French Sizing of Medical Devices is not Fit for Purpose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibriya, Nabil, E-mail: nabskib@yahoo.co.uk; Hall, Rebecca; Powell, Steven

    PurposeThe purpose of the study is to quantify the variation in the metric equivalent of French size in a range of medical devices, from various manufacturers, used in interventional radiology.MethodsThe labelling of a range of catheters, introducers, drains, balloons, stents, and endografts was examined. Products were chosen to achieve a broad range of French sizes from several manufacturers. To assess manufacturing accuracy, eight devices were selected for measurement using a laser micrometer. The external diameters of three specimens of each device were measured at centimeter intervals along the length of the device to ensure uniformity.ResultsA total of 200 labels ofmore » interventional radiology equipment were scrutinized. The results demonstrate a wide variation in the metric equivalent of French sizing. Labelled products can vary in diameter across the product range by up to 0.79 mm.The devices selected for measurement with the non-contact laser micrometer demonstrate acceptable manufacturing consistency. The external diameter differed by 0.05 mm on average.ConclusionsOur results demonstrate wide variation in the interpretation of the French scale by different manufacturers of medical devices. This has the potential to lead to problems using coaxial systems especially when the products are from different manufacturers. It is recommended that standard labelling should be employed by all manufacturers conveying specific details of the equipment. Given the wide variation in the interpretation of the French scale, our opinion is that this scale either needs to be abandoned or be strictly defined and followed.« less

  3. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  4. Size dependent polaronic conduction in hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Monika; Banday, Azeem; Murugavel, Sevi

    2016-05-23

    Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observedmore » that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.« less

  5. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments - An indication for the catalytic nature of their interactions.

    PubMed

    Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard

    2015-01-01

    Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.

  6. Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species

    PubMed Central

    Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes

    2013-01-01

    Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals. PMID:23460896

  7. Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres.

    PubMed

    Dement, J M; Kuempel, E D; Zumwalde, R D; Smith, R J; Stayner, L T; Loomis, D

    2008-09-01

    To develop a method for estimating fibre size-specific exposures to airborne asbestos dust for use in epidemiological investigations of exposure-response relations. Archived membrane filter samples collected at a Charleston, South Carolina asbestos textile plant during 1964-8 were analysed by transmission electron microscopy (TEM) to determine the bivariate diameter/length distribution of airborne fibres by plant operation. The protocol used for these analyses was based on the direct transfer method published by the International Standards Organization (ISO), modified to enhance fibre size determinations, especially for long fibres. Procedures to adjust standard phase contrast microscopy (PCM) fibre concentration measures using the TEM data in a job-exposure matrix (JEM) were developed in order to estimate fibre size-specific exposures. A total of 84 airborne dust samples were used to measure diameter and length for over 18,000 fibres or fibre bundles. Consistent with previous studies, a small proportion of airborne fibres were longer than >5 microm in length, but the proportion varied considerably by plant operation (range 6.9% to 20.8%). The bivariate diameter/length distribution of airborne fibres was expressed as the proportion of fibres in 20 size-specific cells and this distribution demonstrated a relatively high degree of variability by plant operation. PCM adjustment factors also varied substantially across plant operations. These data provide new information concerning the airborne fibre characteristics for a previously studied textile facility. The TEM data demonstrate that the vast majority of airborne fibres inhaled by the workers were shorter than 5 mum in length, and thus not included in the PCM-based fibre counts. The TEM data were used to develop a new fibre size-specific JEM for use in an updated cohort mortality study to investigate the role of fibre dimension in the development of asbestos-related lung diseases.

  8. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    PubMed Central

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID:26730712

  9. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    PubMed

    King, Richard B; Stanford, Kristin M; Jones, Peter C; Bekker, Kent

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation.

  10. Fish movement and habitat use depends on water body size and shape

    USGS Publications Warehouse

    Woolnough, D.A.; Downing, J.A.; Newton, T.J.

    2009-01-01

    Home ranges are central to understanding habitat diversity, effects of fragmentation and conservation. The distance that an organism moves yields information on life history, genetics and interactions with other organisms. Present theory suggests that home range is set by body size of individuals. Here, we analyse estimates of home ranges in lakes and rivers to show that body size of fish and water body size and shape influence home range size. Using 71 studies including 66 fish species on five continents, we show that home range estimates increased with increasing water body size across water body shapes. This contrasts with past studies concluding that body size sets home range. We show that water body size was a consistently significant predictor of home range. In conjunction, body size and water body size can provide improved estimates of home range than just body size alone. As habitat patches are decreasing in size worldwide, our findings have implications for ecology, conservation and genetics of populations in fragmented ecosystems. ?? 2008 Blackwell Munksgaard.

  11. In Vitro Vascular Toxicity of Manufactured Metal Oxide Nanoparticles: Size Profile Predicts Cellular Specificity, Delivered Dose, and Toxicity

    EPA Science Inventory

    Metal oxide nanoparticles (NPs) are being used in an expanding range of products and applications due to their unique physicochemical properties. In vivo biokinetic studies have demonstrated the ability of metal oxide NPs to translocate to the distal organs, including the cardiov...

  12. Manufactured Metal Oxide Nanoparticles In Vitro Vascular Toxicity: Role of Size Profile and Cellular Specificity on Delivered Dose and Cytotoxicity

    EPA Science Inventory

    Metal oxide nanoparticles (NPs) are used in a range of products and applications due to their unique physicochemical properties. In vivo studies have demonstrated the ability of NPs to translocate to the distal organs, including the cardiovascular system, following various routes...

  13. Outcomes of Mixed-Age Groupings. Research Highlights.

    ERIC Educational Resources Information Center

    Stegelin, Dolores A.

    1997-01-01

    A review of the literature on mixed-age settings reveals benefits in the areas of social and cognitive development. Research on the psychosocial advantages of mixed-age groupings is less consistent. Factors such as group size, age range, time together, and context-specific curriculum activities may have a relationship to the level of success and…

  14. Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas

    USGS Publications Warehouse

    Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.

    2004-01-01

    In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to the study, when foraging trips of the large colony were very long, parents lost mass, and chick meals were smaller. In light of existing data on prey abundance in neritic waters in Antarctica suggesting that krill are relatively evenly distributed and in high abundance in the Southern Ross Sea, we conclude that penguins depleted or changed the availability of their prey, that the degree of alteration was a function of colony size, and that the large colony affected the location (and perhaps ultimately the size) of foraging areas for the smaller colonies. It appears, therefore, that foraging dynamics play a role in the geographic structuring of colonies in this species. ?? 2004 by the Ecological Society of America.

  15. Font size and viewing distance of handheld smart phones.

    PubMed

    Bababekova, Yuliya; Rosenfield, Mark; Hue, Jennifer E; Huang, Rae R

    2011-07-01

    The use of handheld smart phones for written communication is becoming ubiquitous in modern society. The relatively small screens found in these devices may necessitate close working distances and small text sizes, which can increase the demands placed on accommodation and vergence. Font size and viewing distance were measured while subjects used handheld electronic devices in two separate trials. In the first study (n=129), subjects were asked to show a typical text message on their own personal phone and to hold the device "as if they were about to read a text message." A second trial was conducted in a similar manner except subjects (n=100) were asked to view a specific web page from the internet. For text messages and internet viewing, the mean font size was 1.1 M (range, 0.7 to 2.1 M) and 0.8 M (range, 0.3 to 1.4 M), respectively. The mean working distance for text messages and internet viewing was 36.2 cm (range, 17.5 to 58.0 cm) and 32.2 cm (range, 19 to 60 cm), respectively. The mean font size for both conditions was comparable with newspaper print, although some subjects viewed text that was considerably smaller. However, the mean working distances were closer than the typical near working distance of 40 cm for adults when viewing hardcopy text. These close distances place increased demands on both accommodation and vergence, which could exacerbate symptoms. Practitioners need to consider the closer distances adopted while viewing material on smart phones when examining patients and prescribing refractive corrections for use at near, as well as when treating patients presenting with asthenopia associated with nearwork. Copyright © 2011 American Academy of Optometry

  16. Missile sizing for ascent-phase intercept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, D.G.; Salguero, D.E.

    1994-11-01

    A computer code has been developed to determine the size of a ground-launched, multistage missile which can intercept a theater ballistic missile before it leaves the atmosphere. Typical final conditions for the inteceptor are 450 km range, 60 km altitude, and 80 sec flight time. Given the payload mass (35 kg), which includes a kinetic kill vehicle, and achievable values for the stage mass fractions (0.85), the stage specific impulses (290 sec), and the vehicle density (60 lb/ft{sup 3}), the launch mass is minimized with respect to the stage payload mass ratios, the stage burn times, and the missile anglemore » of attack history subject to limits on the angle of attack (10 deg), the dynamic pressure (60,000 psf), and the maneuver load (200,000 psf deg). For a conical body, the minimum launch mass is approximately 1900 kg. The missile has three stages, and the payload coasts for 57 sec. A trade study has been performed by varying the flight time, the range, and the dynamic pressure Emits. With the results of a sizing study for a 70 lb payload and q{sub max} = 35,000 psf, a more detailed design has been carried out to determine heat shield mass, tabular aerodynamics, and altitude dependent thrust. The resulting missile has approximately 100 km less range than the sizing program predicted primarily because of the additional mass required for heat protection. On the other hand, launching the same missile from an aircraft increases its range by approximately 100 km. Sizing the interceptor for air launch with the same final conditions as the ground-launched missile reduces its launch mass to approximately 1000 kg.« less

  17. Fusion positron emission/computed tomography underestimates the presence of hilar nodal metastases in patients with resected non-small cell lung cancer.

    PubMed

    Carrillo, Sergio A; Daniel, Vincent C; Hall, Nathan; Hitchcock, Charles L; Ross, Patrick; Kassis, Edmund S

    2012-05-01

    The 5-year survival for patients with resected stage II (N1) non-small cell lung cancer ranges from 40% to 55%. No data exist addressing the benefit of neoadjuvant therapy for patients with stage II disease. This is largely in part due to the lack of a reliable, minimally invasive method to assess hilar nodes. This study is aimed at determining the ability of fusion positron emission/computed tomography (PET/CT) to identify hilar metastases in patients with resected non-small cell lung cancer. A retrospective review of surgically resected patients with fusion PET/CT within 30 days of resection was performed. The sensitivity, specificity, positive predictive value, and negative predictive value for PET/CT in detecting hilar nodal metastases was calculated for a range of maximum standardized uptake values (SUVmax). Hilar nodes from patients with falsely positive PET/CT scans were analyzed for the presence of histoplasmosis. Additionally, the impact of hilar node size greater than 1 centimeter on the calculated values was assessed. There were 119 patients evaluated. The number of lymph nodes resected ranged from 1 to 12 (X=2.98). There was decreased sensitivity and increased specificity with higher SUVmax cutoff values. At the standard SUVmax value of 2.5, the sensitivity and specificity were only 48.5% and 80.2%. The addition of size of hilar node by CT led to a modest improvement in sensitivity at all SUVmax cutoff values. Fusion PET/CT lacks sensitivity and specificity in identifying hilar nodal metastasis in patients with resected non-small cell lung cancer. Further prospective studies assessing the utility of PET/CT versus alternative sampling techniques are warranted. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Frequency distributions from birth, death, and creation processes.

    PubMed

    Bartley, David L; Ogden, Trevor; Song, Ruiguang

    2002-01-01

    The time-dependent frequency distribution of groups of individuals versus group size was investigated within a continuum approximation, assuming a simplified individual growth, death and creation model. The analogy of the system to a physical fluid exhibiting both convection and diffusion was exploited in obtaining various solutions to the distribution equation. A general solution was approximated through the application of a Green's function. More specific exact solutions were also found to be useful. The solutions were continually checked against the continuum approximation through extensive simulation of the discrete system. Over limited ranges of group size, the frequency distributions were shown to closely exhibit a power-law dependence on group size, as found in many realizations of this type of system, ranging from colonies of mutated bacteria to the distribution of surnames in a given population. As an example, the modeled distributions were successfully fit to the distribution of surnames in several countries by adjusting the parameters specifying growth, death and creation rates.

  19. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study

    PubMed Central

    Le Strat, Yann

    2017-01-01

    The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489

  20. Emotion perception and empathy: An individual differences test of relations.

    PubMed

    Olderbak, Sally; Wilhelm, Oliver

    2017-10-01

    Numerous theories posit a positive relation between perceiving emotion expressed in the face of a stranger (emotion perception) and feeling or cognitively understanding the emotion of that person (affective and cognitive empathy, respectively). However, when relating individual differences in emotion perception with individual differences in affective or cognitive empathy, effect sizes are contradictory, but often not significantly different from zero. Based on 4 studies (study ns range from 97 to 486 persons; n total = 958) that differ from one another on many design and sample characteristics, applying advanced modeling techniques to control for measurement error, we estimate relations between affective empathy, cognitive empathy, and emotion perception. Relations are tested separately for each of the 6 basic emotions (an emotion-specific model) as well as across all emotions (an emotion-general model). Reflecting the literature, effect sizes and statistical significance with an emotion-general model vary across the individual studies (rs range from -.001 to .24 for emotion perception with affective empathy and -.01 to .39 for emotion perception with cognitive empathy), with a meta-analysis of these results indicating emotion perception is weakly related with affective (r = .13, p = .003) and cognitive empathy (r = .13, p = .05). Relations are not strengthened in an emotion-specific model. We argue that the weak effect sizes and inconsistency across studies reflects a neglected distinction of measurement approach-specifically, empathy is assessed as typical behavior and emotion perception is assessed as maximal effort-and conclude with considerations regarding the measurement of each construct. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse

    PubMed Central

    2013-01-01

    Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913

  2. Bill size variation in northern cardinals associated with anthropogenic drivers across North America.

    PubMed

    Miller, Colleen R; Latimer, Christopher E; Zuckerberg, Benjamin

    2018-05-01

    Allen's rule predicts that homeotherms inhabiting cooler climates will have smaller appendages, while those inhabiting warmer climates will have larger appendages relative to body size. Birds' bills tend to be larger at lower latitudes, but few studies have tested whether modern climate change and urbanization affect bill size. Our study explored whether bill size in a wide-ranging bird would be larger in warmer, drier regions and increase with rising temperatures. Furthermore, we predicted that bill size would be larger in densely populated areas, due to urban heat island effects and the higher concentration of supplementary foods. Using measurements from 605 museum specimens, we explored the effects of climate and housing density on northern cardinal bill size over an 85-year period across the Linnaean subspecies' range. We quantified the geographic relationships between bill surface area, housing density, and minimum temperature using linear mixed effect models and geographically weighted regression. We then tested whether bill surface area changed due to housing density and temperature in three subregions (Chicago, IL., Washington, D.C., and Ithaca, NY). Across North America, cardinals occupying drier regions had larger bills, a pattern strongest in males. This relationship was mediated by temperature such that birds in warm, dry areas had larger bills than those in cool, dry areas. Over time, female cardinals' bill size increased with warming temperatures in Washington, D.C., and Ithaca. Bill size was smaller in developed areas of Chicago, but larger in Washington, D.C., while there was no pattern in Ithaca, NY. We found that climate and urbanization were strongly associated with bill size for a wide-ranging bird. These biogeographic relationships were characterized by sex-specific differences, varying relationships with housing density, and geographic variability. It is likely that anthropogenic pressures will continue to influence species, potentially promoting microevolutionary changes over space and time.

  3. Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ge, D. L.; Ren, H. P.; Fan, Y. J.; Wu, L. M.; Sun, Z. X.

    2017-12-01

    Mesoporous akaganeite with large and adjustable pore size was synthesized through a co-template method, which was achieved by the combined interaction between PEG2000 and alkyl amines with different lengths of the straight carbon chain. The characterized results indicate that the synthesized samples show comparatively narrow BJH pore size distributions and centered at 14.3 nm when PEG and HEPA was used, and it could be enlarged to 16.8 and 19.4 nm respectively through changing the alkyl amines to DDA and HDA. Meanwhile, all the synthesized akaganeite possess relativity high specific surface area ranging from 183 to 281 m2/g and high total pore volume of 0.98 to 1.5 cm3/g. A possible mechanism leading to the pore size changing was also proposed.

  4. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.

    PubMed

    McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S

    2014-07-01

    Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  5. Effect of steam addition on cycle performance of simple and recuperated gas turbines

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1979-01-01

    Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.

  6. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    PubMed Central

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  7. A Two-Tier Golgi-Based Control of Organelle Size Underpins the Functional Plasticity of Endothelial Cells

    PubMed Central

    Ferraro, Francesco; Kriston-Vizi, Janos; Metcalf, Daniel J.; Martin-Martin, Belen; Freeman, Jamie; Burden, Jemima J.; Westmoreland, David; Dyer, Clare E.; Knight, Alex E.; Ketteler, Robin; Cutler, Daniel F.

    2014-01-01

    Summary Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities. PMID:24794632

  8. An image-based skeletal model for the ICRP reference adult male—specific absorbed fractions for neutron-generated recoil protons

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.

    2011-11-01

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  9. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  10. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    NASA Astrophysics Data System (ADS)

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4+/-4.1 to 277.5+/-30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  11. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  12. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    PubMed Central

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering. PMID:28462937

  13. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials.

    PubMed

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-02

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  14. Life on the edge: carnivore body size variation is all over the place

    PubMed Central

    Meiri, Shai; Dayan, Tamar; Simberloff, Daniel; Grenyer, Richard

    2009-01-01

    Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way. PMID:19324818

  15. Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities.

    PubMed

    Furler, Philipp; Scheffe, Jonathan; Marxer, Daniel; Gorbar, Michal; Bonk, Alexander; Vogt, Ulrich; Steinfeld, Aldo

    2014-06-14

    Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables volumetric absorption of concentrated solar radiation for efficient heat transfer to the reaction site during endothermic reduction, while the smaller void size range within the struts, with dmean = 10 μm and strut porosity = 0-0.44, increases the specific surface area for enhanced reaction kinetics during exothermic oxidation with CO2. Characterization is performed via mercury intrusion porosimetry, scanning electron microscopy, and thermogravimetric analysis (TGA). Samples are thermally reduced at 1773 K and subsequently oxidized with CO2 at temperatures in the range 873-1273 K. On average, CO production rates are ten times higher for samples with 0.44 strut porosity than for samples with non-porous struts. The oxidation rate scales with specific surface area and the apparent activation energy ranges from 90 to 135.7 kJ mol(-1). Twenty consecutive redox cycles exhibited stable CO production yield per cycle. Testing of the dual-scale RPC in a solar cavity-receiver exposed to high-flux thermal radiation (3.8 kW radiative power at 3015 suns) corroborated the superior performance observed in the TGA, yielding a shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 1.72%.

  16. Anaerobic co-digestion of sludge with other organic wastes in small wastewater treatment plants: an economic considerations evaluation.

    PubMed

    Pavan, P; Bolzonella, D; Battistoni, E; Cecchi, F

    2007-01-01

    This paper deals with an economic comparison between costs and incomes in small wastewater treatment plants where the anaerobic co-digestion process of sludge and biowaste with energy recovery is operated. Plants in the size range 1,000-30,000 persons equivalent (pe) were considered in the study: typical costs, comprehensive of capital and operating costs, were in the range euro69-105 per person per year depending on the plant size: the smaller the size the higher the specific cost. The incomes deriving from taxes and fees for wastewater treatment are generally in the range euro36-54 per person per year and can only partially cover costs in small wastewater treatment plants. However, the co-treatment of biowaste and the use of produced energy for extra credits (green certificates) determine a clear improvement in the possible revenues from the plant. These were calculated to be euro23-25 per person per year; as a consequence the costs and incomes can be considered comparable for wastewater treatment plants (WWTPs) with size larger than 10,000 pe. Therefore, anaerobic co-digestion of biowaste and sludge can also be considered a sustainable solution for small wastewater treatment plants in rural areas where several different kinds of biowaste are available to enhance biogas production in anaerobic reactors.

  17. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  18. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  19. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.

    PubMed

    Su, Yanyan; Lundholm, Nina; Ellegaard, Marianne

    2018-05-26

    The intricate patterning of diatom silica frustules at nanometer-to-micrometer scales makes them of interest for a wide range of industrial applications. For some of these applications, a specific size range in nanostructure is required and may be achieved by selecting species with the desired properties. However, as all biological materials, diatom frustules exhibit variability in their morphological parameters and this variability can to some extent be affected and controlled by environmental conditions. In this review, we explore the effects of different environmental factors including salinity, heavy metals, temperature, pH, extracellular Si(OH) 4 or Ge(OH) 4 concentration, light regime, UV irradiance, long-term cultivation, and biotic factors on the nanostructure of diatom frustules. This compilation of studies illustrates that it is possible to affect the nanostructure of diatom frustules in vivo by controlling different environmental factors as well as by direct chemical modification of frustules. We compare these methods and present examples of how these changes affect the range of variability as well as comparing the magnitude of size changes of the most promising methods.

  20. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.

  1. Range contraction in large pelagic predators

    PubMed Central

    Worm, Boris; Tittensor, Derek P.

    2011-01-01

    Large reductions in the abundance of exploited land predators have led to significant range contractions for those species. This pattern can be formalized as the range–abundance relationship, a general macroecological pattern that has important implications for the conservation of threatened species. Here we ask whether similar responses may have occurred in highly mobile pelagic predators, specifically 13 species of tuna and billfish. We analyzed two multidecadal global data sets on the spatial distribution of catches and fishing effort targeting these species and compared these with available abundance time series from stock assessments. We calculated the effort needed to reliably detect the presence of a species and then computed observed range sizes in each decade from 1960 to 2000. Results suggest significant range contractions in 9 of the 13 species considered here (between 2% and 46% loss of observed range) and significant range expansions in two species (11–29% increase). Species that have undergone the largest declines in abundance and are of particular conservation concern tended to show the largest range contractions. These include all three species of bluefin tuna and several marlin species. In contrast, skipjack tuna, which may have increased its abundance in the Pacific, has also expanded its range size. These results mirror patterns described for many land predators, despite considerable differences in habitat, mobility, and dispersal, and imply ecological extirpation of heavily exploited species across parts of their range. PMID:21693644

  2. MO-E-17A-08: Attenuation-Based Size Adjusted, Scanner-Independent Organ Dose Estimates for Head CT Exams: TG 204 for Head CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, K; Bostani, M; Cagnon, C

    Purpose: AAPM Task Group 204 described size specific dose estimates (SSDE) for body scans. The purpose of this work is to use a similar approach to develop patient-specific, scanner-independent organ dose estimates for head CT exams using an attenuation-based size metric. Methods: For eight patient models from the GSF family of voxelized phantoms, dose to brain and lens of the eye was estimated using Monte Carlo simulations of contiguous axial scans for 64-slice MDCT scanners from four major manufacturers. Organ doses were normalized by scannerspecific 16 cm CTDIvol values and averaged across all scanners to obtain scanner-independent CTDIvol-to-organ-dose conversion coefficientsmore » for each patient model. Head size was measured at the first slice superior to the eyes; patient perimeter and effective diameter (ED) were measured directly from the GSF data. Because the GSF models use organ identification codes instead of Hounsfield units, water equivalent diameter (WED) was estimated indirectly. Using the image data from 42 patients ranging from 2 weeks old to adult, the perimeter, ED and WED size metrics were obtained and correlations between each metric were established. Applying these correlations to the GSF perimeter and ED measurements, WED was calculated for each model. The relationship between the various patient size metrics and CTDIvol-to-organ-dose conversion coefficients was then described. Results: The analysis of patient images demonstrated the correlation between WED and ED across a wide range of patient sizes. When applied to the GSF patient models, an exponential relationship between CTDIvol-to-organ-dose conversion coefficients and the WED size metric was observed with correlation coefficients of 0.93 and 0.77 for the brain and lens of the eye, respectively. Conclusion: Strong correlation exists between CTDIvol normalized brain dose and WED. For the lens of the eye, a lower correlation is observed, primarily due to surface dose variations. Funding Support: Siemens-UCLA Radiology Master Research Agreement; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski.« less

  3. A methodology for image quality evaluation of advanced CT systems.

    PubMed

    Wilson, Joshua M; Christianson, Olav I; Richard, Samuel; Samei, Ehsan

    2013-03-01

    This work involved the development of a phantom-based method to quantify the performance of tube current modulation and iterative reconstruction in modern computed tomography (CT) systems. The quantification included resolution, HU accuracy, noise, and noise texture accounting for the impact of contrast, prescribed dose, reconstruction algorithm, and body size. A 42-cm-long, 22.5-kg polyethylene phantom was designed to model four body sizes. Each size was represented by a uniform section, for the measurement of the noise-power spectrum (NPS), and a feature section containing various rods, for the measurement of HU and the task-based modulation transfer function (TTF). The phantom was scanned on a clinical CT system (GE, 750HD) using a range of tube current modulation settings (NI levels) and reconstruction methods (FBP and ASIR30). An image quality analysis program was developed to process the phantom data to calculate the targeted image quality metrics as a function of contrast, prescribed dose, and body size. The phantom fabrication closely followed the design specifications. In terms of tube current modulation, the tube current and resulting image noise varied as a function of phantom size as expected based on the manufacturer specification: From the 16- to 37-cm section, the HU contrast for each rod was inversely related to phantom size, and noise was relatively constant (<5% change). With iterative reconstruction, the TTF exhibited a contrast dependency with better performance for higher contrast objects. At low noise levels, TTFs of iterative reconstruction were better than those of FBP, but at higher noise, that superiority was not maintained at all contrast levels. Relative to FBP, the NPS of iterative reconstruction exhibited an ~30% decrease in magnitude and a 0.1 mm(-1) shift in the peak frequency. Phantom and image quality analysis software were created for assessing CT image quality over a range of contrasts, doses, and body sizes. The testing platform enabled robust NPS, TTF, HU, and pixel noise measurements as a function of body size capable of characterizing the performance of reconstruction algorithms and tube current modulation techniques.

  4. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents.

    PubMed

    Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B

    2005-12-08

    This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.

  5. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  6. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis)

    PubMed Central

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T.

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene. PMID:26083467

  7. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations

    NASA Astrophysics Data System (ADS)

    López-Muñoz, Gerardo A.; Pescador-Rojas, José A.; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J. Abraham

    2012-07-01

    In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.

  8. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis).

    PubMed

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene.

  9. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations.

    PubMed

    López-Muñoz, Gerardo A; Pescador-Rojas, José A; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J Abraham

    2012-07-30

    In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.

  10. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    NASA Astrophysics Data System (ADS)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  11. Size distribution of EC, OC and particle-phase PAHs emissions from a diesel engine fueled with three fuels.

    PubMed

    Lu, Tian; Huang, Zhen; Cheung, C S; Ma, Jing

    2012-11-01

    The size distribution of elemental carbon (EC), organic carbon (OC) and particle-phase PAHs emission from a direct injection diesel engine fueled with a waste cooking biodiesel, ultra low sulfur diesel (ULSD, 10-ppm-wt), and low sulfur diesel (LSD, 400-ppm-wt) were investigated experimentally. The emission factor of biodiesel EC is 90.6 mg/kh, which decreases by 60.3 and 71.7%, compared with ULSD and LSD respectively and the mass mean diameter (MMD) of EC was also decreased with the use of biodiesel. The effect of biodiesel on OC emission might depend on the engine operation condition, and the difference in OC size distribution is not that significant among the three fuels. For biodiesel, its brake specific emission of particle-phase PAHs is obviously smaller than that from the two diesel fuels, and the reduction effect appears in almost all size ranges. In terms of size distribution, the MMD of PAHs from biodiesel is larger than that from the two diesel fuels, which could be attributed to the more effective reduction on combustion derived PAHs in nuclei mode. The toxicity analysis indicates that biodiesel could reduce the total PAHs emissions, as well as the carcinogenic potency of particle-phase PAHs in almost all the size ranges. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median of 5,100 feet squared per day. Water in storage in the alluvium was estimated to be approximately 200,000 acre-feet. The amount of water annually recharging the aquifer was estimated to be approximately 4,800 acre-feet. Specific conductance for all water samples ranged from 161 to 6,650 microsiemens per centimeter. Median specific conductance for the alluvium was 683 microsiemens per centimeter and for the terrace deposits was 263 microsiemens per centimeter. Dissolved-solids concentrations, estimated from specific conductance, for water samples from the aquifer ranged from 88 to 3,658 milligrams per liter. Estimated median dissolved- solids concentration for the alluvium was 376 milligrams per liter and for the terrace deposits was 145 milligrams per liter. More than half of the samples from the Quaternary aquifer were estimated to contain less than 500 milligrams per liter dissolved solids. Field-screened nitrate concentrations for the sampling in December 2001-August 2002 ranged from 0 to 15 milligrams per liter. The field-screened nitrate concentrations for the second sampling in September 2002 were less than corresponding laboratory reported values.

  13. Stiffness and shrinkage of green and dry joists

    Treesearch

    Lyman W. Wood; Lawrence A. Soltis

    1964-01-01

    This report gives information on the edgewise modulus of elasticity, stiffness, and shrinkage of 360 joists in three species, three grades, and two sizes, each species obtained from two sources. Each joist was evaluated nondestructively at four moisture content values ranging from the green condition to about 11 percent. Information is also given on specific gravity,...

  14. Optical and Nanoparticle Analysis of Normal and Cancer Cells by Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Szajko, John; Sander, Christopher; Rebuyon, Roland; Easton, Judah; Tanner, Carol; Ruggiero, Steven

    2015-03-01

    We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for intra-cellular material (lysates) in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000 nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of approximately 50 to 250 nm. Especially significant is a clearly higher density of particles at about 100 nm and smaller for normal cells. Department of Physics, Harper Cancer Research Institute, and the Office of Research at the University of Notre Dame.

  15. Thermal barriers constrain microbial elevational range size via climate variability.

    PubMed

    Wang, Jianjun; Soininen, Janne

    2017-08-01

    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. 'Stick with your own kind, or hang with the locals?' Implications of shoaling strategy for tropical reef fish on a range-expansion frontline.

    PubMed

    Smith, Shannen M; Fox, Rebecca J; Booth, David J; Donelson, Jennifer M

    2018-04-01

    Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate-mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range-expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body-size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species ('mixed' shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in 'mixed' shoals attaining larger body-sizes over the season than those in 'tropical-only' shoals. This benefit in terms of population body-size distributions was accompanied by greater social cohesion of 'mixed' shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate-induced range expansion of coral reef fishes. © 2018 John Wiley & Sons Ltd.

  17. Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra.

    PubMed

    Mehner, Thomas; Lischke, Betty; Scharnweber, Kristin; Attermeyer, Katrin; Brothers, Soren; Gaedke, Ursula; Hilt, Sabine; Brucet, Sandra

    2018-06-01

    The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly -1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10% and the predator-prey mass ratio (PPMR) is fixed at 10 4 . Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than -1.0 (range -1.14 to -1.19, with 95% CIs excluding -1). The corresponding average TTEs were substantially lower than 10% in each of the four food webs (range 1.0% to 3.6%, mean 1.85%). The overall slope merging all biomass-size data pairs from the four systems (-1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (-1.18) assuming a constant PPMR of 10 4 . Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates. © 2018 by the Ecological Society of America.

  18. Synthesis of FeCo magnetic nanoalloys and investigation of heating properties for magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Çelik, Özer; Fırat, Tezer

    2018-06-01

    In this study, size controlled FeCo colloidal magnetic nanoalloys in the range of 11.5-37.2 nm were synthesized by surfactant assistant ball milling method. Magnetic separation technique was performed subsequent to synthesis process so as to obtain magnetic nanoalloy fluid with narrow size distribution. Particle distribution was determined by transmission electron microscope (TEM) while X-ray diffraction (XRD) measurements verified FeCo alloy formation as BCC structure. Vibrating sample magnetometer (VSM) method was used to investigate magnetic properties of nanoalloys. Maximum saturation magnetization and maximum coercivity were obtained as 172 Am2/kg for nanoparticles with the mean size of 37.2 nm and 19.4 mT for nanoparticles with the mean size of 13.3 nm, respectively. The heating ability of FeCo magnetic nanoalloys was determined through calorimetrical measurements for magnetic fluid hyperthermia (MFH) applications. Heat generation mechanisms were investigated by using linear response theory and Stoner-Wohlfarth (S-W) model. Specific absorption rate (SAR) values were obtained in the range of 2-15 W/g for magnetic field frequency of 171 kHz and magnetic field strength in between 6 and 14 mT.

  19. Mesoporous zirconium titanium oxides. Part 2: Synthesis, porosity, and adsorption properties of beads.

    PubMed

    Sizgek, G Devlet; Sizgek, Erden; Griffith, Christopher S; Luca, Vittorio

    2008-11-04

    Mesoporous zirconium titanium mixed-oxide beads having disordered wormhole textures and mole fractions of Zr (x) ranging from x=0.25 to 0.67 have been prepared. The bead preparation method combined the forced hydrolysis of mixtures of zirconium-titanium alkoxides in the presence of long-chain carboxylates with external gelation. Uniformly sized beads could be produced in the size range 0.5-1.1 mm by varying the droplet size and viscosity of the mixed-oxide sol, thus making them suitable for large-scale column chromatographic applications. The beads exhibited narrow pore size distributions with similar mean pore diameters of around 3.7 nm. The specific surface areas of the beads were linked to the Zr mole fraction in the precursor solution and were generally greater than 350 m2/g for x=0.5. A combination of scanning transmission electron microscopy and X-ray absorption fine structure analysis indicated that the pore walls of the beads were composed of atomically dispersed Zr and Ti to form a continuous network of Zr-O-Ti bonds. Mass transport in the beads was evaluated by monitoring the kinetics of vanadate and vanadyl adsorption at pH 10.5 and 0.87, respectively.

  20. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.

    PubMed

    Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M

    2013-06-07

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.

  1. Host specificity and the probability of discovering species of helminth parasites.

    PubMed

    Poulin, R; Mouillot, D

    2005-06-01

    Different animal species have different probabilities of being discovered and described by scientists, and these probabilities are determined to a large extent by the biological characteristics of these species. For instance, species with broader geographical ranges are more likely to be encountered by collectors than species with restricted distributions; indeed, the size of the geographical range is often the best predictor of a species' date of description. For parasitic organisms, host specificity may be similarly linked to the probability of a species being found. Here, using data on 170 helminth species parasitic in freshwater fishes, we show that host specificity is associated with the year in which the helminths were described. Helminths that exploit more host species, and to a lesser degree those that exploit a broader taxonomic range of host species, tend to be discovered earlier than the more host-specific helminths. This pattern was observed across all helminth species, as well as within the different helminth taxa (trematodes, cestodes, nematodes and acanthocephalans). Our results demonstrate that the parasite species known at any given point in time are not a random subset of existing species, but rather a biased subset with respect to the parasites' biological properties.

  2. Reporting and methodological quality of sample size calculations in cluster randomized trials could be improved: a review.

    PubMed

    Rutterford, Clare; Taljaard, Monica; Dixon, Stephanie; Copas, Andrew; Eldridge, Sandra

    2015-06-01

    To assess the quality of reporting and accuracy of a priori estimates used in sample size calculations for cluster randomized trials (CRTs). We reviewed 300 CRTs published between 2000 and 2008. The prevalence of reporting sample size elements from the 2004 CONSORT recommendations was evaluated and a priori estimates compared with those observed in the trial. Of the 300 trials, 166 (55%) reported a sample size calculation. Only 36 of 166 (22%) reported all recommended descriptive elements. Elements specific to CRTs were the worst reported: a measure of within-cluster correlation was specified in only 58 of 166 (35%). Only 18 of 166 articles (11%) reported both a priori and observed within-cluster correlation values. Except in two cases, observed within-cluster correlation values were either close to or less than a priori values. Even with the CONSORT extension for cluster randomization, the reporting of sample size elements specific to these trials remains below that necessary for transparent reporting. Journal editors and peer reviewers should implement stricter requirements for authors to follow CONSORT recommendations. Authors should report observed and a priori within-cluster correlation values to enable comparisons between these over a wider range of trials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  4. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.

    PubMed

    Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov

    2017-09-01

    Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of particle size of parenteral suspensions on in vitro muscle damage.

    PubMed

    Brazeau, Gayle; Sauberan, Shauna L; Gatlin, Larry; Wisniecki, Peter; Shah, Jaymin

    2011-01-01

    Suspension particle size plays a key role in the release and stability of drugs for oral and parenteral formulations. However, the role of particle size in suspension formulations on tissue damage (myotoxicity) following intramuscular (IM) injection has not been systematically investigated. Myotoxicity was assessed by the release of cumulative creatine kinase (CCK) from the isolated extensor digitorium longus (EDL) and soleus (SOL) rat muscles for selected suspensions of phenytoin, bupivicane and diazepam. Particle size effects on myotoxicity, independent of any specific drug, were also investigated using characterized non-dissolving polystyrene beads. Myotoxicity was quantitated by the cumulative release of creatine kinase (CCK) from these isolated muscles over 90 or 120 min. The relationship between particle size and myotoxicity was dependent upon the drug in these suspensions. Diazepam and phenytoin suspensions were found to be less myotoxic than bupivicaine. Using unmodified and carboxy modified polystyrene beads, an optimal particle size for reduced myotoxicity following IM injection ranges from approx. 500 nm to 1 µM. The relationship between myotoxicity of IM suspensions and particle size is dependent upon the particular drug and suspension particle size.

  6. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  7. Formation of Uniform Hollow Silica microcapsules

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Kim, Chanjoong

    2012-02-01

    Microcapsules are small containers with diameters in the range of 0.1 -- 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  8. Formation of Uniform Hollow Silica microcapsules

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  9. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic.

    PubMed

    Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R

    2013-12-17

    The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 < 0) and become more attractive with increasing temperature (ΔB2/ΔT < 0) in the temperature range 300 K ≤ T ≤ 360 K. Thus, these hydrophobic interactions are attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.

  10. Predator-prey size relationships in an African large-mammal food web.

    PubMed

    Owen-Smith, Norman; Mills, M G L

    2008-01-01

    1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.

  11. Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1985-01-01

    Dynamic dielectric analysis (DDA) is used to study curing polymer systems and thermoplastics. Measurements are made over a frequency range of six decades. This wide range of frequencies increases the amount of information which can be obtained. The data is analyzed in terms of the frequency dependence of the complex permittivity epsilon sup *, specific conductivity sigma (ohm/cm) and the relaxation time tau, parameters which are characteristic of the cure state of the material and independent of the size of the sample.

  12. From Archive to Evidence: Historians and Natural Resource Litigation.

    PubMed

    Stevens, Jennifer A

    2015-02-01

    Within the field of natural resource law are several specific areas that are well suited for the historian's skillset and knowledge. The deployment of the historian's tool box when conducting research in the legal world, however, can result in deliverables which vary significantly from those found in the academy, as they range widely in both size and scope and do not always use the full range of a historian's skills. New technological platforms provide consulting historians with creative opportunities to disseminate valuable information and sources and enhance important scholarly debates.

  13. Rapid Debris Analysis Project Task 3 Final Report - Sensitivity of Fallout to Source Parameters, Near-Detonation Environment Material Properties, Topography, and Meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Peter

    2014-01-24

    This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.

  14. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestre, Gracia; Ainia, Departamento de Medio Ambiente, Bioenergía e Higiene Industrial, Paterna, Valencia; Bonmatí, August

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of themore » volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.« less

  15. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.

    PubMed

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-06-07

    Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

  16. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.

    PubMed

    Burnham-Marusich, Amanda R; Plechaty, Anna M; Berninsone, Patricia M

    2014-09-01

    Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D-DIGE. In "Click-DIGE", posttranslationally modified proteins are metabolically labeled with azido-substrate analogs, then size- and charge-matched alkyne-Cy3 or alkyne-Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently-tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click-DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click-DIGE specifically labels azido proteins, (ii) the resulting Cy-protein conjugates are spectrally distinct, and (iii) the conjugates are size- and charge-matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP-galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click-DIGE to be compatible with analysis of a wide range of PTMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Slope of Change: An Environmental Management Approach to Reduce Drinking on a Day of Celebration at a US College

    ERIC Educational Resources Information Center

    Marchell, Timothy C.; Lewis, Deborah D.; Croom, Katherine; Lesser, Martin L.; Murphy, Susan H.; Reyna, Valerie F.; Frank, Jeremy; Staiano-Coico, Lisa

    2013-01-01

    Objective: This research extends the literature on event-specific environmental management with a case study evaluation of an intervention designed to reduce student drinking at a university's year-end celebration. Participants: Cornell University undergraduates were surveyed each May from 2001 through 2009. Sample sizes ranged from 322 to 1,973.…

  18. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutaleb, T.; Pluschkell, T. P.

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  19. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass.

    PubMed

    Boss, Emmanuel; Slade, Wayne; Hill, Paul

    2009-05-25

    Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.

  20. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size.

    PubMed

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-01

    The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20days. The SS-OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1kgCODm(-3)d(-1) (1.9kgVSm(-3)d(-1)), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20mm to 8mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.

    2011-03-01

    From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of diagnostic tools and strategies, and experimental advances that have enabled the development of a wide range of coating structures exhibiting in numerous cases unique properties. Several examples are detailed. In this paper the following aspects are presented successively (i) the two spray techniques used for manufacturing such coatings: thermal plasma and HVOF, (ii) sensors developed for in-flight diagnostics of micrometre-sized particles and the interaction of a liquid and hot gas flow, (iii) three spray processes: conventional spraying using micrometre-sized agglomerates of nanometre-sized particles, suspension spraying and solution spraying and (iv) the emerging issues resulting from the specific structures of these materials, particularly the characterization of these coatings and (v) the potential industrial applications. Further advances require the scientific and industrial communities to undertake new research and development activities to address, understand and control the complex mechanisms occurring, in particular, thermal flow—liquid drops or stream interactions when considering suspension and liquid precursor thermal spray techniques. Work is still needed to develop new measurement devices to diagnose in-flight droplets or particles below 2 µm average diameter and to validate that the assumptions made for liquid-hot gas interactions. Efforts are also required to further develop some of the characterization protocols suitable to address the specificities of such nanostructured coatings, as some existing 'conventional' protocols usually implemented on thermal spray coatings are not suitable anymore, in particular to address the void network architectures from which numerous coatings properties are derived.

  2. Memory-based snowdrift game on a square lattice

    NASA Astrophysics Data System (ADS)

    Shu, Feng; Liu, Xingwen; Fang, Kai; Chen, Hao

    2018-04-01

    Spatial reciprocity is an effective way widely accepted to facilitate cooperation. In the case of snowdrift game, some researches showed that spatial reciprocity inhibits cooperation for a very wide range of cost-to-benefit ratio r. However, some other researches found that based on the spatial reciprocity, a wider range of r is helpful to achieve a high cooperation level. Thus, how to enlarge the range of r for the purpose of promoting cooperation becomes a hot topic recently. This paper proposes a new memory-based method, in which each individual compares with its own previous payoffs to find out the maximal one as virtual payoff and then randomly compares with one of its neighbours to obtain the optimal strategy according to the given updating rules. It shows the positive effect of spatial reciprocity in the context of memory. Specifically, in this situation, not only the lower ratio can appear a high cooperation level, but also the larger ratio r can emerge a high cooperation level. That is, an expected cooperation level can be achieved simultaneously for small and large r. Furthermore, the scenarios of both constant-size memory and size-varying memory are investigated. An interesting phenomenon is discovered that the cooperation level drops down gradually as the memory size increases.

  3. Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

    NASA Astrophysics Data System (ADS)

    Maißer, Anne; Attoui, Michel B.; Gañán-Calvo, Alfonso M.; Szymanski, Wladyslaw W.

    2013-01-01

    A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride—both show strong electrolytic behavior—have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963-977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.

  4. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    NASA Astrophysics Data System (ADS)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the < 1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less

  6. Size-resolved ultrafine particle composition analysis 1. Atlanta

    NASA Astrophysics Data System (ADS)

    Rhoads, K. P.; Phares, D. J.; Wexler, A. S.; Johnston, M. V.

    2003-04-01

    During August 1999 as part of the Southern Oxidants Study Supersite Experiment, our group collected size-resolved measurements of the chemical composition of single ambient aerosol particles with a unique real-time laser desorption/ionization mass spectrometry technique. The rapid single-particle mass spectrometry instrument is capable of analyzing "ultrafine" particles with aerodynamic diameters ranging from 0.01 to 1.5 μm. Under the heaviest loading observed in Atlanta, particles were analyzed at a rate of roughly one per second in sizes ranging from 0.1 to 0.2 μm. Nearly 16,000 individual spectra were recorded over the course of the month during both daytime and nighttime sampling periods. Evaluation of the data indicates that the composition of the ultrafine (less than 100 nm) particles is dominated by carbon-containing compounds. Larger particles show varied compositions but typically appeared to have organic carbon characteristics mixed with an inorganic component (e.g., crustal materials, metals, etc.). During the experiment, 70 composition classes were identified. In this paper we report the average spectra and correlations with various meteorological parameters for all major compound classes and a number of minor ones. The major composition classes are identified from the primary peaks in their spectra as organic carbon (about 74% of the particles), potassium (8%), iron (3%), calcium (2%), nitrate (2%), elemental carbon (1.5%), and sodium (1%). Many of these compound classes appeared in repeatable size ranges and quadrants of the wind rose, indicating emission from specific sources.

  7. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey.

    PubMed

    Helenius, Laura K; Saiz, Enric

    2017-01-01

    Laboratory feeding experiments were conducted to study the functional response and prey size spectrum of the young naupliar stages of the calanoid copepod Paracartia grani Sars. Experiments were conducted on a range of microalgal prey of varying sizes and motility patterns. Significant feeding was found in all prey of a size range of 4.5-19.8 μm, with Holling type III functional responses observed for most prey types. The highest clearance rates occurred when nauplii fed on the dinoflagellate Heterocapsa sp. and the diatom Thalassiosira weissflogii (respectively, 0.61 and 0.70 mL ind-1 d-1), suggesting an optimal prey:predator ratio of 0.09. Additional experiments were conducted to examine the effects of the presence of alternative prey (either Heterocapsa sp. or Gymnodinium litoralis) on the functional response to the haptophyte Isochrysis galbana. In the bialgal mixtures, clearance and ingestion rates of I. galbana along the range of the functional response were significantly reduced as a result of selectivity towards the larger, alternative prey. Paradoxically, relatively large prey trigger a perception response in the nauplii, but most likely such prey cannot be completely ingested and a certain degree of sloppy feeding may occur. Our results are further evidence of the complex prey-specific feeding interactions that are likely to occur in natural assemblages with several available prey types.

  8. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.

    PubMed

    Chiesa, E; Dorati, R; Modena, T; Conti, B; Genta, I

    2018-01-30

    Design of Experiment-assisted evaluation of critical process (total flow rate, TFR, flow rate ratio, FRR) and formulation (polymer concentration and structure, drug:polymer ratio) variables in a novel microfluidics-based device, a staggered herringbone micromixer (SHM), for poly(lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (NPs) manufacturing was performed in order to systematically evaluate and mathematically describe their effects on NPs sizes and drug encapsulation; a small hydrophilic moiety, N-acetylcysteine, was chosen as challenging model drug. SHM-assisted nanoprecipitation method consistently yielded NPs with tailor made sizes (in the range of 100-900 nm) and polydispersity index range from 0.061 to 0.286. Significant effects on NPs sizes were highlighted for TFR and FRR: increasing TFR (from 5 to 15 mL/min) and decreasing FRR (from 1:1 to 1:5 v/v, acetonitrile: buffer) NPs with mean diameter <200 nm were obtained. SHM technique allowed for flexible, application-specific tuning of PLGA NPs size using organic solvents with relatively low toxicity (acetone, acetonitrile), varying aqueous phase composition (Tris buffer vs PVA aqueous solution) and PLGA characteristics (Mw ranging from 25-90 kDa, capped or un-capped PLGA, different lactide:glycolide molar ratio). A very satisfactory N-Ac encapsulation efficiency (more than 67%) and a prolonged release (by 168 h) were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayob, M. T. M.; Ahmad, A. F.; Mohd, H. M. K.

    Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in themore » range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.« less

  10. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  11. Chirally directed formation of nanometer-scale proline clusters.

    PubMed

    Myung, Sunnie; Fioroni, Marco; Julian, Ryan R; Koeniger, Stormy L; Baik, Mu-Hyun; Clemmer, David E

    2006-08-23

    Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.

  12. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  13. Dynamics of nanoparticle morphology under low energy ion irradiation.

    PubMed

    Holland-Moritz, Henry; Graupner, Julia; Möller, Wolfhard; Pacholski, Claudia; Ronning, Carsten

    2018-08-03

    If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of ∼50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target.

  14. Comparative Mineralogy, Microstructure and Compositional Trends in the Sub-Micron Size Fractions of Mare and Highland Lunar Soils

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.

    2012-01-01

    The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the <20 m size fraction, there is an increased correlation between lunar surface properties observed through remote sensing techniques and those attributed to space weathering phenomenae [1,2]. Despite the establishment of recognizable trends in lunar grains <20 in size [1,2,3], the size fraction < 10 m is characterized as a collective population of grains without subdivision. This investigation focuses specifically on grains in the <1 m diameter size fraction for both highland and mare derived soils. The properties of these materials provide the focus for many aspects of lunar research including the nature of space weathering on surface properties, electrostatic grain transport [4,5] and dusty plasmas [5]. In this study, we have used analytical transmission and scanning transmission electron microscopy (S/TEM) to characterize the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.

  15. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    NASA Astrophysics Data System (ADS)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  16. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    PubMed

    Allen, John M; Elbasiouny, Sherif M

    2018-06-01

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  17. Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration

    PubMed Central

    2017-01-01

    Home range size is a fundamental concept for understanding animal dispersion and ecological needs, and it is one of the most commonly reported ecological attributes of free-ranging mammals. Previous studies indicate that red foxes Vulpes vulpes display great variability in home range size. Yet, there has been little consensus regarding the reasons why home range sizes of red foxes vary so extensively. In this study, we examine possible causes of variation in red fox home range sizes using data from 52 GPS collared red foxes from four study areas representing a gradient of landscape productivity and human landscape alteration in Norway and Sweden. Using 90% Local Convex Hull home range estimates, we examined how red fox home range size varied in relation to latitude, elevation, vegetation zone, proportion of agricultural land and human settlement within a home range, and sex and age. We found considerable variation in red fox home range sizes, ranging between 0.95 km2 to 44 km2 (LoCoH 90%) and 2.4 km2 to 358 km2 (MCP 100%). Elevation, proportion of agricultural land and sex accounted for 50% of the variation in home range size found amongst foxes, with elevation having the strongest effect. Red foxes residing in more productive landscapes (those in more southern vegetation zones), had home ranges approximately four times smaller than the home ranges of foxes in the northern boreal vegetation zone. Our results indicate that home range size was influenced by a productivity gradient at both the landscape (latitude) and the local (elevation) scale. The influence of the proportion of agriculture land on home range size of foxes illustrates how human landscape alteration can affect the space use and distribution of red foxes. Further, the variation in home range size found in this study demonstrates the plasticity of red foxes to respond to changing human landscape alteration as well as changes in landscape productivity, which may be contributing to red fox population increases and northern range expansions. PMID:28384313

  18. Thriving at the limit: Differential reproductive performance in range-edge populations of a Mediterranean sclerophyll (Olea europaea)

    NASA Astrophysics Data System (ADS)

    Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos

    2013-10-01

    Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.

  19. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal

    USGS Publications Warehouse

    Radlinski, A.P.; Mastalerz, Maria; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P.

    2004-01-01

    This paper discusses the applicability of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques for determining the porosity, pore size distribution and internal specific surface area in coals. The method is noninvasive, fast, inexpensive and does not require complex sample preparation. It uses coal grains of about 0.8 mm size mounted in standard pellets as used for petrographic studies. Assuming spherical pore geometry, the scattering data are converted into the pore size distribution in the size range 1 nm (10 A??) to 20 ??m (200,000 A??) in diameter, accounting for both open and closed pores. FTIR as well as SAXS and SANS data for seven samples of oriented whole coals and corresponding pellets with vitrinite reflectance (Ro) values in the range 0.55% to 5.15% are presented and analyzed. Our results demonstrate that pellets adequately represent the average microstructure of coal samples. The scattering data have been used to calculate the maximum surface area available for methane adsorption. Total porosity as percentage of sample volume is calculated and compared with worldwide trends. By demonstrating the applicability of SAXS and SANS techniques to determine the porosity, pore size distribution and surface area in coals, we provide a new and efficient tool, which can be used for any type of coal sample, from a thin slice to a representative sample of a thick seam. ?? 2004 Elsevier B.V. All rights reserved.

  20. Survival and home-range size of Northern Spotted Owls in southwestern Oregon

    USGS Publications Warehouse

    Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.

    2013-01-01

    In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x =  576; SE  =  75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.

  1. Synthesis of Nanoparticles in a Pulsed-Periodic Gas Discharge and Their Potential Applications

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Efimov, A. A.; Myl'nikov, D. A.; Lizunova, A. A.

    2018-03-01

    Conditions for the synthesis of three types nanoparticles (SnO2, Al2O3, and Ag) with typical sizes in the range of 4 to 10 nm and a performance of 0.4 g/h are employed in a pulsed-periodic gas discharge in an atmosphere of air. Spherical Ge nanoparticles with a characteristic size of 13 nm are synthesized by these means for the first time with a performance of around 10 mg/h. The specific energy consumption in the synthesis of nanoparticles is for these materials in the range of 2000 to 5000 kW h/kg. The prospects for using tinoxide nanoparticles in sensor components and jets of silver nanoparticles for aerosol printing are discussed. The merits and demerits of the pulsed gas-discharge method among other gas-phase approaches to the synthesis of nanoparticles are analyzed for the current level of development.

  2. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    NASA Technical Reports Server (NTRS)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  3. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.

    2018-04-01

    Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).

  4. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    PubMed

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  5. Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates.

    PubMed

    Machado, José-Luis; Reich, Peter B

    2006-07-01

    In shaded environments, minimizing dark respiration during growth could be an important aspect of maintaining a positive whole-plant net carbon balance. Changes with plant size in both biomass distribution to different tissue types and mass-specific respiration rates (R(d)) of those tissues would have an impact on whole-plant respiration. In this paper, we evaluated size-related variation in R(d), biomass distribution, and nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations of leaves, stems and roots of three cold-temperate tree species (Abies balsamea (L.) Mill, Acer rubrum L. and Pinus strobus L.) in a forest understory. We sampled individuals varying in age (6 to 24 years old) and in size (from 2 to 500 g dry mass), and growing across a range of irradiances (from 1 to 13% of full sun) in northern Minnesota, USA. Within each species, we found small changes in R(d), N and TNC when comparing plants growing across this range of light availability. Consistent with our hypotheses, as plants grew larger, whole-plant N and TNC concentrations in all species declined as a result of a combination of changes in tissue N and shifts in biomass distribution patterns. However, contrary to our hypotheses, whole-plant and tissue R(d) increased with plant size in the three species.

  6. Global-scale relationships between colonization ability and range size in marine and freshwater fish.

    PubMed

    Strona, Giovanni; Galli, Paolo; Montano, Simone; Seveso, Davide; Fattorini, Simone

    2012-01-01

    Although fish range sizes are expected to be associated with species dispersal ability, several studies failed to find a clear relationship between range size and duration of larval stage as a measure of dispersal potential. We investigated how six characteristics of the adult phase of fishes (maximum body length, growth rate, age at first maturity, life span, trophic level and frequency of occurrence) possibly associated with colonization ability correlate with range size in both freshwater and marine species at global scale. We used more than 12 million point records to estimate range size of 1829 freshwater species and 10068 marine species. As measures of range size we used both area of occupancy and extent of occurrence. Relationships between range size and species traits were assessed using Canonical Correlation Analysis. We found that frequency of occurrence and maximum body length had a strong influence on range size measures, which is consistent with patterns previously found (at smaller scales) in several other taxa. Freshwater and marine fishes showed striking similarities, suggesting the existence of common mechanisms regulating fish biogeography in the marine and freshwater realms.

  7. Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contamination sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania

    USGS Publications Warehouse

    Cinotto, Peter J.

    2005-01-01

    The presence of fecal-indicator bacteria indicates the potential presence of pathogens originating from the fecal matter of warm-blooded animals. These pathogens are responsible for numerous human diseases ranging from common diarrhea to meningitis and polio. The detection of fecal-indicator bacteria and interpretation of the resultant data are, therefore, of great importance to water-resource managers. Current (2005) techniques used to assess fecal contamination within the fluvial environment primarily assess samples collected from the water column, either as grab samples or as depth- and (or) width-integrated samples. However, current research indicates approximately 99 percent of all bacteria within nature exist as attached, or sessile, bacteria. Because of this condition, most current techniques for the detection of fecal contamination, which utilize bacteria, assess only about 1 percent of the total bacteria within the fluvial system and are, therefore, problematic. Evaluation of the environmental factors affecting the occurrence and distribution of bacteria within the fluvial system, as well as the evaluation and modification of alternative approaches that effectively quantify the larger population of sessile bacteria within fluvial sediments, will present water-resource managers with more effective tools to assess, prevent, and (or) eliminate sources of fecal contamination within pristine and impaired watersheds. Two stream reaches on the West Branch Brandywine Creek in the Coatesville, Pa., region were studied between September 2002 and August 2003. The effects of sediment particle size, climatic conditions, aquatic growth, environmental chemistry, impervious surfaces, sediment and soil filtration, and dams on observed bacteria concentrations were evaluated. Alternative approaches were assessed to better detect geographic sources of fecal contamination including the use of turbidity as a surrogate for bacteria, the modification and implementation of sandbag bacteria samplers, and the use of optical brighteners. For the purposes of this report, sources of bacteria were defined as geographic locations where elevated concentrations of bacteria are observed within, or expected to enter, the main branch of the West Branch Brandywine Creek. Biologic sources (for example, waterfowl) were noted where applicable; however, no specific study of biologic sources (such as bacterial source tracking) was conducted. Data indicated that specific bacterial populations within fluvial sediments could be related to specific particle-size ranges. This relation is likely the result of the reduced porosity and permeability associated with finer sediments and the ability of specific bacteria to tolerate particular environments. Escherichia coli (E. coli) showed a higher median concentration (2,160 colonies per gram of saturated sediment) in the 0.125 to 0.5-millimeter size range of natural sediments than in other ranges, and enterococcus bacteria showed a higher median concentration (61,830 colonies per gram of saturated sediment) in the 0.062 to 0.25-millimeter size range of natural sediments than in other ranges. There were insufficient data to assess the particle-size relation to fecal coliform bacteria and (or) fecal streptococcus bacteria. Climatic conditions were shown to affect bacteria concentrations in both the water column and fluvial sediments. Drought conditions in 2002 resulted in lower overall bacteria concentrations than the more typically wet year of 2003. E. coli concentrations in fluvial sediment along the Coatesville study reach in 2002 had a median concentration of 92 colonies per gram of saturated sediment; in 2003, the median concentration had risen to 4,752 colonies per gram of saturated sediment. Symbiotic relations between bacteria and aquatic growth were likely responsible for increased bacteria concentrations observed within an impoundment area on the Coatesville study reach. This reach showed evidence of

  8. Migratory salmonid redd habitat characteristics in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; McKenna, James E.

    2010-01-01

    Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.

  9. Size and shape dependent deprotonation potential and proton affinity of nanodiamond

    NASA Astrophysics Data System (ADS)

    Barnard, Amanda S.; Per, Manolo C.

    2014-11-01

    Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.

  10. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  11. Distribution and predictors of wing shape and size variability in three sister species of solitary bees

    PubMed Central

    Prunier, Jérôme G.; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis

    2017-01-01

    Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the intra-specific wing shape and body size variability. PMID:28273178

  12. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinsztein, D.C.; Leggo, J.; Whittaker, J.L.

    1996-07-01

    Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant. Many of these experiments found an overlap between the normal and disease size ranges. Subsequent findings that the CCG repeats vary by 9 trinucleotide lengths suggested that the limits of the normal andmore » disease size ranges should be reevaluated with assays that exclude the CCG polymorphism. Since patients with between 30 and 40 repeats are rare, a consortium was assembled to collect such individuals. All 178 samples were reanalyzed in Cambridge by using assays specific for the CAG repeats. We have optimized methods for reliable sizing of CAG repeats and show cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms. Seven HD patients had 36 repeats, which confirms that this allele is associated with disease. Individuals without apparent symptoms or signs of HD were found at 36 repeats (aged 74, 78, 79, and 87 years), 37 repeats (aged 69 years), 38 repeats (aged 69 and 90 years), and 39 repeats (aged 67, 90, and 95 years). The detailed case histories of an exceptional case from this series will be presented: a 95-year-old man with 39 repeats who did not have classical features of HD. The apparently healthy survival into old age of some individuals with 36-39 repeats suggests that the HD mutation may not always be fully penetrant. 26 refs., 3 figs., 1 tab.« less

  13. Comparative studies with tox plus and tox minus corynebacteriophages.

    PubMed

    Holmes, R K; Barksdale, L

    1970-06-01

    The characteristics of nine inducible temperate corynebacteriophages designated alpha(tox+), beta(tox+), P(tox+), gamma(tox-), pi(tox+), K(tox-), rho(tox-), L(tox+), and delta(tox+) have been compared. Virion morphology and ability to recombine genetically with the well-studied phage beta(tox+) have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage beta(tox+) was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage beta(tox+), latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as beta(tox+) were capable of genetic recombination with beta(tox+), but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with beta(tox+) resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with beta(tox+) differed in these characteristics. The phages capable of genetic recombination with beta(tox+) were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in beta(tox+) and delta(tox+), phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin.

  14. Comparative Studies with tox+ and tox− Corynebacteriophages 1

    PubMed Central

    Holmes, Randall K.; Barksdale, Lane

    1970-01-01

    The characteristics of nine inducible temperate corynebacteriophages designated αtox+, βtox+, Ptox+, γtox−, πtox+, Ktox−, ρtox−, Ltox+, and δtox+ have been compared. Virion morphology and ability to recombine genetically with the well-studied phage βtox+ have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage βtox+ was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage βtox+, latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as βtox+ were capable of genetic recombination with βtox+, but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with βtox+ resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with βtox+ differed in these characteristics. The phages capable of genetic recombination with βtox+ were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in βtox+ and δtox+, phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin. Images PMID:4193835

  15. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Saruwatari, Kazuko; Satoh, Manami; Harada, Naomi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2016-05-01

    Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic oceans in 2010 were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains, namely MR57N isolated from the northern Bering Sea and MR70N at the Chukchi Sea. This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (estimated as the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters. The central area elements of coccoliths varied from thin lath type to well-calcified lath type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities with change in their morphology. Because all coccolith biometric parameters followed the scaling law, the decrease in coccolith size was caused simply by the reduced calcification. Taken together, our results suggest that calcification productivity may be used to predict future oceanic environmental conditions in the polar regions.

  16. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-06-01

    Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.

  17. The enigmatic molar from Gondolin, South Africa: implications for Paranthropus paleobiology.

    PubMed

    Grine, Frederick E; Jacobs, Rachel L; Reed, Kaye E; Plavcan, J Michael

    2012-10-01

    The specific attribution of the large hominin M(2) (GDA-2) from Gondolin has significant implications for the paleobiology of Paranthropus. If it is a specimen of Paranthropus robustus it impacts that species' size range, and if it belongs to Paranthropus boisei it has important biogeographic implications. We evaluate crown size, cusp proportions and the likelihood of encountering a large-bodied mammal species in both East and South Africa in the Early Pleistocene. The tooth falls well outside the P. robustus sample range, and comfortably within that for penecontemporaneous P. boisei. Analyses of sample range, distribution and variability suggest that it is possible, albeit unlikely to find a M(2) of this size in the current P. robustus sample. However, taphonomic agents - carnivore (particularly leopard) feeding behaviors - have likely skewed the size distribution of the Swartkrans and Drimolen P. robustus assemblage. In particular, assemblages of large-bodied mammals accumulated by leopards typically display high proportions of juveniles and smaller adults. The skew in the P. robustus sample is consistent with this type of assemblage. Morphological evidence in the form of cusp proportions is congruent with GDA-2 representing P. robustus rather than P. boisei. The comparatively small number of large-bodied mammal species common to both South and East Africa in the Early Pleistocene suggests a low probability of encountering an herbivorous australopith in both. Our results are most consistent with the interpretation of the Gondolin molar as a very large specimen of P. robustus. This, in turn, suggests that large, presumptive male, specimens are rare, and that the levels of size variation (sexual dimorphism) previously ascribed to this species are likely to be gross underestimates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    PubMed

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  19. Home range size of Tengmalm's owl during breeding in Central Europe is determined by prey abundance.

    PubMed

    Kouba, Marek; Bartoš, Luděk; Tomášek, Václav; Popelková, Alena; Šťastný, Karel; Zárybnická, Markéta

    2017-01-01

    Animal home ranges typically characterized by their size, shape and a given time interval can be affected by many different biotic and abiotic factors. However, despite the fact that many studies have addressed home ranges, our knowledge of the factors influencing the size of area occupied by different animals is, in many cases, still quite poor, especially among raptors. Using radio-telemetry (VHF; 2.1 g tail-mounted tags) we studied movements of 20 Tengmalm's owl (Aegolius funereus) males during the breeding season in a mountain area of Central Europe (the Czech Republic, the Ore Mountains: 50° 40' N, 13° 35' E) between years 2006-2010, determined their average hunting home range size and explored what factors affected the size of home range utilised. The mean breeding home range size calculated according to 95% fixed kernel density estimator was 190.7 ± 65.7 ha (± SD) with a median value of 187.1 ha. Home range size was affected by prey abundance, presence or absence of polygyny, the number of fledglings, and weather conditions. Home range size increased with decreasing prey abundance. Polygynously mated males had overall larger home range than those mated monogamously, and individuals with more fledged young possessed larger home range compared to those with fewer raised fledglings. Finally, we found that home ranges recorded during harsh weather (nights with strong wind speed and/or heavy rain) were smaller in size than those registered during better weather. Overall, the results provide novel insights into what factors may influence home range size and emphasize the prey abundance as a key factor for breeding dynamics in Tengmalm's owl.

  20. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy.

    PubMed

    Jiang, Xiaoyu; Li, Hua; Xie, Jingping; McKinley, Eliot T; Zhao, Ping; Gore, John C; Xu, Junzhong

    2017-07-01

    A temporal diffusion MRI spectroscopy based approach has been developed to quantify cancer cell size and density in vivo. A novel imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) method selects a specific limited diffusion spectral window for an accurate quantification of cell sizes ranging from 10 to 20 μm in common solid tumors. In practice, it is achieved by a combination of a single long diffusion time pulsed gradient spin echo (PGSE) and three low-frequency oscillating gradient spin echo (OGSE) acquisitions. To validate our approach, hematoxylin and eosin staining and immunostaining of cell membranes, in concert with whole slide imaging, were used to visualize nuclei and cell boundaries, and hence, enabled accurate estimates of cell size and cellularity. Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes were obtained in vivo for three types of human colon cancers. The IMPULSED-derived apparent cellularities showed a stronger correlation (r = 0.81; P < 0.0001) with histology-derived cellularities than conventional ADCs (r = -0.69; P < 0.03). The IMPULSED approach samples a specific region of temporal diffusion spectra with enhanced sensitivity to length scales of 10-20 μm, and enables measurements of cell sizes and cellularities in solid tumors in vivo. Magn Reson Med 78:156-164, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Tissue-specific methylation differences and cognitive function in fragile X premutation females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allingham-Hawkins, D.J.; Babul, R.; Chitayat, D.

    1996-08-09

    Tissue-specific variation in (CGG){sub n} repeat size and methylation status of the FMR1 gene was investigated in 17 female premutation carriers. Minor variation in premutation repeat size among leukocyte, lymphoblast, and fibroblast tissues was noted in some subjects. One subject exhibited a premutation size allele of (CGG){sub 64} in leukocyte and fibroblast tissues by polymerase chain reaction analysis but a normal-size allele of (CGG){sub 46} in lymphoblast cells, suggesting low-level mosaicism in blood and clonality of the lymphoblast cell line. Six subjects exhibited differences in methylation pattern between leukocytes and lymphoblasts but not between leukocytes and fibroblasts, whereas 2 subjectsmore » showed large differences in methylation pattern between leukocytes and fibroblasts. Cognitive function was studied in 14 subjects using the Wechsler Adult Intelligence Scale-Revised. Mean Verbal and Performance IQs were well within the average range as was the mean Full Scale IQ; nevertheless, a trend toward lower Performance IQ compared with Verbal IQ was observed. No significant correlation was apparent between Full Scale IQ and (CGG){sub n} repeat size; however, a significant positive correlation was observed between Full Scale IQ and the proportion of the active X carrying the normal FMR1 allele in fibroblasts but not in leukocytes or lymphoblasts. 24 refs., 1 fig., 2 tabs.« less

  2. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage.

    PubMed

    Yarema, Maksym; Wörle, Michael; Rossell, Marta D; Erni, Rolf; Caputo, Riccarda; Protesescu, Loredana; Kravchyk, Kostiantyn V; Dirin, Dmitry N; Lienau, Karla; von Rohr, Fabian; Schilling, Andreas; Nachtegaal, Maarten; Kovalenko, Maksym V

    2014-09-03

    We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.

  3. Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage

    PubMed Central

    2015-01-01

    We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g–1, 50% higher than those achieved for bulk Ga under identical testing conditions. PMID:25133552

  4. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Specifications. (i) Nitrogen content is in the range 16.5-19 percent as determined by Kjeldahl analysis. (ii... copolymers in the form of particles of a size that will pass through a U.S. standard sieve No. 6 and that will be held on a U.S. standard sieve No. 10: (i) Extracted copolymer not to exceed 2.0 parts per...

  5. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Specifications. (i) Nitrogen content is in the range 16.5-19 percent as determined by Kjeldahl analysis. (ii... copolymers in the form of particles of a size that will pass through a U.S. standard sieve No. 6 and that will be held on a U.S. standard sieve No. 10: (i) Extracted copolymer not to exceed 2.0 parts per...

  6. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Specifications. (i) Nitrogen content is in the range 16.5-19 percent as determined by Kjeldahl analysis. (ii... copolymers in the form of particles of a size that will pass through a U.S. standard sieve No. 6 and that will be held on a U.S. standard sieve No. 10: (i) Extracted copolymer not to exceed 2.0 parts per...

  7. Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies

    PubMed Central

    Talla, Venkat; Suh, Alexander; Kalsoom, Faheema; Dincă, Vlad; Vila, Roger; Friberg, Magne; Wiklund, Christer

    2017-01-01

    Abstract Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths. PMID:28981642

  8. The Compositions, Particle Sizes, and Distributions of Ice Aerosols in the Mars Mesosphere from 2009-2016 CRISM Visible-NearIR Limb Spectra

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Smith, M. D.; Wolff, M. J.; Toigo, A. D.; Seelos, K. D.; Murchie, S. L.

    2016-12-01

    Since 2009, the CRISM visible-nearIR imaging spectrometer onboard the Mars Reconnaissance Orbiter (MRO) has returned over 70 orbits of Mars limb image scans over the 0-130 km altitude range. Pole-to-pole latitudinal coverage is obtained from the near-polar, sun-synchronous (LT 3pm) MRO orbit for a limited set of surface longitudes centered on Tharsis, Valles Mariners, Meridioni, and Hellas regions. Seasonal coverage extends over the full seasonal range (Ls=0-360°), as accumulated over 2009-2016 (MY 29-33), supporting a range of aerosol and airglow studies (Smith et al., 2013; Clancy et al., 2012, 2013). The 0.4-4.0 μm wavelength range of these CRISM limb observations proves particularly suitable to characterizing aerosol composition and particle sizes, particularly for the Mars mesosphere (z=50-100 km), which has only recently been observed with any dedication by MCS (Sefton-Nash et al, 2013) and CRISM limb measurements. Dust and H2O, CO2 ice aerosols are clearly distinguished by their distinct scattering and absorption behaviors over the key 2-4 μm wavelength region, and their particle sizes are well determined by the 0.4-3 μm wavelength region. Several key attributes are determined for Mars mesospheric aerosols. Dust aerosols are largely undetected, and are apparently injected to such heights only during global dust storms (Clancy et al, 2010). Ice clouds are generally common at 55-75 km altitudes, although in separate halves of the Mars year. CO2 and H2O ice clouds are most prominent during the aphelion and perihelion portions of the Mars orbit, respectively. CO2 ice clouds, which occur at low latitudes over specific surface longitudes, present distinct particle size populations ranging from 0.5 to 1.5 μm (Reff). Mesospheric H2O ice clouds exhibit somewhat smaller particle sizes (Reff=0.3-1 μm) and extend over low to mid latitudes. This orbital dependence for mesospheric ice aerosol composition indicates extreme annual (orbital) variation in mesospheric water vapor.

  9. Scaling approach in predicting the seatbelt loading and kinematics of vulnerable occupants: How far can we go?

    PubMed

    Nie, Bingbing; Forman, Jason L; Joodaki, Hamed; Wu, Taotao; Kent, Richard W

    2016-09-01

    Occupants with extreme body size and shape, such as the small female or the obese, were reported to sustain high risk of injury in motor vehicle crashes (MVCs). Dimensional scaling approaches are widely used in injury biomechanics research based on the assumption of geometrical similarity. However, its application scope has not been quantified ever since. The objective of this study is to demonstrate the valid range of scaling approaches in predicting the impact response of the occupants with focus on the vulnerable populations. The present analysis was based on a data set consisting of 60 previously reported frontal crash tests in the same sled buck representing a typical mid-size passenger car. The tests included two categories of human surrogates: 9 postmortem human surrogates (PMHS) of different anthropometries (stature range: 147-189 cm; weight range: 27-151 kg) and 5 anthropomorphic test devices (ATDs). The impact response was considered including the restraint loads and the kinematics of multiple body segments. For each category of the human surrogates, a mid-size occupant was selected as a baseline and the impact response was scaled specifically to another subject based on either the body mass (body shape) or stature (the overall body size). To identify the valid range of the scaling approach, the scaled response was compared to the experimental results using assessment scores on the peak value, peak timing (the time when the peak value occurred), and the overall curve shape ranging from 0 (extremely poor) to 1 (perfect match). Scores of 0.7 to 0.8 and 0.8 to 1.0 indicate fair and acceptable prediction. For both ATDs and PMHS, the scaling factor derived from body mass proved an overall good predictor of the peak timing for the shoulder belt (0.868, 0.829) and the lap belt (0.858, 0.774) and for the peak value of the lap belt force (0.796, 0.869). Scaled kinematics based on body stature provided fair or acceptable prediction on the overall head/shoulder kinematics (0.741, 0.822 for the head; 0.817, 0.728 for the shoulder) regardless of the anthropometry. The scaling approach exhibited poor prediction capability on the curve shape for the restraint force (0.494 and 0.546 for the shoulder belt; 0.585 and 0.530 for the lap belt). It also cannot well predict the excursion of the pelvis and the knee. The results revealed that for the peak lap belt force and the forward motion of the head and shoulder, the underlying linear relationship with body size and shape is valid over a wide anthropometric range. The chaotic nature of the dynamic response cannot be fully recovered by the assumption of the whole-body geometrical similarity, especially for the curve shape. The valid range of the scaling approach established in this study can be reasonably referenced in predicting the impact response of a given specific population with expected deviation. Application of this knowledge also includes proposing strategies for restraint configuration and providing reference for ATD and/or human body model (HBM) development for vulnerable occupants.

  10. Size effects on negative thermal expansion in cubic ScF{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Guo, X. G.; Zhang, K.

    2016-07-11

    Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead,more » the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.« less

  11. Effect of heating rate and plant species on the size and uniformity of silver nanoparticles synthesized using aromatic plant extracts

    NASA Astrophysics Data System (ADS)

    Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo

    2016-11-01

    Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of <10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.

  12. Differentiating causality and correlation in allometric scaling: ant colony size drives metabolic hypometry

    PubMed Central

    Ochs, Alison; Fewell, Jennifer H.; Harrison, Jon F.

    2017-01-01

    Metabolic rates of individual animals and social insect colonies generally scale hypometrically, with mass-specific metabolic rates decreasing with increasing size. Although this allometry has wide ranging effects on social behaviour, ecology and evolution, its causes remain controversial. Because it is difficult to experimentally manipulate body size of organisms, most studies of metabolic scaling depend on correlative data, limiting their ability to determine causation. To overcome this limitation, we experimentally reduced the size of harvester ant colonies (Pogonomyrmex californicus) and quantified the consequent increase in mass-specific metabolic rates. Our results clearly demonstrate a causal relationship between colony size and hypometric changes in metabolic rate that could not be explained by changes in physical density. These findings provide evidence against prominent models arguing that the hypometric scaling of metabolic rate is primarily driven by constraints on resource delivery or surface area/volume ratios, because colonies were provided with excess food and colony size does not affect individual oxygen or nutrient transport. We found that larger colonies had lower median walking speeds and relatively more stationary ants and including walking speed as a variable in the mass-scaling allometry greatly reduced the amount of residual variation in the model, reinforcing the role of behaviour in metabolic allometry. Following the experimental size reduction, however, the proportion of stationary ants increased, demonstrating that variation in locomotory activity cannot solely explain hypometric scaling of metabolic rates in these colonies. Based on prior studies of this species, the increase in metabolic rate in size-reduced colonies could be due to increased anabolic processes associated with brood care and colony growth. PMID:28228514

  13. Biomimetic DNA emulsions: specific, thermo-reversible and adjustable binding from a liquid-like DNA layer

    NASA Astrophysics Data System (ADS)

    Pontani, Lea-Laetitia; Feng, Lang; Dreyfus, Remi; Seeman, Nadrian; Chaikin, Paul; Brujic, Jasna

    2013-03-01

    We develop micron-sized emulsions coated with specific DNA sequences and complementary sticky ends. The emulsions are stabilized with phospholipids on which the DNA strands are grafted through biotin-streptavidin interactions, which allows the DNA to diffuse freely on the surface. We produce two complementary emulsions: one is functionalized with S sticky ends and dyed with red streptavidin, the other displays the complementary S' sticky ends and green streptavidin. Mixing those emulsions reveals specific adhesion between them due to the short-range S-S' hybridization. As expected this interaction is thermo-reversible: the red-green adhesive droplets dissociate upon heating and reassemble after cooling. Here the fluid phospholipids layer also leads to diffusive adhesion patches, which allows the bound droplets to rearrange throughout the packing structure. We quantify the adhesion strength between two droplets and build a theoretical framework that captures the observed trends through parameters such as the size of the droplets, the DNA surface density, the various DNA constructs or the temperature. This colloidal-scale, specific, thermo-reversible biomimetic emulsion offers a new versatile and powerful tool for the development of complex self-assembled materials.

  14. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less

  15. Tuning the sensing range of silicon pressure sensor by trench etching technology

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua

    2006-01-01

    The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.

  16. Fluvial experiments using inertial sensors.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Valyrakis, Manousos; Hodge, Rebecca; Drysdale, Tim; Hoey, Trevor

    2017-04-01

    During the last four years we have announced results on the development of a smart pebble that is constructed and calibrated specifically for capturing the dynamics of coarse sediment motion in river beds, at a grain scale. In this presentation we report details of our experimental validation across a range of flow regimes. The smart pebble contains Inertial Measurements Units (IMUs), which are sensors capable of recording the inertial acceleration and the angular velocity of the rigid bodies into which they are attached. IMUs are available across a range of performance levels, with commensurate increase in size, cost and performance as one progresses from integrated-circuit devices for use in commercial applications such as gaming and mobile phones, to larger brick-sized systems sometimes found in industrial applications such as vibration monitoring and quality control, or even the rack-mount equipment used in some aerospace and navigation applications (which can go as far as to include lasers and optical components). In parallel with developments in commercial and industrial settings, geomorphologists started recently to explore means of deploying IMUs in smart pebbles. The less-expensive, chip-scale IMUs have been shown to have adequate performance for this application, as well as offering a sufficiently compact form-factor. Four prototype sensors have been developed so far, and the latest (400 g acceleration range, 50-200 Hz sampling frequency) has been tested in fluvial laboratory experiments. We present results from three different experimental regimes designed for the evaluation of this sensor: a) an entrainment threshold experiment ; b) a bed impact experiment ; and c) a rolling experiment. All experiments used a 100 mm spherical sensor, and set a) were repeated using an equivalent size elliptical sensor. The experiments were conducted in the fluvial laboratory of the University of Glasgow (0.9 m wide flume) under different hydraulic conditions. The use of IMU results into direct parametrization of the inertial forces of grains which for the tested grain sizes were, as expected, always comparable to the independently measured hydrodynamic forces. However, the validity of IMU measurements is subjected to specific design, processing and experimental considerations, and we present the results of our analysis of these.

  17. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  18. Large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Using present technology as a starting point, performance predictions were made for large thrusters. The optimum beam diameter for maximum thruster efficiency was determined for a range of specific impulse. This optimum beam diameter varied greatly with specific impulse, from about 0.6 m at 3000 seconds (and below) to about 4 m at 10,000 seconds with argon, and from about 0.6 m at 2,000 seconds (and below) to about 12 m at 10,000 seconds with Xe. These beams sizes would require much larger thrusters than those presently available, but would offer substantial complexity and cost reductions for large electric propulsion systems.

  19. Photosynthesis-related quantities for education and modeling.

    PubMed

    Antal, Taras K; Kovalenko, Ilya B; Rubin, Andrew B; Tyystjärvi, Esa

    2013-11-01

    A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.

  20. Higher sensitivity and lower specificity in post-fire mortality model validation of 11 western US tree species

    USGS Publications Warehouse

    Kane, Jeffrey M.; van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth

    2017-01-01

    Managers require accurate models to predict post-fire tree mortality to plan prescribed fire treatments and examine their effectiveness. Here we assess the performance of a common post-fire tree mortality model with an independent dataset of 11 tree species from 13 National Park Service units in the western USA. Overall model discrimination was generally strong, but performance varied considerably among species and sites. The model tended to have higher sensitivity (proportion of correctly classified dead trees) and lower specificity (proportion of correctly classified live trees) for many species, indicating an overestimation of mortality. Variation in model accuracy (percentage of live and dead trees correctly classified) among species was not related to sample size or percentage observed mortality. However, we observed a positive relationship between specificity and a species-specific bark thickness multiplier, indicating that overestimation was more common in thin-barked species. Accuracy was also quite low for thinner bark classes (<1 cm) for many species, leading to poorer model performance. Our results indicate that a common post-fire mortality model generally performs well across a range of species and sites; however, some thin-barked species and size classes would benefit from further refinement to improve model specificity.

  1. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials.

    PubMed

    Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong

    2016-11-15

    Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing.

    PubMed

    Pope, Bernard J; Hammet, Fleur; Nguyen-Dumont, Tu; Park, Daniel J

    2018-01-01

    Hi-Plex is a suite of methods to enable simple, accurate, and cost-effective highly multiplex PCR-based targeted sequencing (Nguyen-Dumont et al., Biotechniques 58:33-36, 2015). At its core is the principle of using gene-specific primers (GSPs) to "seed" (or target) the reaction and universal primers to "drive" the majority of the reaction. In this manner, effects on amplification efficiencies across the target amplicons can, to a large extent, be restricted to early seeding cycles. Product sizes are defined within a relatively narrow range to enable high-specificity size selection, replication uniformity across target sites (including in the context of fragmented input DNA such as that derived from fixed tumor specimens (Nguyen-Dumont et al., Biotechniques 55:69-74, 2013; Nguyen-Dumont et al., Anal Biochem 470:48-51, 2015), and application of high-specificity genetic variant calling algorithms (Pope et al., Source Code Biol Med 9:3, 2014; Park et al., BMC Bioinformatics 17:165, 2016). Hi-Plex offers a streamlined workflow that is suitable for testing large numbers of specimens without the need for automation.

  3. Climate and topography explain range sizes of terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei

    2016-05-01

    Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

  4. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  5. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  6. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic properties of particles within a size distribution mode that accompanied changes in the sizes of those particles. This model was used to examine three specific cases in which the sampled aerosol evolved slowly over a period of hours or days.

  7. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  8. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE PAGES

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  9. Block 4 solar cell module design and test specification for intermediate load center applications

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Requirements for performance of terrestrial solar cell modules intended for use in various test applications are established. During the 1979-80 time period, such applications are expected to be in the 20 to 500 kilowatt size range. A series of characterization and qualification tests necessary to certify the module design for production, and the necessary performance test for acceptance of modules are specified.

  10. Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures

    NASA Astrophysics Data System (ADS)

    Glibitskiy, Dmitriy M.; Gorobchenko, Olga A.; Nikolov, Oleg T.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Zibarov, Artem M.; Shestopalova, Anna V.; Semenov, Mikhail A.; Glibitskiy, Gennadiy M.

    2018-03-01

    Formation of patterns on the surface of dried films of saline biopolymer solutions is influenced by many factors, including particle size and structure. Proteins may be modified under the influence of ionizing radiation. By irradiating protein solutions with gamma rays, it is possible to affect the formation of zigzag (Z) structures on the film surface. In our study, the films were obtained by desiccation of bovine serum albumin (BSA) solutions, which were irradiated by a 60Co gamma-source at doses ranging from 1 Gy to 12 kGy. The analysis of the resulting textures on the surface of the films was carried out by calculating the specific length of Z-structures. The results are compared against the absorption and fluorescence spectroscopy and dynamic light scattering (DLS) data. Gamma-irradiation of BSA solutions in the 1-200 Gy range practically does not influence the amount of Z-structures on the film surface. The decrease in fluorescence intensity and increase in absorbance intensity point to the destruction of BSA structure at 2 and 12 kGy, and DLS shows a more than 160% increase in particle size as a result of BSA aggregation at 2 kGy. This prevents the formation of Z-structures, which is reflected in the decrease of their specific length.

  11. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  12. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions

    USGS Publications Warehouse

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.

    2018-01-01

    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  13. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterne, P A; Pask, J E

    2003-02-13

    Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar et al. have identified two lifetime components in aged plutonium samples--a dominant lifetime component of around 182 ps and a longer lifetime component of around 350-400ps. This second component appears to increase with the age of the sample, and accounts for only about 5 percent of the total intensity in 35 year-old plutonium samples. First-principles calculations of positron lifetimes are now used extensively to guidemore » the interpretation of positron lifetime data. At Livermore, we have developed a first-principles finite-element-based method for calculating positron lifetimes for defects in metals. This method is capable of treating system cell sizes of several thousand atoms, allowing us to model defects in plutonium ranging in size from a mono-vacancy to helium-filled bubbles of over 1 nm in diameter. In order to identify the defects that account for the observed lifetime values, we have performed positron lifetime calculations for a set of vacancies, vacancy clusters, and helium-filled vacancy clusters in delta-plutonium. The calculations produced values of 143ps for defect-free delta-Pu and 255ps for a mono-vacancy in Pu, both of which are inconsistent with the dominant experimental lifetime component of 182ps. Larger vacancy clusters have even longer lifetimes. The observed positron lifetime is significantly shorter than the calculated lifetimes for mono-vacancies and larger vacancy clusters, indicating that open vacancy clusters are not the dominant defect in the aged plutonium samples. When helium atoms are introduced into the vacancy cluster, the positron lifetime is reduced due to the increased density of electrons available for annihilation. For a mono-vacancy in Pu containing one helium atom, the calculated lifetime is 190 ps, while a di-vacancy containing two helium atoms has a positron lifetime of 205 ps. In general, increasing the helium density in a vacancy cluster or He-filled bubble reduces the positron lifetime, so that the same lifetime value can arise fi-om a range of vacancy cluster sizes with different helium densities. In order to understand the variation of positron lifetime with vacancy cluster size and helium density in the defect, we have performed over 60 positron lifetime calculations with vacancy cluster sizes ranging from 1 to 55 vacancies and helium densities ranging fi-om zero to five helium atoms per vacancy. The results indicate that the experimental lifetime of 182 ps is consistent with the theoretical value of 190 ps for a mono-vacancy with a single helium atom, but that slightly better agreement is obtained for larger clusters of 6 or more vacancies containing 2-3 helium atoms per vacancy. For larger vacancy clusters with diameters of about 3-5 nm or more, the annihilation with helium electrons dominates the positron annihilation rate; the observed lifetime of 180ps is then consistent with a helium concentration in the range of 3 to 3.5 Hehacancy, setting an upper bound on the helium concentration in the vacancy clusters. In practice, the single lifetime component is most probably associated with a family of helium-filled bubbles rather than with a specific unique defect size. The longer 350-400ps lifetime component is consistent with a relatively narrow range of defect sizes and He concentration. At zero He concentration, the lifetime values are matched by small vacancy clusters containing 6-12 vacancies. With increasing vacancy cluster size, a small amount of He is required to keep the lifetime in the 350-400 ps range, until the value saturates for larger helium bubbles of more than 50 vacancies (bubble diameter > 1.3 nm) at a helium concentration close to 1 He/vacancy. These results, taken together with the experimental data, indicate that the features observed in TEM data by Schwartz et al are not voids, but are in fact helium-filled bubbles with a helium pressure of around 2-3 helium atoms per vacancy, depending on the bubble size. This is consistent with the conclusions of recently developed models of He-bubble growth in aged plutonium.« less

  14. Ion-Specific Control of the Self-Assembly Dynamics of a Nanostructured Protein Lattice

    DOE PAGES

    Rad, Behzad; Haxton, Thomas K.; Shon, Albert; ...

    2014-12-10

    Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca 2+. These diagrams revealed amore » localized region of optimum yield of nanosheets at intermediate Ca 2+ concentration. Replacement of Mg 2+ or Ba 2+ for Ca 2+ indicates that Ca 2+ acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca 2+ bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. In conclusion, our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.« less

  15. Combining noninvasive genetics and a new mammalian sex-linked marker provides new tools to investigate population size, structure and individual behaviour: An application to bats.

    PubMed

    Zarzoso-Lacoste, Diane; Jan, Pierre-Loup; Lehnen, Lisa; Girard, Thomas; Besnard, Anne-Laure; Puechmaille, Sebastien J; Petit, Eric J

    2018-03-01

    Monitoring wild populations is crucial for their effective management. Noninvasive genetic methods provide robust data from individual free-ranging animals, which can be used in capture-mark-recapture (CMR) models to estimate demographic parameters without capturing or disturbing them. However, sex- and status-specific behaviour, which may lead to differences in detection probabilities, is rarely considered in monitoring. Here, we investigated population size, sex ratio, sex- and status-related behaviour in 19 Rhinolophus hipposideros maternity colonies (Northern France) with a noninvasive genetic CMR approach (using faeces) combined with parentage assignments. The use of the DDX3X/Y-Mam sexual marker designed in this study, which shows inter- and intrachromosomal length polymorphism across placental mammals, together with eight polymorphic microsatellite markers, produced high-quality genetic data with limited genotyping errors and allowed us to reliably distinguish different categories of individuals (males, reproductive and nonreproductive females) and to estimate population sizes. We showed that visual counts represent well-adult female numbers and that population composition in maternity colonies changes dynamically during the summer. Before parturition, colonies mainly harbour pregnant and nonpregnant females with a few visiting males, whereas after parturition, colonies are mainly composed of mothers and their offspring with a few visiting nonmothers and males. Our approach gives deeper insight into sex- and status-specific behaviour, a prerequisite for understanding population dynamics and developing effective monitoring and management strategies. Provided sufficient samples can be obtained, this approach can be readily applied to a wide range of species. © 2017 John Wiley & Sons Ltd.

  16. Is there a single best estimator? selection of home range estimators using area- under- the-curve

    USGS Publications Warehouse

    Walter, W. David; Onorato, Dave P.; Fischer, Justin W.

    2015-01-01

    Comparisons of fit of home range contours with locations collected would suggest that use of VHF technology is not as accurate as GPS technology to estimate size of home range for large mammals. Estimators of home range collected with GPS technology performed better than those estimated with VHF technology regardless of estimator used. Furthermore, estimators that incorporate a temporal component (third-generation estimators) appeared to be the most reliable regardless of whether kernel-based or Brownian bridge-based algorithms were used and in comparison to first- and second-generation estimators. We defined third-generation estimators of home range as any estimator that incorporates time, space, animal-specific parameters, and habitat. Such estimators would include movement-based kernel density, Brownian bridge movement models, and dynamic Brownian bridge movement models among others that have yet to be evaluated.

  17. Design considerations for eye-safe single-aperture laser radars

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Volfson, L.

    2015-05-01

    The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.

  18. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  19. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  20. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, D. B.; Radney, J. G.; Lum, J.

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  1. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M.

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period)more » at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0.4 to 0.6 µm) in cold months. Several other interesting features of changing nature of monthly spectral AOT, R{sub eff}, N{sub t}, N{sub a} and N{sub C} (particles/m{sup 2}) have been discussed in detail in this paper.« less

  2. Population-regulating processes during the adult phase in flatfish

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, A. D.

    Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population abundance. The effect of a density-dependent decrease in size-specific fecundity seems to play a minor role, although this role may become important at extremely high levels of population abundance.

  3. The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles

    NASA Astrophysics Data System (ADS)

    Bendz, David; Tüchsen, Peter L.; Christensen, Thomas H.

    2007-12-01

    Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N 2 adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m 2/g to 25.7 m 2/g for the surface area and from 0.0086 cm 3/g to 0.091 cm 3/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca 2+ and SO 4- 2 , the coupled effect of diffusion resistance and the degree of undersaturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.

  4. Gas and particle size distributions of polychlorinated naphthalenes in the atmosphere of Beijing, China.

    PubMed

    Zhu, Qingqing; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liu, Guorui; Zheng, Minghui

    2016-05-01

    Polychlorinated naphthalenes (PCNs) were listed as persistent organic pollutants in the Stockholm Convention in 2015. Despite numerous studies on PCNs, little is known about their occurrence in atmospheric particulate matter of different sizes. In this study, 49 PCN congeners were investigated for their concentrations and size-specific distributions in an urban atmosphere, and preliminary exposure assessments were conducted. Ambient air samples were collected using a high-volume cascade impactor for division into a gas fraction and four particle size fractions. Samples were collected from October 2013 to June 2014 at an urban site in Beijing, China. The concentration range for PCNs in the atmosphere (gas + particle fractions) was 6.77-25.90 pg/m(3) (average 16.28 pg/m(3)). The particle-bound concentration range was 0.17-2.78 pg/m(3) (average 1.73 pg/m(3)). Therefore, PCNs were mainly found in the gas phase. The concentrations of PCNs in a fraction increased as the particle size decreased (dae > 10 μm, 10 μm ≥ dae > 2.5 μm, 2.5 μm ≥ dae > 1.0 μm and dae ≤ 1.0 μm). Consequently, PCNs were ubiquitous in inhalable fine particles, and the ΣPCNs associated with PM1.0 and PM2.5 reached 68.4% and 84.3%, respectively. Tetra-CNs and penta-CNs (the lower chlorinated homologues) predominated in the atmosphere. The homologue profiles in different size particles were almost similar, but the particulate profiles were different from those in the gas phase. Among the individual PCNs identified, CN38/40, CN52/60 and CN75 were the dominant compounds in the atmosphere. CN66/67 and CN73 collectively accounted for most of the total dioxin-like TEQ concentrations of the PCNs. Exposure to toxic compounds, such as PCNs present in PM1.0 or PM2.5, may affect human health. This work presents the first data on size-specific distributions of PCNs in the atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Pattern of Gestational Weight Gain is Associated with Changes in Maternal Body Composition and Neonatal Size.

    PubMed

    Widen, Elizabeth M; Factor-Litvak, Pam R; Gallagher, Dympna; Paxton, Anne; Pierson, Richard N; Heymsfield, Steven B; Lederman, Sally A

    2015-10-01

    The pattern of gestational weight gain (GWG) reflects general nutrient availability to support growing fetal and maternal compartments and may contribute to later health, but how it relates to changes in maternal body composition is unknown. We evaluated how the pattern of GWG related to changes in maternal body composition during pregnancy and infant size at birth. A prospective, multi-ethnic cohort of 156 pregnant women and their infants was studied in New York City. Prenatal weights were used to estimate total and rate (kg/week) of GWG by trimester. Linear regression models evaluated the association between trimester-specific GWG group (low, medium, high GWG) [total (low ≤25, high ≥75 percentile) or rate (defined by tertiles)] and infant weight, length and maternal body composition changes from 14 to 37 weeks, adjusting for covariates. Compared to the low gain group, medium/high rate of GWG in the second trimester and high rate of GWG in the third trimester were associated with larger gains in maternal fat mass (β range for fat Δ = 2.86-5.29 kg, all p < 0.01). For infant outcomes, high rate of GWG in the second trimester was associated with higher birth weight (β = 356 g, p = 0.001) and length (β = 0.85 cm, p = 0.002). First and third trimester GWG were not associated with neonatal size. The trimester specific pattern and rate of GWG reflect changes in maternal body fat and body water, and are associated with neonatal size, which supports the importance of monitoring trimester-specific GWG.

  6. Calibration of the clumped isotope thermometer for planktic foraminifers

    NASA Astrophysics Data System (ADS)

    Meinicke, N.; Ho, S. L.; Nürnberg, D.; Tripati, A. K.; Jansen, E.; Dokken, T.; Schiebel, R.; Meckler, A. N.

    2017-12-01

    Many proxies for past ocean temperature suffer from secondary influences or require species-specific calibrations that might not be applicable on longer time scales. Being thermodynamically based and thus independent of seawater composition, clumped isotopes in carbonates (Δ47) have the potential to circumvent such issues affecting other proxies and provide reliable temperature reconstructions far back in time and in unknown settings. Although foraminifers are commonly used for paleoclimate reconstructions, their use for clumped isotope thermometry has been hindered so far by large sample-size requirements. Existing calibration studies suggest that data from a variety of foraminifer species agree with synthetic carbonate calibrations (Tripati, et al., GCA, 2010; Grauel, et al., GCA, 2013). However, these studies did not include a sufficient number of samples to fully assess the existence of species-specific effects, and data coverage was especially sparse in the low temperature range (<10 °C). To expand the calibration database of clumped isotopes in planktic foraminifers, especially for colder temperatures (<10°C), we present new Δ47 data analysed on 14 species of planktic foraminifers from 13 sites, covering a temperature range of 1-29 °C. Our method allows for analysis of smaller sample sizes (3-5 mg), hence also the measurement of multiple species from the same samples. We analyzed surface-dwelling ( 0-50 m) species and deep-dwelling (habitat depth up to several hundred meters) planktic foraminifers from the same sites to evaluate species-specific effects and to assess the feasibility of temperature reconstructions for different water depths. We also assess the effects of different techniques in estimating foraminifer calcification temperature on the calibration. Finally, we compare our calibration to existing clumped isotope calibrations. Our results confirm previous findings that indicate no species-specific effects on the Δ47-temperature relationship measured in planktic foraminifers.

  7. Specific dynamic action: a review of the postprandial metabolic response.

    PubMed

    Secor, Stephen M

    2009-01-01

    For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.

  8. Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies.

    PubMed

    Talla, Venkat; Suh, Alexander; Kalsoom, Faheema; Dinca, Vlad; Vila, Roger; Friberg, Magne; Wiklund, Christer; Backström, Niclas

    2017-10-01

    Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Design and interpretation of anthropometric and fitness testing of basketball players.

    PubMed

    Drinkwater, Eric J; Pyne, David B; McKenna, Michael J

    2008-01-01

    The volume of literature on fitness testing in court sports such as basketball is considerably less than for field sports or individual sports such as running and cycling. Team sport performance is dependent upon a diverse range of qualities including size, fitness, sport-specific skills, team tactics, and psychological attributes. The game of basketball has evolved to have a high priority on body size and physical fitness by coaches and players. A player's size has a large influence on the position in the team, while the high-intensity, intermittent nature of the physical demands requires players to have a high level of fitness. Basketball coaches and sport scientists often use a battery of sport-specific physical tests to evaluate body size and composition, and aerobic fitness and power. This testing may be used to track changes within athletes over time to evaluate the effectiveness of training programmes or screen players for selection. Sports science research is establishing typical (or 'reference') values for both within-athlete changes and between-athlete differences. Newer statistical approaches such as magnitude-based inferences have emerged that are providing more meaningful interpretation of fitness testing results in the field for coaches and athletes. Careful selection and implementation of tests, and more pertinent interpretation of data, will enhance the value of fitness testing in high-level basketball programmes. This article presents reference values of fitness and body size in basketball players, and identifies practical methods of interpreting changes within players and differences between players beyond the null-hypothesis.

  10. Coexistence of coyotes (Canis latrans) and red foxes (Vulpes vulpes) in an urban landscape.

    PubMed

    Mueller, Marcus A; Drake, David; Allen, Maximilian L

    2018-01-01

    Urban environments are increasing worldwide and are inherently different than their rural counterparts, with a variety of effects on wildlife due to human presence, increased habitat fragmentation, movement barriers, and access to anthropogenic food sources. Effective management of urban wildlife requires an understanding of how urbanization affects their behavior and ecology. The spatial activity and interactions of urban wildlife, however, have not been as rigorously researched as in rural areas. From January 2015 to December 2016, we captured, radio-collared, and tracked 11 coyotes and 12 red foxes in Madison, WI. Within our study area, coyotes strongly selected home ranges with high proportions of natural areas; conversely, red foxes selected home ranges with open space and moderately developed areas. Use of highly developed areas best explained variation among individual home range sizes and inversely affected home range size for coyotes and red foxes. Coyote and red fox home ranges showed some degree of spatial and temporal overlap, but generally appeared partitioned by habitat type within our study area. Coyotes and red foxes were both active at similar times of the day, but their movement patterns differed based on species-specific habitat use. This spatial partitioning may promote positive co-existence between these sympatric canids in urban areas, and our findings of spatial activity and interactions will better inform wildlife managers working in urban areas.

  11. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization.

    PubMed

    Molina, David; Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M

    2017-01-01

    Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.

  12. Coexistence of coyotes (Canis latrans) and red foxes (Vulpes vulpes) in an urban landscape

    PubMed Central

    Drake, David; Allen, Maximilian L.

    2018-01-01

    Urban environments are increasing worldwide and are inherently different than their rural counterparts, with a variety of effects on wildlife due to human presence, increased habitat fragmentation, movement barriers, and access to anthropogenic food sources. Effective management of urban wildlife requires an understanding of how urbanization affects their behavior and ecology. The spatial activity and interactions of urban wildlife, however, have not been as rigorously researched as in rural areas. From January 2015 to December 2016, we captured, radio-collared, and tracked 11 coyotes and 12 red foxes in Madison, WI. Within our study area, coyotes strongly selected home ranges with high proportions of natural areas; conversely, red foxes selected home ranges with open space and moderately developed areas. Use of highly developed areas best explained variation among individual home range sizes and inversely affected home range size for coyotes and red foxes. Coyote and red fox home ranges showed some degree of spatial and temporal overlap, but generally appeared partitioned by habitat type within our study area. Coyotes and red foxes were both active at similar times of the day, but their movement patterns differed based on species-specific habitat use. This spatial partitioning may promote positive co-existence between these sympatric canids in urban areas, and our findings of spatial activity and interactions will better inform wildlife managers working in urban areas. PMID:29364916

  13. [A systematic review of worldwide natural history models of colorectal cancer: classification, transition rate and a recommendation for developing Chinese population-specific model].

    PubMed

    Li, Z F; Huang, H Y; Shi, J F; Guo, C G; Zou, S M; Liu, C C; Wang, Y; Wang, L; Zhu, S L; Wu, S L; Dai, M

    2017-02-10

    Objective: To review the worldwide studies on natural history models among colorectal cancer (CRC), and to inform building a Chinese population-specific CRC model and developing a platform for further evaluation of CRC screening and other interventions in population in China. Methods: A structured literature search process was conducted in PubMed and the target publication dates were from January 1995 to December 2014. Information about classification systems on both colorectal cancer and precancer on corresponding transition rate, were extracted and summarized. Indicators were mainly expressed by the medians and ranges of annual progression or regression rate. Results: A total of 24 studies were extracted from 1 022 studies, most were from America ( n =9), but 2 from China including 1 from the mainland area, mainly based on Markov model ( n =22). Classification systems for adenomas included progression risk ( n =9) and the sizes of adenoma ( n =13, divided into two ways) as follows: 1) Based on studies where adenoma was risk-dependent, the median annual transition rates, from ' normal status' to ' non-advanced adenoma', 'non-advanced' to ' advanced' and ' advanced adenoma' to CRC were 0.016 0 (range: 0.002 2-0.020 0), 0.020 (range: 0.002-0.177) and 0.044 (range: 0.005-0.063), respectively. 2) Median annual transition rates, based on studies where adenoma were classified by sizes, into <10 mm and ≥10 mm ( n =7), from ' normal' to adenoma <10 mm, from adenoma <10 mm to adenoma ≥10 mm and adenoma ≥ 10 mm to CRC, were 0.016 7 (range: 0.015 0-0.037 0), 0.020 (range: 0.015-0.035) and 0.040 0 (range: 0.008 5-0.050 0), respectively. 3) Median annual transition rates, based on studies where adenoma, were classified by sizes into diminutive (≤5 mm), small (6-9 mm) and large adenoma (≥10 mm) ( n =6), from ' normal' to diminutive adenoma,'diminutive' to ' small','small' to ' large', and large adenoma to CRC were 0.013 (range: 0.009-0.019), 0.043 (range: 0.020-0.085), 0.044 (range: 0.020-0.125) and 0.033 5 (range: 0.030-0.040), respectively. Staging system of CRC mainly included LRD (localized/regional/distant, n =10), Dukes' ( n =7) and TNM ( n =3). When using the LRD classification, the median annual transition rates from ' localized' to ' regional' and ' regional' to 'distant' were 0.28 (range: 0.20-0.33) and 0.40 (range: 0.24-0.63), respectively. Under the Dukes' classification, the median annual transition rates appeared as 0.583 (range: 0.050-0.910), 0.656 (range: 0.280-0.720) and 0.830 (range: 0.630-0.865) from Dukes' A to B, B to C and C to Dukes' D, respectively. Again, when using the TNM classification, very limited transition rate was reported. Serrated pathway was only described in one study. Conclusions: Studies on the natural history model of colorectal cancer was still limited worldwide. Adenoma seemed the most common status setting for precancer model, and the risk-dependent classification for adenoma was consistent with the most commonly used system in clinical practice as well as major cancer screening programs in China. Since the staging systems of cancers varied, and shortage of transition rates based on TNM classification (commonly used in China), there will be a challenge for building Chinese population-specific natural history model of colorectal cancer, information from other classification systems could be conditionally applied.

  14. Investigation of coal properties and airborne respirable dust generation. Report of investigations/1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Organiscak, J.A.; Page, S.J.

    1998-10-01

    Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated withmore » ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.« less

  15. Giant Paramagnetism of Copper Nanoparticles in Nanocomposites Cu@C

    NASA Astrophysics Data System (ADS)

    Sharoyan, Eduard; Mirzakhanyan, Armen; Gyulasaryan, Harutyun; Manukyan, Aram; Estiphanos, Medhanie; Goff, Michael; Bernal, Oscar; Kocharian, Armen

    The copper nanoparticles in nanocomposites Cu@C, encapsulated in graphitized carbon shell was obtained by the solid-phase pyrolysis method of polycrystalline phthalocyanine (CuPc, Pc =C32N8H16) . The average sizes of the nanoparticles are in the range of 2-6 nm. Magnetic measurements were carried out by vibrational magnetometer in the temperature range 10-300 K. At low temperatures (<70K) we observed a giant paramagnetism, apparently due to the (ballistic) conduction electron (large orbital magnetism). The values of the specific susceptibility at T = 10K with magnetic specific susceptibility of 510-5 emu/gOe order. This work was supported by the RA MES State Committee of Science, in the frames of the research project SCS-13-1C090. The work at California State University was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.

  16. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  17. A comprehensive method for preliminary design optimization of axial gas turbine stages. II - Code verification

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1983-01-01

    The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.

  18. Predicting woodrat (Neotoma) responses to anthropogenic warming from studies of the palaeomidden record

    USGS Publications Warehouse

    Smith, Felisa A.; Betancourt, Julio L.

    2006-01-01

    Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. Here, we review research undertaken over the past decade investigating the response of Neotoma (woodrats) body size and distribution to climate change over the late Quaternary (the last 40,000 years). By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, we identify potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales. Specifically, we characterize climatic thresholds in the past that led to local species extirpation and/or range alterations rather than in situ adaptation, and apply them to anticipate potential biotic responses to anthropogenic climate change. Location Middens were collected at about 55 sites scattered across the western United States, ranging from about 34 to 46° N and about 104 to 116° W, respectively. Data for modern populations were drawn from studies conducted in Death Valley, California, Missoula, Montana and the Sevilleta LTER site in central New Mexico. Methods We analysed faecal pellets from midden series collected at numerous cave sites across the western United States. From these we estimated body mass using techniques validated in earlier studies. We compared body size fluctuations at different elevations in different regions and integrated these results with studies investigating temperature–body size tradeoffs in modern animals. We also quantify the rapidity of the size changes over the late Quaternary to estimate the evolutionary capacity of woodrats to deal with predicted rates of anthropogenic climate change over the next century. Results We find remarkable similarities across the geographical range to late Quaternary climate change. In the middle of the geographical range woodrats respond in accordance to Bergmann's rule: colder climatic conditions select for larger body size and warmer conditions select for smaller body size. Patterns are more complicated at range boundaries, and local environmental conditions influence the observed response. In general, woodrat body size fluctuates with approximately the same amplitude and frequency as climate; there is a significant and positive correlation between woodrat body size and generalized climate proxies (such as ice core records). Woodrats have achieved evolutionary rates of change equal to or greater than those needed to adapt in situ to anthropogenic climate change. Main conclusions In situ body size evolution is a likely outcome of climate change, and such shifts are part of a normal spectrum of adaptation. Woodrats appear to be subject to ongoing body size selection in response to fluctuating environmental conditions. Allometric considerations suggest that these shifts in body size lead to substantial changes in the physiology, life history and ecology of woodrats, and on their direct and indirect interactions with other organisms in the ecosystem. Our work highlights the importance of a finely resolved and long-term record in understanding biotic responses to climatic shifts.

  19. Impact of particle concentration and out-of-range sizes on the measurements of the LISST

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth

    2018-05-01

    The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with  >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.

  20. Synthesis of nanometer-size inorganic materials for the examination of particle size effects on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Emerson, Sean Christian

    The effect of acoustic and hydrodynamic cavitation on the precipitation of inorganic catalytic materials, specifically titania supported gold, was investigated. The overall objective was to understand the fundamental factors involved in synthesizing nanometer-size catalytic materials in the 1--10 nm range in a cavitating field. Materials with grain sizes in this range have been associated with enhanced catalytic activity compared to larger grain size materials. A new chemical approach was used to produce titania supported gold by co-precipitation with higher gold yields compared to other synthesis methods. Using this approach, it was determined that acoustic cavitation was unable to influence the gold mean crystallite size compared to non-sonicated catalysts. However, gold concentration on the catalysts was found to be very important for CO oxidation activity. By decreasing the gold concentration from a weight loading of 0.50% down to approximately 0.05%, the rate of reaction per mole of gold was found to increase by a factor of 19. Hydrodynamic cavitation at low pressures (6.9--48 bar) was determined to have no effect on gold crystallite size at a fixed gold content for the same precipitation technique used in the acoustic cavitation studies. By changing the chemistry of the precipitation system, however, it was found that a synergy existed between the dilution of the gold precursor solution, the orifice diameter, and the reducing agent addition rate. Individually, these factors were found to have little effect and only their interaction allowed gold grain size control in the range of 8--80 nm. Further modification of the system chemistry and the use of hydrodynamic cavitation at pressures in excess of 690 bar allowed the systematic control of gold crystallite size in the range of 2--9 nm for catalysts containing 2.27 +/- 0.17% gold. In addition, it was shown that the enhanced mixing due to cavitation led to larger gold yields compared to classical syntheses. The control of gold grain size was gained at the loss of CO activity, which was attributed to the formation of non-removable sodium titanate species. The increased mixing associated with cavitation contributed to the activity loss by partially burying the gold and incorporating more of the sodium titanate species into the catalysts. This work produced the first evidence of hydrodynamic cavitation influencing the gold crystallite size on titania supported gold catalysts and is the only study reporting the control of grain size by simple mechanical adjustment of the experimental parameters. Despite the low activity observed due to sodium titanate, the methodology of adjusting the chemistry of a precipitating system could be used to eliminate such species. The approach of modifying the chemical precipitation kinetics relative to the dynamics of cavitation offers a general scheme for future research on cavitational processing effects.

  1. Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic

    USGS Publications Warehouse

    Sillett, Scott T.; Chandler, Richard B.; Royle, J. Andrew; Kéry, Marc; Morrison, Scott A.

    2012-01-01

    Population size and habitat-specific abundance estimates are essential for conservation management. A major impediment to obtaining such estimates is that few statistical models are able to simultaneously account for both spatial variation in abundance and heterogeneity in detection probability, and still be amenable to large-scale applications. The hierarchical distance-sampling model of J. A. Royle, D. K. Dawson, and S. Bates provides a practical solution. Here, we extend this model to estimate habitat-specific abundance and rangewide population size of a bird species of management concern, the Island Scrub-Jay (Aphelocoma insularis), which occurs solely on Santa Cruz Island, California, USA. We surveyed 307 randomly selected, 300 m diameter, point locations throughout the 250-km2 island during October 2008 and April 2009. Population size was estimated to be 2267 (95% CI 1613-3007) and 1705 (1212-2369) during the fall and spring respectively, considerably lower than a previously published but statistically problematic estimate of 12 500. This large discrepancy emphasizes the importance of proper survey design and analysis for obtaining reliable information for management decisions. Jays were most abundant in low-elevation chaparral habitat; the detection function depended primarily on the percent cover of chaparral and forest within count circles. Vegetation change on the island has been dramatic in recent decades, due to release from herbivory following the eradication of feral sheep (Ovis aries) from the majority of the island in the mid-1980s. We applied best-fit fall and spring models of habitat-specific jay abundance to a vegetation map from 1985, and estimated the population size of A. insularis was 1400-1500 at that time. The 20-30% increase in the jay population suggests that the species has benefited from the recovery of native vegetation since sheep removal. Nevertheless, this jay's tiny range and small population size make it vulnerable to natural disasters and to habitat alteration related to climate change. Our results demonstrate that hierarchical distance-sampling models hold promise for estimating population size and spatial density variation at large scales. Our statistical methods have been incorporated into the R package unmarked to facilitate their use by animal ecologists, and we provide annotated code in the Supplement.

  2. Using meta-analysis to inform the design of subsequent studies of diagnostic test accuracy.

    PubMed

    Hinchliffe, Sally R; Crowther, Michael J; Phillips, Robert S; Sutton, Alex J

    2013-06-01

    An individual diagnostic accuracy study rarely provides enough information to make conclusive recommendations about the accuracy of a diagnostic test; particularly when the study is small. Meta-analysis methods provide a way of combining information from multiple studies, reducing uncertainty in the result and hopefully providing substantial evidence to underpin reliable clinical decision-making. Very few investigators consider any sample size calculations when designing a new diagnostic accuracy study. However, it is important to consider the number of subjects in a new study in order to achieve a precise measure of accuracy. Sutton et al. have suggested previously that when designing a new therapeutic trial, it could be more beneficial to consider the power of the updated meta-analysis including the new trial rather than of the new trial itself. The methodology involves simulating new studies for a range of sample sizes and estimating the power of the updated meta-analysis with each new study added. Plotting the power values against the range of sample sizes allows the clinician to make an informed decision about the sample size of a new trial. This paper extends this approach from the trial setting and applies it to diagnostic accuracy studies. Several meta-analytic models are considered including bivariate random effects meta-analysis that models the correlation between sensitivity and specificity. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Development of a magnetic solid-phase extraction coupled with high-performance liquid chromatography method for the analysis of polyaromatic hydrocarbons.

    PubMed

    Ma, Yan; Xie, Jiawen; Jin, Jing; Wang, Wei; Yao, Zhijian; Zhou, Qing; Li, Aimin; Liang, Ying

    2015-07-01

    A novel magnetic solid phase extraction coupled with high-performance liquid chromatography method was established to analyze polyaromatic hydrocarbons in environmental water samples. The extraction conditions, including the amount of extraction agent, extraction time, pH and the surface structure of the magnetic extraction agent, were optimized. The results showed that the amount of extraction agent and extraction time significantly influenced the extraction performance. The increase in the specific surface area, the enlargement of pore size, and the reduction of particle size could enhance the extraction performance of the magnetic microsphere. The optimized magnetic extraction agent possessed a high surface area of 1311 m(2) /g, a large pore size of 6-9 nm, and a small particle size of 6-9 μm. The limit of detection for phenanthrene and benzo[g,h,i]perylene in the developed analysis method was 3.2 and 10.5 ng/L, respectively. When applied to river water samples, the spiked recovery of phenanthrene and benzo[g,h,i]perylene ranged from 89.5-98.6% and 82.9-89.1%, respectively. Phenanthrene was detected over a concentration range of 89-117 ng/L in three water samples withdrawn from the midstream of the Huai River, and benzo[g,h,i]perylene was below the detection limit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Variability in body size and shape of UK offshore workers: A cluster analysis approach.

    PubMed

    Stewart, Arthur; Ledingham, Robert; Williams, Hector

    2017-01-01

    Male UK offshore workers have enlarged dimensions compared with UK norms and knowledge of specific sizes and shapes typifying their physiques will assist a range of functions related to health and ergonomics. A representative sample of the UK offshore workforce (n = 588) underwent 3D photonic scanning, from which 19 extracted dimensional measures were used in k-means cluster analysis to characterise physique groups. Of the 11 resulting clusters four somatotype groups were expressed: one cluster was muscular and lean, four had greater muscularity than adiposity, three had equal adiposity and muscularity and three had greater adiposity than muscularity. Some clusters appeared constitutionally similar to others, differing only in absolute size. These cluster centroids represent an evidence-base for future designs in apparel and other applications where body size and proportions affect functional performance. They also constitute phenotypic evidence providing insight into the 'offshore culture' which may underpin the enlarged dimensions of offshore workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing.

    PubMed

    Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph

    2017-07-01

    Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.

  6. Role of Temperature and SiCP Parameters in Stability and Quality of Al-Si-Mg/SiC Foams

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, N. V.; Gokhale, Amol A.

    2018-06-01

    Composites of Al-Si-Mg (A356) alloy with silicon carbide particles were synthesized in-house and foamed by melt processing using titanium hydride as foaming agent. The effects of the SiCP size and content, and foaming temperature on the stability and quality of the foam were explored. It was observed that the foam stability depended on the foaming temperature alone but not on the particle size or volume percent within the studied ranges. Specifically, foam stability was poor at 670°C. Among the stable foams obtained at 640°C, cell soundness (absence of/low defects, and collapse) was seen to vary depending on the particle size and content; For example, for finer size, lower particle contents were sufficient to obtain sound cell structure. It is possible to determine a foaming process window based on material and process parameters for good expansion, foam stability, and cell structure.

  7. The problem of scale in planetary geomorphology

    NASA Technical Reports Server (NTRS)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  8. An analysis of monthly home range size in the critically endangered California Condor Gymnogyps californianus

    USGS Publications Warehouse

    Rivers, James W.; Johnson, Matthew J.; Haig, Susan M.; Schwarz, Carl J.; Burnett, Joseph; Brandt, Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures comprise the only group of terrestrial vertebrates in the world that are obligate scavengers, and these species move widely to locate ephemeral, unpredictable, and patchily-distributed food resources. In this study, we used high-resolution GPS location data to quantify monthly home range size of the critically endangered California Condor Gymnogyps californianus throughout the annual cycle in California. We assessed whether individual-level characteristics (age, sex and breeding status) and factors related to endangered species recovery program efforts (rearing method, release site) were linked to variation in monthly home range size. We found that monthly home range size varied across the annual cycle, with the largest monthly home ranges observed during late summer and early fall (July–October), a pattern that may be linked to seasonal changes in thermals that facilitate movement. Monthly home ranges of adults were significantly larger than those of immatures, but males and females used monthly home ranges of similar size throughout the year and breeding adults did not differ from non-breeding adults in their average monthly home range size. Individuals from each of three release sites differed significantly in the size of their monthly home ranges, and no differences in monthly home range size were detected between condors reared under captive conditions relative to those reared in the wild. Our study provides an important foundation for understanding the movement ecology of the California Condor and it highlights the importance of seasonal variation in space use for effective conservation planning for this critically endangered species.

  9. Heat exchangers in regenerative gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  10. Robustness of the far-field response of nonlocal plasmonic ensembles.

    PubMed

    Tserkezis, Christos; Maack, Johan R; Liu, Zhaowei; Wubs, Martijn; Mortensen, N Asger

    2016-06-22

    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.

  11. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour.

    PubMed

    Asmeda, R; Noorlaila, A; Norziah, M H

    2016-01-15

    This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    DOE PAGES

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; ...

    2016-01-28

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Pt n (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptmore » n (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt 13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt 13 by a temperature increase up to 400 K leading to ethylidyne formation. As a result, control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.« less

  13. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    PubMed Central

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi

    2016-01-01

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8–15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptn (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity. PMID:26817713

  14. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi

    2016-01-01

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation-dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptn (n>=10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.

  15. Laboratory evaluation of the Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor

    USGS Publications Warehouse

    Snazelle, Teri T.

    2017-12-18

    Sequoia Scientific’s LISST-ABS is an acoustic backscatter sensor designed to measure suspended-sediment concentration at a point source. Three LISST-ABS were evaluated at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF). Serial numbers 6010, 6039, and 6058 were assessed for accuracy in solutions with varying particle-size distributions and for the effect of temperature on sensor accuracy. Certified sediment samples composed of different ranges of particle size were purchased from Powder Technology Inc. These sediment samples were 30–80-micron (µm) Arizona Test Dust; less than 22-µm ISO 12103-1, A1 Ultrafine Test Dust; and 149-µm MIL-STD 810E Silica Dust. The sensor was able to accurately measure suspended-sediment concentration when calibrated with sediment of the same particle-size distribution as the measured. Overall testing demonstrated that sensors calibrated with finer sized sediments overdetect sediment concentrations with coarser sized sediments, and sensors calibrated with coarser sized sediments do not detect increases in sediment concentrations from small and fine sediments. These test results are not unexpected for an acoustic-backscatter device and stress the need for using accurate site-specific particle-size distributions during sensor calibration. When calibrated for ultrafine dust with a less than 22-µm particle size (silt) and with the Arizona Test Dust with a 30–80-µm range, the data from sensor 6039 were biased high when fractions of the coarser (149-µm) Silica Dust were added. Data from sensor 6058 showed similar results with an elevated response to coarser material when calibrated with a finer particle-size distribution and a lack of detection when subjected to finer particle-size sediment. Sensor 6010 was also tested for the effect of dissimilar particle size during the calibration and showed little effect. Subsequent testing revealed problems with this sensor, including an inadequate temperature compensation, making this data questionable. The sensor was replaced by Sequoia Scientific with serial number 6039. Results from the extended temperature testing showed proper temperature compensation for sensor 6039, and results from the dissimilar calibration/testing particle-size distribution closely corroborated the results from sensor 6058.

  16. Suspended sediment transport in an estuarine tidal channel within San Francisco Bay, California

    USGS Publications Warehouse

    Sternberg, R.W.; Cacchione, D.A.; Drake, D.E.; Kranck, K.

    1986-01-01

    Size distributions of the suspended sediment samples, estimates of particle settling velocity (??s), friction velocity (U*), and reference concentration (Ca) at z = 20 cm were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle sizes in the 4-11 ?? (62.5-0.5 ??m) size range with the reference concentration Ca at z = 20 cm (C??); (2) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf); and (3) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. An analysis was also carried out on the sensitivity of the suspended sediment distribution equation to deviations in the primary variables ??s, U*, and Ca. In addition, computations of mass flux were made in order to show vertical variations in mass flux for varying flow conditions. ?? 1986.

  17. Cooperativity governs the size and structure of biological interfaces.

    PubMed

    Qin, Zhao; Buehler, Markus J

    2012-11-15

    Interfaces, defined as the surface of interactions between two parts of a system at a discontinuity, are very widely found in nature. While it is known that the specific structure of an interface plays an important role in defining its properties, it is less clear whether or not there exist universal scaling laws that govern the structural evolution of a very broad range of natural interfaces. Here we show that cooperativity of interacting elements, leading to great strength at low material use, is a key concept that governs the structural evolution of many natural interfaces. We demonstrate this concept for the cases of β-sheet proteins in spider silk, gecko feet, legs of caterpillars, and self-assembling of penguins into huddles, which range in scales from the submolecular to the macroscopic level. A general model is proposed that explains the size and structure of biological interfaces from a fundamental point of view. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. On the optimal sizing of batteries for electric vehicles and the influence of fast charge

    NASA Astrophysics Data System (ADS)

    Verbrugge, Mark W.; Wampler, Charles W.

    2018-04-01

    We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.

  19. Scanning electron microscopical and cross-sectional analysis of extraterrestrial carbonaceous nanoglobules

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.

    2008-05-01

    Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.

  20. Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland

    NASA Astrophysics Data System (ADS)

    Szuszkiewicz, Marcin; Magiera, Tadeusz; Kapička, Aleš; Petrovský, Eduard; Grison, Hanna; Gołuchowska, Beata

    2015-05-01

    Dust emission and deposition in topsoil have negative effect on individual components of the ecosystem. In addition to routine geochemical analyses, magnetic measurements may provide useful complementary information related to the type, concentration and grain-size distribution of the technogenic magnetic particles (TMPs) and thus the degree of contamination of the environment. The aim of this contribution is to use magnetic parameters in distinguishing dust from a wide range of sources of air pollution (power industry, cement, coke, ceramic industries and biomass combustion). We measured magnetic susceptibility, hysteresis parameters and thermomagnetic curves. Our results suggest that predominant component in tested samples is magnetite, only dust from coking plant and the combustion of lignite contained also maghemite and/or hematite. Mixture of sizes, ranging from fine single-domain to coarse multi-domain grains, was detected. Our results indicate that industrial dusts from various sources of emissions have different specific magnetic properties and magnetic measurements may provide very helpful information.

  1. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna

    PubMed Central

    Balk, Meghan A.; Benfield, Mark C.; Branch, Trevor A.; Chen, Catherine; Cosgrove, James; Dove, Alistair D.M.; Gaskins, Lindsay C.; Helm, Rebecca R.; Hochberg, Frederick G.; Lee, Frank B.; Marshall, Andrea; McMurray, Steven E.; Schanche, Caroline; Stone, Shane N.; Thaler, Andrew D.

    2015-01-01

    What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans. PMID:25649000

  2. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    PubMed Central

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR and more general issues of phylogenetic and geographic scale. PMID:24058444

  3. Sex-specific developmental models for Creophilus maxillosus (L.) (Coleoptera: Staphylinidae): searching for larger accuracy of insect age estimates.

    PubMed

    Frątczak-Łagiewska, Katarzyna; Matuszewski, Szymon

    2018-05-01

    Differences in size between males and females, called the sexual size dimorphism, are common in insects. These differences may be followed by differences in the duration of development. Accordingly, it is believed that insect sex may be used to increase the accuracy of insect age estimates in forensic entomology. Here, the sex-specific differences in the development of Creophilus maxillosus were studied at seven constant temperatures. We have also created separate developmental models for males and females of C. maxillosus and tested them in a validation study to answer a question whether sex-specific developmental models improve the accuracy of insect age estimates. Results demonstrate that males of C. maxillosus developed significantly longer than females. The sex-specific and general models for the total immature development had the same optimal temperature range and similar developmental threshold but different thermal constant K, which was the largest in the case of the male-specific model and the smallest in the case of the female-specific model. Despite these differences, validation study revealed just minimal and statistically insignificant differences in the accuracy of age estimates using sex-specific and general thermal summation models. This finding indicates that in spite of statistically significant differences in the duration of immature development between females and males of C. maxillosus, there is no increase in the accuracy of insect age estimates while using the sex-specific thermal summation models compared to the general model. Accordingly, this study does not support the use of sex-specific developmental data for the estimation of insect age in forensic entomology.

  4. Linking seasonal home range size with habitat selection and movement in a mountain ungulate.

    PubMed

    Viana, Duarte S; Granados, José Enrique; Fandos, Paulino; Pérez, Jesús M; Cano-Manuel, Francisco Javier; Burón, Daniel; Fandos, Guillermo; Aguado, María Ángeles Párraga; Figuerola, Jordi; Soriguer, Ramón C

    2018-01-01

    Space use by animals is determined by the interplay between movement and the environment, and is thus mediated by habitat selection, biotic interactions and intrinsic factors of moving individuals. These processes ultimately determine home range size, but their relative contributions and dynamic nature remain less explored. We investigated the role of habitat selection, movement unrelated to habitat selection and intrinsic factors related to sex in driving space use and home range size in Iberian ibex, Capra pyrenaica . We used GPS collars to track ibex across the year in two different geographical areas of Sierra Nevada, Spain, and measured habitat variables related to forage and roost availability. By using integrated step selection analysis (iSSA), we show that habitat selection was important to explain space use by ibex. As a consequence, movement was constrained by habitat selection, as observed displacement rate was shorter than expected under null selection. Selection-independent movement, selection strength and resource availability were important drivers of seasonal home range size. Both displacement rate and directional persistence had a positive relationship with home range size while accounting for habitat selection, suggesting that individual characteristics and state may also affect home range size. Ibex living at higher altitudes, where resource availability shows stronger altitudinal gradients across the year, had larger home ranges. Home range size was larger in spring and autumn, when ibex ascend and descend back, and smaller in summer and winter, when resources are more stable. Therefore, home range size decreased with resource availability. Finally, males had larger home ranges than females, which might be explained by differences in body size and reproductive behaviour. Movement, selection strength, resource availability and intrinsic factors related to sex determined home range size of Iberian ibex. Our results highlight the need to integrate and account for process dependencies, here the interdependence of movement and habitat selection, to understand how animals use space. This study contributes to understand how movement links environmental and geographical space use and determines home range behaviour in large herbivores.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mead, H; St. Jude Children’s Research Hospital, Memphis, TN; Brady, S

    Purpose: To discover if a previously published methodology for estimating patient-specific organ dose in a pediatric population (5–55kg) is translatable to the adult sized patient population (> 55 kg). Methods: An adult male anthropomorphic phantom was scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations in the chest and abdominopelvic regions to determine absolute organ dose. Organ-dose-to-SSDE correlation factors were developed by dividing individual phantom organ doses by SSDE of the phantom; where SSDE was calculated at the center of the scan volume of the chest and abdomen/pelvis separately. Organ dose correlation factors developedmore » in phantom were multiplied by 28 chest and 22 abdominopelvic patient SSDE values to estimate organ dose. The median patient weight from the CT examinations was 68.9 kg (range 57–87 kg) and median age was 17 years (range 13–28 years). Calculated organ dose estimates were compared to published Monte Carlo simulated patient and phantom results. Results: Organ-dose-to-SSDE correlation was determined for a total of 23 organs in the chest and abdominopelvic regions. For organs fully covered by the scan volume, correlation in the chest (median 1.3; range 1.1–1.5) and abdominopelvic (median 0.9; range 0.7–1.0) was 1.0 ± 10%. For organs that extended beyond the scan volume (i.e. skin bone marrow and bone surface) correlation was determined to be a median of 0.3 (range 0.1–0.4). Calculated patient organ dose using patient SSDE agreed to better than 6% (chest) and 15% (abdominopelvic) to published values. Conclusion: This study demonstrated that our previous published methodology for calculating organ dose using patient-specific SSDE for the chest and abdominopelvic regions is translatable to adult sized patients for organs fully covered by the scan volume.« less

  6. Occupancy in continuous habitat

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.

    2012-01-01

    The probability that a site has at least one individual of a species ('occupancy') has come to be widely used as a state variable for animal population monitoring. The available statistical theory for estimation when detection is imperfect applies particularly to habitat patches or islands, although it is also used for arbitrary plots in continuous habitat. The probability that such a plot is occupied depends on plot size and home-range characteristics (size, shape and dispersion) as well as population density. Plot size is critical to the definition of occupancy as a state variable, but clear advice on plot size is missing from the literature on the design of occupancy studies. We describe models for the effects of varying plot size and home-range size on expected occupancy. Temporal, spatial, and species variation in average home-range size is to be expected, but information on home ranges is difficult to retrieve from species presence/absence data collected in occupancy studies. The effect of variable home-range size is negligible when plots are very large (>100 x area of home range), but large plots pose practical problems. At the other extreme, sampling of 'point' plots with cameras or other passive detectors allows the true 'proportion of area occupied' to be estimated. However, this measure equally reflects home-range size and density, and is of doubtful value for population monitoring or cross-species comparisons. Plot size is ill-defined and variable in occupancy studies that detect animals at unknown distances, the commonest example being unlimited-radius point counts of song birds. We also find that plot size is ill-defined in recent treatments of "multi-scale" occupancy; the respective scales are better interpreted as temporal (instantaneous and asymptotic) rather than spatial. Occupancy is an inadequate metric for population monitoring when it is confounded with home-range size or detection distance.

  7. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m(3) within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x10(2) (in particles ranging from 1.1 to 2.1 μm) to 4.3x10(5) RNA copies/m(3) in the largest particles (9.0-10.0 μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1 μm in quantities ranging from 6x10(2) (0.4-0.7 μm) to 5.1x10(4) RNA copies/m(3) (9.0-10.0 μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x10(6) (0.4-0.7 μm) to 3.5x10(8) RNA copies/m(3) (9.0-10.0 μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1 μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of particle sizes. However, virus viability is particle size dependent.

  8. Simulation analyses of space use: Home range estimates, variability, and sample size

    USGS Publications Warehouse

    Bekoff, Marc; Mech, L. David

    1984-01-01

    Simulations of space use by animals were run to determine the relationship among home range area estimates, variability, and sample size (number of locations). As sample size increased, home range size increased asymptotically, whereas variability decreased among mean home range area estimates generated by multiple simulations for the same sample size. Our results suggest that field workers should ascertain between 100 and 200 locations in order to estimate reliably home range area. In some cases, this suggested guideline is higher than values found in the few published studies in which the relationship between home range area and number of locations is addressed. Sampling differences for small species occupying relatively small home ranges indicate that fewer locations may be sufficient to allow for a reliable estimate of home range. Intraspecific variability in social status (group member, loner, resident, transient), age, sex, reproductive condition, and food resources also have to be considered, as do season, habitat, and differences in sampling and analytical methods. Comparative data still are needed.

  9. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  10. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  11. Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine.

    PubMed

    Zhang, Huimin; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong

    2016-07-11

    Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer-based functional probes in the fields of bioanalysis and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    PubMed

    Richier, Sophie; Achterberg, Eric P; Humphreys, Matthew P; Poulton, Alex J; Suggett, David J; Tyrrell, Toby; Moore, C Mark

    2018-05-25

    Accumulation of anthropogenic CO 2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO 2 accumulation are emerging, however the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO 2 uptake is a decrease in the carbonate system buffer capacity, which characterises the system's chemical resilience to changes in CO 2 , generating the potential for enhanced variability in pCO 2 and the concentration of carbonate [CO 3 2- ], bicarbonate [HCO 3 - ] and protons [H + ] in the future ocean. We conducted a meta-analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short-term CO 2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short-term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO 2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO 2 in both the modern and future ocean. Specifically, cell-size related acclimation and adaptation to regional environmental variability, as characterised by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio-temporal scales. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Developmental model of static allometry in holometabolous insects.

    PubMed

    Shingleton, Alexander W; Mirth, Christen K; Bates, Peter W

    2008-08-22

    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

  14. High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging.

    PubMed

    Paul, Albert Jesuran; Bickel, Fabian; Röhm, Martina; Hospach, Lisa; Halder, Bettina; Rettich, Nina; Handrick, René; Herold, Eva Maria; Kiefer, Hans; Hesse, Friedemann

    2017-07-01

    Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient's safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 μm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 μmol L -1 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.

  15. The role of thermal physiology in recent declines of birds in a biodiversity hotspot.

    PubMed

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K; Smit, Ben

    2015-01-01

    We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning.

  16. The role of thermal physiology in recent declines of birds in a biodiversity hotspot

    PubMed Central

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K

    2015-01-01

    Abstract We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning. PMID:27293732

  17. Density-dependent home-range size revealed by spatially explicit capture–recapture

    USGS Publications Warehouse

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  18. Time and size resolved Measurement of Mass Concentration at an Urban Site

    NASA Astrophysics Data System (ADS)

    Karg, E.; Ferron, G. A.; Heyder, J.

    2003-04-01

    Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the density was very low due to agglomerated and porous structures of freshly emitted combustion particles and 2) the variability was highest in the ultrafine range, obviously correlated to traffic activity and lowest in the micron size range. In conclusion, almost all ambient particles were ultrafine particles, whereas most of the particle mass was associated with fine particles. Nevertheless, a considerable mass fraction was found in the ultrafine size range. These particles had a very low density so that they can be considered as agglomerated and porous particles emitted from vehicles passing the crossroads. Therefore they showed a much higher variation in mass concentration than the fine and coarse particles.

  19. [Research on the measurement range of particle size with total light scattering method in vis-IR region].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Dai, Jing-min

    2008-12-01

    The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.

  20. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    PubMed

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  1. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  2. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  3. Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.

    2017-02-01

    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.

  4. Evolution of porous structure and texture in nanoporous SiO2/Al2O3 materials during calcination

    NASA Astrophysics Data System (ADS)

    Glazkova, Elena A.; Bakina, Olga V.

    2016-11-01

    The study focuses on the evolution of porous structure and texture of silica/alumina xerogels during calcination in the temperature range from 500 to 1200°C. The xerogel was prepared via sol-gel method using subcritical drying. The silica/alumina xerogels were examined using transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), Brunauer Emmett Teller-Barrett Joyner Halenda (BET-BJH), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. SiO2 primary particles of size about 10 nm are connected with each other to form a porous xerogel structure. Alumina is uniformly distributed over the xerogel volume. The changes of textural characteristics under heat treatment of samples are radical; the specific surface area and pore size attain their maximum at 500-700°C. The heat treatment of samples causes dehydroxylation of the xerogel surface, and at 1200°C the sample is sintered, loses mesoporosity, and its specific surface area reduces considerably down to 78 m2/g.

  5. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    PubMed Central

    Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2012-01-01

    Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments. PMID:28348300

  6. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less

  7. Transport and dispersion of fluorescent tracer particles for the dune-bed condition, Atrisco Feeder Canal near Bernalillo, New Mexico

    USGS Publications Warehouse

    Rathbun, R.E.; Kennedy, Vance C.

    1978-01-01

    A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)

  8. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals

    PubMed Central

    Eby, Lillian T.; Allen, Tammy D.; Evans, Sarah C.; Ng, Thomas; DuBois, David

    2008-01-01

    The study of mentoring has generally been conducted within disciplinary silos with a specific type of mentoring relationship as a focus. The purpose of this article is to quantitatively review the three major areas of mentoring research (youth, academic, workplace) to determine the overall effect size associated with mentoring outcomes for protégés. We also explored whether the relationship between mentoring and protégé outcomes varied by the type of mentoring relationship (youth, academic, workplace). Results demonstrate that mentoring is associated with a wide range of favorable behavioral, attitudinal, health-related, relational, motivational, and career outcomes, although the effect size is generally small. Some differences were also found across type of mentoring. Generally, larger effect sizes were detected for academic and workplace mentoring compared to youth mentoring. Implications for future research, theory, and applied practice are provided. PMID:19343074

  9. Size-exclusion chromatography using core-shell particles.

    PubMed

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Performance and Sizing Tool for Quadrotor Biplane Tailsitter UAS

    NASA Astrophysics Data System (ADS)

    Strom, Eric

    The Quadrotor-Biplane-Tailsitter (QBT) configuration is the basis for a mechanically simplistic rotorcraft capable of both long-range, high-speed cruise as well as hovering flight. This work presents the development and validation of a set of preliminary design tools built specifically for this aircraft to enable its further development, including: a QBT weight model, preliminary sizing framework, and vehicle analysis tools. The preliminary sizing tool presented here shows the advantage afforded by QBT designs in missions with aggressive cruise requirements, such as offshore wind turbine inspections, wherein transition from a quadcopter configuration to a QBT allows for a 5:1 trade of battery weight for wing weight. A 3D, unsteady panel method utilizing a nonlinear implementation of the Kutta-Joukowsky condition is also presented as a means of computing aerodynamic interference effects and, through the implementation of rotor, body, and wing geometry generators, is prepared for coupling with a comprehensive rotor analysis package.

  11. Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.

    1975-01-01

    Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.

  12. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate

    NASA Astrophysics Data System (ADS)

    Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew

    2014-04-01

    The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.

  13. Geographic location and phylogeny are the main determinants of the size of the geographical range in aquatic beetles

    PubMed Central

    2011-01-01

    Background Why some species are widespread while others are very restricted geographically is one of the most basic questions in biology, although it remains largely unanswered. This is particularly the case for groups of closely related species, which often display large differences in the size of the geographical range despite sharing many other factors due to their common phylogenetic inheritance. We used ten lineages of aquatic Coleoptera from the western Palearctic to test in a comparative framework a broad set of possible determinants of range size: species' age, differences in ecological tolerance, dispersal ability and geographic location. Results When all factors were combined in multiple regression models between 60-98% of the variance was explained by geographic location and phylogenetic signal. Maximum latitudinal and longitudinal limits were positively correlated with range size, with species at the most northern latitudes and eastern longitudes displaying the largest ranges. In lineages with lotic and lentic species, the lentic (better dispersers) display larger distributional ranges than the lotic species (worse dispersers). The size of the geographical range was also positively correlated with the extent of the biomes in which the species is found, but we did not find evidence of a clear relationship between range size and age of the species. Conclusions Our findings show that range size of a species is shaped by an interplay of geographic and ecological factors, with a phylogenetic component affecting both of them. The understanding of the factors that determine the size and geographical location of the distributional range of species is fundamental to the study of the origin and assemblage of the current biota. Our results show that for this purpose the most relevant data may be the phylogenetic history of the species and its geographical location. PMID:22122885

  14. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  15. Space use of wintering waterbirds in India: Influence of trophic ecology on home-range size

    USGS Publications Warehouse

    Namgail, Tsewang; Takekawa, John Y.; Balachandran, Sivananinthaperumal; Sathiyaselvam, Ponnusamy; Mundkur, Taej; Newman, Scott H.

    2014-01-01

    Relationship between species' home range and their other biological traits remains poorly understood, especially in migratory birds due to the difficulty associated with tracking them. Advances in satellite telemetry and remote sensing techniques have proved instrumental in overcoming such challenges. We studied the space use of migratory ducks through satellite telemetry with an objective of understanding the influence of body mass and feeding habits on their home-range sizes. We marked 26 individuals, representing five species of migratory ducks, with satellite transmitters during two consecutive winters in three Indian states. We used kernel methods to estimate home ranges and core use areas of these waterfowl, and assessed the influence of body mass and feeding habits on home-range size. Feeding habits influenced the home-range size of the migratory ducks. Carnivorous ducks had the largest home ranges, herbivorous ducks the smallest, while omnivorous species had intermediate home-ranges. Body mass did not explain variation in home-range size. To our knowledge, this is the first study of its kind on migratory ducks, and it has important implications for their conservation and management.

  16. Manipulation of the response of human endothelial colony-forming cells by focal adhesion assembly using gradient nanopattern plates.

    PubMed

    Cui, Long-Hui; Joo, Hyung Joon; Kim, Dae Hwan; Seo, Ha-Rim; Kim, Jung Suk; Choi, Seung-Cheol; Huang, Li-Hua; Na, Ji Eun; Lim, I-Rang; Kim, Jong-Ho; Rhyu, Im Joo; Hong, Soon Jun; Lee, Kyu Back; Lim, Do-Sun

    2018-01-01

    Nanotopography plays a pivotal role in the regulation of cellular responses. Nonetheless, little is known about how the gradient size of nanostructural stimuli alters the responses of endothelial progenitor cells without chemical factors. Herein, the fabrication of gradient nanopattern plates intended to mimic microenvironment nanotopography is described. The gradient nanopattern plates consist of nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] that were used to screen the responses of human endothelial colony-forming cells (hECFCs). Nanopillars with a smaller nanopillar diameter caused the cell area and perimeter of hECFCs to decrease and their filopodial outgrowth to increase. The structure of vinculin (a focal adhesion marker in hECFCs) was also modulated by nanostructural stimuli of the gradient nanopattern plates. Moreover, Rho-associated protein kinase (ROCK) gene expression was significantly higher in hECFCs cultured on GP 120/200 than in those on flat plates (no nanopillars), and ROCK suppression impaired the nanostructural-stimuli-induced vinculin assembly. These results suggest that the gradient nanopattern plates generate size-specific nanostructural stimuli suitable for manipulation of the response of hECFCs, in a process dependent on ROCK signaling. This is the first evidence of size-specific nanostructure-sensing behavior of hECFCs. Nano feature surfaces are of growing interest as materials for a controlled response of various cells. In this study, we successfully fabricated gradient nanopattern plates to manipulate the response of blood-derived hECFCs without any chemical stimulation. Interestingly, we find that the sensitive nanopillar size for manipulation of hECFCs is range between 120 nm and 200 nm, which decreased the area and increased the filopodial outgrowth of hECFCs. Furthermore, we only modulate the nanopillar size to increase ROCK expression can be an attractive method for modulating the cytoskeletal integrity and focal adhesion of hECFCs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    PubMed

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  18. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. Conclusions: The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23780545

  19. Impact of range shifter material on proton pencil beam spot characteristics.

    PubMed

    Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin

    2015-03-01

    To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.

  20. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems

    PubMed Central

    Tomašových, Adam; Kennedy, Jonathan D.; Betzner, Tristan J.; Kuehnle, Nicole Bitler; Edie, Stewart; Kim, Sora; Supriya, K.; White, Alexander E.; Rahbek, Carsten; Huang, Shan; Price, Trevor D.; Jablonski, David

    2016-01-01

    Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size—on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification. PMID:27147094

  1. The Diagnostic Performance of Stool DNA Testing for Colorectal Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Zhai, Rong-Lin; Xu, Fei; Zhang, Pei; Zhang, Wan-Li; Wang, Hui; Wang, Ji-Liang; Cai, Kai-Lin; Long, Yue-Ping; Lu, Xiao-Ming; Tao, Kai-Xiong; Wang, Guo-Bin

    2016-02-01

    This meta-analysis was designed to evaluate the diagnostic performance of stool DNA testing for colorectal cancer (CRC) and compare the performance between single-gene and multiple-gene tests.MEDLINE, Cochrane, EMBASE databases were searched using keywords colorectal cancers, stool/fecal, sensitivity, specificity, DNA, and screening. Sensitivity analysis, quality assessments, and performance bias were performed for the included studies.Fifty-three studies were included in the analysis with a total sample size of 7524 patients. The studies were heterogeneous with regard to the genes being analyzed for fecal genetic biomarkers of CRC, as well as the laboratory methods being used for each assay. The sensitivity of the different assays ranged from 2% to 100% and the specificity ranged from 81% to 100%. The meta-analysis found that the pooled sensitivities for single- and multigene assays were 48.0% and 77.8%, respectively, while the pooled specificities were 97.0% and 92.7%. Receiver operator curves and diagnostic odds ratios showed no significant difference between both tests with regard to sensitivity or specificity.This meta-analysis revealed that using assays that evaluated multiple genes compared with single-gene assays did not increase the sensitivity or specificity of stool DNA testing in detecting CRC.

  2. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study.

    PubMed

    Lumachi, Franco; Tregnaghi, Alberto; Zucchetta, Pietro; Cristina Marzola, Maria; Cecchin, Diego; Grassetto, Gaia; Bui, Franco

    2006-07-01

    To establish a standardized non-invasive imaging protocol for patients with pheochromocytoma undergoing surgery. A series of 32 consecutive patients (16 men, 16 women; median age 43 years, range 15-71 years) with biochemically confirmed pheochromocytoma underwent computed tomography (CT) scanning, magnetic resonance imaging (MRI) and meta-[I]iodobenzylguanidine (MIBG) whole-body scintigraphy prior to adrenalectomy or excision of extra-adrenal tumour (paraganglioma). At final pathology no malignant pheochromocytomas were found. The tumour was right-sided in 16 (50%) patients, left-sided in 13 (41%), extra-adrenal (sympathetic ganglia, upper abdomen) in two (6%) and bilateral in one (3%) patient. Overall, the median greatest diameter (size) of the tumour was 35 mm (range, 15-90 mm). The sensitivity of CT, MRI and MIBG scintigraphy was 90%, 93% and 91%, and the specificity was 93%, 93% and 100%, respectively. The three patients with false negative scintigraphy had an intra-adrenal tumour, ranging from 20 to 50 mm in size. The presence of necrosis within the mass might justify the lack of significant uptake of radiopharmaceutical in two patients, and the small size (15 mm) of the mass in the other. There were two false positive results with both CT and MRI, and no false positive MIBG scintigraphy, which had the highest (100%) positive predictive value. The combination of MRI+MIBG scintigraphy reached 100% sensitivity and positive predictive value. Our data suggest that this imaging protocol should be used in all patients with biochemically confirmed pheochromocytoma.

  3. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli. PMID:28546313

  4. Particle size distribution: A key factor in estimating powder dustiness.

    PubMed

    López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo

    2017-12-01

    A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.

  5. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.

  6. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  7. Whitebark Pine, Population Density, and Home-Range Size of Grizzly Bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354

  8. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    PubMed

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  9. Mercury porosimetry for comparing piece-wise hydraulic properties with full range pore characteristics of soil aggregates and porous rocks

    NASA Astrophysics Data System (ADS)

    Turturro, Antonietta Celeste; Caputo, Maria C.; Gerke, Horst H.

    2017-04-01

    Unsaturated hydraulic properties are essential in the modeling of water and solute movement in the vadose zone. Since standard hydraulic techniques are limited to specific moisture ranges, maybe affected by air entrapment, wettability problems, limitations due to water vapor pressure, and are depending on the initial saturation, the continuous maximal drying curves of the complete hydraulic functions can mostly not reflect the basic pore size distribution. The aim of this work was to compare the water retention curves of soil aggregates and porous rocks with their porosity characteristics. Soil aggregates of Haplic Luvisols from Loess L (Hneveceves, Czech Republic) and glacial Till T (Holzendorf, Germany) and two lithotypes of porous rock C (Canosa) and M (Massafra), Italy, were analyzed using, suction table, evaporation, psychrometry methods, and the adopted Quasi-Steady Centrifuge method for determination of unsaturated hydraulic conductivity. These various water-based techniques were applied to determine the piece-wise retention and the unsaturated hydraulic conductivity functions in the range of pore water saturations. The pore-size distribution was determined with the mercury intrusion porosimetry (MIP). MIP results allowed assessing the volumetric mercury content at applied pressures up to 420000 kPa. Greater intrusion and porosity values were found for the porous rocks than for the soil aggregates. Except for the aggregate samples from glacial till, maximum liquid contents were always smaller than porosity. Multimodal porosities and retention curves were observed for both porous rocks and aggregate soils. Two pore-size peaks with pore diameters of 0.135 and 27.5 µm, 1.847 and 19.7 µm, and 0.75 and 232 µm were found for C, M and T, respectively, while three peaks of 0.005, 0.392 and 222 µm were identified for L. The MIP data allowed describing the retention curve in the entire mercury saturation range as compared to water retention curves that required combining several methods for limited suction ranges. Although the soil aggregates and porous rocks differed in pore geometries and pore size distributions, MIP provided additional information for characterizing the relation between pore structure and hydraulic properties for both.

  10. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  11. Extinction risk is most acute for the world’s largest and smallest vertebrates

    PubMed Central

    Ripple, William J.; Wolf, Christopher; Newsome, Thomas M.; Hoffmann, Michael; Wirsing, Aaron J.; McCauley, Douglas J.

    2017-01-01

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world’s vertebrates, fundamentally reordering the structure of life on our planet. PMID:28923917

  12. Extinction risk is most acute for the world's largest and smallest vertebrates.

    PubMed

    Ripple, William J; Wolf, Christopher; Newsome, Thomas M; Hoffmann, Michael; Wirsing, Aaron J; McCauley, Douglas J

    2017-10-03

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world's vertebrates, fundamentally reordering the structure of life on our planet.

  13. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.

    PubMed

    Boucher-Lalonde, Véronique; Currie, David J

    2016-01-01

    Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species' climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species' ranges, are correlations between species' range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species' realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated.

  14. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps

    PubMed Central

    Boucher-Lalonde, Véronique; Currie, David J.

    2016-01-01

    Species’ geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species’ ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species’ climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species’ ranges, are correlations between species’ range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species’ realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated. PMID:27855201

  15. Influence of primary prey on home-range size and habitat-use patterns of northern spotted owls (Strix occidentalis caurina)

    Treesearch

    Cynthia J. Zabel; Kevin S. McKelvey; James P. Ward

    1995-01-01

    Correlations between the home-range size of northern spotted owls (Strix occidentalis caurina) and proportion of their range in old-growth forest have been reported, but there are few data on the relationship between their home-range size and prey. The primary prey of spotted owls are wood rats and northern flying squirrels (Glaucomys sabrinus). Wood...

  16. ELISPOTs Produced by CD8 and CD4 Cells Follow Log Normal Size Distribution Permitting Objective Counting

    PubMed Central

    Karulin, Alexey Y.; Karacsony, Kinga; Zhang, Wenji; Targoni, Oleg S.; Moldovan, Ioana; Dittrich, Marcus; Sundararaman, Srividya; Lehmann, Paul V.

    2015-01-01

    Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs. PMID:25612115

  17. Little effect of climate change on body size of herbivorous beetles.

    PubMed

    Baar, Yuval; Friedman, Ariel Leib Leonid; Meiri, Shai; Scharf, Inon

    2018-04-01

    Ongoing climate change affects various aspects of an animal's life, with important effects on distribution range and phenology. The relationship between global warming and body size changes in mammals and birds has been widely studied, with most findings indicating a decline in body size over time. Nevertheless, little data exist on similar size change patterns of invertebrates in general and insects in particular, and it is unclear whether insects should decrease in size or not with climate warming. We measured over 4000 beetle specimens, belonging to 29 beetle species in 8 families, collected in Israel during the last 100 years. The sampled species are all herbivorous. We examined whether beetle body size had changed over the years, while also investigating the relationships between body size and annual temperature, precipitation, net primary productivity (NPP) at the collection site and collection month. None of the environmental variables, including the collection year, was correlated with the size of most of the studied beetle species, while there were strong interactions of all variables with species. Our results, though mostly negative, suggest that the effect of climate change on insect body size is species-specific and by no means a general macro-ecological rule. They also suggest that the intrapopulation variance in body size of insects collected as adults in the field is large enough to conceal intersite environmental effects on body size, such as the effect of temperature and NPP. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  18. Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band.

    PubMed

    Dultsev, F N; Kolosovsky, E A

    2011-02-14

    A new method based on the use of quartz crystal microbalance (QCM) as an active sensing element is developed, optimized and tested in a model system to measure the rupture force and deduce size distribution of nanoparticles. As suggested by model predictions, the QCM is shaped as a strip. The ratio of rupture signals at the second and the third harmonics versus the geometric position of a body on QCM surface is investigated theoretically. Recommendations concerning the use of the method for measuring the nanoparticle size distribution are presented. It is shown experimentally for an ensemble of test particles with a characteristic size within 20-30 nm that the proposed method allows one to determine particle size distribution. On the basis of the position and value of the measured rupture signal, a histogram of particle size distribution and percentage of each size fraction were determined. The main merits of the bond-rupture method are its rapid response, simplicity and the ability to discriminate between specific and non-specific interactions. The method is highly sensitive with respect to mass (the sensitivity is generally dependent on the chemical nature of receptor and analyte and may reach 8×10(-14) g mm(-2)) and applicable to measuring rupture forces either for weak bonds, for example hydrogen bonds, or for strong covalent bonds (10(-11)-10(-9) N). This procedure may become a good alternative for the existing methods, such as AFM or optical methods of determining biological objects, and win a broad range of applications both in laboratory research and in biosensing for various purposes. Possible applications include medicine, diagnostics, environmental or agricultural monitoring. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. History, Physical Examination, Laboratory Testing, and Emergency Department Ultrasonography for the Diagnosis of Acute Cholecystitis.

    PubMed

    Jain, Ashika; Mehta, Ninfa; Secko, Michael; Schechter, Joshua; Papanagnou, Dimitri; Pandya, Shreya; Sinert, Richard

    2017-03-01

    Acute cholecystitis (AC) is a common differential for patients presenting to the emergency department (ED) with abdominal pain. The diagnostic accuracy of history, physical examination, and bedside laboratory tests for AC have not been quantitatively described. We performed a systematic review to determine the utility of history and physical examination (H&P), laboratory studies, and ultrasonography (US) in diagnosing AC in the ED. We searched medical literature from January 1965 to March 2016 in PubMed, Embase, and SCOPUS using a strategy derived from the following formulation of our clinical question: patients-ED patients suspected of AC; interventions-H&P, laboratory studies, and US findings commonly used to diagnose AC; comparator-surgical pathology or definitive diagnostic radiologic study confirming AC; and outcome-the operating characteristics of the investigations in diagnosing AC were calculated. Sensitivity, specificity, and likelihood ratios (LRs) were calculated using Meta-DiSc with a random-effects model (95% CI). Study quality and risks for bias were assessed using the Quality Assessment Tool for Diagnostic Accuracy Studies. Separate PubMed, Embase, and SCOPUS searches retrieved studies for H&P (n = 734), laboratory findings (n = 74), and US (n = 492). Three H&P studies met inclusion/exclusion criteria with AC prevalence of 7%-64%. Fever had sensitivity ranging from 31% to 62% and specificity from 37% to 74%; positive LR [LR+] was 0.71-1.24, and negative LR [LR-] was 0.76-1.49. Jaundice sensitivity ranged from 11% to 14%, and specificity from 86% to 99%; LR+ was 0.80-13.81, and LR- was 0.87-1.03. Murphy's sign sensitivity was 62% (range = 53%-71%), and specificity was 96% (range = 95%-97%); LR+ was 15.64 (range = 11.48-21.31), and LR- was 0.40 (range = 0.32-0.50). Right upper quadrant pain had sensitivity ranging from 56% to 93% and specificity of 0% to 96%; LR+ ranged from 0.92 to 14.02, and LR- from 0.46 to 7.86. One laboratory study met criteria with a 26% prevalence of AC. Elevated bilirubin had a sensitivity of 40% (range = 12%-74%) and specificity of 93% (range = 77%-99%); LR+ was 5.80 (range = 1.25-26.99), and LR- was 0.64 (range = 0.39-1.08). Five US studies with a prevalence of AC of between 10% and 46%. US sensitivity was 86% (range = 78%-94%) and specificity was 71% (range = 66%-76%); LR+ was 3.23 (range = 1.74-6.00), and LR- was 0.18 (range = 0.10-0.33). Variable disease prevalence, coupled with limited sample sizes, increases the risk of selection bias. Individually, none of these investigations reliably rule out AC. Development of a clinical decision rule to include evaluation of H&P, laboratory data, and US are more likely to achieve a correct diagnosis of AC. © 2016 by the Society for Academic Emergency Medicine.

  20. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size

    PubMed Central

    Organ, Chris L.; Brusatte, Stephen L.; Stein, Koen

    2009-01-01

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77–2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97–2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05–5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group. PMID:19793755

  1. The pattern of gestational weight gain is associated with changes in maternal body composition and neonatal size

    PubMed Central

    Widen, Elizabeth M.; Factor-Litvak, Pam R.; Gallagher, Dympna; Paxton, Anne; Pierson, Richard N.; Heymsfield, Steven B.; Lederman, Sally A.

    2015-01-01

    Objectives The pattern of gestational weight gain (GWG) reflects general nutrient availability to support growing fetal and maternal compartments and may contribute to later health; but how it relates to changes in maternal body composition is unknown. We evaluated how the pattern of gestational weight gain (GWG) related to changes in maternal body composition during pregnancy and infant size at birth. Methods A prospective, multi-ethnic cohort of 156 pregnant women and their infants was studied in New York City. Prenatal weights were used to estimate total and rate (kg/wk) of GWG by trimester. Linear regression models evaluated the association between trimester-specific GWG group (low, medium, high GWG) [total (low≤25%ile, high≥75%ile) or rate (defined by tertiles)] and infant weight, length and maternal body composition changes from 14–37 weeks, adjusting for covariates. Results Compared to the low gain group, medium/high rate of GWG in the second trimester and high rate of GWG in the third trimester was associated with larger gains in maternal fat mass (β range for fat Δ=2.86–5.29 kg, all p<0.01) For infant outcomes, high rate of GWG in the second trimester was associated with higher birth weight (β=356 g, p=0.001) and length (β=0.85 cm, p=0.002). First and third trimester GWG were not associated with neonatal size. Conclusions The trimester specific pattern and rate of GWG reflect changes in maternal body fat and body water, and are associated with neonatal size, which supports the importance of monitoring trimester-specific GWG. PMID:26179720

  2. Development of Anthropometric Specifications for the Warrior Injury Assessment Manikin (WIAMan)

    DTIC Science & Technology

    2013-10-01

    kg/m2 (mean 26.7 kg/m2). Body Landmark Data in Vehicle Seat Conditions Soldiers were instructed to sit comfortably in the seat . Lower and upper...landmark locations from 100 soldiers with a wide range of body size obtained in a single squad seating condition were analyzed using regression methods to...establish target surface landmark and internal joint center locations. Laser scan data from 126 men in up to four seated postures were analyzed

  3. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  4. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.

    PubMed

    Field, Iain C; Meekan, Mark G; Buckworth, Rik C; Bradshaw, Corey J A

    2009-01-01

    Marine biodiversity worldwide is under increasing threat, primarily as a result of over-harvesting, pollution and climate change. Chondrichthyan fishes (sharks, rays and chimaeras) have a perceived higher intrinsic risk of extinction compared to other fish. Direct fishing mortality has driven many declines, even though some smaller fisheries persist without associated declines. Mixed-species fisheries are of particular concern, as is illegal, unreported and unregulated (IUU) fishing. The lack of specific management and reporting mechanisms for the latter means that many chondrichthyans might already be susceptible to extinction from stochastic processes entirely unrelated to fishing pressure itself. Chondrichthyans might also suffer relatively more than other marine taxa from the effects of fishing and habitat loss and degradation given coastal habitat use for specific life stages. The effects of invasive species and pollution are as yet too poorly understood to predict their long-term role in affecting chondrichthyan population sizes. The spatial distribution of threatened chondrichthyan species under World Conservation Union (IUCN) Red List criteria are clustered mainly in (1) south-eastern South America; (2) western Europe and the Mediterranean; (3) western Africa; (4) South China Sea and Southeast Asia and (5) south-eastern Australia. To determine which ecological and life history traits predispose chondrichthyans to being IUCN Red-Listed, and to examine the role of particular human activities in exacerbating threat risk, we correlated extant marine species' Red List categorisation with available ecological (habitat type, temperature preference), life history (body length, range size) and human-relationship (whether commercially or game-fished, considered dangerous to humans) variables. Threat risk correlations were constructed using generalised linear mixed-effect models to account for phylogenetic relatedness. We also contrasted results for chondrichthyans to marine teleosts to test explicitly whether the former group is intrinsically more susceptible to extinction than fishes in general. Around 52% of chondrichthyans have been Red-Listed compared to only 8% of all marine teleosts; however, listed teleosts were in general placed more frequently into the higher-risk categories relative to chondrichthyans. IUCN threat risk in both taxa was positively correlated with body size and negatively correlated albeit weakly, with geographic range size. Even after accounting for the positive influence of size, Red-Listed teleosts were still more likely than chondrichthyans to be classified as threatened. We suggest that while sharks might not have necessarily experienced the same magnitude of deterministic decline as Red-Listed teleosts, their larger size and lower fecundity (not included in the analysis) predispose chondrichthyans to a higher risk of extinction overall. Removal of these large predators can elicit trophic cascades and destabilise the relative abundance of smaller species. Predator depletions can lead to permanent shifts in marine communities and alternate equilibrium states. Climate change might influence the phenology and physiology of some species, with the most probable response being changes in the timing of migrations and shifts in distribution. The synergistic effects among harvesting, habitat changes and climate-induced forcings are greatest for coastal chondrichthyans with specific habitat requirements and these are currently the most likely candidates for extinction. Management of shark populations must take into account the rate at which drivers of decline affect specific species. Only through the detailed collection of data describing demographic rates, habitat affinities, trophic linkages and geographic ranges, and how environmental stressors modify these, can extinction risk be more precisely estimated and reduced. The estimation of minimum viable population sizes, below which rapid extinction is more likely due to stochastic processes, is an important component of this endeavour and should accompany many of the current approaches used in shark management worldwide.

  5. Revised scaling laws for asteroid disruptions

    NASA Astrophysics Data System (ADS)

    Jutzi, M.

    2014-07-01

    Models for the evolution of small-body populations (e.g., the asteroid main belt) of the solar system compute the time-dependent size and velocity distributions of the objects as a result of both collisional and dynamical processes. A scaling parameter often used in such numerical models is the critical specific impact energy Q^*_D, which results in the escape of half of the target's mass in a collision. The parameter Q^*_D is called the catastrophic impact energy threshold. We present recent improvements of the Smooth Particle Hydrodynamics (SPH) technique (Benz and Asphaug 1995, Jutzi et al. 2008, Jutzi 2014) for the modeling of the disruption of small bodies. Using the improved models, we then systematically study the effects of various target properties (e.g., strength, porosity, and friction) on the outcome of disruptive collisions (Figure), and we compute the corresponding Q^*_D curves as a function of target size. For a given specific impact energy and impact angle, the outcome of a collision in terms of Q^*_D does not only depend on the properties of the bodies involved, but also on the impact velocity and the size ratio of target/impactor. Leinhardt and Stewardt (2012) proposed scaling laws to predict the outcome of collisions with a wide range of impact velocities (m/s to km/s), target sizes and target/impactor mass ratios. These scaling laws are based on a "principal disruption curve" defined for collisions between equal-sized bodies: Q^*_{RD,γ = 1} = c^* 4/5 π ρ G R_{C1}^2, where the parameter c^* is a measure of the dissipation of energy within the target, R_{C1} the radius of a body with the combined mass of target and projectile and a density ρ = 1000 kg/m^3, and γ is the mass ratio. The dissipation parameter c^* is proposed to be 5±2 for bodies with strength and 1.9±0.3 for hydrodynamic bodies (Leinhardt and Stewardt 2012). We will present values for c^* based on our SPH simulations using various target properties and impact conditions. We will also discuss the validity of the principal disruption curve (with a single parameter c^*) for a wide range of sizes and impact velocities. Our preliminary results indicate that for a given target, c^* can vary significantly (by a factor of ˜ 10) as the impact velocity changes from subsonic to supersonic.

  6. Size and habit evolution of PETN crystals - a lattice Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Maiti, A; Gee, R

    2006-02-28

    Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less

  7. Coaxial Compound Helicopter for Confined Urban Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  8. Rain measurements from space using a modified Seasat-type radar altimeter

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.; Walsh, E. J.

    1982-01-01

    The incorporation in the 13.5 GHz Seasat-type radar altimeter of a mode to measure rain rate is investigated. Specifically, an algorithm is developed relating the echo power at the various range bins, to the rain rate taking into consideration Mie scattering and path attenuation. The dependence of the algorithm on rain drop size distribution and nonuniform rain structure are examined and associated uncertainties defined. A technique for obtaining drop size distribution through the measurements of power at the top of the raincell and power difference through the cell also is investigated together with an associated error analysis. A description of the minor hardware modifications to the basic Seasat design is given for implementing the rain measurements.

  9. Home range characteristics of Mexican Spotted Owls in the canyonlands of Utah

    USGS Publications Warehouse

    Willey, D.W.; van Riper, Charles

    2007-01-01

    We studied home-range characteristics of adult Mexican Spotted Owls (Strix occidentalis lucida) in southern Utah. Twenty-eight adult owls were radio-tracked using a ground-based telemetry system during 1991-95. Five males and eight females molted tail feathers and dropped transmitters within 4 wk. We estimated cumulative home ranges for 15 Spotted Owls (12 males, 3 females). The mean estimate of cumulative home-range size was not statistically different between the minimum convex polygon and adaptive kernel (AK) 95% isopleth. Both estimators yielded relatively high SD, and male and female range sizes varied widely. For 12 owls tracked during both the breeding and nonbreeding seasons, the mean size of the AK 95% nonbreeding home range was 49% larger than the breeding home-range size. The median AK 75% bome-range isopleth (272 ha) we observed was similar in size to Protected Activity Centers (PACs) recommended by a recovery team. Our results lend support to the PAC concept and we support continued use of PACs to conserve Spotted Owl habitat in Utah. ?? 2007 The Raptor Research Foundation, Inc.

  10. Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints.

    PubMed

    Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F

    2018-02-07

    A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.

  11. Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters.

    PubMed

    Yu, Yingxin; Yang, Dan; Wang, Xinxin; Huang, Ningbao; Zhang, Xinyu; Zhang, Dongping; Fu, Jiamo

    2013-11-01

    Size-specific concentrations and bioaccessibility of polybrominated diphenyl ethers (PBDEs) in dust from air conditioner filters were measured, and the factors influencing the PBDE bioaccessibility were determined. Generally, the PBDE concentrations increased with decreasing dust particle size, and BDE209 (deca-BDE) was generally the predominant congener. The bioaccessibility ranged from 20.3% to 50.8% for tri- to hepta-BDEs, and from 5.1% to 13.9% for BDE209 in dust fractions of varied particle size. The bioaccessibility of most PBDE congeners decreased with increasing dust particle size. The way of being of PBDE (adsorbed to dust surface or incorporated into polymers) in dust significantly influenced the bioaccessibility. There was a significant negative correlation between the tri- to hepta-BDE bioaccessibility and organic matter (OM) contents in dust. Furthermore, tri- to hepta-BDE bioaccessibility increased with increasing polarity of OMs, while with decreasing aromaticity of OMs. The tri- to hepta-BDE bioaccessibility significantly positively correlated with the surface areas and pore volumes of dust. Using multiple linear regression analysis, it was found that the OM contents and pore volumes of dust were the most important factors to influence the tri- to hepta-BDE bioaccessibility and they could be used to estimate the bioaccessibility of tri- to hepta-BDEs according to the following equation: bioaccessibility (%)=45.05-0.49 × OM%+1.79 × pore volume. However, BDE209 bioaccessibility did not correlate to any of these factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Social network changes and life events across the life span: a meta-analysis.

    PubMed

    Wrzus, Cornelia; Hänel, Martha; Wagner, Jenny; Neyer, Franz J

    2013-01-01

    For researchers and practitioners interested in social relationships, the question remains as to how large social networks typically are, and how their size and composition change across adulthood. On the basis of predictions of socioemotional selectivity theory and social convoy theory, we conducted a meta-analysis on age-related social network changes and the effects of life events on social networks using 277 studies with 177,635 participants from adolescence to old age. Cross-sectional as well as longitudinal studies consistently showed that (a) the global social network increased up until young adulthood and then decreased steadily, (b) both the personal network and the friendship network decreased throughout adulthood, (c) the family network was stable in size from adolescence to old age, and (d) other networks with coworkers or neighbors were important only in specific age ranges. Studies focusing on life events that occur at specific ages, such as transition to parenthood, job entry, or widowhood, demonstrated network changes similar to such age-related network changes. Moderator analyses detected that the type of network assessment affected the reported size of global, personal, and family networks. Period effects on network sizes occurred for personal and friendship networks, which have decreased in size over the last 35 years. Together the findings are consistent with the view that a portion of normative, age-related social network changes are due to normative, age-related life events. We discuss how these patterns of normative social network development inform research in social, evolutionary, cultural, and personality psychology. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  13. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE PAGES

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won; ...

    2018-06-01

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  14. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  15. Maternal Weight Gain as a Predictor of Litter Size in Swiss Webster, C57BL/6J, and BALB/cJ mice.

    PubMed

    Finlay, James B; Liu, Xueli; Ermel, Richard W; Adamson, Trinka W

    2015-11-01

    An important task facing both researchers and animal core facilities is producing sufficient mice for a given project. The inherent biologic variability of mouse reproduction and litter size further challenges effective research planning. A lack of precision in project planning contributes to the high cost of animal research, overproduction (thus waste) of animals, and inappropriate allocation of facility resources. To examine the extent daily prepartum maternal weight gain predicts litter size in 2 commonly used mouse strains (BALB/cJ and C57BL/6J) and one mouse stock (Swiss Webster), we weighed ≥ 25 pregnant dams of each strain or stock daily from the morning on which a vaginal plug (day 0) was present. On the morning when dams delivered their pups, we recorded the weight of the dam, the weight of the litter itself, and the number of pups. Litter sizes ranged from 1 to 7 pups for BALB/cJ, 2 to 13 for Swiss Webster, and 5 to 11 for C57BL/6J mice. Linear regression models (based on weight change from day 0) demonstrated that maternal weight gain at day 9 (BALB/cJ), day 11 (Swiss Webster), or day 14 (C57BL/6J) was a significant predictor of litter size. When tested prospectively, the linear regression model for each strain or stock was found to be accurate. These data indicate that the number of pups that will be born can be estimated accurately by using maternal weight gain at specific or stock-specific time points.

  16. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  17. Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats.

    PubMed

    Webber, Quinn M R; Fletcher, Quinn E; Willis, Craig K R

    2017-12-01

    Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.

  18. Home range size of Black-backed Woodpeckers in burned forests of southwestern Idaho

    Treesearch

    Jonathan G. Dudley; Victoria A. Saab

    2007-01-01

    We examined home range size of Black-backed Woodpeckers (Picoides arcticus) in burned ponderosa pine (Pinus ponderosa) / Douglas-fir (Pseudotsuga menziesii) forests of southwestern Idaho during 2000 and 2002 (6 and 8 years following fire). Home range size for 4 adult males during the post-fledging period was 115....

  19. A comparison of certain methods of measuring ranges of small mammals

    USGS Publications Warehouse

    Stickel, L.F.

    1954-01-01

    SUMMARY: A comparison is made of different methods of determining size of home range from grid trapping data. Studies of artificial populations show that a boundary strip method of measuring area and an adjusted range length give sizes closer to the true range than do minimum area or observed range length methods. In simulated trapping of artificial populations, the known range size increases with successive captures until a level is reached that approximates the true range. The same general pattern is followed whether traps are visited at random or traps nearer the center of the range are favored; but when central traps are favored the curve levels more slowly. Range size is revealed with fewer captures when traps are far apart than when they are close together. The curve levels more slowly for oblong ranges than for circular ranges of the same area. Fewer captures are required to determine range length than to determine range area. Other examples of simulated trapping in artificial populations are used to provide measurements of distances from the center of activity and distances between successive captures. These are compared with similar measurements taken from Peromyscus trapping data. The similarity of range sizes found in certain field comparisons of area trapping, colored scat collections, and trailing is cited. A comparison of home range data obtained by area trapping and nest box studies is discussed. It is shown that when traps are set too far apart to include two or more in the range of each animal, calculation of average range size gives biased results. The smaller ranges are not expressed and cannot be included in the averages. The result is that range estimates are smaller at closer spacings and greater at wider spacings, purely as a result of these erroneous calculations and not reflecting any varying behavior of the animals. The problem of variation in apparent home range with variation in trap spacing is considered further by trapping in an artificial population. It is found that trap spacing can alter the apparent size of range even when biological factors are excluded and trap visiting is random. The desirability of excluding travels outside the normal range from home range calculations is discussed. Effects of varying the trapping plan by setting alternate rows of traps, or setting two traps per site, are discussed briefly.

  20. Super-cool paints: optimizing composition with a modified four-flux model

    NASA Astrophysics Data System (ADS)

    Gali, Marc A.; Arnold, Matthew D.; Gentle, Angus R.; Smith, Geoffrey B.

    2017-09-01

    The scope for maximizing the albedo of a painted surface to produce low cost new and retro-fitted super-cool roofing is explored systematically. The aim is easy to apply, low cost paint formulations yielding albedos in the range 0.90 to 0.95. This requires raising the near-infrared (NIR) spectral reflectance into this range, while not reducing the more easily obtained high visible reflectance values. Our modified version of the four-flux method has enabled results on more complex composites. Key parameters to be optimized include; fill factors, particle size and material, using more than one mean size, thickness, substrate and binder materials. The model used is a variation of the classical four-flux method that solves the energy transfer problem through four balance differential equations. We use a different approach to the characteristic parameters to define the absorptance and scattering of the complete composite. This generalization allows extension to inclusion of size dispersion of the pigment particle and various binder resins, including those most commonly in use based on acrylics. Thus, the pigment scattering model has to take account of the matrix having loss in the NIR. A paint ranking index aimed specifically at separating paints with albedo above 0.80 is introduced representing the fraction of time at a sub-ambient temperature.

  1. Transformation of Escherichia coli with large DNA molecules by electroporation.

    PubMed Central

    Sheng, Y; Mancino, V; Birren, B

    1995-01-01

    We have examined bacterial electroporation with a specific interest in the transformation of large DNA, i.e. molecules > 100 kb. We have used DNA from bacterial artificial chromosomes (BACs) ranging from 7 to 240 kb, as well as BAC ligation mixes containing a range o different sized molecules. The efficiency of electroporation with large DNA is strongly dependent on the strain of Escherichia coli used; strains which offer comparable efficiencies for 7 kb molecules differ in their uptake of 240 kb DNA by as much as 30-fold. Even with a host strain that transforms relatively well with large DNA, transformation efficiency drops dramatically with increasing size of the DNA. Molecules of 240 kb transform approximately 30-fold less well, on a molar basis, than molecules of 80 kb. Maximum transformation of large DNA occurs with different voltage gradients and with different time constants than are optimal for smaller DNA. This provides the opportunity to increase the yield of transformants which have taken up large DNA relative to the number incorporating smaller molecules. We have demonstrated that conditions may be selected which increase the average size of BAC clones generated by electroporation and compare the overall efficiency of each of the conditions tested. Images PMID:7596828

  2. High prevalence of homing behaviour among juvenile coral-reef fishes and the role of body size

    NASA Astrophysics Data System (ADS)

    Streit, Robert P.; Bellwood, David R.

    2017-12-01

    Adult coral-reef fishes display a remarkable ability to return home after being displaced. However, we know very little about homing behaviour in juvenile fishes. Homing behaviour in juvenile fishes is of interest because it will shape subsequent spatial distributions of adult fish communities. Comparing multiple species, families and functional groups allows us to distinguish between species-specific traits and more generalised, species-independent traits that may drive homing behaviour. Using displacement experiments of up to 150 m, we quantified homing behaviour of juvenile, newly recruited reef fishes of seven species in three families, including herbivorous parrotfishes and rabbitfishes, carnivorous wrasse and planktivorous damselfishes. All species showed the ability to home successfully, but success rates differed among species. Juvenile parrotfishes were the most successful (67% returning home), while return rates in the other species ranged from 10.5% ( Siganus doliatus) to 28.9% ( Coris batuensis). However, across all species body size appeared to be the main driver of homing success, rather than species-specific traits. With every cm increase in body size, odds of returning home almost tripled (170% increase) across all species. Interestingly, the probability of getting lost was not related to body size, which suggests that mortality was not a major driver of unsuccessful homing. Homing probability halved beyond displacement distances of 10 m and then remained stable. Higher likelihood of homing over short distances may suggest that different sensory cues are used to navigate. Overall, our results suggest that homing ability is a widespread trait among juvenile reef fishes. A `sense of home' and site attachment appear to develop early during ontogeny, especially above taxon-specific size thresholds. Hence, spatial flexibility exists only in a brief window after settlement, with direct implications for subsequent patterns of connectivity and ecosystem function in adult reef fish populations.

  3. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization

    PubMed Central

    Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M.

    2017-01-01

    Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images. PMID:28586353

  4. NASA GSFC Report on CCSDS Recommendations 2.1.8A B Minimum Earth Station Transmitter Frequency Resolution for Spacecraft Receiver Acquisition

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lee, Wing

    2017-01-01

    In Fall 2016, ESA presented paper SLS-RFM 16-10 documenting a possible issue with the frequency lock-in range specification in Recommendation 2.1.8A of typically 267 to 1067 Hz in considerings (b) from considerings (a) for loop bandwidths [2B(sub LO)] in the range of 200 to 800 Hz with a recommendation of 100 Hz step size for frequency sweeping. The paper calculated the lock-in range to be (+/-)266 to (+/-)1064 rad/s or (+/-)42 to (+/-)168 Hz. Also, Recommendation 2.1.8B has the same issue for considering (a) and (b), i.e. for 2B(sub LO) =10 Hz, a lock-in range of 13 Hz was specified and a recommendation of 5 Hz step size for frequency sweeping. ESA also provided test results from the Rosetta and Exomars transponders. The results were somewhat inconsistent since the tests to verify lock-in and pull-in range did not include acquisition time, which is vital to the definition of these performance measures. This paper will address these test results below. However, we first examine the rationale for Recommendation 2.1.8A/B and its consistency with the theory of 2nd order phase lock loop operations. Our approach is to design a digital phase locked loop (DPLL) from phase locked loop (PLL) requirements. All analysis will be performed with a DPLL.

  5. A Powder Delivery System (PoDS) for Mars in situ Science

    NASA Astrophysics Data System (ADS)

    Bryson, C.; Blake, D.; Saha, C.; Sarrazin, P.

    2004-12-01

    Many instruments proposed for in situ Mars science investigations work best with fine-grained samples of rocks or soils. Such instruments include the mineral analyzer CheMin [1] and any instrument that requires samples having high surface areas (e.g., mass spectrometers, organic analyzers, etc). The Powder Delivery System (PoDS) is designed to deliver powders of selected grain sizes from a sample acquisition device such as an arm-deployed robotic driller or corer to an instrument suite located on the body of a rover/lander. PoDS is capable of size-selective sampling of crushed rocks, soil or drill powder for delivery to instruments that require specific grain sizes (e.g. 5-50 mg of less than150 micron powder for CheMin). Sample material is transported as an aerosol of particles and gas by vacuum advection. In the laboratory a venturi pump driven by compressed air provides the impulse. On Mars, the ambient atmosphere is a source of CO2 that can be captured and compressed by adsorption pumping during diurnal temperature cycling [2]. The lower atmospheric pressure on the surface of Mars (7 torr) will affect fundamental parameters of gas-particle interaction such as Reynolds, Stocks and Knudsen numbers [3]. However, calculations show that the PoDS will operate under both Martian and terrestrial atmospheric conditions. Cyclone separators with appropriate particle size selection ranges remove particles from the aerosol stream. The vortex flow inside the cyclone causes grains larger than a specific size to be collected, while smaller grains remain entrained in the gas. Cyclones are very efficient inertial and centrifugal particle separators with cut sizes (d50) as low as 4 microns. Depending on the particle size ranges desired, a series of cyclones with descending cut sizes may be used, the simplest case being a single cyclone for particle deposition without mass separation. Transmission / membrane filters of appropriate pore sizes may also be used to collect powder from the aerosol stream. Results of a number of tests of the prototype PoDS will be presented. [1] Blake D. F., Sarrazin P., Bish D. L., Feldman S., Chipera S. J, Vaniman D.T., and Collins S., 2004, Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument, LPSC XXXV abstr. #1794 (CD-ROM). [2] Finn J. E., McKay C. P. and Sridhar R. K., 1999, Martian Atmosphere Utilization by Temperature-Swing Adsorption, University of Arizona, Publication No.961597, http://stl.ame.arizona.edu/publications/961597.pdf [3] Hinds W. C., 1999, Aerosol Technology - Properties, Behavior, and Measurement of Airborne Particles, Second edition, John Wiley & Sons, Inc., pp 15-67, 111-136.

  6. Relation of Body Size on Ecological Modes

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Ngo, A.; Heim, N.; Payne, J.

    2016-12-01

    Body size in the manner of total biovolume is a useful metric for determining the way an organism interacts with its environment. Body sizes of an organism determines behavior and its life mode, the way an organism lives and survives defined by motility, depth of habitat, and feeding mode. To build on that, we hypothesize that the body size of organisms determines the amount of unique life modes an organism is capable of utilizing. the We categorized the ecological life modes of marine organisms in the phyla Arthropoda, Mollusca, Chordata, and Brachiopoda. After organizing body sizes into bins of 10,000 mm3 per x-value through R, a trend displaying a decrease in the amount of unique life modes per body size bin is visible with increasing size. Chordates however do not display as consistent of a trend as do the rest of the phyla. We hypothesize that this could be because most chordates have a backbone allowing more variation in life modes and behaviors which in turn are capable sustain larger body sizes. A boxplot regarding the range of unique life modes for all body sizes for all phyla also shows that a majority of life mode ranges range from the median size organisms from data collected to the smallest. Which means that with all of the unique life modes that were taken into consideration, the possible body sizes they ranged into were mostly into smaller organisms as there was a majority in life modes that did not range into the realm of larger body size organisms that were greater than the median sizes of the organisms.

  7. Navigating aerial transects with a laptop computer

    USGS Publications Warehouse

    Anthony, R. Michael; Stehn, R.A.

    1994-01-01

    SUMMARY: A comparison is made of different methods of determining size of home range from grid trapping data. Studies of artificial populations show that a boundary strip method of measuring area and an adjusted range length give sizes closer to the true range than do minimum area or observed range length methods. In simulated trapping of artificial populations, the known range size increases with successive captures until a level is reached that approximates the true range. The same general pattern is followed whether traps are visited at random or traps nearer the center of the range are favored; but when central traps are favored the curve levels more slowly. Range size is revealed with fewer captures when traps are far apart than when they are close together. The curve levels more slowly for oblong ranges than for circular ranges of the same area. Fewer captures are required to determine range length than to determine range area. Other examples of simulated trapping in artificial populations are used to provide measurements of distances from the center of activity and distances between successive captures. These are compared with similar measurements taken from Peromyscus trapping data. The similarity of range sizes found in certain field comparisons of area trapping, colored scat collections, and trailing is cited. A comparison of home range data obtained by area trapping and nest box studies is discussed. It is shown that when traps are set too far apart to include two or more in the range of each animal, calculation of average range size gives biased results. The smaller ranges are not expressed and cannot be included in the averages. The result is that range estimates are smaller at closer spacings and greater at wider spacings, purely as a result of these erroneous calculations and not reflecting any varying behavior of the animals. The problem of variation in apparent home range with variation in trap spacing is considered further by trapping in an artificial population. It is found that trap spacing can alter the apparent size of range even when biological factors are excluded and trap visiting is random. The desirability of excluding travels outside the normal range from home range calculations is discussed. Effects of varying the trapping plan by setting alternate rows of traps, or setting two traps per site, are discussed briefly.

  8. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis

    PubMed Central

    Adnan, Tassha Hilda

    2016-01-01

    Sensitivity and specificity analysis is commonly used for screening and diagnostic tests. The main issue researchers face is to determine the sufficient sample sizes that are related with screening and diagnostic studies. Although the formula for sample size calculation is available but concerning majority of the researchers are not mathematicians or statisticians, hence, sample size calculation might not be easy for them. This review paper provides sample size tables with regards to sensitivity and specificity analysis. These tables were derived from formulation of sensitivity and specificity test using Power Analysis and Sample Size (PASS) software based on desired type I error, power and effect size. The approaches on how to use the tables were also discussed. PMID:27891446

  9. Non-specific cellular uptake of surface-functionalized quantum dots

    NASA Astrophysics Data System (ADS)

    Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.

    2010-07-01

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.

  10. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  11. Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past

    NASA Astrophysics Data System (ADS)

    Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.

    2016-12-01

    The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.

  12. Comparison of the ranging behavior of Scotophilus kuhlii (Lesser Asiatic Yellow Bat) in agricultural and urban landscape

    NASA Astrophysics Data System (ADS)

    Atiqah, Nur; Akbar, Zubaid; Syafrinna, Ubaidah, Nur; Foo, Ng Yong

    2015-09-01

    Knowledge on home range sizes and movement patterns of animals through the environment is crucial for determining effects of habitat disturbance and fragmentation. To gauge the effects of land-use changes on Scotophilus kuhlii, a telemetric study was conducted between February 2014 and April 2014 in Tasik Chini, Pahang and Universiti Kebangsaan Malaysia (UKM), Bangi Campus. The home range sizes and movement patterns of S. kuhlii inhabiting agricultural landscape (Tasik Chini, Pahang) versus urban landscape (UKM) were compared. A total of ten individuals were successfully radio-tracked. Comparison of home range sizes of both sexes showed male S. kuhlii at Tasik Chini have larger mean home range sizes compared to UKM while female S.kuhlii in UKM have larger mean home range sizes compared to Tasik Chini. All individuals from both localities showed random movement. It is suggested that the home range and activity patterns might be influenced by food availability in the study area, food preferences and diet segregation and breeding behavior. This study provides baseline information on habitat utilization by S. kuhlii in relation to habitat perturbations.

  13. Size Matters: Developing Design Rules to Engineer Nanoparticles for Solid Tumour Targeting

    NASA Astrophysics Data System (ADS)

    Sykes, Edward Alexander

    Nanotechnology enables the design of highly customizable platforms for producing minimally invasive and programmable strategies for cancer diagnosis and treatment. Advances in this field have demonstrated that nanoparticles can enhance specificity of anti-cancer agents, respond to tumour-specific cues, and direct the visualization of biological targets in vivo. . Nanoparticles can be synthesized within the 1 to 100 nm range to achieve different electromagnetic properties and specifically interact with biological tissues by tuning their size, shape, and surface chemistry. However, it remains unclear which physicochemical parameters are critical for delivering nanomaterials to the tumour site. With less than 5% of administered nanoparticles reaching the tumour, engineering of nanoparticles for effective delivery to solid tumours remains a critical challenge to cancer nanomedicine. A more comprehensive understanding of the interplay between the nanomaterial physicochemical properties and biological systems is necessary to enhance the efficacy of nanoparticle tumour targeting. This thesis explores how nanoparticle size and functionalization with cancer cell specific agents impact nanoparticle delivery to tumours. Furthermore, this doctoral work (i) discusses how tumour structure evolves with growth, (ii) elucidates how such changes modulate nanoparticle accumulation, and (iii) identifies how the skin serves as a significant off-target site for nanoparticle uptake. This thesis also demonstrates the utility of empirically-derived parametric models, Monte Carlo simulations, and decision matrices for mechanistically understanding and predicting the impact of nanomaterial features and tumour biology on nanoparticle fate in vivo. These topics establish key design considerations to tailor nanoparticles for enhanced tumour targeting. Collectively, the concepts presented herein form a fundamental framework for the development of personalized nanomedicine and nano-diagnostic agents in the future.

  14. A qualitative study of pandemic influenza preparedness among small and medium-sized businesses in New York City.

    PubMed

    Burton, Deron C; Confield, Evan; Gasner, Mary Rose; Weisfuse, Isaac

    2011-10-01

    Small businesses need to engage in continuity planning to assure delivery of goods and services and to sustain the economy during an influenza pandemic. This is especially true in New York City, where 98 per cent of businesses have fewer than 100 employees. It was an objective therefore, to determine pandemic influenza business continuity practices and strategies suitable for small and medium-sized NYC businesses. The study design used focus groups, and the participants were owners and managers of businesses with fewer than 500 employees in New York City. The main outcome measures looked for were the degree of pandemic preparedness, and the feasibility of currently proposed business continuity strategies. Most participants reported that their businesses had no pandemic influenza plan. Agreement with feasibility of specific business continuity strategies was influenced by the type of business represented, cost of the strategy, and business size. It was concluded that recommendations for pandemic-related business continuity plans for small and medium-sized businesses should be tailored to the type and size of business and should highlight the broad utility of the proposed strategies to address a range of business stressors.

  15. Colloidal Bandpass and Bandgap Filters

    NASA Astrophysics Data System (ADS)

    Yellen, Benjamin; Tahir, Mukarram; Ouyang, Yuyu; Nori, Franco

    2013-03-01

    Thermally or deterministically-driven transport of objects through asymmetric potential energy landscapes (ratchet-based motion) is of considerable interest as models for biological transport and as methods for controlling the flow of information, material, and energy. Here, we provide a general framework for implementing a colloidal bandpass filter, in which particles of a specific size range can be selectively transported through a periodic lattice, whereas larger or smaller particles are dynamically trapped in closed-orbits. Our approach is based on quasi-static (adiabatic) transition in a tunable potential energy landscape composed of a multi-frequency magnetic field input signal with the static field of a spatially-periodic magnetization. By tuning the phase shifts between the input signal and the relative forcing coefficients, large-sized particles may experience no local energy barriers, medium-sized particles experience only one local energy barrier, and small-sized particles experience two local energy barriers. The odd symmetry present in this system can be used to nudge the medium-sized particles along an open pathway, whereas the large or small beads remain trapped in a closed-orbit, leading to a bandpass filter, and vice versa for a bandgap filter. NSF CMMI - 0800173, Youth 100 Scholars Fund

  16. Stable and pH-responsive core-shell nanoparticles based on HEC and PMAA networks via template copolymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jin, Q.; Chen, Y.; Zhao, J.

    2011-10-01

    Taking advantage of the specific hydrogen bonding interactions, stable and pH-responsive core-shell nanoparticles based on hydroxyethyl cellulose (HEC) and polymethacrylic acid (PMAA) networks, with a < D h > size ranging from 190 to 250 nm, can be efficiently prepared via facile one-step co-polymerization of methacrylic acid (MAA) and N, N'-methylenebisacrylamide (MBA) on HEC template in water. Using dynamic light scattering, electrophoretic light scattering, fluorescence spectrometry, thermo-gravimetric analysis, TEM, and AFM observations, the influence of crosslinker MBA as well as the reaction parameters were studied. The results show that after the introduction of crosslinker MBA, the nanoparticles became less compact; their size exhibited a smaller pH sensitivity, and their stability against pH value was improved greatly. Furthermore, the size, structure, and pH response of the nanoparticles can be adjusted via varying the reaction parameters: nanoparticles of smaller size, more compact structure, and higher swelling capacity were produced as pH value of the reaction medium increased or the HEC/MAA ratio decreased; while nanoparticles of smaller size, less compact structure and smaller swelling capacity were produced as the total feeding concentration increased.

  17. The effect of nanoparticle size on theranostic systems: the optimal particle size for imaging is not necessarily optimal for drug delivery

    NASA Astrophysics Data System (ADS)

    Dreifuss, Tamar; Betzer, Oshra; Barnoy, Eran; Motiei, Menachem; Popovtzer, Rachela

    2018-02-01

    Theranostics is an emerging field, defined as combination of therapeutic and diagnostic capabilities in the same material. Nanoparticles are considered as an efficient platform for theranostics, particularly in cancer treatment, as they offer substantial advantages over both common imaging contrast agents and chemotherapeutic drugs. However, the development of theranostic nanoplatforms raises an important question: Is the optimal particle for imaging also optimal for therapy? Are the specific parameters required for maximal drug delivery, similar to those required for imaging applications? Herein, we examined this issue by investigating the effect of nanoparticle size on tumor uptake and imaging. Anti-epidermal growth factor receptor (EGFR)-conjugated gold nanoparticles (GNPs) in different sizes (diameter range: 20-120 nm) were injected to tumor bearing mice and their uptake by tumors was measured, as well as their tumor visualization capabilities as tumor-targeted CT contrast agent. Interestingly, the results showed that different particles led to highest tumor uptake or highest contrast enhancement, meaning that the optimal particle size for drug delivery is not necessarily optimal for tumor imaging. These results have important implications on the design of theranostic nanoplatforms.

  18. Elevational Distribution and Conservation Biogeography of Phanaeine Dung Beetles (Coleoptera: Scarabaeinae) in Bolivia

    PubMed Central

    Herzog, Sebastian K.; Hamel-Leigue, A. Caroli; Larsen, Trond H.; Mann, Darren J.; Soria-Auza, Rodrigo W.; Gill, Bruce D.; Edmonds, W. D.; Spector, Sacha

    2013-01-01

    Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann’s and Rapoport’s rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann’s rule. Rapoport’s rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport’s and refutation of Bergmann’s rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions. PMID:23717678

  19. Variation in style morph frequencies in tristylous Lythrum salicaria in the Iberian Peninsula: the role of geographical and demographic factors

    PubMed Central

    Costa, Joana; Castro, Sílvia; Loureiro, João; Barrett, Spencer C. H.

    2016-01-01

    Background and Aims The balance between stochastic forces and negative frequency-dependent selection largely determines style morph frequencies in heterostylous populations. Investigation of morph frequencies at geographical range limits can provide insights into the forces maintaining the floral polymorphism, and the factors causing biased morph ratios. Here, we investigate style morph frequencies in populations at the south-western European range limit of tristylous Lythrum salicaria, to explore the role of demographic and geographical factors influencing morph ratios in its native range. Methods We measured morph composition and evenness, and the size of 96 populations, along a north to south latitudinal transect from Galicia to Andalucia, Iberian Peninsula, traversing a steep climatic gradient. To examine the potential influence of morph-specific fitness components on morph ratios, we examined reproductive traits in 19 populations. Key Results Most populations of L. salicaria were trimorphic (94·79 %), the majority exhibiting 1 : 1 : 1 morph ratios (68·75 %). Populations with biased morph ratios had a deficiency of the short-styled morph. Population size and morph evenness were positively associated with latitude, with smaller populations and those with less even morph ratios occurring towards the south. Greater variance in morph evenness was evident at the southern range margin. There were no consistent differences in components of reproductive fitness among style morphs, but southern populations produced less fruit and seed than more northerly populations. Conclusions Our results demonstrate the influence of finite population size on morph frequencies in L. salicaria. However, they also illustrate the resilience of Iberian populations to the factors causing deviations from isoplethy and morph loss, especially at the southern range limit where populations are smaller. The maintenance of tristyly in small populations of L. salicaria may be aided by the genetic connectivity of populations in agricultural landscapes resulting from gene flow through pollen and seed dispersal. PMID:26658100

  20. Elevational distribution and conservation biogeography of phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia.

    PubMed

    Herzog, Sebastian K; Hamel-Leigue, A Caroli; Larsen, Trond H; Mann, Darren J; Soria-Auza, Rodrigo W; Gill, Bruce D; Edmonds, W D; Spector, Sacha

    2013-01-01

    Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann's and Rapoport's rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann's rule. Rapoport's rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport's and refutation of Bergmann's rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions.

  1. Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios

    PubMed Central

    Reside, April E; VanDerWal, Jeremy; Kutt, Alex S

    2012-01-01

    Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. PMID:22837819

  2. Developing a Novel Hydrogen Sponge with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, T. C. Mike

    This Phase I (5 quarters) research project was to examine the validity of a new class of boron-containing polymer (B-polymer) frameworks, serving as the adsorbents for the practical onboard H2 storage applications. Three B-polymer frameworks were synthesized and investigated, which include B-poly(butyenylstyrene) (B-PBS) framework (A), B-poly(phenyldiacetyene) (B-PPDA) framework (B), and B-poly(phenyltriacetylene) (B-PPTA) framework (C). They are 2-D polymer structures with the repeating cyclic units that spontaneously form open morphology and the B-doped (p-type) π-electrons delocalized surfaces. The ideal B-polymer framework shall exhibit open micropores (pore size in the range of 1-1.5nm) with high surface area (>3000 m 2/g), and themore » B-dopants in the conjugated framework shall provide high surface energy for interacting with H 2 molecules (an ideal H 2 binding energy in the range of 15-25 kJ/mol). The pore size distribution and H2 binding energy were investigated at both Penn State and NREL laboratories. So far, the experimental results show the successful synthesis of B-polymer frameworks with the relatively well-defined planar (2-D) structures. The intrinsically formed porous morphology exhibits a broad pore size distribution (in the range of 0.5-10 nm) with specific surface area (~1000 m 2/g). The miss-alignment between 2-D layers may block some micropore channels and limit gas diffusion throughout the entire matrix. In addition, the 2-D planar conjugated structure may also allow free π-electrons delocalization throughout the framework, which significantly reduces the acidity of B-moieties (electron-deficiency).The resulting 2-D B-polymer frameworks only exhibit a small increase of H 2 binding energy in the range of 8-9 KJ/mole (quite constant over the whole sorption range).« less

  3. Geological duration of ammonoids controlled their geographical range of fossil distribution.

    PubMed

    Wani, Ryoji

    2017-01-01

    The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.

  4. Lock and Dam Number 8 Hydropower Study; Mississippi River Near LaCrosse, Wisconsin. Supplement.

    DTIC Science & Technology

    1985-01-01

    unit used in scheme 3 is a standardized module consisting of an axial flow turbine , a speed increasing gear set, and a generator combined in a short...the flow and generating head ranges associated with specific turbine generator sizes, the program produces annual and monthly flow -duration curves and...open flume turbine passing a rated flow of 14O0 eta at a rated head of 9.75 feat. Cost estimates were made for two and four unit plants having

  5. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  6. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    DOE PAGES

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associatedmore » with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.« less

  7. Ocular biomechanical measurements on post-keratoplasty corneas using a Scheimpflug-based noncontact device

    PubMed Central

    Modis, Laszlo; Hassan, Ziad; Szalai, Eszter; Flaskó, Zsuzsanna; Berta, Andras; Nemeth, Gabor

    2016-01-01

    AIM To analyse ocular biomechanical properties, central corneal thickness (CCT) and intraocular pressure (IOP) in post-keratoplasty eyes, as compared to normal subjects, with a new Scheimpflug-based technology. Moreover, biomechanical data were correlated with the size and age of the donor and recipient corneas. METHODS Measurements were conducted on 46 eyes of 46 healthy patients without any corneal pathology (age: 53.83±20.8y) and 30 eyes of 28 patients after penetrating keratoplasty (age: 49.43±21.34y). Ten biomechanical parameters, the CCT and IOP were recorded by corneal visualization scheimpflug technology (CorVis ST) using high-speed Scheimpflug imaging. Keratometry values were also recorded using Pentacam HR system. Scheimpflug measurements were performed after 43.41±40.17mo (range: 11-128mo) after the keratoplasty and after 7.64±2.34mo (range: 5-14mo) of suture removal. RESULTS Regarding the device-specific biomechanical parameters, the highest concavity time and radius values showed a significant decrease between these two groups (P=0.01 and P<0.001). None of other biomechanical parameters disclosed a significant difference. The CCT showed a significant difference between post-keratoplasty eyes as compared to normal subjects (P=0.003) using the CorVis ST device. The IOP was within the normal range in both groups (P=0.84). There were no significant relationships between the keratometric data, the size of the donor and recipient, age of the donor and recipient and biomechanical properties obtained by CorVis ST. CONCLUSION The ocular biomechanics remain stable after penetrating keratoplasty according to the CorVis ST measurements. Only two from the ten device-specific parameters have importance in the follow-up period after penetrating keratoplasty. PMID:26949641

  8. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation.

    PubMed

    Chandra, Navin; Singh, Deepesh Kumar; Sharma, Meenakshi; Upadhyay, Ravi Kant; Amritphale, S S; Sanghi, S K

    2010-02-15

    For the first time, single reverse microemulsion-assisted direct precipitation route has been successfully used to synthesize tetragonal zirconia nanoparticles in narrow size range. The synthesized powder was characterized using FT-IR, XRD and HRTEM techniques. The zirconia nanoparticles obtained were spherical in shape and has narrow particle size distribution in the range of 13-31nm and crystallite size in the range of 13-23nm. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Performance of Granular Starch with Controlled Pore Size during Hydrolysis with Digestive Enzymes.

    PubMed

    Benavent-Gil, Yaiza; Rosell, Cristina M

    2017-12-01

    Studies on porous starch have been directed to explore different industrial applications as bio-adsorbents of a variety of compounds. However, the analysis of starch digestibility is essential for food application. The objective of this study was to determine the impact of porous structure on in vitro starch digestibility. Porous starches were obtained using a range of concentrations of amyloglucosidase (AMG), α-amylase (AM), cyclodextrin-glycosyltransferase (CGTase) or branching enzyme (BE). Porous starches exhibited major content of digestible starch (DS) that increased with the intensity of the enzymatic treatment, and very low amount of resistant starch (RS). Porous starches behaved differently during in vitro hydrolysis depending on their enzymatic treatment. AMG was the unique treatment that increased the digestive amylolysis and estimated glycemic index, whereas AM, CGTase and BE reduced them. A significant relationship was found between the pore size and the severity of the amylolysis, suggesting that a specific pore size is required for the accessibility of the digestive amylase. Therefore, pore size in the starch surface was a limiting factor for digestion of starch granules.

  10. Effects of meal size, meal type, and body temperature on the specific dynamic action of anurans.

    PubMed

    Secor, Stephen M; Wooten, Jessica A; Cox, Christian L

    2007-02-01

    Specific dynamic action (SDA), the increase in metabolism stemming from meal digestion and assimilation, varies as a function of meal size, meal type, and body temperature. To test predictions of these three determinants of SDA, we quantified and compared the SDA responses of nine species of anurans, Bombina orientalis, Bufo cognatus, Ceratophrys ornata, Dyscophus antongilli, Hyla cinerea, Kassina maculata, Kassina senegalensis, Pyxicephalus adspersus, and Rana catesbeiana subjected to meal size, meal type, and body temperature treatments. Over a three to seven-fold increase in meal size, anurans experienced predicted increases in postprandial rates of oxygen consumption (VO(2)) the duration of elevated VO(2) and SDA. Meal type had a significant influence on the SDA response, as the digestion and assimilation of hard-bodied, chitinous crickets, mealworms, and superworms required 76% more energy than the digestion and assimilation of soft-bodied earthworms, waxworms, and neonate rodents. Body temperature largely effected the shape of the postprandial metabolic profile; peak VO(2) increased and the duration of the response decreased with an increase in body temperature. Variation in body temperature did not significantly alter SDA for four species, whereas both H. cinerea and R. catesbeiana experienced significant increases in SDA with body temperature. For 13 or 15 species of anurans ranging in mass from 2.4 to 270 g, SMR, postprandial peak VO(2) and SDA scaled with body mass (log-log) with mass exponents of 0.79, 0.93, and 1.05, respectively.

  11. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    PubMed

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  12. The effects of dispersal patterns on marine reserves: does the tail wag the dog?

    PubMed

    Lockwood, Dale R; Hastings, Alan; Botsford, Louis W

    2002-05-01

    The concept of marine reserves as a method of improving management of fisheries is gaining momentum. While the list of benefits from reserves is frequently promoted, precise formulations of theory to support reserve design are not fully developed. To determine the size of reserves and the distances between reserves an understanding of the requirements for persistence of local populations is required. Unfortunately, conditions for persistence are poorly characterized, as are the larval dispersal patterns on which persistence depends. With the current paucity of information regarding meroplanktonic larval transport processes, understanding the robustness of theoretical results to larval dispersal is of key importance. From this formulation a broad range of dispersal patterns are analyzed. Larval dispersal is represented by a probability distribution that defines the fraction of successful settlers from an arbitrary location, the origin of the distribution, to any other location along the coast. While the effects of specific dispersal patterns have been investigated for invasion processes, critical habitat size and persistence issues have generally been addressed with only one or two dispersal types. To that end, we formulate models based on integrodifference equations that are spatially continuous and temporally discrete. We consider a range of dispersal distributions from leptokurtic to platykurtic. The effect of different dispersal patterns is considered for a single isolated reserve of varying size receiving no external larvae, as well as multiple reserves with varying degrees of connectivity. While different patterns result in quantitative differences in persistence, qualitatively similar effects across all patterns are seen in both single- and multiple reserve models. Persistence in an isolated reserve requires a size that is approximately twice the mean dispersal distance and regardless of the dispersal pattern the population in a patch is not persistent if the reserve size is reduced to just the mean dispersal distance. With an idealized coastline structure consisting of an infinite line of equally spaced reserves separated by regions of coastline in which reproduction is nil, the relative settlement as a function of the fraction of coastline and size of reserve is qualitatively very similar over a broad range of dispersal patterns. The upper limit for the minimum fraction of coastline held in reserve is about 40%. As the fraction of coastline is reduced, the minimum size of reserve becomes no more than 1.25 times the mean dispersal distance.

  13. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    PubMed

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the photometer-type dust monitors on the other hand showed little correlation. The Respicon also accurately measured the inhalable concentration, whereas the modified PDM underestimated it by ~27%. Photometer responses varied considerably with changing particle size, which resulted in appreciable errors in airborne inhalable dust concentration measurements. Similar trends were also observed during field trials. Despite having limitations, both the modified PDM and Respicon showed promise as real-time inhalable dust monitors.

  14. Prognostic Factors Affecting Rotator Cuff Healing After Arthroscopic Repair in Small to Medium-sized Tears.

    PubMed

    Park, Ji Soon; Park, Hyung Jun; Kim, Sae Hoon; Oh, Joo Han

    2015-10-01

    Small and medium-sized rotator cuff tears usually have good clinical and anatomic outcomes. However, healing failure still occurs in some cases. To evaluate prognostic factors for rotator cuff healing in patients with only small to medium-sized rotator cuff tears. Case-control study; Level of evidence, 3. Data were prospectively collected from 339 patients with small to medium-sized rotator cuff tears who underwent arthroscopic repair by a single surgeon between March 2004 and August 2012 and who underwent magnetic resonance imaging or computed tomographic arthrography at least 1 year after surgery. The mean age of the patients was 59.8 years (range, 39-80 years), and the mean follow-up time was 20.8 months (range, 12-66 months). The functional evaluation included the visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons score, Constant-Murley score, and Simple Shoulder Test. Postoperative VAS for pain and functional scores improved significantly compared with preoperative values (P < .001). Forty-five healing failures occurred (13.3%), and fatty degeneration of the infraspinatus muscle, tear size (anteroposterior dimension), and age were significant factors affecting rotator cuff healing (P < .001, = .018, and = .011, respectively) in multivariate logistic regression analysis. Grade II and higher infraspinatus fatty degeneration correlated with a higher failure rate. The failure rate was also significantly higher in patients with a tear >2 cm in size (34.2%) compared with patients with a tear ≤2 cm (10.6%) (P < .001). A receiver operating characteristic curve was used to determine the predictive cut-off value for the oldest age and the largest tear size for successful healing, which were calculated as 69 years and 2 cm, respectively, with a specificity of 90%. In small to medium-sized rotator cuff tears, grade II fatty degeneration of the infraspinatus muscle according to the Goutallier classification could be a reference point for successful healing, and anatomic outcomes might be better if repair is performed before the patient is 69 years old and the tear size exceeds 2 cm. © 2015 The Author(s).

  15. 2D Size Distribution of Chondrules and Chondritic Fragments of an Ordinary Chondrite from Lut Desert (Iran)

    NASA Astrophysics Data System (ADS)

    Pourkhorsandi, H.; Mirnejad, H.

    2014-09-01

    2D size measurement of chondrules and chondiritic fragments of a meteorite from Lut desert of Iran is conducted. Chondrules exhibit a size range of 55-1800 µm (average 437 µm). Chondiritic fragments show a size range of 46-1220 µm (average 261 µm).

  16. Physiological, ecological, and behavioural correlates of the size of the geographic ranges of sea kraits (Laticauda; Elapidae, Serpentes): A critique

    NASA Astrophysics Data System (ADS)

    Heatwole, Harold; Lillywhite, Harvey; Grech, Alana

    2016-09-01

    Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.

  17. Online purchases of an expanded range of condom sizes in comparison to current dimensional requirements allowable by US national standards.

    PubMed

    Cecil, Michael; Warner, Lee; Siegler, Aaron J

    2013-11-01

    Across studies, 35-50% of men describe condoms as fitting poorly. Rates of condom use may be inhibited in part due to the inaccessibility of appropriately sized condoms. As regulated medical devices, condom sizes conform to national standards such as those developed by the American Society for Testing and Materials (ASTM) or international standards such as those developed by the International Organisation for Standardisation (ISO). We describe the initial online sales experience of an expanded range of condom sizes and assess uptake in relation to the current required standard dimensions of condoms. Data regarding the initial 1000 sales of an expanded range of condom sizes in the United Kingdom were collected from late 2011 through to early 2012. Ninety-five condom sizes, comprising 14 lengths (83-238mm) and 12 widths (41-69mm), were available. For the first 1000 condom six-pack units that were sold, a total of 83 of the 95 unique sizes were purchased, including all 14 lengths and 12 widths, and both the smallest and largest condoms. Initial condom purchases were made by 572 individuals from 26 countries. Only 13.4% of consumer sales were in the ASTM's allowable range of sizes. These initial sales data suggest consumer interest in an expanded choice of condom sizes that fall outside the range currently allowable by national and international standards organisations.

  18. The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis

    PubMed Central

    Lester, Sarah E; Ruttenberg, Benjamin I

    2005-01-01

    We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential. PMID:16007745

  19. Home range and residency status of Northern Goshawks breeding in Minnesota

    USGS Publications Warehouse

    Boal, C.W.; Andersen, D.E.; Kennedy, P.L.

    2003-01-01

    We used radio-telemetry to estimate breeding season home-range size of 17 male and 11 female Northern Goshawks (Accipiter gentilis) and combined home ranges of 10 pairs of breeding goshawks in Minnesota. Home-range sizes for male and female goshawks were 2593 and 2494 ha, respectively, using the minimum convex polygon, and 3927 and 5344 ha, respectively, using the 95% fixed kernel. Home ranges of male and female members of 10 goshawk pairs were smaller than combined home-range size of those pairs (mean difference = 3527 ha; 95% CI = 891 to 6164 ha). Throughout the nonbreeding season, the maximum distance from the nest recorded for all but one goshawk was 12.4 km. Goshawks breeding in Minnesota have home ranges similar to or larger than those reported in most other areas. Home-range overlap between members of breeding pairs was typically ???50%, and both members of breeding pairs were associated with breeding home ranges year round. Goshawk management plans based on estimated home-range size of individual hawks may substantially underestimate the area actually used by a nesting pair.

  20. An efficient method for native protein purification in the selected range from prostate cancer tissue digests.

    PubMed

    Ahmad, Rumana; Nicora, Carrie D; Shukla, Anil K; Smith, Richard D; Qian, Wei-Jun; Liu, Alvin Y

    2016-12-01

    Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in the clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen. In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen were pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction. The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well. Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications.

  1. Cardiac troponin-I concentration in dogs with cardiac disease.

    PubMed

    Oyama, Mark A; Sisson, D David

    2004-01-01

    Cardiac troponin-I (cTnI) is a highly sensitive and specific marker of myocardial injury and can be detected in plasma by immunoassay techniques. The purpose of this study was to establish a reference range for plasma cTnI in a population of healthy dogs using a human immunoassay system and to determine whether plasma cTnI concentrations were high in dogs with acquired or congenital heart disease, specifically cardiomyopathy (CM), degenerative mitral valve disease (MVD), and subvalvular aortic stenosis (SAS). In total, 269 dogs were examined by physical examination, electrocardiography, echocardiography, and plasma cTnI assay. In 176 healthy dogs, median cTnI was 0.03 ng/mL (upper 95th percentile = 0.11 ng/mL). Compared with the healthy population, median plasma cTnI was increased in dogs with CM (0.14 ng/mL; range, 0.03-1.88 ng/mL; P < .001; n = 26), in dogs with MVD (0.11 ng/mL; range, 0.01-9.53 ng/mL; P < .001; n = 37), and in dogs with SAS (0.08 ng/mL; range, 0.01-0.94 ng/mL; P < .001; n = 30). In dogs with CM and MVD, plasma cTnI was correlated with left ventricular and left atrial size. In dogs with SAS, cTnI demonstrated a modest correlation with ventricular wall thickness. In dogs with CM, the median survival time of those with cTnI >0.20 ng/mL was significantly shorter than median survival time of those with cTnI <0.20 ng/mL (112 days versus 357 days; P = .006). Plasma cTnI is high in dogs with cardiac disease, correlates with heart size and survival, and can be used as a blood-based biomarker of cardiac disease.

  2. Tropical fishes dominate temperate reef fish communities within western Japan.

    PubMed

    Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.

  3. Tropical Fishes Dominate Temperate Reef Fish Communities within Western Japan

    PubMed Central

    Nakamura, Yohei; Feary, David A.; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources. PMID:24312528

  4. Cognitive inflexibility in obsessive-compulsive disorder

    PubMed Central

    Gruner, Patricia; Pittenger, Christopher

    2016-01-01

    Obsessive-Compulsive Disorder (OCD) is characterized by maladaptive patterns of repetitive, inflexible cognition and behavior that suggest a lack of cognitive flexibility. Consistent with this clinical observation, many neurocognitive studies suggest behavioral and neurobiological abnormalities in cognitive flexibility in individuals with OCD. Meta-analytic reviews support a pattern of cognitive inflexibility, with effect sizes generally in the medium range. Heterogeneity in assessments and the way underlying constructs have been operationalized point to the need for better standardization across studies, as well as more refined overarching models of cognitive flexibility and executive function. Neuropsychological assessments of cognitive flexibility include measures of attentional set shifting, reversal and alternation, cued task switching paradigms, cognitive control measures such as the Trail-Making and Stroop tasks, and several measures of motor inhibition. Differences in the cognitive constructs and neural substrates associated with these measures suggest that performance within these different domains should be examined separately. Additional factors, such as the number of consistent trials prior to a shift and whether a shift is explicitly signaled or must be inferred from a change in reward contingencies, may influence performance, and thus mask or accentuate deficits. Several studies have described abnormalities in neural activation in the absence of differences in behavioral performance, suggesting that our behavioral probes may not be adequately sensitive, but also offering important insights into potential compensatory processes. The fact that deficits of moderate effect size are seen across a broad range of classic neuropsychological tests in OCD presents a conceptual challenge, as clinical symptomatology suggests greater specificity. Traditional cognitive probes may not be sufficient to delineate specific domains of deficit in this and other neuropsychiatric disorders; a new generation of behavioral tasks that test more specific underlying constructs, supplemented by neuroimaging to provide greater insight into the underlying processes, may be needed. PMID:27491478

  5. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    NASA Technical Reports Server (NTRS)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  6. Beam hardening and partial beam hardening of the bowtie filter: Effects on dosimetric applications in CT

    NASA Astrophysics Data System (ADS)

    Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.

    2014-03-01

    Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Arunava; Prevelige, Peter E

    The primary goal of the project was to develop protein-templated approaches for the synthesis and directed assembly of semiconductor nanomaterials that are efficient for visible light absorption and hydrogen production. In general, visible-light-driven photocatalysis reactions exhibit low quantum efficiency for solar energy conversion primarily because of materials-related issues and limitations, such as the control of the band gap, band structure, photochemical stability, and available reactive surface area of the photocatalyst. Synthesis of multicomponent hierarchical nano-architectures, consisting of semiconductor nanoparticles (NPs) with desired optical properties fabricated to maximize spatial proximity for optimum electron and energy transfer represents an attractive route formore » addressing the problem. Virus capsids are highly symmetrical, self-assembling protein cage nanoparticles that exist in a range of sizes and symmetries. Selective deposition of inorganic, by design, at specific locations on virus capsids affords precise control over the size, spacing, and assembly of nanomaterials, resulting in uniform and reproducible nano-architectures. We utilized the self-assembling capabilities of the 420 subunit, 60 nm icosahedral, P22 virus capsid to direct the nucleation, growth, and proximity of a range of component materials. Controlled fabrication on the exterior of the temperature stable shell was achieved by genetically encoding specific binding peptides into an externally exposed loop which is displayed on each of the 420 coat protein subunits. Localization of complimentary materials to the interior of the particle was achieved through the use “scaffolding-fusion proteins. The scaffolding domain drives coat protein polymerization resulting in a coat protein shell surrounding a core of approximately 300 scaffolding/fusion molecules. The fusion domain comprises a peptide which specifically binds the semiconductor material of interest.« less

  8. Geochemistry of uranium and thorium and natural radioactivity levels of the western Anatolian plutons, Turkey

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Argyrios; Altunkaynak, Şafak; Koroneos, Antonios; Ünal, Alp; Kamaci, Ömer

    2017-10-01

    Seventy samples from major plutons (mainly granitic) of Western Anatolia (Turkey) have been analyzed by γ-ray spectrometry to determine the specific activities of 238U, 226Ra, 232Th and 40K (Bq/kg). Τhe natural radioactivity ranged up to 264 Bq/kg for 238U, 229.62 Bq/kg for 226Ra, up to 207.32 Bq/kg for 232Th and up to 2541.95 Bq/kg for 40K. Any possible relationship between the specific activities of 226Ra, 238U, 232Th and 40K and some characteristics of the studied samples (age, rock-type, colour, grain size, occurrence, chemical and mineralogical composition) was investigated. Age, major and trace element geochemistry, color, pluton location and mineralogical composition are likely to affect the concentrations of the measured radionuclides. The range of the Th/U ratio was large (0.003-11.374). The latter, along with 226Ra/238U radioactive secular disequilibrium, is also discussed and explained by magmatic processes during differentiation.

  9. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology

    PubMed Central

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2014-01-01

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490

  11. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs

    PubMed Central

    SOHN, Jungmin; YUN, Sookyung; LEE, Jeosoon; CHANG, Dongwoo; CHOI, Mincheol; YOON, Junghee

    2016-01-01

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly. PMID:27594274

  12. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs.

    PubMed

    Sohn, Jungmin; Yun, Sookyung; Lee, Jeosoon; Chang, Dongwoo; Choi, Mincheol; Yoon, Junghee

    2017-01-10

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly.

  13. Organic Nanoflowers from a Wide Variety of Molecules Templated by a Hierarchical Supramolecular Scaffold.

    PubMed

    Negrón, Luis M; Díaz, Tanya L; Ortiz-Quiles, Edwin O; Dieppa-Matos, Diómedes; Madera-Soto, Bismark; Rivera, José M

    2016-03-15

    Nanoflowers (NFs) are flowered-shaped particles with overall sizes or features in the nanoscale. Beyond their pleasing aesthetics, NFs have found a number of applications ranging from catalysis, to sensing, to drug delivery. Compared to inorganic based NFs, their organic and hybrid counterparts are relatively underdeveloped mostly because of the lack of a reliable and versatile method for their construction. We report here a method for constructing NFs from a wide variety of biologically relevant molecules (guests), ranging from small molecules, like doxorubicin, to biomacromolecules, like various proteins and plasmid DNA. The method relies on the encapsulation of the guests within a hierarchically structured particle made from supramolecular G-quadruplexes. The size and overall flexibility of the guests dictate the broad morphological features of the resulting NFs, specifically, small and rigid guests favor the formation of NFs with spiky petals, while large and/or flexible guests promote NFs with wide petals. The results from experiments using confocal fluorescence microscopy, and scanning electron microscopy provides the basis for the proposed mechanism for the NF formation.

  14. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  15. Correlated evolution between hearing sensitivity and social calls in bats

    PubMed Central

    Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S

    2006-01-01

    Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288

  16. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  17. The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.

    2013-08-01

    The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.

  18. Seasonal dynamics, geographical range size, hosts, genetic diversity and phylogeography of Amblyomma sculptum in Argentina.

    PubMed

    Tarragona, Evelina L; Sebastian, Patrick S; Saracho Bottero, María N; Martinez, Emilia I; Debárbora, Valeria N; Mangold, Atilio J; Guglielmone, Alberto A; Nava, Santiago

    2018-04-27

    The aim of this work was to generate knowledge on ecological aspects of Amblyomma sculptum in Argentina, such as seasonal dynamics, geographical range size, hosts, genetic diversity and phylogeography. Adult and immature A. sculptum ticks were collected in different localities of Argentina to know the geographical range size and hosts. The genetic diversity of this tick was studied through analyses of 16S rDNA sequences. To describe the seasonal dynamics, free-living ticks were monthly collected from October 2013 to October 2015. A. sculptum shows a marked ecological preference for Chaco Húmedo eco-region and "Albardones" forest of the great rivers in the wetlands in the Chaco Biogeographical Province, and for Selvas Pedemontanas and Selva Montana in the Yungas Biogeographical Province. This species has low host specificity, and it has large wild and domestic mammals as principal hosts to both immature and adult stages. Amblyomma sculptum is characterized by a one-year life cycle. Larvae peak in early winter, nymphs peaked during mid-spring, and adults during late summer and mid-summer. The genetic divergence was low and the total genetic variability was attributable to differences among populations. This fact could be associated to stochastics process linked to micro-habitat variations that could produce a partial restriction to gene flow among populations. The geographic regions do not contribute much to explain the A. sculptum population genetic structure, with an ancestral haplotype present in most populations, which gives rise to the rest of the haplotypes denoting a rapid population expansion. Copyright © 2018. Published by Elsevier GmbH.

  19. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    PubMed Central

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-01-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599

  20. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.

  1. Do cigarette health warning labels comply with requirements: A 14-country study.

    PubMed

    Cohen, Joanna E; Brown, Jennifer; Washington, Carmen; Welding, Kevin; Ferguson, Jacqueline; Smith, Katherine C

    2016-12-01

    The Framework Convention on Tobacco Control, a global health treaty ratified by over 175 countries, calls on countries to ensure that tobacco packages carry health warning labels (HWLs) describing the harmful effects of tobacco use. We assessed the extent of compliance with 14 countries' HWL requirements. Unique cigarette packs were purchased in 2013 using a systematic protocol in 12 distinct neighborhoods within three of the ten most populous cities in the 14 low- and middle-income countries with the greatest number (count) of smokers. HWL compliance codebooks were developed for each country based on the details of country-specific HWL requirements, with up to four common compliance indicators assessed for each country (location, size, label elements, text size). Packs (n=1859) were double coded for compliance. Compliance was examined by country and pack characteristics, including parent company and brand family. Overall, 72% of coded cigarette packs were compliant with all relevant compliance indicators, ranging from 17% in the Philippines to 94% in Mexico. Compliance was highest for location of the warning (ranging from 75%-100%) and lowest for warning size (ranging from 46%-99%). Compliance was higher for packs bought in high SES neighborhoods, and varied by parent company and brand family. This multi-country study found at least one pack in every country - and many packs in some countries - that were not compliant with key requirements for health warning labels in the country of purchase. Non-compliance may be exacerbating health disparities. Tobacco companies should be held accountable for complying with country HWL requirements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Event-based total suspended sediment particle size distribution model

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  3. 7 CFR 51.2952 - Size specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specifications. Size shall be specified in accordance with the facts in terms of one of the following classifications: (a) Mammoth size. Mammoth size means walnuts of which not over 12 percent, by count, pass through... foregoing classifications, size of walnuts may be specified in terms of minimum diameter, or minimum and...

  4. 7 CFR 51.2952 - Size specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... specifications. Size shall be specified in accordance with the facts in terms of one of the following classifications: (a) Mammoth size. Mammoth size means walnuts of which not over 12 percent, by count, pass through... foregoing classifications, size of walnuts may be specified in terms of minimum diameter, or minimum and...

  5. The clinical impact of a brief transition programme for young people with juvenile idiopathic arthritis: results of the DON'T RETARD project.

    PubMed

    Hilderson, Deborah; Moons, Philip; Van der Elst, Kristien; Luyckx, Koen; Wouters, Carine; Westhovens, René

    2016-01-01

    To investigate the clinical impact of a brief transition programme for young people with JIA. The Devices for Optimization of Transfer and Transition of Adolescents with Rheumatic Disorders (DON'T RETARD) project is a mixed method project in which we first conducted a quasi-experimental study employing a one-group pre-test-post-test with a non-equivalent post-test-only comparison group design. In this quantitative study, we investigated clinical outcomes in patients with JIA and their parents who participated in the transition programme (longitudinal analyses). The post-test scores of this intervention group were compared with those of patients who received usual care (comparative analyses). Second, a qualitative study was conducted to explore the experiences of adolescents with JIA and their parents regarding their participation in the transition programme. The primary hypothesis of improved physical (effect size 0.11), psychosocial (effect size 0.46) and rheumatic-specific health status (effect size ranging from 0.21 to 0.33), was confirmed. With respect to the secondary outcomes, improved quality of life (effect size 0.51) and an optimized parenting climate (effect size ranging from 0.21 to 0.28) were observed. No effect was measured in medication adherence (odds ratio 1.46). Implementation of a transition programme as a brief intervention can improve the perceived health and quality of life of adolescents with JIA during the transition process, as well as the parenting behaviours of their parents. Based on the present study, a randomized controlled trial can be designed to evaluate the effectiveness of the transition programme. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Prediction of anthropometric accommodation in aircraft cockpits

    NASA Astrophysics Data System (ADS)

    Zehner, Gregory Franklin

    Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.

  7. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents.

    PubMed

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-05-07

    We present an automated microfluidic (MF) approach for the systematic and rapid investigation of carbon dioxide (CO(2)) mass transfer and solubility in physical solvents. Uniformly sized bubbles of CO(2) with lengths exceeding the width of the microchannel (plugs) were isothermally generated in a co-flowing physical solvent within a gas-impermeable, silicon-based MF platform that is compatible with a wide range of solvents, temperatures and pressures. We dynamically determined the volume reduction of the plugs from images that were accommodated within a single field of view, six different downstream locations of the microchannel at any given flow condition. Evaluating plug sizes in real time allowed our automated strategy to suitably select inlet pressures and solvent flow rates such that otherwise dynamically self-selecting parameters (e.g., the plug size, the solvent segment size, and the plug velocity) could be either kept constant or systematically altered. Specifically, if a constant slug length was imposed, the volumetric dissolution rate of CO(2) could be deduced from the measured rate of plug shrinkage. The solubility of CO(2) in the physical solvent was obtained from a comparison between the terminal and the initial plug sizes. Solubility data were acquired every 5 min and were within 2-5% accuracy as compared to literature data. A parameter space consisting of the plug length, solvent slug length and plug velocity at the microchannel inlet was established for different CO(2)-solvent pairs with high and low gas solubilities. In a case study, we selected the gas-liquid pair CO(2)-dimethyl carbonate (DMC) and volumetric mass transfer coefficients 4-30 s(-1) (translating into mass transfer times between 0.25 s and 0.03 s), and Henry's constants, within the range of 6-12 MPa.

  8. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  9. In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke to Helsinki.

    PubMed

    Jalava, Pasi I; Salonen, Raimo O; Hälinen, Arja I; Penttinen, Piia; Pennanen, Arto S; Sillanpää, Markus; Sandell, Erik; Hillamo, Risto; Hirvonen, Maija-Riitta

    2006-09-15

    The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM(1-0.2)) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The ability of coarse (PM(10-2.5)), intermodal size range (PM(2.5-1)), PM(1-0.2) and ultrafine (PM(0.2)) particles to cause cytokine production (TNFalpha, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.

  10. Geographic range size and extinction risk assessment in nomadic species.

    PubMed

    Runge, Claire A; Tulloch, Ayesha; Hammill, Edd; Possingham, Hugh P; Fuller, Richard A

    2015-06-01

    Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation planning. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  11. Direct and indirect effects of biological factors on extinction risk in fossil bivalves.

    PubMed

    Harnik, Paul G

    2011-08-16

    Biological factors, such as abundance and body size, may contribute directly to extinction risk and indirectly through their influence on other biological characteristics, such as geographic range size. Paleontological data can be used to explicitly test many of these hypothesized relationships, and general patterns revealed through analysis of the fossil record can help refine predictive models of extinction risk developed for extant species. Here, I use structural equation modeling to tease apart the contributions of three canonical predictors of extinction--abundance, body size, and geographic range size--to the duration of bivalve species in the early Cenozoic marine fossil record of the eastern United States. I find that geographic range size has a strong direct effect on extinction risk and that an apparent direct effect of abundance can be explained entirely by its covariation with geographic range. The influence of geographic range on extinction risk is manifest across three ecologically disparate bivalve clades. Body size also has strong direct effects on extinction risk but operates in opposing directions in different clades, and thus, it seems to be decoupled from extinction risk in bivalves as a whole. Although abundance does not directly predict extinction risk, I reveal weak indirect effects of both abundance and body size through their positive influence on geographic range size. Multivariate models that account for the pervasive covariation between biological factors and extinction are necessary for assessing causality in evolutionary processes and making informed predictions in applied conservation efforts.

  12. Estimating home-range size: when to include a third dimension?

    PubMed Central

    Monterroso, Pedro; Sillero, Neftalí; Rosalino, Luís Miguel; Loureiro, Filipa; Alves, Paulo Célio

    2013-01-01

    Most studies dealing with home ranges consider the study areas as if they were totally flat, working only in two dimensions, when in reality they are irregular surfaces displayed in three dimensions. By disregarding the third dimension (i.e., topography), the size of home ranges underestimates the surface actually occupied by the animal, potentially leading to misinterpretations of the animals' ecological needs. We explored the influence of considering the third dimension in the estimation of home-range size by modeling the variation between the planimetric and topographic estimates at several spatial scales. Our results revealed that planimetric approaches underestimate home-range size estimations, which range from nearly zero up to 22%. The difference between planimetric and topographic estimates of home-ranges sizes produced highly robust models using the average slope as the sole independent factor. Moreover, our models suggest that planimetric estimates in areas with an average slope of 16.3° (±0.4) or more will incur in errors ≥5%. Alternatively, the altitudinal range can be used as an indicator of the need to include topography in home-range estimates. Our results confirmed that home-range estimates could be significantly biased when topography is disregarded. We suggest that study areas where home-range studies will be performed should firstly be scoped for its altitudinal range, which can serve as an indicator for the need for posterior use of average slope values to model the surface area used and/or available for the studied animals. PMID:23919170

  13. Exploring the full natural variability of eruption sizes within probabilistic hazard assessment of tephra dispersal

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Sandri, Laura; Costa, Antonio; Tonini, Roberto; Folch, Arnau; Macedonio, Giovanni

    2014-05-01

    The intrinsic uncertainty and variability associated to the size of next eruption strongly affects short to long-term tephra hazard assessment. Often, emergency plans are established accounting for the effects of one or a few representative scenarios (meant as a specific combination of eruptive size and vent position), selected with subjective criteria. On the other hand, probabilistic hazard assessments (PHA) consistently explore the natural variability of such scenarios. PHA for tephra dispersal needs the definition of eruptive scenarios (usually by grouping possible eruption sizes and vent positions in classes) with associated probabilities, a meteorological dataset covering a representative time period, and a tephra dispersal model. PHA results from combining simulations considering different volcanological and meteorological conditions through a weight given by their specific probability of occurrence. However, volcanological parameters, such as erupted mass, eruption column height and duration, bulk granulometry, fraction of aggregates, typically encompass a wide range of values. Because of such a variability, single representative scenarios or size classes cannot be adequately defined using single values for the volcanological inputs. Here we propose a method that accounts for this within-size-class variability in the framework of Event Trees. The variability of each parameter is modeled with specific Probability Density Functions, and meteorological and volcanological inputs are chosen by using a stratified sampling method. This procedure allows avoiding the bias introduced by selecting single representative scenarios and thus neglecting most of the intrinsic eruptive variability. When considering within-size-class variability, attention must be paid to appropriately weight events falling within the same size class. While a uniform weight to all the events belonging to a size class is the most straightforward idea, this implies a strong dependence on the thresholds dividing classes: under this choice, the largest event of a size class has a much larger weight than the smallest event of the subsequent size class. In order to overcome this problem, in this study, we propose an innovative solution able to smoothly link the weight variability within each size class to the variability among the size classes through a common power law, and, simultaneously, respect the probability of different size classes conditional to the occurrence of an eruption. Embedding this procedure into the Bayesian Event Tree scheme enables for tephra fall PHA, quantified through hazard curves and maps representing readable results applicable in planning risk mitigation actions, and for the quantification of its epistemic uncertainties. As examples, we analyze long-term tephra fall PHA at Vesuvius and Campi Flegrei. We integrate two tephra dispersal models (the analytical HAZMAP and the numerical FALL3D) into BET_VH. The ECMWF reanalysis dataset are used for exploring different meteorological conditions. The results obtained clearly show that PHA accounting for the whole natural variability significantly differs from that based on a representative scenarios, as in volcanic hazard common practice.

  14. Hemicellulose block copolymers made from woods for wide-range directed self-assembly lithography enabling wider range of applicable patterning size

    NASA Astrophysics Data System (ADS)

    Morita, Kazuyo; Yamamoto, Kimiko

    2017-03-01

    Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.

  15. Evolution of size-segregated aerosol mass concentration during the Antarctic summer at Northern Foothills, Victoria Land

    NASA Astrophysics Data System (ADS)

    Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe

    2016-01-01

    Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp < 0.49 μm, 0.33 (0.26-0.34) μg m-3; 0.49-0.95 μm, 0.20 (0.19-0.24) μg m-3; 0.95-1.5 μm, 0.16 (0.13-0.21) μg m-3; 1.5-3.0 μm 0.075 (0.05-0.11) μg m-3; 3.0-7.2 μm 0.12 (0.02-0.19) μg m-3; 7.2-10 μm 0.06 (0.01-0.03) μg m-3. The average mass concentration of the total PM10 at Faraglione Camp for the entire sampling period was 0.92 (0.67-1.1) μg m-3. Although a great variability, the aerosol mass concentration showed a tri-modal distribution, with an accumulation mode (in the range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while in January it decreased to values that are typical of November. Both accumulation and upper super-micron fractions showed a maximum in the same period contributing to the PM10 peak of mid-summer.

  16. Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Wojnarowicz, Jacek; Chudoba, Tadeusz; Koltsov, Iwona; Gierlotka, Stanislaw; Dworakowska, Sylwia; Lojkowski, Witold

    2018-02-01

    The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn5(OH)8(CH3COO)2 · xH2O. Esters and H2O were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.

  17. Effect of Microwave Radiation Power on the Size of Aggregates of ZnO NPs Prepared Using Microwave Solvothermal Synthesis

    PubMed Central

    Chudoba, Tadeusz; Gierlotka, Stanisław; Lojkowski, Witold

    2018-01-01

    This paper reports the possibility of changing the size of zinc oxide nanoparticles (ZnO NPs) aggregates through a change of synthesis parameters. The effect of the changed power of microwave heating on the properties of ZnO NPs obtained by the microwave solvothermal synthesis from zinc acetate dissolved in ethylene glycol was tested for the first time. It was found that the size of ZnO aggregates ranged from 60 to 120 nm depending on the power of microwave radiation used in the synthesis of ZnO NPs. The increase in the microwave radiation power resulted in the reduction of the total synthesis time with simultaneous preservation of the constant size and shape of single ZnO NPs, which were synthesized at a pressure of 4 bar. All the obtained ZnO NPs samples were composed of homogeneous spherical particles that were single crystals with an average size of 27 ± 3 nm with a developed specific surface area of 40 m2/g and the skeleton density of 5.18 ± 0.03 g/cm3. A model of a mechanism explaining the correlation between the size of aggregates and the power of microwaves was proposed. This method of controlling the average size of ZnO NPs aggregates is presented for the first time and similar investigations are not found in the literature. PMID:29783651

  18. Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators.

    PubMed

    Gupta, Manan; Joshi, Amitabh; Vidya, T N C

    2017-01-01

    Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.

  19. Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators

    PubMed Central

    Joshi, Amitabh; Vidya, T. N. C.

    2017-01-01

    Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735

  20. Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1998-01-01

    Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.

  1. Nonlinear Dot Plots.

    PubMed

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  2. DNA-based species detection capabilities using laser transmission spectroscopy

    PubMed Central

    Mahon, A. R.; Barnes, M. A.; Li, F.; Egan, S. P.; Tanner, C. E.; Ruggiero, S. T.; Feder, J. L.; Lodge, D. M.

    2013-01-01

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications. PMID:23015524

  3. Effects of grain size on the properties of bulk nanocrystalline Co-Ni alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Gui-Ying; Xiao, Fu-Ren

    2017-08-01

    Bulk nanocrystalline Co78Ni22 alloys with grain size ranging from 5 nm to 35 nm were prepared by high-speed jet electrodeposition (HSJED) and annealing. Microhardness and magnetic properties of these alloys were investigated by microhardness tester and vibrating sample magnetometer. Effects of grain size on these characteristics were also discussed. Results show that the microhardness of nanocrystalline Co78Ni22 alloys increases following a d -1/2-power law with decreasing grain size d. This phenomenon fits the Hall-Petch law when the grain size ranges from 5 nm to 35 nm. However, coercivity H c increases following a 1/d-power law with increasing grain size when the grain size ranges from 5 nm to 15.9 nm. Coercivity H c decreases again for grain sizes above 16.6 nm according to the d 6-power law.

  4. Conceptual design of flapping-wing micro air vehicles.

    PubMed

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  5. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release

    PubMed Central

    Gupta, Varun K.; Pech, Ulrike; Fulterer, Andreas; Ender, Anatoli; Mauermann, Stephan F.; Andlauer, Till F. M.; Beuschel, Christine; Thriene, Kerstin; Quentin, Christine; Schwärzel, Martin; Mielke, Thorsten; Madeo, Frank; Dengjel, Joern; Fiala, André; Sigrist, Stephan J.

    2016-01-01

    Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse. PMID:27684064

  6. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    PubMed

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  7. Sampling strategies for radio-tracking coyotes

    USGS Publications Warehouse

    Smith, G.J.; Cary, J.R.; Rongstad, O.J.

    1981-01-01

    Ten coyotes radio-tracked for 24 h periods were most active at night and moved little during daylight hours. Home-range size determined from radio-locations of 3 adult coyotes increased with the number of locations until an asymptote was reached at about 35-40 independent day locations or 3 6 nights of hourly radio-locations. Activity of the coyote did not affect the asymptotic nature of the home-range calculations, but home-range sizes determined from more than 3 nights of hourly locations were considerably larger than home-range sizes determined from daylight locations. Coyote home-range sizes were calculated from daylight locations, full-night tracking periods, and half-night tracking periods. Full- and half-lnight sampling strategies involved obtaining hourly radio-locations during 12 and 6 h periods, respectively. The half-night sampling strategy was the best compromise for our needs, as it adequately indexed the home-range size, reduced time and energy spent, and standardized the area calculation without requiring the researcher to become completely nocturnal. Sight tracking also provided information about coyote activity and sociability.

  8. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California’s Historic Drought of 2014

    PubMed Central

    MacKinnon, Evan D.; Dario, Hannah L.; Jacobsen, Anna L.; Pratt, R. Brandon; Davis, Stephen D.

    2016-01-01

    Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species. PMID:27391489

  9. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California's Historic Drought of 2014.

    PubMed

    Venturas, Martin D; MacKinnon, Evan D; Dario, Hannah L; Jacobsen, Anna L; Pratt, R Brandon; Davis, Stephen D

    2016-01-01

    Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species.

  10. Lower Sensitivity to Happy and Angry Facial Emotions in Young Adults with Psychiatric Problems

    PubMed Central

    Vrijen, Charlotte; Hartman, Catharina A.; Lodder, Gerine M. A.; Verhagen, Maaike; de Jonge, Peter; Oldehinkel, Albertine J.

    2016-01-01

    Many psychiatric problem domains have been associated with emotion-specific biases or general deficiencies in facial emotion identification. However, both within and between psychiatric problem domains, large variability exists in the types of emotion identification problems that were reported. Moreover, since the domain-specificity of the findings was often not addressed, it remains unclear whether patterns found for specific problem domains can be better explained by co-occurrence of other psychiatric problems or by more generic characteristics of psychopathology, for example, problem severity. In this study, we aimed to investigate associations between emotion identification biases and five psychiatric problem domains, and to determine the domain-specificity of these biases. Data were collected as part of the ‘No Fun No Glory’ study and involved 2,577 young adults. The study participants completed a dynamic facial emotion identification task involving happy, sad, angry, and fearful faces, and filled in the Adult Self-Report Questionnaire, of which we used the scales depressive problems, anxiety problems, avoidance problems, Attention-Deficit Hyperactivity Disorder (ADHD) problems and antisocial problems. Our results suggest that participants with antisocial problems were significantly less sensitive to happy facial emotions, participants with ADHD problems were less sensitive to angry emotions, and participants with avoidance problems were less sensitive to both angry and happy emotions. These effects could not be fully explained by co-occurring psychiatric problems. Whereas this seems to indicate domain-specificity, inspection of the overall pattern of effect sizes regardless of statistical significance reveals generic patterns as well, in that for all psychiatric problem domains the effect sizes for happy and angry emotions were larger than the effect sizes for sad and fearful emotions. As happy and angry emotions are strongly associated with approach and avoidance mechanisms in social interaction, these mechanisms may hold the key to understanding the associations between facial emotion identification and a wide range of psychiatric problems. PMID:27920735

  11. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  12. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    NASA Astrophysics Data System (ADS)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  13. Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment

    NASA Astrophysics Data System (ADS)

    Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.

    2016-01-01

    We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.

  14. Optimization of gold ore Sumbawa separation using gravity method: Shaking table

    NASA Astrophysics Data System (ADS)

    Ferdana, Achmad Dhaefi; Petrus, Himawan Tri Bayu Murti; Bendiyasa, I. Made; Prijambada, Irfan Dwidya; Hamada, Fumio; Sachiko, Takahi

    2018-04-01

    Most of artisanal small gold mining in Indonesia has been using amalgamation method, which caused negative impact to the environment around ore processing area due to the usage of mercury. One of the more environmental-friendly method for gold processing is gravity method. Shaking table is one of separation equipment of gravity method used to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as rotational speed shaking, particle size and deck slope. In this research, the range of rotational speed shaking was between 100 rpm and 200 rpm, the particle size was between -100 + 200 mesh and -200 + 300 mesh and deck slope was between 3° and 7°. Gold concentration in concentrate was measured by EDX. The result shows that the optimum condition is obtained at a shaking speed of 200 rpm, with a slope of 7° and particle size of -100 + 200 mesh.

  15. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    PubMed

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  16. Species- and size-specific variability of mercury concentrations in four commercially important finfish and their prey from the northwest Atlantic.

    PubMed

    Staudinger, Michelle D

    2011-04-01

    Total mercury was analyzed as a function of body length, season, and diet in four commercially and recreationally important marine fish, bluefish (Pomatomus saltatrix), goosefish (Lophius americanus), silver hake (Merluccius bilinearis), and summer flounder (Paralichthys dentatus), collected from continental shelf waters of the northwest Atlantic Ocean. Mercury levels in the dorsal muscle tissue of 115 individuals ranged from 0.006 to 1.217 μg/g (wet weight) and varied significantly among species. The relationship between predator length and mercury concentration was linear for bluefish and summer flounder, while mercury levels increased with size at an exponential rate for silver hake and goosefish. Mercury burdens were the highest overall in bluefish, but increased with size at the greatest rate in silver hake. Seasonal differences were detected for bluefish and goosefish with mercury levels peaking during summer and spring, respectively. Prey mercury burdens and predator foraging habits are discussed as the primary factors influencing mercury accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Slow swimming, fast strikes: effects of feeding behavior on scaling of anaerobic metabolism in epipelagic squid.

    PubMed

    Trueblood, Lloyd A; Seibel, Brad A

    2014-08-01

    Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals. © 2014. Published by The Company of Biologists Ltd.

  18. Common ecology quantifies human insurgency.

    PubMed

    Bohorquez, Juan Camilo; Gourley, Sean; Dixon, Alexander R; Spagat, Michael; Johnson, Neil F

    2009-12-17

    Many collective human activities, including violence, have been shown to exhibit universal patterns. The size distributions of casualties both in whole wars from 1816 to 1980 and terrorist attacks have separately been shown to follow approximate power-law distributions. However, the possibility of universal patterns ranging across wars in the size distribution or timing of within-conflict events has barely been explored. Here we show that the sizes and timing of violent events within different insurgent conflicts exhibit remarkable similarities. We propose a unified model of human insurgency that reproduces these commonalities, and explains conflict-specific variations quantitatively in terms of underlying rules of engagement. Our model treats each insurgent population as an ecology of dynamically evolving, self-organized groups following common decision-making processes. Our model is consistent with several recent hypotheses about modern insurgency, is robust to many generalizations, and establishes a quantitative connection between human insurgency, global terrorism and ecology. Its similarity to financial market models provides a surprising link between violent and non-violent forms of human behaviour.

  19. Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication

    PubMed Central

    Ingrosso, Chiara; Panniello, AnnaMaria; Comparelli, Roberto; Curri, Maria Lucia; Striccoli, Marinella

    2010-01-01

    The unique size- and shape-dependent electronic properties of nanocrystals (NCs) make them extremely attractive as novel structural building blocks for constructing a new generation of innovative materials and solid-state devices. Recent advances in material chemistry has allowed the synthesis of colloidal NCs with a wide range of compositions, with a precise control on size, shape and uniformity as well as specific surface chemistry. By incorporating such nanostructures in polymers, mesoscopic materials can be achieved and their properties engineered by choosing NCs differing in size and/or composition, properly tuning the interaction between NCs and surrounding environment. In this contribution, different approaches will be presented as effective opportunities for conveying colloidal NC properties to nanocomposite materials for micro and nanofabrication. Patterning of such nanocomposites either by conventional lithographic techniques and emerging patterning tools, such as ink jet printing and nanoimprint lithography, will be illustrated, pointing out their technological impact on developing new optoelectronic and sensing devices.

  20. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials

    PubMed Central

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2018-01-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown. PMID:29503494

Top