Sample records for specific spatial locations

  1. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  2. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  3. Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory

    ERIC Educational Resources Information Center

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-01-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…

  4. Saccades to a remembered location elicit spatially-specific activation in human retinotopic visual cortex

    PubMed Central

    Geng, Joy J.; Ruff, Christian C.; Driver, Jon

    2008-01-01

    The possible impact upon human visual cortex from saccades to remembered target locations was investigated using fMRI. A specific location in the upper-right or upper-left visual quadrant served as the saccadic target. After a delay of 2400 msecs, an auditory signal indicated whether to execute a saccade to that location (go trial) or to cancel the saccade and remain centrally fixated (no-go). Group fMRI analysis revealed activation specific to the remembered target location for executed saccades, in contralateral lingual gyrus. No-go trials produced similar, albeit significantly reduced effects. Individual retinotopic mapping confirmed that on go trials, quadrant-specific activations arose in those parts of ventral V1, V2, and V3 that coded the target location for the saccade, whereas on no-go trials only the corresponding parts of V2 and V3 were significantly activated. These results indicate that a spatial-motor saccadic task (i.e. making an eye-movement to a remembered location) is sufficient to activate retinotopic visual cortex spatially corresponding to the target location, and that this activation is also present (though reduced) when no saccade is executed. We discuss the implications of finding that saccades to remembered locations can affect early visual cortex, not just those structures conventionally associated with eye-movements, in relation to recent ideas about attention, spatial working memory, and the notion that recently activated representations can be ‘refreshed’ when needed. PMID:18510442

  5. How different location modes influence responses in a Simon-like task.

    PubMed

    Luo, Chunming; Proctor, Robert W

    2017-11-01

    Spatial information can be conveyed not only by stimulus position but by the meaning of a location word or direction of an arrow. We examined whether all the location-, arrow- and word-based Simon effects or some of them can be observed when a location word or an arrow is presented eccentrically and a left-right keypress is made to indicate its ink color. Results showed that only the location-based Simon effect was observed for location words, whereas an additional smaller arrow-based Simon effect, compared to the location-based Simon effect was observed, for arrows. These results showed spatial location, arrow direction, and location word stimulus dimensions affect response position codes in a spatial-to-verbal priority order, consistent with the possibility that they can activate mode-specific spatial representations.

  6. Spatial attention can be biased towards an expected dimension.

    PubMed

    Burnett, Katherine E; Close, Alex C; d'Avossa, Giovanni; Sapir, Ayelet

    2016-11-01

    A commonly held view in both exogenous and endogenous orienting is that spatial attention is associated with enhanced processing of all stimuli at the attended location. However, we often search for a specific target at a particular location, so an observer should be able to jointly specify the target identity and expected location. Whether attention can bias dimension-specific processes at a particular location is not yet clear. We used a dual task to examine the effects of endogenous spatial cues on the accuracy of perceptual judgments of different dimensions. Participants responded to a motion target and a colour target, presented at the same or different locations. We manipulated a central cue to predict the location of the motion or colour target. While overall performance in the two tasks was comparable, cueing effects were larger for the target whose location was predicted by the cue, implying that when attending a particular location, processing of the likely dimension was preferentially enhanced. Additionally, an asymmetry between the motion and colour tasks was seen; motion was modulated by attention, and colour was not. We conclude that attention has some ability to select a dimension at a particular location, indicating integration of spatial and feature-based attention.

  7. Neural and Behavioral Evidence for the Role of Mental Simulation in Meaning in Life

    PubMed Central

    Waytz, Adam; Hershfield, Hal E; Tamir, Diana I

    2014-01-01

    Mental simulation, the process of self-projection into alternate temporal, spatial, social, or hypothetical realities is a distinctively human capacity. Numerous lines of research also suggest that the tendency for mental simulation is associated with enhanced meaning. The present research tests this association specifically examining the relationship between two forms of simulation (temporal and spatial) and meaning in life. Study 1 uses neuroimaging to demonstrate that enhanced connectivity in the medial temporal lobe network, a subnetwork of the brain’s default network implicated in prospection and retrospection, correlates with self-reported meaning in life. Study 2 demonstrates that experimentally inducing people to think about the past or future versus the present enhances self-reported meaning in life, through the generation of more meaningful events. Study 3 demonstrates that experimentally inducing people to think specifically versus generally about the past or future enhances self-reported meaning in life. Study 4 turns to spatial simulation to demonstrate that experimentally inducing people to think specifically about an alternate spatial location (from the present) increases meaning derived from this simulation compared to thinking generally about another location or specifically about one’s present location. Study 5 demonstrates that experimentally inducing people to think about an alternate spatial location versus one’s present location enhances meaning in life, through meaning derived from this simulation. Study 6 demonstrates that simply asking people to imagine completing a measure of meaning in life in an alternate location compared to asking them to do so in their present location enhances reports of meaning. This research sheds light on an important determinant of meaning in life and suggests that undirected mental simulation benefits psychological well-being. PMID:25603379

  8. Altering spatial priority maps via reward-based learning.

    PubMed

    Chelazzi, Leonardo; Eštočinová, Jana; Calletti, Riccardo; Lo Gerfo, Emanuele; Sani, Ilaria; Della Libera, Chiara; Santandrea, Elisa

    2014-06-18

    Spatial priority maps are real-time representations of the behavioral salience of locations in the visual field, resulting from the combined influence of stimulus driven activity and top-down signals related to the current goals of the individual. They arbitrate which of a number of (potential) targets in the visual scene will win the competition for attentional resources. As a result, deployment of visual attention to a specific spatial location is determined by the current peak of activation (corresponding to the highest behavioral salience) across the map. Here we report a behavioral study performed on healthy human volunteers, where we demonstrate that spatial priority maps can be shaped via reward-based learning, reflecting long-lasting alterations (biases) in the behavioral salience of specific spatial locations. These biases exert an especially strong influence on performance under conditions where multiple potential targets compete for selection, conferring competitive advantage to targets presented in spatial locations associated with greater reward during learning relative to targets presented in locations associated with lesser reward. Such acquired biases of spatial attention are persistent, are nonstrategic in nature, and generalize across stimuli and task contexts. These results suggest that reward-based attentional learning can induce plastic changes in spatial priority maps, endowing these representations with the "intelligent" capacity to learn from experience. Copyright © 2014 the authors 0270-6474/14/348594-11$15.00/0.

  9. An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information

    PubMed Central

    Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn

    2011-01-01

    Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871

  10. Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control

    PubMed Central

    2014-01-01

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  11. Executive Order 12898 and Social, Economic, and Sociopolitical Factors Influencing Toxic Release Inventory Facility Location in EPA Region 6: A Multi-Scale Spatial Assessment of Environmental Justice

    ERIC Educational Resources Information Center

    Moore, Andrea Lisa

    2013-01-01

    Toxic Release Inventory facilities are among the many environmental hazards shown to create environmental inequities in the United States. This project examined four factors associated with Toxic Release Inventory, specifically, manufacturing facility location at multiple spatial scales using spatial analysis techniques (i.e., O-ring statistic and…

  12. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.

  13. Spatial negative priming: Location or response?

    PubMed

    Neill, W Trammell; Kleinsmith, Abigail L

    2016-11-01

    In tasks requiring a response to the location of a target stimulus (for example, reaching), responses often are slower to a location that was recently occupied by an irrelevant distractor stimulus. In most demonstrations of this "spatial negative priming" (SNP), there is a 1-to-1 correspondence between possible stimulus locations and possible responses. As such, it is ambiguous whether the effect is due to a location-specific processing delay or to inhibition of a response. In the present experiment, subjects were required to press a key corresponding to the ordinal position of a target O in one of four locations, ignoring a distractor X appearing in another location. Location markers were widely or narrowly spaced, such that the inner two locations of wide displays corresponded to the outer two locations of narrow displays (hence, requiring different responses). SNP occurred when a target appeared at the location of a recent distractor, regardless of whether the response was associated with the distractor. In contrast, no SNP occurred for a target sharing the same response as a distractor, but in a different location. The results strongly support a location-specific, rather than response-specific, locus of SNP.

  14. Category-Based Errors and the Accessibility of Unbiased Spatial Memories: A Retrieval Model

    ERIC Educational Resources Information Center

    Sampaio, Cristina; Wang, Ranxiao Frances

    2009-01-01

    Studies have consistently shown a spatial memory bias such that a target location is remembered toward the prototypical location of the region to which the target belongs, indicating a blending between the target's specific information and the generic information of its region. The authors investigated whether people retain a veridical…

  15. Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.

    PubMed

    Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M

    2016-11-01

    Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  16. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    PubMed Central

    Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha

    2018-01-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375

  17. Two spatial memories are not better than one: evidence of exclusivity in memory for object location.

    PubMed

    Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K

    2006-05-01

    This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.

  18. A variational Bayes spatiotemporal model for electromagnetic brain mapping.

    PubMed

    Nathoo, F S; Babul, A; Moiseev, A; Virji-Babul, N; Beg, M F

    2014-03-01

    In this article, we present a new variational Bayes approach for solving the neuroelectromagnetic inverse problem arising in studies involving electroencephalography (EEG) and magnetoencephalography (MEG). This high-dimensional spatiotemporal estimation problem involves the recovery of time-varying neural activity at a large number of locations within the brain, from electromagnetic signals recorded at a relatively small number of external locations on or near the scalp. Framing this problem within the context of spatial variable selection for an underdetermined functional linear model, we propose a spatial mixture formulation where the profile of electrical activity within the brain is represented through location-specific spike-and-slab priors based on a spatial logistic specification. The prior specification accommodates spatial clustering in brain activation, while also allowing for the inclusion of auxiliary information derived from alternative imaging modalities, such as functional magnetic resonance imaging (fMRI). We develop a variational Bayes approach for computing estimates of neural source activity, and incorporate a nonparametric bootstrap for interval estimation. The proposed methodology is compared with several alternative approaches through simulation studies, and is applied to the analysis of a multimodal neuroimaging study examining the neural response to face perception using EEG, MEG, and fMRI. © 2013, The International Biometric Society.

  19. Hippocampal place cell and inhibitory neuron activity in disrupted-in-schizophrenia-1 mutant mice: implications for working memory deficits

    PubMed Central

    Mesbah-Oskui, Lia; Georgiou, John; Roder, John C

    2015-01-01

    Background: Despite the prevalence of working memory deficits in schizophrenia, the neuronal mechanisms mediating these deficits are not fully understood. Importantly, deficits in spatial working memory are identified in numerous mouse models that exhibit schizophrenia-like endophenotypes. The hippocampus is one of the major brain regions that actively encodes spatial location, possessing pyramidal neurons, commonly referred to as ‘place cells’, that fire in a location-specific manner. This study tests the hypothesis that mice with a schizophrenia-like endophenotype exhibit impaired encoding of spatial location in the hippocampus. Aims: To characterize hippocampal place cell activity in mice that exhibit a schizophrenia-like endophenotype. Methods: We recorded CA1 place cell activity in six control mice and six mice that carry a point mutation in the disrupted-in-schizophrenia-1 gene (Disc1-L100P) and have previously been shown to exhibit deficits in spatial working memory. Results: The spatial specificity and stability of Disc1-L100P place cells were similar to wild-type place cells. Importantly, however, Disc1-L100P place cells exhibited a higher propensity to increase their firing rate in a single, large location of the environment, rather than multiple smaller locations, indicating a generalization in their spatial selectivity. Alterations in the signaling and numbers of CA1 putative inhibitory interneurons and decreased hippocampal theta (5–12 Hz) power were also identified in the Disc1-L100P mice. Conclusions: The generalized spatial selectivity of Disc1-L100P place cells suggests a simplification of the ensemble place codes that encode individual locations and subserve spatial working memory. Moreover, these results suggest that deficient working memory in schizophrenia results from an impaired ability to uniquely code the individual components of a memory sequence. PMID:27280123

  20. Hierarchical acquisition of visual specificity in spatial contextual cueing.

    PubMed

    Lie, Kin-Pou

    2015-01-01

    Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.

  1. Modality-specificity of Selective Attention Networks.

    PubMed

    Stewart, Hannah J; Amitay, Sygal

    2015-01-01

    To establish the modality specificity and generality of selective attention networks. Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled "general attention." The third component was labeled "auditory attention," as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as "spatial orienting" and "spatial conflict," respectively-they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task-all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.

  2. Local indicators of geocoding accuracy (LIGA): theory and application

    PubMed Central

    Jacquez, Geoffrey M; Rommel, Robert

    2009-01-01

    Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795

  3. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    PubMed

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  4. Rewards modulate saccade latency but not exogenous spatial attention.

    PubMed

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  5. Sexual orientation and spatial position effects on selective forms of object location memory.

    PubMed

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-04-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Modality-specificity of Selective Attention Networks

    PubMed Central

    Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled “general attention.” The third component was labeled “auditory attention,” as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as “spatial orienting” and “spatial conflict,” respectively—they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task—all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific. PMID:26635709

  7. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  8. Distribution of indoor radon concentrations in Pennsylvania, 1990-2007

    USGS Publications Warehouse

    Gross, Eliza L.

    2013-01-01

    Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.

  9. Lateralization of Frequency-Specific Networks for Covert Spatial Attention to Auditory Stimuli

    PubMed Central

    Thorpe, Samuel; D'Zmura, Michael

    2011-01-01

    We conducted a cued spatial attention experiment to investigate the time–frequency structure of human EEG induced by attentional orientation of an observer in external auditory space. Seven subjects participated in a task in which attention was cued to one of two spatial locations at left and right. Subjects were instructed to report the speech stimulus at the cued location and to ignore a simultaneous speech stream originating from the uncued location. EEG was recorded from the onset of the directional cue through the offset of the inter-stimulus interval (ISI), during which attention was directed toward the cued location. Using a wavelet spectrum, each frequency band was then normalized by the mean level of power observed in the early part of the cue interval to obtain a measure of induced power related to the deployment of attention. Topographies of band specific induced power during the cue and inter-stimulus intervals showed peaks over symmetric bilateral scalp areas. We used a bootstrap analysis of a lateralization measure defined for symmetric groups of channels in each band to identify specific lateralization events throughout the ISI. Our results suggest that the deployment and maintenance of spatially oriented attention throughout a period of 1,100 ms is marked by distinct episodes of reliable hemispheric lateralization ipsilateral to the direction in which attention is oriented. An early theta lateralization was evident over posterior parietal electrodes and was sustained throughout the ISI. In the alpha and mu bands punctuated episodes of parietal power lateralization were observed roughly 500 ms after attentional deployment, consistent with previous studies of visual attention. In the beta band these episodes show similar patterns of lateralization over frontal motor areas. These results indicate that spatial attention involves similar mechanisms in the auditory and visual modalities. PMID:21630112

  10. The Spatial Distribution of Attention within and across Objects

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2012-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…

  11. Role of right posterior parietal cortex in maintaining attention to spatial locations over time

    PubMed Central

    Coulthard, Elizabeth J.; Husain, Masud

    2009-01-01

    Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with hemispatial neglect have revealed significant overall deficits on vigilance tasks, but to date there has been no demonstration of a deterioration of performance over time—a vigilance decrement—considered by some to be a key index of a deficit in maintaining attention. Moreover, sustained attention deficits in neglect have not specifically been related to PPC lesions, and it remains unclear whether they interact with spatial impairments in this syndrome. Here we examined the ability of right-hemisphere patients with neglect to maintain attention, comparing them to stroke controls and healthy individuals. We found evidence of an overall deficit in sustaining attention associated with PPC lesions, even for a simple detection task with stimuli presented centrally. In a second experiment, we demonstrated a vigilance decrement in neglect patients specifically only when they were required to maintain attention to spatial locations, but not verbal material. Lesioned voxels in the right PPC spanning a region between the intraparietal sulcus and inferior parietal lobe were significantly associated with this deficit. Finally, we compared performance on a task that required attention to be maintained either to visual patterns or spatial locations, matched for task difficulty. Again, we found a vigilance decrement but only when attention had to be maintained on spatial information. We conclude that sustaining attention to spatial locations is a critical function of the human right PPC which needs to be incorporated into models of normal parietal function as well as those of the clinical syndrome of hemispatial neglect. PMID:19158107

  12. Feature-based and spatial attentional selection in visual working memory.

    PubMed

    Heuer, Anna; Schubö, Anna

    2016-05-01

    The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.

  13. Spatial Preference Modelling for equitable infrastructure provision: an application of Sen's Capability Approach

    NASA Astrophysics Data System (ADS)

    Wismadi, Arif; Zuidgeest, Mark; Brussel, Mark; van Maarseveen, Martin

    2014-01-01

    To determine whether the inclusion of spatial neighbourhood comparison factors in Preference Modelling allows spatial decision support systems (SDSSs) to better address spatial equity, we introduce Spatial Preference Modelling (SPM). To evaluate the effectiveness of this model in addressing equity, various standardisation functions in both Non-Spatial Preference Modelling and SPM are compared. The evaluation involves applying the model to a resource location-allocation problem for transport infrastructure in the Special Province of Yogyakarta in Indonesia. We apply Amartya Sen's Capability Approach to define opportunity to mobility as a non-income indicator. Using the extended Moran's I interpretation for spatial equity, we evaluate the distribution output regarding, first, `the spatial distribution patterns of priority targeting for allocation' (SPT) and, second, `the effect of new distribution patterns after location-allocation' (ELA). The Moran's I index of the initial map and its comparison with six patterns for SPT as well as ELA consistently indicates that the SPM is more effective for addressing spatial equity. We conclude that the inclusion of spatial neighbourhood comparison factors in Preference Modelling improves the capability of SDSS to address spatial equity. This study thus proposes a new formal method for SDSS with specific attention on resource location-allocation to address spatial equity.

  14. Overt and covert attention to location-based reward.

    PubMed

    McCoy, Brónagh; Theeuwes, Jan

    2018-01-01

    Recent research on the impact of location-based reward on attentional orienting has indicated that reward factors play an influential role in spatial priority maps. The current study investigated whether and how reward associations based on spatial location translate from overt eye movements to covert attention. If reward associations can be tied to locations in space, and if overt and covert attention rely on similar overlapping neuronal populations, then both overt and covert attentional measures should display similar spatial-based reward learning. Our results suggest that location- and reward-based changes in one attentional domain do not lead to similar changes in the other. Specifically, although we found similar improvements at differentially rewarded locations during overt attentional learning, this translated to the least improvement at a highly rewarded location during covert attention. We interpret this as the result of an increased motivational link between the high reward location and the trained eye movement response acquired during learning, leading to a relative slowing during covert attention when the eyes remained fixated and the saccade response was suppressed. In a second experiment participants were not required to keep fixated during the covert attention task and we no longer observed relative slowing at the high reward location. Furthermore, the second experiment revealed no covert spatial priority of rewarded locations. We conclude that the transfer of location-based reward associations is intimately linked with the reward-modulated motor response employed during learning, and alternative attentional and task contexts may interfere with learned spatial priorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    PubMed

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.

    PubMed

    Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.

  17. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps

    PubMed Central

    Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237

  18. High-level context effects on spatial displacement: the effects of body orientation and language on memory

    PubMed Central

    Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628

  19. High-level context effects on spatial displacement: the effects of body orientation and language on memory.

    PubMed

    Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  20. The neural correlates of age effects on verbal-spatial binding in working memory.

    PubMed

    Meier, Timothy B; Nair, Veena A; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2014-06-01

    In this study, we investigated the neural correlates of age-related differences in the binding of verbal and spatial information utilizing event-related working memory tasks. Twenty-one right handed younger adults and twenty-one right handed older adults performed two versions of a dual task of verbal and spatial working memory. In the unbound dual task version letters and locations were presented simultaneously in separate locations, while in the bound dual task version each letter was paired with a specific location. In order to identify binding-specific differences, mixed-effects ANOVAs were run with the interaction of age and task as the effect of interest. Although older adults performed worse in the bound task than younger adults, there was no significant interaction between task and age on working memory performance. However, interactions of age and task were observed in brain activity analyses. Older adults did not display the greater unbound than bound task activity that younger adults did at the encoding phase in bilateral inferior parietal lobule, right putamen, and globus pallidus as well as at the maintenance phase in the cerebellum. We conclude that the binding of letters and locations in working memory is not as efficient in older adults as it is in younger adults, possibly due to the decline of cognitive control processes that are specific to working memory binding. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.

    PubMed

    Samaha, Jason; Sprague, Thomas C; Postle, Bradley R

    2016-08-01

    Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.

  2. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  3. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.

    PubMed

    Golob, Edward J; Winston, Jenna; Mock, Jeffrey R

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  4. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients

    PubMed Central

    Golob, Edward J.; Winston, Jenna; Mock, Jeffrey R.

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory. PMID:29218024

  5. Knowing where is different from knowing what: Distinct response time profiles and accuracy effects for target location, orientation, and color probability.

    PubMed

    Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt

    2017-11-01

    When a location is cued, targets appearing at that location are detected more quickly. When a target feature is cued, targets bearing that feature are detected more quickly. These attentional cueing effects are only superficially similar. More detailed analyses find distinct temporal and accuracy profiles for the two different types of cues. This pattern parallels work with probability manipulations, where both feature and spatial probability are known to affect detection accuracy and reaction times. However, little has been done by way of comparing these effects. Are probability manipulations on space and features distinct? In a series of five experiments, we systematically varied spatial probability and feature probability along two dimensions (orientation or color). In addition, we decomposed response times into initiation and movement components. Targets appearing at the probable location were reported more quickly and more accurately regardless of whether the report was based on orientation or color. On the other hand, when either color probability or orientation probability was manipulated, response time and accuracy improvements were specific for that probable feature dimension. Decomposition of the response time benefits demonstrated that spatial probability only affected initiation times, whereas manipulations of feature probability affected both initiation and movement times. As detection was made more difficult, the two effects further diverged, with spatial probability disproportionally affecting initiation times and feature probability disproportionately affecting accuracy. In conclusion, all manipulations of probability, whether spatial or featural, affect detection. However, only feature probability affects perceptual precision, and precision effects are specific to the probable attribute.

  6. The specificity of memory enhancement during interaction with a virtual environment.

    PubMed

    Brooks, B M; Attree, E A; Rose, F D; Clifford, B R; Leadbetter, A G

    1999-01-01

    Two experiments investigated differences between active and passive participation in a computer-generated virtual environment in terms of spatial memory, object memory, and object location memory. It was found that active participants, who controlled their movements in the virtual environment using a joystick, recalled the spatial layout of the virtual environment better than passive participants, who merely watched the active participants' progress. Conversely, there were no significant differences between the active and passive participants' recall or recognition of the virtual objects, nor in their recall of the correct locations of objects in the virtual environment. These findings are discussed in terms of subject-performed task research and the specificity of memory enhancement in virtual environments.

  7. Sex differences in a human analogue of the Radial Arm Maze: the "17-Box Maze Test".

    PubMed

    Rahman, Qazi; Abrahams, Sharon; Jussab, Fardin

    2005-08-01

    This study investigated sex differences in spatial memory using a human analogue of the Radial Arm Maze: a revision on the Nine Box Maze originally developed by called the 17-Box Maze Test herein. The task encourages allocentric spatial processing, dissociates object from spatial memory, and incorporates a within-participants design to provide measures of location and object, working and reference memory. Healthy adult males and females (26 per group) were administered the 17-Box Maze Test, as well as mental rotation and a verbal IQ test. Females made significantly fewer errors on this task than males. However, post hoc analysis revealed that the significant sex difference was specific to object, rather than location, memory measures. These were medium to large effect sizes. The findings raise the issue of task- and component-specific sexual dimorphism in cognitive mapping.

  8. The influence of uncertainty and location-specific conditions on the environmental prioritisation of human pharmaceuticals in Europe.

    PubMed

    Oldenkamp, Rik; Huijbregts, Mark A J; Ragas, Ad M J

    2016-05-01

    The selection of priority APIs (Active Pharmaceutical Ingredients) can benefit from a spatially explicit approach, since an API might exceed the threshold of environmental concern in one location, while staying below that same threshold in another. However, such a spatially explicit approach is relatively data intensive and subject to parameter uncertainty due to limited data. This raises the question to what extent a spatially explicit approach for the environmental prioritisation of APIs remains worthwhile when accounting for uncertainty in parameter settings. We show here that the inclusion of spatially explicit information enables a more efficient environmental prioritisation of APIs in Europe, compared with a non-spatial EU-wide approach, also under uncertain conditions. In a case study with nine antibiotics, uncertainty distributions of the PAF (Potentially Affected Fraction) of aquatic species were calculated in 100∗100km(2) environmental grid cells throughout Europe, and used for the selection of priority APIs. Two APIs have median PAF values that exceed a threshold PAF of 1% in at least one environmental grid cell in Europe, i.e., oxytetracycline and erythromycin. At a tenfold lower threshold PAF (i.e., 0.1%), two additional APIs would be selected, i.e., cefuroxime and ciprofloxacin. However, in 94% of the environmental grid cells in Europe, no APIs exceed either of the thresholds. This illustrates the advantage of following a location-specific approach in the prioritisation of APIs. This added value remains when accounting for uncertainty in parameter settings, i.e., if the 95th percentile of the PAF instead of its median value is compared with the threshold. In 96% of the environmental grid cells, the location-specific approach still enables a reduction of the selection of priority APIs of at least 50%, compared with a EU-wide prioritisation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Transfer of location-specific control to untrained locations.

    PubMed

    Weidler, Blaire J; Bugg, Julie M

    2016-11-01

    Recent research highlights a seemingly flexible and automatic form of cognitive control that is triggered by potent contextual cues, as exemplified by the location-specific proportion congruence effect--reduced compatibility effects in locations associated with a high as compared to low likelihood of conflict. We investigated just how flexible location-specific control is by examining whether novel locations effectively cue control for congruency-unbiased stimuli. In two experiments, biased (mostly compatible or mostly incompatible) training stimuli appeared in distinct locations. During a final block, unbiased (50% compatible) stimuli appeared in novel untrained locations spatially linked to biased locations. The flanker compatibly effect was reduced for unbiased stimuli in novel locations linked to a mostly incompatible compared to a mostly compatible location, indicating transfer. Transfer was observed when stimuli appeared along a linear function (Experiment 1) or in rings of a bullseye (Experiment 2). The novel transfer effects imply that location-specific control is more flexible than previously reported and further counter the complex stimulus-response learning account of location-specific proportion congruence effects. We propose that the representation and retrieval of control settings in untrained locations may depend on environmental support and the presentation of stimuli in novel locations that fall within the same categories of space as trained locations.

  10. Distinct neural substrates for visual short-term memory of actions.

    PubMed

    Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui

    2018-06-26

    Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.

  11. A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti

    PubMed Central

    2013-01-01

    Background Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Methods Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Results Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these “hotspots”. Conclusions Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations. PMID:23587358

  12. A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti.

    PubMed

    Curtis, Andrew; Blackburn, Jason K; Widmer, Jocelyn M; Morris, J Glenn

    2013-04-15

    Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these "hotspots". Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations.

  13. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.

    PubMed

    Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher

    2017-09-05

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.

  14. Evidence for cue-independent spatial representation in the human auditory cortex during active listening

    PubMed Central

    McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher

    2017-01-01

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357

  15. Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention

    PubMed Central

    Noppeney, Uta

    2018-01-01

    Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567

  16. Gender, space, and the location changes of jobs and people: a spatial simultaneous equations analysis.

    PubMed

    Hoogstra, Gerke J

    2012-01-01

    This article summarizes a spatial econometric analysis of local population and employment growth in the Netherlands, with specific reference to impacts of gender and space. The simultaneous equations model used distinguishes between population- and gender-specific employment groups, and includes autoregressive and cross-regressive spatial lags to detect relations both within and among these groups. Spatial weights matrices reflecting different bands of travel times are used to calculate the spatial lags and to gauge the spatial nature of these relations. The empirical results show that although population–employment interaction is more localized for women's employment, no gender difference exists in the direction of interaction. Employment growth for both men and women is more influenced by population growth than vice versa. The interaction within employment groups is even more important than population growth. Women's, and especially men's, local employment growth mostly benefits from the same employment growth in neighboring locations. Finally, interaction between these groups is practically absent, although men's employment growth may have a negative impact on women's employment growth within small geographic areas. In summary, the results confirm the crucial roles of gender and space, and offer important insights into possible relations within and among subgroups of jobs and people.

  17. Examining the neural correlates of active and passive forms of verbal-spatial binding in working memory.

    PubMed

    Grot, Stéphanie; Leclerc, Marie-Eve; Luck, David

    2018-05-23

    We designed an fMRI study to pinpoint the neural correlates of active and passive binding in working memory. Participants were instructed to memorize three words and three spatial locations. In the passive binding condition, words and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were directed to intentionally create associations between them. Our results showed that participants performed better on passive binding relative to active binding. FMRI analysis revealed that both binding conditions induced greater activity within the hippocampus. Additionally, our analyses divulged regions specifically engaged in passive and active binding. Altogether, these data allow us to propose the hippocampus as a central candidate for working memory binding. When needed, a frontal-parietal network can contribute to the rearrangement of information. These findings may inform theories of working memory binding. Copyright © 2018. Published by Elsevier B.V.

  18. Spatial evolution of quantum mechanical states

    NASA Astrophysics Data System (ADS)

    Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.

    2018-02-01

    The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.

  19. Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction

    PubMed Central

    Dvorkin, Anna; Benjamini, Yoav; Golani, Ilan

    2008-01-01

    Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually. PMID:18463701

  20. Evaluating PRISM precipitation grid data as possible surrogates for station data at four sites in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    The development of climate-sensitive decision support for agriculture or water resource management requires long time series of monthly precipitation for specific locations. Archived station data for many locations is available, but time continuity, quality, and spatial coverage of station data rem...

  1. Object-Location Memory: A Lesion-Behavior Mapping Study in Stroke Patients

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Kessels, Roy P. C.; Frijns, Catharina J. M.; Kappelle, L. Jaap; Neggers, Sebastiaan F. W.; Postma, Albert

    2009-01-01

    Object-location memory is an important form of spatial memory, comprising different subcomponents that each process specific types of information within memory, i.e. remembering objects, remembering positions and binding these features in memory. In the current study we investigated the neural correlates of binding categorical (relative) or…

  2. Effects of complete monocular deprivation in visuo-spatial memory.

    PubMed

    Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso

    2008-09-30

    Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.

  3. Language supports young children’s use of spatial relations to remember locations

    PubMed Central

    Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.

    2016-01-01

    Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902

  4. Language supports young children's use of spatial relations to remember locations.

    PubMed

    Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R

    2016-05-01

    Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. From Medical to Recreational Marijuana Sales: Marijuana Outlets and Crime in an Era of Changing Marijuana Legislation.

    PubMed

    Freisthler, Bridget; Gaidus, Andrew; Tam, Christina; Ponicki, William R; Gruenewald, Paul J

    2017-06-01

    A movement from medical to recreational marijuana use allows for a larger base of potential users who have easier access to marijuana, because they do not have to visit a physician before using marijuana. This study examines whether changes in the density of marijuana outlets were related to violent, property, and marijuana-specific crimes in Denver, CO during a time in which marijuana outlets began selling marijuana for recreational, and not just medical, use. We collected data on locations of crimes, marijuana outlets and covariates for 481 Census block groups over 34 months (N = 16,354 space-time units). A Bayesian Poisson space-time model assessed statistical relationships between independent measures and crime counts within "local" Census block groups. We examined spatial "lag" effects to assess whether crimes in Census block groups adjacent to locations of outlets were also affected. Independent of the effects of covariates, densities of marijuana outlets were unrelated to property and violent crimes in local areas. However, the density of marijuana outlets in spatially adjacent areas was positively related to property crime in spatially adjacent areas over time. Further, the density of marijuana outlets in local and spatially adjacent blocks groups was related to higher rates of marijuana-specific crime. This study suggests that the effects of the availability of marijuana outlets on crime do not necessarily occur within the specific areas within which these outlets are located, but may occur in adjacent areas. Thus studies assessing the effects of these outlets in local areas alone may risk underestimating their true effects.

  6. Five on one side: personal and social information in spatial choice.

    PubMed

    Brown, Michael F; Saxon, Marie E; Bisbing, Teagan; Evans, Jessica; Ruff, Jennifer; Stokesbury, Andrew

    2015-03-01

    To examine whether the outcome of a rat's own choices ("personal information") and the choice behavior of another rat ("social information") can jointly control spatial choices, rats were tested in an open field task in which they searched for food. For the rats of primary interest (Subject Rats), the baited locations were all on one side of the arena, but the specific locations baited and the side on which they occurred varied over trials. The Subject Rats were sometimes tested together with an informed "Model" rat that had learned to find food in the same five locations (all on the same side of the arena) on every trial. Unintended perceptual cues apparently controlled spatial choices at first, but when perceptual cues to food location were not available, choices were controlled by both personal information (allowing the baited side of the arena to be determined) and social information (allowing baited locations to be determined more precisely). This shows that control by personal and social information are not mutually exclusive and supports the view that these two kinds of information can be used flexibly and adaptively to guide spatial choices. This article is part of a Special Issue entitled: tribute to Tom Zentall. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Regional co-location pattern scoping on a street network considering distance decay effects of spatial interaction

    PubMed Central

    Yu, Wenhao

    2017-01-01

    Regional co-location scoping intends to identify local regions where spatial features of interest are frequently located together. Most of the previous researches in this domain are conducted on a global scale and they assume that spatial objects are embedded in a 2-D space, but the movement in urban space is actually constrained by the street network. In this paper we refine the scope of co-location patterns to 1-D paths consisting of nodes and segments. Furthermore, since the relations between spatial events are usually inversely proportional to their separation distance, the proposed method introduces the “Distance Decay Effects” to improve the result. Specifically, our approach first subdivides the street edges into continuous small linear segments. Then a value representing the local distribution intensity of events is estimated for each linear segment using the distance-decay function. Each kind of geographic feature can lead to a tessellated network with density attribute, and the generated multiple networks for the pattern of interest will be finally combined into a composite network by calculating the co-location prevalence measure values, which are based on the density variation between different features. Our experiments verify that the proposed approach is effective in urban analysis. PMID:28763496

  8. A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection

    PubMed Central

    Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.

    2006-01-01

    Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353

  9. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  10. Spatial analysis of the etiology of amyotrophic lateral sclerosis among 1991 Gulf War veterans.

    PubMed

    Miranda, Marie Lynn; Alicia Overstreet Galeano, M; Tassone, Eric; Allen, Kelli D; Horner, Ronnie D

    2008-11-01

    Veterans of the 1991 Gulf War have an increased risk of amyotrophic lateral sclerosis (ALS), but the etiology is unknown. This study sought to identify geographic areas with elevated risk for the later development of ALS among military personnel who served in the first Gulf War. A unified geographic information system (GIS) was constructed to allow analysis of secondary data on troop movements in the 1991 Gulf War theatre in the Persian Gulf region including Iraq, northern Saudi Arabia, and Kuwait. We fit Bayesian Poisson regression models to adjust for potential risk factors, including one relatively discrete environmental exposure, and to identify areas associated with elevated risk of ALS. We found that service in particular locations of the Gulf was associated with an elevated risk for later developing ALS, both before and after adjustment for branch of service and potential of exposure to chemical warfare agents in and around Khamisiyah, Iraq. Specific geographic locations of troop units within the 1991 Gulf War theatre are associated with an increased risk for the subsequent development of ALS among members of those units. The identified spatial locations represent the logical starting points in the search for potential etiologic factors of ALS among Gulf War veterans. Of note, for locations where the relative odds of subsequently developing ALS are among the highest, specific risk factors, whether environmental or occupationally related, have not been identified. The results of spatial models can be used to subsequently look for risk factors that follow the spatial pattern of elevated risk.

  11. Visual learning with reduced adaptation is eccentricity-specific.

    PubMed

    Harris, Hila; Sagi, Dov

    2018-01-12

    Visual learning is known to be specific to the trained target location, showing little transfer to untrained locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning transfers to previously untrained locations when the learned representation is location invariant, with sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial invariance may also fail when the trained and tested locations are at different distance from the center of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves performance by better classifying target-dependent early visual representations, generalization is predicted to fail when locations of different retinal eccentricities are trained and tested in the absence sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across different retinal eccentricities (4-8°) using reduced adaptation training. The existence of generalization across equal-eccentricity locations but not across different eccentricities demonstrates that learning accesses visual representations preceding location independent representations, with specificity of learning explained by inhomogeneous sensory representation.

  12. Relationship among Environmental Pointing Accuracy, Mental Rotation, Sex, and Hormones

    ERIC Educational Resources Information Center

    Bell, Scott; Saucier, Deborah

    2004-01-01

    Humans rely on internal representations to solve a variety of spatial problems including navigation. Navigation employs specific information to compose a representation of space that is distinct from that obtained through static bird's-eye or horizontal perspectives. The ability to point to on-route locations, off-route locations, and the route…

  13. Attending to Multiple Visual Streams: Interactions between Location-Based and Category-Based Attentional Selection

    ERIC Educational Resources Information Center

    Fagioli, Sabrina; Macaluso, Emiliano

    2009-01-01

    Behavioral studies indicate that subjects are able to divide attention between multiple streams of information at different locations. However, it is still unclear to what extent the observed costs reflect processes specifically associated with spatial attention, versus more general interference due the concurrent monitoring of multiple streams of…

  14. [Location information acquisition and sharing application design in national census of Chinese medicine resources].

    PubMed

    Zhang, Xiao-Bo; Li, Meng; Wang, Hui; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    In literature, there are many information on the distribution of Chinese herbal medicine. Limited by the technical methods, the origin of Chinese herbal medicine or distribution of information in ancient literature were described roughly. It is one of the main objectives of the national census of Chinese medicine resources, which is the background information of the types and distribution of Chinese medicine resources in the region. According to the national Chinese medicine resource census technical specifications and pilot work experience, census team with "3S" technology, computer network technology, digital camera technology and other modern technology methods, can effectively collect the location information of traditional Chinese medicine resources. Detailed and specific location information, such as regional differences in resource endowment and similarity, biological characteristics and spatial distribution, the Chinese medicine resource census data access to the accuracy and objectivity evaluation work, provide technical support and data support. With the support of spatial information technology, based on location information, statistical summary and sharing of multi-source census data can be realized. The integration of traditional Chinese medicine resources and related basic data can be a spatial integration, aggregation and management of massive data, which can help for the scientific rules data mining of traditional Chinese medicine resources from the overall level and fully reveal its scientific connotation. Copyright© by the Chinese Pharmaceutical Association.

  15. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System.

    PubMed

    Roth, Zvi N

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.

  16. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System

    PubMed Central

    Roth, Zvi N.

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455

  17. Musical space synesthesia: automatic, explicit and conceptual connections between musical stimuli and space.

    PubMed

    Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai

    2014-08-01

    In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  19. Body-Specific Representations of Spatial Location

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Gardony, Aaron; Mahoney, Caroline R.; Taylor, Holly A.

    2012-01-01

    The body specificity hypothesis (Casasanto, 2009) posits that the way in which people interact with the world affects their mental representation of information. For instance, right- versus left-handedness affects the mental representation of affective valence, with right-handers categorically associating good with rightward areas and bad with…

  20. Reward-based plasticity of spatial priority maps: Exploiting inter-subject variability to probe the underlying neurobiology.

    PubMed

    Della Libera, Chiara; Calletti, Riccardo; Eštočinová, Jana; Chelazzi, Leonardo; Santandrea, Elisa

    2017-04-01

    Recent evidence indicates that the attentional priority of objects and locations is altered by the controlled delivery of reward, reflecting reward-based attentional learning. Here, we take an approach hinging on intersubject variability to probe the neurobiological bases of the reward-driven plasticity of spatial priority maps. Specifically, we ask whether an individual's susceptibility to the reward-based treatment can be accounted for by specific predictors, notably personality traits that are linked to reward processing (along with more general personality traits), but also gender. Using a visual search protocol, we show that when different target locations are associated with unequal reward probability, different priorities are acquired by the more rewarded relative to the less rewarded locations. However, while males exhibit the expected pattern of results, with greater priority for locations associated with higher reward, females show an opposite trend. Critically, both the extent and the direction of reward-based adjustments are further predicted by personality traits indexing reward sensitivity, indicating that not only male and female brains are differentially sensitive to reward, but also that specific personality traits further contribute to shaping their learning-dependent attentional plasticity. These results contribute to a better understanding of the neurobiology underlying reward-dependent attentional learning and cross-subject variability in this domain.

  1. Oculomotor preparation as a rehearsal mechanism in spatial working memory.

    PubMed

    Pearson, David G; Ball, Keira; Smith, Daniel T

    2014-09-01

    There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Distributed encoding of spatial and object categories in primate hippocampal microcircuits

    PubMed Central

    Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473

  3. When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory

    PubMed Central

    Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna

    2012-01-01

    We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455

  4. Visual landmarks facilitate rodent spatial navigation in virtual reality environments

    PubMed Central

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain areas. Virtual reality offers a unique approach to ask whether visual landmark cues alone are sufficient to improve performance in a spatial task. We found that mice could learn to navigate between two water reward locations along a virtual bidirectional linear track using a spherical treadmill. Mice exposed to a virtual environment with vivid visual cues rendered on a single monitor increased their performance over a 3-d training regimen. Training significantly increased the percentage of time avatars controlled by the mice spent near reward locations in probe trials without water rewards. Neither improvement during training or spatial learning for reward locations occurred with mice operating a virtual environment without vivid landmarks or with mice deprived of all visual feedback. Mice operating the vivid environment developed stereotyped avatar turning behaviors when alternating between reward zones that were positively correlated with their performance on the probe trial. These results suggest that mice are able to learn to navigate to specific locations using only visual cues presented within a virtual environment rendered on a single computer monitor. PMID:22345484

  5. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    PubMed

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible with the notion that both kinds of SL adjust the priority of specific locations within attentional priority maps of space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space.

    PubMed

    Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim

    2016-08-01

    Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.

  7. Prisms to travel in time: Investigation of time-space association through prismatic adaptation effect on mental time travel.

    PubMed

    Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca

    2016-11-01

    Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Neonatal Hippocampal Damage Impairs Specific Food/Place Associations in Adult Macaques

    PubMed Central

    Glavis-Bloom, Courtney; Alvarado, Maria C.; Bachevalier, Jocelyne

    2013-01-01

    This study describes a novel spatial memory paradigm for monkeys and reports the effects of neonatal damage to the hippocampus on performance in adulthood. Monkeys were trained to forage in eight boxes hung on the walls of a large enclosure. Each box contained a different food item that varied in its intrinsic reward value, as determined from food preference testing. Monkeys were trained on a spatial and a cued version of the task. In the spatial task, the boxes looked identical and remained fixed in location whereas in the cued task, the boxes were individuated with colored plaques and changed location on each trial. Ten adult Rhesus macaques (5 neonatal sham-operated and 5 with neonatal neurotoxic hippocampal lesions) were allowed to forage once daily until they preferentially visited boxes containing preferred foods. The data suggest that all monkeys learned to discriminate preferred from nonpreferred food locations, but that monkeys with neonatal hippocampal damage committed significantly more working memory errors than controls in both tasks. Furthermore, following selective satiation, controls altered their foraging pattern to avoid the satiated food, whereas lesioned animals did not, suggesting that neonatal hippocampal lesions prohibit learning of specific food-place associations. We conclude that whereas an intact hippocampus is necessary to form specific item-in-place associations, in its absence, cortical areas may support more broad distinctions between food types that allow monkeys to discriminate places containing highly preferred foods. PMID:23398438

  9. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    PubMed

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  10. When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information?

    PubMed

    Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-03-09

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing.

  11. When Are New Hippocampal Neurons, Born in the Adult Brain, Integrated into the Network That Processes Spatial Information?

    PubMed Central

    Sandoval, C. Jimena; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-01-01

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012

  12. Design and Test of an Event Detector and Locator for the ReflectoActive Seals System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Brad J

    2006-06-01

    The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive{trademark} Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less

  13. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.

  14. Spatial analysis of falls in an urban community of Hong Kong

    PubMed Central

    Lai, Poh C; Low, Chien T; Wong, Martin; Wong, Wing C; Chan, Ming H

    2009-01-01

    Background Falls are an issue of great public health concern. This study focuses on outdoor falls within an urban community in Hong Kong. Urban environmental hazards are often place-specific and dependent upon the built features, landscape characteristics, and habitual activities. Therefore, falls must be examined with respect to local situations. Results This paper uses spatial analysis methods to map fall occurrences and examine possible environmental attributes of falls in an urban community of Hong Kong. The Nearest neighbour hierarchical (Nnh) and Standard Deviational Ellipse (SDE) techniques can offer additional insights about the circumstances and environmental factors that contribute to falls. The results affirm the multi-factorial nature of falls at specific locations and for selected groups of the population. Conclusion The techniques to detect hot spots of falls yield meaningful results that enable the identification of high risk locations. The combined use of descriptive and spatial analyses can be beneficial to policy makers because different preventive measures can be devised based on the types of environmental risk factors identified. The analyses are also important preludes to establishing research hypotheses for more focused studies. PMID:19291326

  15. The use of GIS to support sustainable management of vineyards in Plovdiv, Bulgaria.

    PubMed

    Arnaudova, Zh; Bileva, T

    2011-01-01

    Vine is a traditional branch of plant growing in Bulgaria. The exact location of the vine culture is a specific complex of environmental factors influencing its development, such as climate, soil, landscape and traditions of the region. GIS is a platform to better manage, evaluate and present spatial data in a useful visual form. It's improves the decision-making by combining data with accurate location and management the vineyards. In the present survey were studied and analyzed the factors in choosing an appropriate location for the cultivation of vine varieties in selected regions of Plovdiv. Climatic and soil characteristics, topography and environmental factors as well as presence of virus vector nematodes from family Longidoridae in creating the vines through GIS spatial analysis are taken into account.

  16. Short-term memory stores organized by information domain.

    PubMed

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  17. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies

    PubMed Central

    Thapa, Dharendra; Shepherd, Danielle L.

    2014-01-01

    Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166

  18. Fractionation of visuo-spatial memory processes in bipolar depression: a cognitive scaffolding account.

    PubMed

    Gallagher, P; Gray, J M; Kessels, R P C

    2015-02-01

    Previous studies of neurocognitive performance in bipolar disorder (BD) have demonstrated impairments in visuo-spatial memory. The aim of the present study was to use an object-location memory (OLM) paradigm to assess specific, dissociable processes in visuo-spatial memory and examine their relationship with broader neurocognitive performance. Fifty participants (25 patients with BD in a current depressive episode and 25 matched healthy controls) completed the OLM paradigm which assessed three different aspects of visuo-spatial memory: positional memory, object-location binding, and a combined process. Secondary neurocognitive measures of visuo-spatial memory, verbal memory, attention and executive function were also administered. BD patients were significantly impaired on all three OLM processes, with the largest effect in exact positional memory (d = 1.18, p < 0.0001). General deficits were also found across the secondary neurocognitive measures. Using hierarchical regression, verbal learning was found to explain significant variance on the OLM measures where object-identity was present (the object-location binding and combined processes) and accounted for the group difference. The group difference in precise positional memory remained intact. This study demonstrates that patients with bipolar depression manifest deficits in visuo-spatial memory, with substantial impairment in fine-grain, positional memory. The differential profile of processes underpinning the visuo-spatial memory impairment suggests a form of 'cognitive scaffolding', whereby performance on some measures can be supported by verbal memory. These results have important implications for our understanding of the functional cognitive architecture of mood disorder.

  19. Mining Co-Location Patterns with Clustering Items from Spatial Data Sets

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.

    2018-05-01

    The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.

  20. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    PubMed

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Children's attention to task-relevant information accounts for relations between language and spatial cognition.

    PubMed

    Miller, Hilary E; Simmering, Vanessa R

    2018-08-01

    Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. On the spatial specificity of audiovisual crossmodal exogenous cuing effects.

    PubMed

    Lee, Jae; Spence, Charles

    2017-06-01

    It is generally-accepted that the presentation of an auditory cue will direct an observer's spatial attention to the region of space from where it originates and therefore facilitate responses to visual targets presented there rather than from a different position within the cued hemifield. However, to date, there has been surprisingly limited evidence published in support of such within-hemifield crossmodal exogenous spatial cuing effects. Here, we report two experiments designed to investigate within- and between-hemifield spatial cuing effects in the case of audiovisual exogenous covert orienting. Auditory cues were presented from one of four frontal loudspeakers (two on either side of central fixation). There were eight possible visual target locations (one above and another below each of the loudspeakers). The auditory cues were evenly separated laterally by 30° in Experiment 1, and by 10° in Experiment 2. The potential cue and target locations were separated vertically by approximately 19° in Experiment 1, and by 4° in Experiment 2. On each trial, the participants made a speeded elevation (i.e., up vs. down) discrimination response to the visual target following the presentation of a spatially-nonpredictive auditory cue. Within-hemifield spatial cuing effects were observed only when the auditory cues were presented from the inner locations. Between-hemifield spatial cuing effects were observed in both experiments. Taken together, these results demonstrate that crossmodal exogenous shifts of spatial attention depend on the eccentricity of both the cue and target in a way that has not been made explicit by previous research. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration

    PubMed Central

    Ghose, Dipanwita; Wallace, Mark T.

    2013-01-01

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location – highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping SC mediated behaviors. PMID:24183964

  4. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    PubMed Central

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  5. Quantifying the impact of human mobility on malaria

    PubMed Central

    Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J.; Smith, David L.; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.

    2013-01-01

    Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies specific importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082

  6. Preparatory neural activity predicts performance on a conflict task.

    PubMed

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  7. Introduced pathogens follow the invasion front of a spreading alien host

    Treesearch

    Ann E. Hajek; Patrick C. Tobin

    2011-01-01

    When an invasive species first colonizes an area, there is an interval before any host-specific natural enemies arrive at the new location. Population densities of newly invading species are low, and the spatial and temporal interactions between spreading invasive species and specific natural enemies that follow are poorly understood. We measured infection rates of two...

  8. Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.

    PubMed

    Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas

    2018-01-02

    Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to increase the effectiveness of the countermeasures in preventing and reducing vehicle-pedestrian crashes.

  9. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  10. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  11. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  12. Auditory motion-specific mechanisms in the primate brain

    PubMed Central

    Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.

    2017-01-01

    This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038

  13. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.

    PubMed

    Dale, Corby L; Simpson, Gregory V; Foxe, John J; Luks, Tracy L; Worden, Michael S

    2008-06-01

    Brain-based models of visual attention hypothesize that attention-related benefits afforded to imperative stimuli occur via enhancement of neural activity associated with relevant spatial and non-spatial features. When relevant information is available in advance of a stimulus, anticipatory deployment processes are likely to facilitate allocation of attention to stimulus properties prior to its arrival. The current study recorded EEG from humans during a centrally-cued covert attention task. Cues indicated relevance of left or right visual field locations for an upcoming motion or orientation discrimination. During a 1 s delay between cue and S2, multiple attention-related events occurred at frontal, parietal and occipital electrode sites. Differences in anticipatory activity associated with the non-spatial task properties were found late in the delay, while spatially-specific modulation of activity occurred during both early and late periods and continued during S2 processing. The magnitude of anticipatory activity preceding the S2 at frontal scalp sites (and not occipital) was predictive of the magnitude of subsequent selective attention effects on the S2 event-related potentials observed at occipital electrodes. Results support the existence of multiple anticipatory attention-related processes, some with differing specificity for spatial and non-spatial task properties, and the hypothesis that levels of activity in anterior areas are important for effective control of subsequent S2 selective attention.

  14. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    NASA Astrophysics Data System (ADS)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  15. Asymmetric coding of categorical spatial relations in both language and vision.

    PubMed

    Roth, J C; Franconeri, S L

    2012-01-01

    Describing certain types of spatial relationships between a pair of objects requires that the objects are assigned different "roles" in the relation, e.g., "A is above B" is different than "B is above A." This asymmetric representation places one object in the "target" or "figure" role and the other in the "reference" or "ground" role. Here we provide evidence that this asymmetry may be present not just in spatial language, but also in perceptual representations. More specifically, we describe a model of visual spatial relationship judgment where the designation of the target object within such a spatial relationship is guided by the location of the "spotlight" of attention. To demonstrate the existence of this perceptual asymmetry, we cued attention to one object within a pair by briefly previewing it, and showed that participants were faster to verify the depicted relation when that object was the linguistic target. Experiment 1 demonstrated this effect for left-right relations, and Experiment 2 for above-below relations. These results join several other types of demonstrations in suggesting that perceptual representations of some spatial relations may be asymmetrically coded, and further suggest that the location of selective attention may serve as the mechanism that guides this asymmetry.

  16. Conflict Tasks of Different Types Divergently Affect the Attentional Processing of Gaze and Arrow.

    PubMed

    Fan, Lingxia; Yu, Huan; Zhang, Xuemin; Feng, Qing; Sun, Mengdan; Xu, Mengsi

    2018-01-01

    The present study explored the attentional processing mechanisms of gaze and arrow cues in two different types of conflict tasks. In Experiment 1, participants performed a flanker task in which gaze and arrow cues were presented as central targets or bilateral distractors. The congruency between the direction of the target and the distractors was manipulated. Results showed that arrow distractors greatly interfered with the attentional processing of gaze, while the processing of arrow direction was immune to conflict from gaze distractors. Using a spatial compatibility task, Experiment 2 explored the conflict effects exerted on gaze and arrow processing by their relative spatial locations. When the direction of the arrow was in conflict with its spatial layout on screen, response times were slowed; however, the encoding of gaze was unaffected by spatial location. In general, processing to an arrow cue is less influenced by bilateral gaze cues but is affected by irrelevant spatial information, while processing to a gaze cue is greatly disturbed by bilateral arrows but is unaffected by irrelevant spatial information. Different effects on gaze and arrow cues by different types of conflicts may reflect two relatively distinct specific modes of the attentional process.

  17. Discourse Factors Influencing Spatial Descriptions in English and German

    NASA Astrophysics Data System (ADS)

    Vorwerg, Constanze; Tenbrink, Thora

    The ways in which objects are referred to by using spatial language depend on many factors, including the spatial configuration and the discourse context. We present the results of a web experiment in which speakers were asked to either describe where a specified item was located in a picture containing several items, or which item was specified. Furthermore, conditions differed as to whether the first six configurations were specifically simple or specifically complex. Results show that speakers' spatial descriptions are more detailed if the question is where rather than which, mirroring the fact that contrasting the target item from the others in which tasks may not always require an equally detailed spatial description as in where tasks. Furthermore, speakers are influenced by the complexity of initial configurations in intricate ways: on the one hand, individual speakers tend to self-align with respect to their earlier linguistic strategies; however, also a contrast effect could be identified with respect to the usage of combined projective terms.

  18. Spatial analysis of Carbon-14 dynamics in a wetland ecosystem (Duke Swamp, Chalk River Laboratories, Canada).

    PubMed

    Yankovich, T L; King-Sharp, K J; Carr, J; Robertson, E; Killey, R W D; Beresford, N A; Wood, M D

    2014-11-01

    A detailed survey was conducted to quantify the spatial distribution of (14)C in Sphagnum moss and underlying soil collected in Duke Swamp. This wetland environment receives (14)C via groundwater pathways from a historic radioactive Waste Management Area (WMA) on Atomic Energy Canada Limited (AECL)'s Chalk River Laboratories (CRL) site. Trends in (14)C specific activities were evaluated with distance from the sampling location with the maximum (14)C specific activity (DSS-35), which was situated adjacent to the WMA and close to an area of groundwater discharge. Based on a spatial evaluation of the data, an east-to-west (14)C gradient was found, due to the influence of the WMA on (14)C specific activities in the swamp. In addition, it was possible to identify two groups of sites, each showing significant exponential declines with distance from the groundwater source area. One of the groups showed relatively more elevated (14)C specific activities at a given distance from source, likely due to their proximity to the WMA, the location of the sub-surface plume originating from the WMA, the presence of marsh and swamp habitat types, which facilitated (14)C transport to the atmosphere, and possibly, (14)C air dispersion patterns along the eastern edge of the swamp. The other group, which had lower (14)C specific activities at a given distance from the groundwater source area, included locations that were more distant from the WMA and the sub-surface plume, and contained fen habitat, which is known to act as barrier to groundwater flow. The findings suggest that proximity to source, groundwater flow patterns and habitat physical characteristics can play an important role in the dynamics of (14)C being carried by discharging groundwater into terrestrial and wetland environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The location-, word-, and arrow-based Simon effects: An ex-Gaussian analysis.

    PubMed

    Luo, Chunming; Proctor, Robert W

    2018-04-01

    Task-irrelevant spatial information, conveyed by stimulus location, location word, or arrow direction, can influence the response to task-relevant attributes, generating the location-, word-, and arrow-based Simon effects. We examined whether different mechanisms are involved in the generation of these Simon effects by fitting a mathematical ex-Gaussian function to empirical response time (RT) distributions. Specifically, we tested whether which ex-Gaussian parameters (μ, σ, and τ) show Simon effects and whether the location-, word, and arrow-based effects are on different parameters. Results show that the location-based Simon effect occurred on mean RT and μ but not on τ, and a reverse Simon effect occurred on σ. In contrast, a positive word-based Simon effect was obtained on all these measures (including σ), and a positive arrow-based Simon effect was evident on mean RT, σ, and τ but not μ. The arrow-based Simon effect was not different from the word-based Simon effect on τ or σ but was on μ and mean RT. These distinct results on mean RT and ex-Gaussian parameters provide evidence that spatial information conveyed by the various location modes are different in the time-course of activation.

  20. Right-hemispheric dominance for visual remapping in humans.

    PubMed

    Pisella, L; Alahyane, N; Blangero, A; Thery, F; Blanc, S; Pelisson, D

    2011-02-27

    We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans--and present additional original data--which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.

  1. Right-hemispheric dominance for visual remapping in humans

    PubMed Central

    Pisella, L.; Alahyane, N.; Blangero, A.; Thery, F.; Blanc, S.; Pelisson, D.

    2011-01-01

    We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans—and present additional original data—which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized. PMID:21242144

  2. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  3. 3D hierarchical spatial representation and memory of multimodal sensory data

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.

  4. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China.

    PubMed

    Tang, Xiaolu; Xia, Mingpeng; Pérez-Cruzado, César; Guan, Fengying; Fan, Shaohui

    2017-02-14

    Moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) is an important timber substitute in China. Site specific stand management requires an accurate estimate of soil organic carbon (SOC) stock for maintaining stand productivity and understanding global carbon cycling. This study compared ordinary kriging (OK) and inverse distance weighting (IDW) approaches to study the spatial distribution of SOC stock within 0-60 cm using 111 soil samples in Moso bamboo forests in subtropical China. Similar spatial patterns but different spatial distribution ranges of SOC stock from OK and IDW highlighted the necessity to apply different approaches to obtain accurate and consistent results of SOC stock distribution. Different spatial patterns of SOC stock suggested the use of different fertilization treatments in Moso bamboo forests across the study area. SOC pool within 0-60 cm was 6.46 and 6.22 Tg for OK and IDW; results which were lower than that of conventional approach (CA, 7.41 Tg). CA is not recommended unless coordinates of the sampling locations are missing and the spatial patterns of SOC stock are not required. OK is recommended for the uneven distribution of sampling locations. Our results can improve methodology selection for investigating spatial distribution of SOC stock in Moso bamboo forests.

  5. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China

    PubMed Central

    Tang, Xiaolu; Xia, Mingpeng; Pérez-Cruzado, César; Guan, Fengying; Fan, Shaohui

    2017-01-01

    Moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) is an important timber substitute in China. Site specific stand management requires an accurate estimate of soil organic carbon (SOC) stock for maintaining stand productivity and understanding global carbon cycling. This study compared ordinary kriging (OK) and inverse distance weighting (IDW) approaches to study the spatial distribution of SOC stock within 0–60 cm using 111 soil samples in Moso bamboo forests in subtropical China. Similar spatial patterns but different spatial distribution ranges of SOC stock from OK and IDW highlighted the necessity to apply different approaches to obtain accurate and consistent results of SOC stock distribution. Different spatial patterns of SOC stock suggested the use of different fertilization treatments in Moso bamboo forests across the study area. SOC pool within 0–60 cm was 6.46 and 6.22 Tg for OK and IDW; results which were lower than that of conventional approach (CA, 7.41 Tg). CA is not recommended unless coordinates of the sampling locations are missing and the spatial patterns of SOC stock are not required. OK is recommended for the uneven distribution of sampling locations. Our results can improve methodology selection for investigating spatial distribution of SOC stock in Moso bamboo forests. PMID:28195207

  6. Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.

    PubMed

    Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet

    2011-04-26

    Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.

  7. Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations

    NASA Astrophysics Data System (ADS)

    Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.

    2018-06-01

    Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.

  8. Implementation of marine spatial planning in shellfish aquaculture management: modeling studies in a Norwegian fjord.

    PubMed

    Filgueira, Ramon; Grant, Jon; Strand, Øivind

    2014-06-01

    Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.

  9. Attention modulates maintenance of representations in visual short-term memory.

    PubMed

    Kuo, Bo-Cheng; Stokes, Mark G; Nobre, Anna Christina

    2012-01-01

    Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top-down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top-down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.

  10. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  11. Design and technical evaluation of an enhanced location-awareness service enabler for spatial disorientation management of elderly with mild cognitive impairment.

    PubMed

    Moreno, Pedro A; Hernando, M Elena; Gómez, Enrique J

    2015-01-01

    The progressive ageing of population has turned the mild cognitive impairment (MCI) into a prevalent disease suffered by elderly. Consequently, the spatial disorientation has become a significant problem for older people and their caregivers. The ambient-assisted living applications are offering location-based services for empowering elderly to go outside and encouraging a greater independence. Therefore, this paper describes the design and technical evaluation of a location-awareness service enabler aimed at supporting and managing probable wandering situations of a person with MCI. Through the presence capabilities of the IP multimedia subsystem (IMS) architecture, the service will alert patient's contacts if a hazardous situation is detected depending on his location. Furthermore, information about the older person's security areas has been included in the user profile managed by IMS. In doing so, the service enabler introduced contribute to "context-awareness" paradigm allowing the adaptation and personalization of services depending on user's context and specific conditions or preferences.

  12. Sustained maintenance of somatotopic information in brain regions recruited by tactile working memory.

    PubMed

    Katus, Tobias; Müller, Matthias M; Eimer, Martin

    2015-01-28

    To adaptively guide ongoing behavior, representations in working memory (WM) often have to be modified in line with changing task demands. We used event-related potentials (ERPs) to demonstrate that tactile WM representations are stored in modality-specific cortical regions, that the goal-directed modulation of these representations is mediated through hemispheric-specific activation of somatosensory areas, and that the rehearsal of somatotopic coordinates in memory is accomplished by modality-specific spatial attention mechanisms. Participants encoded two tactile sample stimuli presented simultaneously to the left and right hands, before visual retro-cues indicated which of these stimuli had to be retained to be matched with a subsequent test stimulus on the same hand. Retro-cues triggered a sustained tactile contralateral delay activity component with a scalp topography over somatosensory cortex contralateral to the cued hand. Early somatosensory ERP components to task-irrelevant probe stimuli (that were presented after the retro-cues) and to subsequent test stimuli were enhanced when these stimuli appeared at the currently memorized location relative to other locations on the cued hand, demonstrating that a precise focus of spatial attention was established during the selective maintenance of tactile events in WM. These effects were observed regardless of whether participants performed the matching task with uncrossed or crossed hands, indicating that WM representations in this task were based on somatotopic rather than allocentric spatial coordinates. In conclusion, spatial rehearsal in tactile WM operates within somatotopically organized sensory brain areas that have been recruited for information storage. Copyright © 2015 Katus et al.

  13. The effects of pregnancy, lactation, and primiparity on object-in-place memory of female rats.

    PubMed

    Cost, Katherine Tombeau; Lobell, Thomas D; Williams-Yee, Zari N; Henderson, Sherryl; Dohanich, Gary

    2014-01-01

    Maternal physiology and behavior change dramatically over the course of pregnancy to nurture the fetus and prepare for motherhood. Further, the experience of motherhood itself continues to influence brain functioning well after birth, shaping behavior to promote the survival of offspring. To meet these goals, cognitive abilities, such as spatial memory and navigation, may be enhanced to facilitate foraging behavior. Existing studies on pregnant and maternal rats demonstrate enhanced cognitive function in specific spatial domains. We adopted a novel object-in-place task to assess the ability of female rats to integrate information about specific objects in specific locations, a critical element of foraging behavior. Using a longitudinal design to study changes in spatial memory across pregnancy and motherhood, an advantage in the object-in-place memory of primiparous female rats compared to nulliparous females emerged during lactation not during pregnancy, and was maintained after weaning at 42 days postpartum. This enhancement was not dependent on the non-mnemonic variables of anxiety or neophobia. Parity did not affect the type of learning strategy used by females to locate a cued escape platform on a dual-solution water maze task. Results indicate that the enhancement of object-in-place memory, a cognitive function that facilitates foraging, emerged after pregnancy during the postpartum period of lactation and persisted for several weeks after weaning of offspring. © 2013.

  14. Leak detection utilizing analog binaural (VLSI) techniques

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1995-01-01

    A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.

  15. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    USGS Publications Warehouse

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  16. Optimization of a hydrometric network extension using specific flow, kriging and simulated annealing

    NASA Astrophysics Data System (ADS)

    Chebbi, Afef; Kebaili Bargaoui, Zoubeida; Abid, Nesrine; da Conceição Cunha, Maria

    2017-12-01

    In hydrometric stations, water levels are continuously observed and discharge rating curves are constantly updated to achieve accurate river levels and discharge observations. An adequate spatial distribution of hydrological gauging stations presents a lot of interest in linkage with the river regime characterization, water infrastructures design, water resources management and ecological survey. Due to the increase of riverside population and the associated flood risk, hydrological networks constantly need to be developed. This paper suggests taking advantage of kriging approaches to improve the design of a hydrometric network. The context deals with the application of an optimization approach using ordinary kriging and simulated annealing (SA) in order to identify the best locations to install new hydrometric gauges. The task at hand is to extend an existing hydrometric network in order to estimate, at ungauged sites, the average specific annual discharge which is a key basin descriptor. This methodology is developed for the hydrometric network of the transboundary Medjerda River in the North of Tunisia. A Geographic Information System (GIS) is adopted to delineate basin limits and centroids. The latter are adopted to assign the location of basins in kriging development. Scenarios where the size of an existing 12 stations network is alternatively increased by 1, 2, 3, 4 and 5 new station(s) are investigated using geo-regression and minimization of the variance of kriging errors. The analysis of the optimized locations from a scenario to another shows a perfect conformity with respect to the location of the new sites. The new locations insure a better spatial coverage of the study area as seen with the increase of both the average and the maximum of inter-station distances after optimization. The optimization procedure selects the basins that insure the shifting of the mean drainage area towards higher specific discharges.

  17. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development.

    PubMed

    ten Berge, Derk; Brugmann, Samantha A; Helms, Jill A; Nusse, Roel

    2008-10-01

    A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.

  18. Local morphologic scale: application to segmenting tumor infiltrating lymphocytes in ovarian cancer TMAs

    NASA Astrophysics Data System (ADS)

    Janowczyk, Andrew; Chandran, Sharat; Feldman, Michael; Madabhushi, Anant

    2011-03-01

    In this paper we present the concept and associated methodological framework for a novel locally adaptive scale notion called local morphological scale (LMS). Broadly speaking, the LMS at every spatial location is defined as the set of spatial locations, with associated morphological descriptors, which characterize the local structure or heterogeneity for the location under consideration. More specifically, the LMS is obtained as the union of all pixels in the polygon obtained by linking the final location of trajectories of particles emanating from the location under consideration, where the path traveled by originating particles is a function of the local gradients and heterogeneity that they encounter along the way. As these particles proceed on their trajectory away from the location under consideration, the velocity of each particle (i.e. do the particles stop, slow down, or simply continue around the object) is modeled using a physics based system. At some time point the particle velocity goes to zero (potentially on account of encountering (a) repeated obstructions, (b) an insurmountable image gradient, or (c) timing out) and comes to a halt. By using a Monte-Carlo sampling technique, LMS is efficiently determined through parallelized computations. LMS is different from previous local scale related formulations in that it is (a) not a locally connected sets of pixels satisfying some pre-defined intensity homogeneity criterion (generalized-scale), nor is it (b) constrained by any prior shape criterion (ball-scale, tensor-scale). Shape descriptors quantifying the morphology of the particle paths are used to define a tensor LMS signature associated with every spatial image location. These features include the number of object collisions per particle, average velocity of a particle, and the length of the individual particle paths. These features can be used in conjunction with a supervised classifier to correctly differentiate between two different object classes based on local structural properties. In this paper, we apply LMS to the specific problem of classifying regions of interest in Ovarian Cancer (OCa) histology images as either tumor or stroma. This approach is used to classify lymphocytes as either tumor infiltrating lymphocytes (TILs) or non-TILs; the presence of TILs having been identified as an important prognostic indicator for disease outcome in patients with OCa. We present preliminary results on the tumor/stroma classification of 11,000 randomly selected locations of interest, across 11 images obtained from 6 patient studies. Using a Probabilistic Boosting Tree (PBT), our supervised classifier yielded an area under the receiver operation characteristic curve (AUC) of 0.8341 +/-0.0059 over 5 runs of randomized cross validation. The average LMS computation time at every spatial location for an image patch comprising 2000 pixels with 24 particles at every location was only 18s.

  19. Nutrients and the Great Lakes Nearshore, Circa 2002-2007

    EPA Science Inventory

    Nearshore nutrient impressions were largely limited to observations of local spatial trends from a few site-specific studies and some temporal trends at a set of Canadian water intake locations (later summarized in Nicholls et al. 1999). Lacking a systematic information base fo...

  20. Hippocampal SWR Activity Predicts Correct Decisions during the Initial Learning of an Alternation Task

    PubMed Central

    Singer, Annabelle C.; Carr, Margaret F.; Karlsson, Mattias P.; Frank, Loren M.

    2013-01-01

    SUMMARY The hippocampus frequently replays memories of past experiences during sharp-wave ripple (SWR) events. These events can represent spatial trajectories extending from the animal’s current location to distant locations, suggesting a role in the evaluation of upcoming choices. While SWRs have been linked to learning and memory, the specific role of awake replay remains unclear. Here we show that there is greater coordinated neural activity during SWRs preceding correct, as compared to incorrect, trials in a spatial alternation task. As a result, the proportion of cell pairs coactive during SWRs was predictive of subsequent correct or incorrect responses on a trial-by-trial basis. This effect was seen specifically during early learning, when the hippocampus is essential for task performance. SWR activity preceding correct trials represented multiple trajectories that included both correct and incorrect options. These results suggest that reactivation during awake SWRs contributes to the evaluation of possible choices during memory-guided decision making. PMID:23522050

  1. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.

    PubMed

    Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo

    2018-06-18

    Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.

  2. Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.

    PubMed

    Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen

    2015-05-01

    The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).

  3. The relation between navigation strategy and associative memory: An individual differences approach.

    PubMed

    Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R

    2016-04-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).

  4. The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.

    2017-12-01

    Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.

  5. Assessing the spatial distribution of glyphosate-AMPA in an Argentinian farm field using a pedometric technique

    NASA Astrophysics Data System (ADS)

    Barbera, Agustin; Zamora, Martin; Domenech, Marisa; Vega-Becerra, Andres; Castro-Franco, Mauricio

    2017-04-01

    The cultivation of transgenic glyphosate-resistant crops has been the most rapidly adopted crop technology in Argentina since 1997. Thus, more than 180 million liters of the broad-spectrum herbicide glyphosate (N - phosphonomethylglicine) are applied every year. The intensive use of glyphosate combined with geomorphometrical characteristics of the Pampa region is a matter of environmental concern. An integral component of assessing the risk of soil contamination in farm fields is to describe the spatial distribution of the levels of contaminant agent. Application of pedometric techniques for this purpose has been scarcely demonstrated. These techniques could provide an estimate of the concentration at a given unsampled location, as well as the probability that concentration will exceed the critical threshold concentration. In this work, a pedometric technique for assessing the spatial distribution of glyphosate in farm fields was developed. A field located at INTA Barrow, Argentina (Lat: -38.322844, Lon: -60.25572) which has a great soil spatial variability, was divided by soil-specific zones using a pedometric technique. This was developed integrating INTA Soil Survey information and a digital elevation model (DEM) obtained from a DGPS. Firstly, 10 topographic indices derived from a DEM were computed in a Random Forest algorithm to obtain a classification model for soil map units (SMU). Secondly, a classification model was applied to those topographic indices but at a scale higher than 1:1000. Finally, a spatial principal component analysis and a clustering using Fuzzy K-means were used into each SMU. From this clustering, three soil-specific zones were determined which were also validated through apparent electrical conductivity (CEa) measurements. Three soil sample points were determined by zone. In each one, samples from 0-10, 10-20 and 20-40cm depth were taken. Glyphosate content and AMPA in each soil sample were analyzed using de UPLC-MS/MS ESI (+/-). Only AMPA at 10-20 cm depth had significant difference among soil-specific zones. However, marked trends for glyphosate content and AMPA were clearly shown among zones. These results suggest that (i) the presence of glyphosate and AMPA has spatial patterns distribution related to soil properties at field scale; and (ii) the proposed technique allowed to determine soil-specific zones related to the spatial distribution of glyphosate and AMPA fast, cost-effective and accurately. In further works, we would suggest adding new soil information sources to improve soil-specific zone delimitation.

  6. Attentional reorienting triggers spatial asymmetries in a search task with cross-modal spatial cueing

    PubMed Central

    Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias

    2018-01-01

    Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637

  7. Object-location memory in adults with autism spectrum disorder.

    PubMed

    Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M

    2015-10-01

    This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration.

    PubMed

    Ghose, D; Wallace, M T

    2014-01-03

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location - highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping SC-mediated behaviors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Quantifying co-benefits of source-specific CO2 emission reductions in Canada and the US: An adjoint sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Soltanzadeh, M.; Pappin, A. J.; Hakami, A.; Turner, M. D.; Capps, S.; Henze, D. K.; Percell, P.; Bash, J. O.; Napelenok, S. L.; Pinder, R. W.; Russell, A. G.; Nenes, A.; Baek, J.; Carmichael, G. R.; Stanier, C. O.; Chai, T.; Byun, D.; Fahey, K.; Resler, J.; Mashayekhi, R.

    2016-12-01

    Scenario-based studies evaluate air quality co-benefits by adopting collective measures introduced under a climate policy scenario cannot distinguish between benefits accrued from CO2 reductions among sources of different types and at different locations. Location and sector dependencies are important factors that can be captured in an adjoint-based analysis of CO2 reduction co-benefits. The present study aims to quantify how the ancillary benefits of reducing criteria co-pollutants vary spatially and by sector. The adjoint of USEPA's CMAQ was applied to quantify the health benefits associated with emission reduction of criteria pollutants (NOX) in on-road mobile, Electric Generation Units (EGUs), and other select sectors on a location-by-location basis across the US and Canada. These health benefits are then converted to CO2 emission reduction co-benefits by accounting for source-specific emission rates of criteria pollutants in comparison to CO2. We integrate the results from the adjoint of CMAQ with emission estimates from 2011 NEI at the county level, and point source data from EPA's Air Markets Program Data and National Pollutant Release Inventory (NPRI) for Canada. Our preliminary results show that the monetized health benefits (due to averted chronic mortality) associated with reductions of 1 ton of CO2 emissions is up to 65/ton in Canada and 200/ton in US for mobile on-road sector. For EGU sources, co-benefits are estimated at up to 100/ton and 10/ton for the US and Canada respectively. For Canada, the calculated co-benefits through gaseous pollutants including NOx is larger than those through PM2.5 due to the official association between NO2 exposure and chronic mortality. Calculated co-benefits show a great deal of spatial variability across emission locations for different sectors and sub-sectors. Implications of such spatial variability in devising control policy options that effectively address both climate and air quality objectives will be discussed.

  10. Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches' knowledge production function: a mixed GWR approach

    NASA Astrophysics Data System (ADS)

    Kang, Dongwoo; Dall'erba, Sandy

    2016-04-01

    Griliches' knowledge production function has been increasingly adopted at the regional level where location-specific conditions drive the spatial differences in knowledge creation dynamics. However, the large majority of such studies rely on a traditional regression approach that assumes spatially homogenous marginal effects of knowledge input factors. This paper extends the authors' previous work (Kang and Dall'erba in Int Reg Sci Rev, 2015. doi: 10.1177/0160017615572888) to investigate the spatial heterogeneity in the marginal effects by using nonparametric local modeling approaches such as geographically weighted regression (GWR) and mixed GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more specifically for the local and distant spillovers of private knowledge measured across MSA counties. On the other hand, local academic knowledge spillovers are found to display spatially homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths and weaknesses of each county's innovation capacity and suggest policy implications for regional innovation strategies.

  11. Implied motion language can influence visual spatial memory.

    PubMed

    Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick

    2017-07-01

    How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.

  12. Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis.

    PubMed

    Westerholt, Rene; Steiger, Enrico; Resch, Bernd; Zipf, Alexander

    2016-01-01

    Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially.

  13. Effects of spatial congruency on saccade and visual discrimination performance in a dual-task paradigm.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2014-12-01

    The present study investigated the coupling of selection-for-perception and selection-for-action during saccadic eye movement planning in three dual-task experiments. We focused on the effects of spatial congruency of saccade target (ST) location and discrimination target (DT) location and the time between ST-cue and Go-signal (SOA) on saccadic eye movement performance. In two experiments, participants performed a visual discrimination task at a cued location while programming a saccadic eye movement to a cued location. In the third experiment, the discrimination task was not cued and appeared at a random location. Spatial congruency of ST-location and DT-location resulted in enhanced perceptual performance irrespective of SOA. Perceptual performance in spatially incongruent trials was above chance, but only when the DT-location was cued. Saccade accuracy and precision were also affected by spatial congruency showing superior performance when the ST- and DT-location coincided. Saccade latency was only affected by spatial congruency when the DT-cue was predictive of the ST-location. Moreover, saccades consistently curved away from the incongruent DT-locations. Importantly, the effects of spatial congruency on saccade parameters only occurred when the DT-location was cued; therefore, results from experiments 1 and 2 are due to the endogenous allocation of attention to the DT-location and not caused by the salience of the probe. The SOA affected saccade latency showing decreasing latencies with increasing SOA. In conclusion, our results demonstrate that visuospatial attention can be voluntarily distributed upon spatially distinct perceptual and motor goals in dual-task situations, resulting in a decline of visual discrimination and saccade performance.

  14. Connecting Ecosystem Service Production to Users as a Measure of Realized Benefits in Coastal Communities

    EPA Science Inventory

    Ecosystem goods and services are often produced in locations far away from where humans benefit from them. Human beneficiaries also use specific spatial pathways to access the Final Ecosystem Goods and Services (FEGS), the ecological endpoints directly beneficial to human well-b...

  15. Evidence of territoriality and species interactions from spatial point-pattern analyses of subarctic-nesting geese

    USGS Publications Warehouse

    Reiter, Matthew E.; Andersen, David E.

    2013-01-01

    Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.

  16. Environmental boundaries as a mechanism for correcting and anchoring spatial maps

    PubMed Central

    2016-01-01

    Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618

  17. Clustering of Multivariate Geostatistical Data

    NASA Astrophysics Data System (ADS)

    Fouedjio, Francky

    2017-04-01

    Multivariate data indexed by geographical coordinates have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations belonging to the same cluster have a certain degree of homogeneity while data locations in the different clusters have to be as different as possible. However, groups of data locations created through classical clustering techniques turn out to show poor spatial contiguity, a feature obviously inconvenient for many geoscience applications. In this work, we develop a clustering method that overcomes this problem by accounting the spatial dependence structure of data; thus reinforcing the spatial contiguity of resulting cluster. The capability of the proposed clustering method to provide spatially contiguous and meaningful clusters of data locations is assessed using both synthetic and real datasets. Keywords: clustering, geostatistics, spatial contiguity, spatial dependence.

  18. Active and passive spatial learning in human navigation: acquisition of graph knowledge.

    PubMed

    Chrastil, Elizabeth R; Warren, William H

    2015-07-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.

  19. Design and Test of an Event Detector for the ReflectoActive Seals System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Brad J

    2006-05-01

    The purpose of this thesis was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less

  20. Spatial and spectral interpolation of ground-motion intensity measure observations

    USGS Publications Warehouse

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  1. Spatial point pattern analysis of human settlements and geographical associations in eastern coastal China - a case study.

    PubMed

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-03-10

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.

  2. Spatial Language Processing in the Blind: Evidence for a Supramodal Representation and Cortical Reorganization

    PubMed Central

    Struiksma, Marijn E.; Noordzij, Matthijs L.; Neggers, Sebastiaan F. W.; Bosker, Wendy M.; Postma, Albert

    2011-01-01

    Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations. PMID:21935391

  3. Using a Hierarchical Approach to Model Regional Source Sink Dynamics for Neotropical Nearctic Songbirds to Inform Management Practices on Department of Defense Installations

    DTIC Science & Technology

    2017-03-20

    comparison with the more intensive demographic study . We found support for spatial variation in productivity at both location and station scales. At location...the larger intensive demographic monitoring study , we also fit a productivity model that included a covariate calculated for the 12 stations included...Reference herein to any specific commercial product , process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily

  4. Spatially- explicit Fossil Fuel Carbon Dioxide Inventories for Transportation in the U.S.

    NASA Astrophysics Data System (ADS)

    Hutchins, M.; Gurney, K. R.

    2016-12-01

    The transportation sector is the second largest source of Fossil Fuel CO2 (FFCO2) emissions, and is unique in that federal, state, and municipal levels of government are all able to enact transportation policy. However, since data related to transportation activities are reported by multiple different government agencies, the data are not always consistent. As a result, the methods and data used to inventory and account for transportation related FFCO2 emissions have important implications for both science and policy. Aggregate estimates of transportation related FFCO2 emissions can be spatially distributed using traffic data, such as the Highway Performance Monitoring System (HPMS) Average Annual Daily Traffic (AADT). There are currently two datasets that estimate the spatial distribution of transportation related FFCO2 in the United States- Vulcan 3.0 and the Database of Road Transportation Emissions (DARTE). Both datasets are at 1 km resolution, for the year 2011, and utilize HPMS AADT traffic data. However, Vulcan 3.0 and DARTE spatially distribute emissions using different methods and inputs, resulting in a number of differences. Vulcan 3.0 and DARTE estimate national transportation related FFCO2 emissions within 2.5% of each other, with more significant differences at the county and state level. The differences are most notable in urban versus rural regions, and for specific road classes. The origin of these differences are explored in depth to understand the implication of using specific data sources, such as the National Emissions Inventory and other aggregate transportation statistics from the Federal Highway Administration (FHWA). In addition to comparing Vulcan 3.0 and DARTE to each other, the results from both data sets are compared to independent traffic volume measurements acquired from the FHWA Continuous Count Station (CCS) network. The CCS records hourly traffic counts at fixed locations in space throughout the U.S. We calculate transportation related FFCO2 emissions at a CCS stations using fuel specific emissions factors combined with the raw traffic counts. The CCS network provides a unique opportunity to compare spatially explicit, "bottom-up" models of transportation related FFCO2 emissions to measured traffic volume at over 300 specific locations.

  5. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir

  6. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  7. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  8. Risk mapping of Rinderpest sero-prevalence in Central and Southern Somalia based on spatial and network risk factors.

    PubMed

    Ortiz-Pelaez, Angel; Pfeiffer, Dirk U; Tempia, Stefano; Otieno, F Tom; Aden, Hussein H; Costagli, Riccardo

    2010-04-28

    In contrast to most pastoral systems, the Somali livestock production system is oriented towards domestic trade and export with seasonal movement patterns of herds/flocks in search of water and pasture and towards export points. Data from a rinderpest survey and other data sources have been integrated to explore the topology of a contact network of cattle herds based on a spatial proximity criterion and other attributes related to cattle herd dynamics. The objective of the study is to integrate spatial mobility and other attributes with GIS and network approaches in order to develop a predictive spatial model of presence of rinderpest. A spatial logistic regression model was fitted using data for 562 point locations. It includes three statistically significant continuous-scale variables that increase the risk of rinderpest: home range radius, herd density and clustering coefficient of the node of the network whose link was established if the sum of the home ranges of every pair of nodes was equal or greater than the shortest distance between the points. The sensitivity of the model is 85.1% and the specificity 84.6%, correctly classifying 84.7% of the observations. The spatial autocorrelation not accounted for by the model is negligible and visual assessment of a semivariogram of the residuals indicated that there was no undue amount of spatial autocorrelation. The predictive model was applied to a set of 6176 point locations covering the study area. Areas at high risk of having serological evidence of rinderpest are located mainly in the coastal districts of Lower and Middle Juba, the coastal area of Lower Shabele and in the regions of Middle Shabele and Bay. There are also isolated spots of high risk along the border with Kenya and the southern area of the border with Ethiopia. The identification of point locations and areas with high risk of presence of rinderpest and their spatial visualization as a risk map will be useful for informing the prioritization of disease surveillance and control activities for rinderpest in Somalia. The methodology applied here, involving spatial and network parameters, could also be applied to other diseases and/or species as part of a standardized approach for the design of risk-based surveillance activities in nomadic pastoral settings.

  9. Specific to Whose Body? Perspective-Taking and the Spatial Mapping of Valence

    PubMed Central

    Kominsky, Jonathan F.; Casasanto, Daniel

    2013-01-01

    People tend to associate the abstract concepts of “good” and “bad” with their fluent and disfluent sides of space, as determined by their natural handedness or by experimental manipulation (Casasanto, 2011). Here we investigated influences of spatial perspective taking on the spatialization of “good” and “bad.” In the first experiment, participants indicated where a schematically drawn cartoon character would locate “good” and “bad” stimuli. Right-handers tended to assign “good” to the right and “bad” to the left side of egocentric space when the character shared their spatial perspective, but when the character was rotated 180° this spatial mapping was reversed: good was assigned to the character’s right side, not the participant’s. The tendency to spatialize valence from the character’s perspective was stronger in the second experiment, when participants were shown a full-featured photograph of the character. In a third experiment, most participants not only spatialized “good” and “bad” from the character’s perspective, they also based their judgments on a salient attribute of the character’s body (an injured hand) rather than their own body. Taking another’s spatial perspective encourages people to compute space-valence mappings using an allocentric frame of reference, based on the fluency with which the other person could perform motor actions with their right or left hand. When people reason from their own spatial perspective, their judgments depend, in part, on the specifics of their bodies; when people reason from someone else’s perspective, their judgments may depend on the specifics of the other person’s body, instead. PMID:23717296

  10. Spatial distribution of 12 class B notifiable infectious diseases in China: A retrospective study.

    PubMed

    Zhu, Bin; Fu, Yang; Liu, Jinlin; Mao, Ying

    2018-01-01

    China is the largest developing country with a relatively developed public health system. To further prevent and eliminate the spread of infectious diseases, China has listed 39 notifiable infectious diseases characterized by wide prevalence or great harm, and classified them into classes A, B, and C, with severity decreasing across classes. Class A diseases have been almost eradicated in China, thus making class B diseases a priority in infectious disease prevention and control. In this retrospective study, we analyze the spatial distribution patterns of 12 class B notifiable infectious diseases that remain active all over China. Global and local Moran's I and corresponding graphic tools are adopted to explore and visualize the global and local spatial distribution of the incidence of the selected epidemics, respectively. Inter-correlations of clustering patterns of each pair of diseases and a cumulative summary of the high/low cluster frequency of the provincial units are also provided by means of figures and maps. Of the 12 most commonly notifiable class B infectious diseases, viral hepatitis and tuberculosis show high incidence rates and account for more than half of the reported cases. Almost all the diseases, except pertussis, exhibit positive spatial autocorrelation at the provincial level. All diseases feature varying spatial concentrations. Nevertheless, associations exist between spatial distribution patterns, with some provincial units displaying the same type of cluster features for two or more infectious diseases. Overall, high-low (unit with high incidence surrounded by units with high incidence, the same below) and high-high spatial cluster areas tend to be prevalent in the provincial units located in western and southwest China, whereas low-low and low-high spatial cluster areas abound in provincial units in north and east China. Despite the various distribution patterns of 12 class B notifiable infectious diseases, certain similarities between their spatial distributions are present. Substantial evidence is available to support disease-specific, location-specific, and disease-combined interventions. Regarding provinces that show high-high/high-low patterns of multiple diseases, comprehensive interventions targeting different diseases should be established. As to the adjacent provincial units revealing similar patterns, coordinated actions need to be taken across borders.

  11. A draft map of the mouse pluripotent stem cell spatial proteome

    PubMed Central

    Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.

    2016-01-01

    Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106

  12. Altered spatial profile of distraction in people with schizophrenia.

    PubMed

    Leonard, Carly J; Robinson, Benjamin M; Hahn, Britta; Luck, Steven J; Gold, James M

    2017-11-01

    Attention is critical for effective processing of incoming information and has long been identified as a potential area of dysfunction in people with schizophrenia (PSZ). In the realm of visual processing, both spatial attention and feature-based attention are involved in biasing selection toward task-relevant stimuli and avoiding distraction. Evidence from multiple paradigms has suggested that PSZ may hyperfocus and have a narrower "spotlight" of spatial attention. In contrast, feature-based attention seems largely preserved, with some suggestion of increased processing of stimuli sharing the target-defining feature. In the current study, we examined the spatial profile of feature-based distraction using a task in which participants searched for a particular color target and attempted to ignore distractors that varied in distance from the target location and either matched or mismatched the target color. PSZ differed from healthy controls in terms of interference from peripheral distractors that shared the target-color presented 200 ms before a central target. Specifically, PSZ showed an amplified gradient of spatial attention, with increased distraction to near distractors and less interference to far distractors. Moreover, consistent with hyperfocusing, individual differences in this spatial profile were correlated with positive symptoms, such that those with greater positive symptoms showed less distraction by target-colored distractors near the task-relevant location. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Location-based Web Search

    NASA Astrophysics Data System (ADS)

    Ahlers, Dirk; Boll, Susanne

    In recent years, the relation of Web information to a physical location has gained much attention. However, Web content today often carries only an implicit relation to a location. In this chapter, we present a novel location-based search engine that automatically derives spatial context from unstructured Web resources and allows for location-based search: our focused crawler applies heuristics to crawl and analyze Web pages that have a high probability of carrying a spatial relation to a certain region or place; the location extractor identifies the actual location information from the pages; our indexer assigns a geo-context to the pages and makes them available for a later spatial Web search. We illustrate the usage of our spatial Web search for location-based applications that provide information not only right-in-time but also right-on-the-spot.

  14. Spatial language and converseness.

    PubMed

    Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot

    2016-12-01

    Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.

  15. Audition and vision share spatial attentional resources, yet attentional load does not disrupt audiovisual integration.

    PubMed

    Wahn, Basil; König, Peter

    2015-01-01

    Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.

  16. The effects of climate change and extreme wildfire events on runoff erosion over a mountain watershed

    Treesearch

    Mingliang Liu; Michael E. Barber; Keith A. Cherkauer; Pete Robichaud; Jennifer C. Adam

    2016-01-01

    Increases in wildfire occurrence and severity under an altered climate can substantially impact terrestrial ecosystems through enhancing runoff erosion. Improved prediction tools that provide high resolution spatial information are necessary for location-specific soil conservation and watershed management. However, quantifying the magnitude of soil erosion and...

  17. Errors in Representing Regional Acid Deposition with Spatially Sparse Monitoring: Case Studies of the Eastern US Using Model Predictions

    EPA Science Inventory

    The current study uses case studies of model-estimated regional precipitation and wet ion deposition to estimate errors in corresponding regional values derived from the means of site-specific values within regions of interest located in the eastern US. The mean of model-estimate...

  18. Rapid Acquisition but Slow Extinction of an Attentional Bias in Space

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.; Herzig, Chelsey

    2013-01-01

    Substantial research has focused on the allocation of spatial attention based on goals or perceptual salience. In everyday life, however, people also direct attention using their previous experience. Here we investigate the pace at which people incidentally learn to prioritize specific locations. Participants searched for a T among Ls in a visual…

  19. Processes Underlying Young Children's Spatial Orientation during Movement.

    ERIC Educational Resources Information Center

    Bremner, J. Gavin; And Others

    1994-01-01

    Tested children 18 months to 4 years for their ability to relocate a hidden object after self-produced movement around an array of 4 locations. Children encountered no specific difficulty in coordinating dimensions, or they solved the task without recourse to such a system. They also appeared to change strategy when the problem requires more…

  20. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  1. Cortical depth dependent population receptive field attraction by spatial attention in human V1.

    PubMed

    Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O

    2018-04-27

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.

  2. Worker Personality and Its Association with Spatially Structured Division of Labor

    PubMed Central

    Pamminger, Tobias; Foitzik, Susanne; Kaufmann, Katharina C.; Schützler, Natalie; Menzel, Florian

    2014-01-01

    Division of labor is a defining characteristic of social insects and fundamental to their ecological success. Many of the numerous tasks essential for the survival of the colony must be performed at a specific location. Consequently, spatial organization is an integral aspect of division of labor. The mechanisms organizing the spatial distribution of workers, separating inside and outside workers without central control, is an essential, but so far neglected aspect of division of labor. In this study, we investigate the behavioral mechanisms governing the spatial distribution of individual workers and its physiological underpinning in the ant Myrmica rubra. By investigating worker personalities we uncover position-associated behavioral syndromes. This context-independent and temporally stable set of correlated behaviors (positive association between movements and attraction towards light) could promote the basic separation between inside (brood tenders) and outside workers (foragers). These position-associated behavior syndromes are coupled with a high probability to perform tasks, located at the defined position, and a characteristic cuticular hydrocarbon profile. We discuss the potentially physiological causes for the observed behavioral syndromes and highlight how the study of animal personalities can provide new insights for the study of division of labor and self-organized processes in general. PMID:24497911

  3. The biology of the dance language.

    PubMed

    Dyer, Fred C

    2002-01-01

    Honey bee foragers dance to communicate the spatial location of food and other resources to their nestmates. This remarkable communication system has long served as an important model system for studying mechanisms and evolution of complex behavior. I provide a broad synthesis of recent research on dance communication, concentrating on the areas that are currently the focus of active research. Specific issues considered are as follows: (a) the sensory and integrative mechanisms underlying the processing of spatial information in dance communication, (b) the role of dance communication in regulating the recruitment of workers to resources in the environment, (c) the evolution of the dance language, and (d) the adaptive fine-tuning of the dance for efficient spatial communication.

  4. Visualizing the Quality of Vectur Features - a Proposal for Cadastral Maps

    NASA Astrophysics Data System (ADS)

    Navratil, G.; Leopoldseder, V.

    2017-09-01

    A well-known problem of geographical information is the communication of the quality level. It can be either done verbally / numerically or it can be done graphically. The graphical form is especially useful if the quality has a spatial variation because the spatial distribution is visualized as well. The problem of spatial variation of quality is an issue for cadastral maps. Non-experts cannot determine the quality at a specific location. Therefore a visual representation was tested for the Austrian cadastre. A map sheet was redesigned to give some indication of cadastral quality and presented to both experts and non-experts. The paper presents the result of the interviews.

  5. Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis

    PubMed Central

    Zipf, Alexander

    2016-01-01

    Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially. PMID:27611199

  6. The role of spatial selective attention in working memory for locations: evidence from event-related potentials.

    PubMed

    Awh, E; Anllo-Vento, L; Hillyard, S A

    2000-09-01

    We investigated the hypothesis that the covert focusing of spatial attention mediates the on-line maintenance of location information in spatial working memory. During the delay period of a spatial working-memory task, behaviorally irrelevant probe stimuli were flashed at both memorized and nonmemorized locations. Multichannel recordings of event-related potentials (ERPs) were used to assess visual processing of the probes at the different locations. Consistent with the hypothesis of attention-based rehearsal, early ERP components were enlarged in response to probes that appeared at memorized locations. These visual modulations were similar in latency and topography to those observed after explicit manipulations of spatial selective attention in a parallel experimental condition that employed an identical stimulus display.

  7. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MRmore » application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.« less

  8. Sex differences in visual-spatial working memory: A meta-analysis.

    PubMed

    Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean

    2017-04-01

    Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.

  9. TREASURE mobile app: A satellite-enabled application for personalized heatwave risk based on location and user profile

    NASA Astrophysics Data System (ADS)

    Keramitsoglou, I.; Katsouyanni, K.; Analitis, A.; Sismanidis, P.; Kiranoudis, C. T.

    2016-12-01

    High temperatures and heatwaves are associated with large increases in mortality, especially among susceptible individuals living in urban areas. The within-city variability in the effects associated with specific area characteristics, including the Urban Heat Island effect, have to be taken into account to estimate the level of heatwave risk associated with a specific city location. Real-time appraisal and quantification of spatially distributed heatwave risk is therefore required to develop innovative applications to safeguard citizens' health. TREASURE app (http://treasure.eu-project-sites.com/) integrates the expertise of epidemiologists, Earth Observation scientists and IT developers into intelligent operational and real-time heatwave risk assessment for citizens. The app provides the user with an assessment of personalized location-specific heatwave risk. For the development of the app an epidemiological analysis of a long series of mortality data against measured data series has been carried out to identify the temperature level associated with the minimum mortality (threshold) and the change in risk of death for increases in temperature above this level, in the warm period. Published results have been also taken into account. For the estimation of heatwave hazard thermal infrared Earth Observation data were exploited so as to provide spatially and temporally detailed air and land surface temperatures. An advanced workflow has been developed that uses 4 km/5' geostationary TIR data from EUMETSAT MSG2-SEVIRI satellite, output from the Global Forecast System weather model and SAFNWC software. This workflow consists of the preprocessing of the EO data and the retrieval of LST and TA at an enhanced spatial resolution of 1km. The mobile app was developed for, evaluated in and endorsed by two Mediterranean cities with different characteristics, namely Athens (GR) and Palma (ES) and has set the ground for application to any other European city.

  10. Spatial layout of letters in nonwords affects visual short-term memory load: evidence from human electrophysiology.

    PubMed

    Prime, David; Dell'acqua, Roberto; Arguin, Martin; Gosselin, Frédéric; Jolicœur, Pierre

    2011-03-01

    The sustained posterior contralateral negativity (SPCN) was used to investigate the effect of spatial layout on the maintenance of letters in VSTM. SPCN amplitude was measured for words, nonwords, and scrambled nonwords. We reexamined the effects of spatial layout of letters on SPCN amplitude in a design that equated the mean frequency of use of each position. Scrambled letters that did not form words elicited a larger SPCN than either words or nonwords, indicating lower VSTM load for nonwords presented in a typical horizontal array than the load observed for the same letters presented in spatially scrambled locations. In contrast, prior research has shown that the spatial extent of arrays of simple stimuli did not influence the amplitude of the SPCN. Thus, the present results indicate the existence of encoding and VSTM maintenance mechanisms specific to letter and word processing. Copyright © 2010 Society for Psychophysiological Research.

  11. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus

    PubMed Central

    Bondarenko, Semen M.; Artemov, Gleb N.; Stegniy, Vladimir N.

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO—a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells. PMID:28158219

  12. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus.

    PubMed

    Bondarenko, Semen M; Artemov, Gleb N; Sharakhov, Igor V; Stegniy, Vladimir N

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.

  13. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    PubMed

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input. Copyright © 2017 the authors 0270-6474/17/377803-08$15.00/0.

  14. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each yearmore » with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.« less

  15. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China — A Case Study

    PubMed Central

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-01-01

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning. PMID:24619117

  16. The influence of cue-task association and location on switch cost and alternating-switch cost.

    PubMed

    Arbuthnott, Katherine D; Woodward, Todd S

    2002-03-01

    Task-switching performance is strongly influenced by whether the imperative stimulus uniquely specifies which task to perform: Switch cost is substantial with bivalent stimuli but is greatly reduced with univalent stimuli, suggesting that available contextual information influences processing in task-switching situations. The present study examined whether task-relevant information provided by task cues influences the magnitude of switch cost in a parallel manner. Cues presented 500 ms prior to a trivalent stimulus indicated which of three tasks to perform. These cues either had a preexisting association with the to-be-performed task (verbal cues), or a recently learned association with the task (spatial and shape cues). The results paralleled the effects of stimulus bivalence: substantial switch cost with recently learned cue-task associations and greatly reduced switch cost with preexisting cue-task associations. This suggests that both stimulus-based and cue-based information can activate the relevant task set, possibly providing external support to endogenous control processes. Alternating-switch cost, a greater cost for switching back to a recently abandoned task, was also observed with both preexisting and recently learned cue-task associations, but only when all tasks were presented in a consistent spatial location. When spatial location was used to cue the to-be-performed tasks, no alternating-switch cost was observed, suggesting that different processes may be involved when tasks are uniquely located in space. Specification of the nature of these processes may prove to be complex, as post-hoc inspection of the data suggested that for the spatial cue condition, the alternating-switch cost may oscillate between cost and benefit, depending on the relevant task.

  17. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.

    PubMed

    Zago, Laure; Petit, Laurent; Turbelin, Marie-Renée; Andersson, Frédéric; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie

    2008-01-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intraparietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and nonsymbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with nonsymbolic material.

  18. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  19. Attention to multiple locations is limited by spatial working memory capacity.

    PubMed

    Close, Alex; Sapir, Ayelet; Burnett, Katherine; d'Avossa, Giovanni

    2014-08-21

    What limits the ability to attend several locations simultaneously? There are two possibilities: Either attention cannot be divided without incurring a cost, or spatial memory is limited and observers forget which locations to monitor. We compared motion discrimination when attention was directed to one or multiple locations by briefly presented central cues. The cues were matched for the amount of spatial information they provided. Several random dot kinematograms (RDKs) followed the spatial cues; one of them contained task-relevant, coherent motion. When four RDKs were presented, discrimination accuracy was identical when one and two locations were indicated by equally informative cues. However, when six RDKs were presented, discrimination accuracy was higher following one rather than multiple location cues. We examined whether memory of the cued locations was diminished under these conditions. Recall of the cued locations was tested when participants attended the cued locations and when they did not attend the cued locations. Recall was inaccurate only when the cued locations were attended. Finally, visually marking the cued locations, following one and multiple location cues, equalized discrimination performance, suggesting that participants could attend multiple locations when they did not have to remember which ones to attend. We conclude that endogenously dividing attention between multiple locations is limited by inaccurate recall of the attended locations and that attention poses separate demands on the same central processes used to remember spatial information, even when the locations attended and those held in memory are the same. © 2014 ARVO.

  20. Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit

    PubMed Central

    Spielberg, Jeffrey M.; Heller, Wendy; Miller, Gregory A.

    2013-01-01

    Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures. PMID:23785328

  1. Hierarchical brain networks active in approach and avoidance goal pursuit.

    PubMed

    Spielberg, Jeffrey M; Heller, Wendy; Miller, Gregory A

    2013-01-01

    Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  2. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes generated from a different biosphere model (BIOME-BGC). Initially we perform single-station inversions for Ochsenkopf tall tower located in Germany. Further expansion of the inversion framework to multiple stations and its application to network design will address the questions of how well a set of network stations can constrain a given target quantity, and whether there are objective criteria to select an optimal configuration for new stations that maximizes the uncertainty reduction.

  3. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.

    PubMed

    Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui

    2018-01-01

    Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.

  4. The processing of spatial information in short-term memory: insights from eye tracking the path length effect.

    PubMed

    Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean

    2009-10-01

    Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.

  5. 20th century Betula pubescens subsp. czerepanovii tree- and forest lines in Norway.

    PubMed

    Bryn, Anders; Potthoff, Kerstin

    2017-01-01

    Georeferenced tree- and forest line data has a wide range of applications and are increasingly used for e.g. monitoring of climate change impacts and range shift modelling. As part of a research project, registrations of previously re-mapped tree- and forest lines have been georeferenced. The data described in this paper contains 100 re-mapped registrations of Betula pubescens subsp. czerepanovii throughout Norway. All of the re-mapped tree- and forest line localities are georeferenced, elevation and aspect are given, elevational and spatial uncertainty are provided, and the re-mapping methods are explained. The published data weremapped for the first time between 1819 and 1963. The same sites were re-mapped between 1928 and 1996, but have until now been missing spatial coordinates. The entries contain 40 x 2 tree lines and 60 x 2 forest lines, most likely presenting the regionally highest registered tree- and forest lines at the given time. The entire material is stored and available for download through the GBIF server. Previously, the entries have been published in journals or reports, partly in Norwegian or German only. Without the provision of the spatial coordinates, the specific locations have been unknown. The material is now available for modelling and monitoring of tree- and forest line range shifts: The recordings are useful for interpretation of climate change impacts on tree- and forest lines, and the locations of re-mapped tree- and forest lines can be implemented in future monitoring projects. Since the recordings most likely provide the highest registered Betula pubescens subsp. czerepanovii locations within their specific regions, they are probably representing the contemporary physiognomic range limits.

  6. Developmental Time Course of the Acquisition of Sequential Egocentric and Allocentric Navigation Strategies

    ERIC Educational Resources Information Center

    Bullens, Jessie; Igloi, Kinga; Berthoz, Alain; Postma, Albert; Rondi-Reig, Laure

    2010-01-01

    Navigation in a complex environment can rely on the use of different spatial strategies. We have focused on the employment of "allocentric" (i.e., encoding interrelationships among environmental cues, movements, and the location of the goal) and "sequential egocentric" (i.e., sequences of body turns associated with specific choice points)…

  7. Exogenous attention enhances 2nd-order contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2011-01-01

    Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  8. Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada.

    PubMed

    Bertazzon, Stefania; Shahid, Rizwan

    2017-07-25

    An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children.

  9. Democratic input into the nuclear waste disposal problem: The influence of geographical data on decision making examined through a Web-based GIS

    NASA Astrophysics Data System (ADS)

    Evans, Andrew J.; Kingston, Richard; Carver, Steve

    This paper elucidates the manner in which users of an online decision support system respond to spatially distributed data when assessing the solution to environmental risks, specifically, nuclear waste disposal. It presents tests for revealing whether users are responding to geographical data and whether they are influenced by their home location (Not in My Back Yard - style behavior). The tests specifically cope with problems associated with testing home-to-risk distances where both locations are constrained by the shape of the landmass available. In addition, we detail the users' wider feelings towards such a system, and reflect upon the possibilities such systems offer for participatory democracy initiatives.

  10. Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators

    PubMed Central

    McCombs, Janet E.

    2008-01-01

    Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629

  11. The (Spatial) Memory Game: Testing the Relationship Between Spatial Language, Object Knowledge, and Spatial Cognition.

    PubMed

    Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R

    2018-02-19

    The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.

  12. Memory for Pictures, Words, and Spatial Location in Older Adults: Evidence for Pictorial Superiority.

    ERIC Educational Resources Information Center

    Park, Denise Cortis; And Others

    1983-01-01

    Tested recognition memory for items and spatial location by varying picture and word stimuli across four slide quadrants. Results showed a pictorial superiority effect for item recognition and a greater ability to remember the spatial location of pictures versus words for both old and young adults (N=95). (WAS)

  13. Thermal infrared remote sensing of water temperature in riverine landscapes

    USGS Publications Warehouse

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  14. Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5

    USGS Publications Warehouse

    Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).

  15. Task specificity of attention training: the case of probability cuing

    PubMed Central

    Jiang, Yuhong V.; Swallow, Khena M.; Won, Bo-Yeong; Cistera, Julia D.; Rosenbaum, Gail M.

    2014-01-01

    Statistical regularities in our environment enhance perception and modulate the allocation of spatial attention. Surprisingly little is known about how learning-induced changes in spatial attention transfer across tasks. In this study, we investigated whether a spatial attentional bias learned in one task transfers to another. Most of the experiments began with a training phase in which a search target was more likely to be located in one quadrant of the screen than in the other quadrants. An attentional bias toward the high-probability quadrant developed during training (probability cuing). In a subsequent, testing phase, the target's location distribution became random. In addition, the training and testing phases were based on different tasks. Probability cuing did not transfer between visual search and a foraging-like task. However, it did transfer between various types of visual search tasks that differed in stimuli and difficulty. These data suggest that different visual search tasks share a common and transferrable learned attentional bias. However, this bias is not shared by high-level, decision-making tasks such as foraging. PMID:25113853

  16. Spatial and Temporal Response of Auroral and Subauroral Plasma Convection to High- Latitude Drivers of Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Greenwald, R. A.; Ruohoniemi, M.; Baker, J. B.; Talaat, E.; Lester, M.; Oksavik, K.

    2008-12-01

    During the IPY, the second of two lower-latitude SuperDARN radars was put into operation in the eastern U.S. Located at Blackstone, VA and directed toward central Canada, it extends the coverage of the preexisting Wallops Island radar to more than 4 hours of magnetic local time and covers 50-70 degrees geomagnetic latitude providing coverage of ionospheric plasma convection and electric fields on magnetic field lines connected to the inner boundary of the plasmasheet, ring current and plasmapause. Although initial measurements with this coordinated pair of radars were made at a time of low geomagnetic activity, there have been many opportunities to examine both the spatial and temporal response of low-latitude auroral and subauroral plasma convection and its associated electric field to a variety of high-latitude magnetospheric drivers including dayside reconnection and midnight sector substorms. In this paper, we discuss the dynamical response of these flows to both dayside reconnection and substorms. We specifically examine the timing, location, spatial extent and intensity of these flow enhancements versus the nature and strength of the driver.

  17. A small-area study of environmental risk assessment of outdoor falls.

    PubMed

    Lai, Poh-Chin; Wong, Wing-Cheung; Low, Chien-Tat; Wong, Martin; Chan, Ming-Houng

    2011-12-01

    Falls in public places are an issue of great health concern especially for the elderly. Falls among the elderly is also a major health burden in many countries. This study describes a spatial approach to assess environmental causes of outdoor falls using a small urban community in Hong Kong as an example. The method involves collecting data on fall occurrences and mapping their geographic positions to examine circumstances and environmental evidence that contribute to falls. High risk locations or hot spots of falls are identified on the bases of spatial proximity and concentration of falls within a threshold distance by means of kernel smoothing and standard deviational ellipses. This method of geographic aggregation of individual fall incidents for a small-area study yields hot spots of manageable sizes. The spatial clustering approach is effective in two ways. Firstly, it allows visualisation and isolation of fall hot spots to draw focus. Secondly and especially under conditions of resource decline, policy makers are able to target specific locations to examine the underlying causal mechanisms and strategise effective response and preventive measures based on the types of environmental risk factors identified.

  18. Monitoring survival rates of landbirds at varying spatial scales: An application of the MAPS Program

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; Hines, J.E.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Survivorship is a primary demographic parameter affecting population dynamics, and thus trends in species abundance. The Monitoring Avian Productivity and Survivorship (MAPS) program is a cooperative effort designed to monitor landbird demographic parameters. A principle goal of MAPS is to estimate annual survivorship and identify spatial patterns and temporal trends in these rates. We evaluated hypotheses of spatial patterns in survival rates among a collection of neighboring sampling sites, such as within national forests, among biogeographic provinces, and between breeding populations that winter in either Central or South America, and compared these geographic-specific models to a model of a common survival rate among all sampling sites. We used data collected during 1992-1995 from Swainson's Thrush (Cathorus ustulatus) populations in the western region of the United States. We evaluated the ability to detect spatial and temporal patterns of survivorship with simulated data. We found weak evidence of spatial differences in survival rates at the local scale of 'location,' which typically contained 3 mist-netting stations. There was little evidence of differences in survival rates among biogeographic provinces or between populations that winter in either Central or South America. When data were pooled for a regional estimate of survivorship, the percent relative bias due to pooling 'locations' was 12 years of monitoring. Detection of spatial patterns and temporal trends in survival rates from local to regional scales will provide important information for management and future research directed toward conservation of landbirds.

  19. Encoding of Reward and Space During a Working Memory Task in the Orbitofrontal Cortex and Anterior Cingulate Sulcus

    PubMed Central

    Kennerley, Steven W.

    2009-01-01

    Several lines of research indicate that emotional and motivational information may be useful in guiding the allocation of attentional resources. Two areas of the frontal lobe that are particularly implicated in the encoding of motivational information are the orbital prefrontal cortex (PFo) and the dorsomedial region of prefrontal cortex, specifically the anterior cingulate sulcus (PFcs). However, it remains unclear whether these areas use this information to influence spatial attention. We used single-unit neurophysiology to examine whether, at the level of individual neurons, there was evidence for integration between reward information and spatial attention. We trained two subjects to perform a task that required them to attend to a spatial location across a delay under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. We found little evidence for encoding of the spatial location in either PFo or PFcs. In contrast, both areas encoded the expected reward. Furthermore, PFo consistently encoded reward more quickly than PFcs, although reward encoding was subsequently more prevalent and stronger in PFcs. These results suggest a differential contribution of PFo and PFcs to reward encoding, with PFo potentially more important for initially determining the value of rewards predicted by sensory stimuli. They also suggest that neither PFo nor PFcs play a direct role in the control of spatial attention. PMID:19776363

  20. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  1. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors.

    PubMed

    Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan

    2003-03-15

    Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.

  2. Spatially Informed Plant PRA Models for Security Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric

    2006-07-01

    Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic riskmore » assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)« less

  3. Spatial memory and navigation by honeybees on the scale of the foraging range

    PubMed

    Dyer

    1996-01-01

    Honeybees and other nesting animals face the problem of finding their way between their nest and distant feeding sites. Many studies have shown that insects can learn foraging routes in reference to both landmarks and celestial cues, but it is a major puzzle how spatial information obtained from these environmental features is encoded in memory. This paper reviews recent progress by my colleagues and me towards understanding three specific aspects of this problem in honeybees: (1) how bees learn the spatial relationships among widely separated locations in a familiar terrain; (2) how bees learn the pattern of movement of the sun over the day; and (3) whether, and if so how, bees learn the relationships between celestial cues and landmarks.

  4. Time and Space in Tzeltal: Is the Future Uphill?

    PubMed Central

    Brown, Penelope

    2012-01-01

    Linguistic expressions of time often draw on spatial language, which raises the question of whether cultural specificity in spatial language and cognition is reflected in thinking about time. In the Mayan language Tzeltal, spatial language relies heavily on an absolute frame of reference utilizing the overall slope of the land, distinguishing an “uphill/downhill” axis oriented from south to north, and an orthogonal “crossways” axis (sunrise-set) on the basis of which objects at all scales are located. Does this absolute system for calculating spatial relations carry over into construals of temporal relations? This question was explored in a study where Tzeltal consultants produced temporal expressions and performed two different non-linguistic temporal ordering tasks. The results show that at least five distinct schemata for conceptualizing time underlie Tzeltal linguistic expressions: (i) deictic ego-centered time, (ii) time as an ordered sequence (e.g., “first”/“later”), (iii) cyclic time (times of the day, seasons), (iv) time as spatial extension or location (e.g., “entering/exiting July”), and (v) a time vector extending uphillwards into the future. The non-linguistic task results showed that the “time moves uphillwards” metaphor, based on the absolute frame of reference prevalent in Tzeltal spatial language and thinking and important as well in the linguistic expressions for time, is not strongly reflected in responses on these tasks. It is argued that systematic and consistent use of spatial language in an absolute frame of reference does not necessarily transfer to consistent absolute time conceptualization in non-linguistic tasks; time appears to be more open to alternative construals. PMID:22787451

  5. Spatial and temporal dynamics of lake whitefish (Coregonus clupeaformis) health indicators: linking individual-based indicators to a management-relevant endpoint

    USGS Publications Warehouse

    Wagner, Tyler; Jones, Michael L.; Ebener, Mark P.; Arts, Michael T.; Brenden, Travis O.; Honeyfield, Dale C.; Wright, Gregory M.; Faisal, Mohamed

    2010-01-01

    We examined the spatial and temporal dynamics of health indicators in four lake whitefish (Coregonus clupeaformis) stocks located in northern lakes Michigan and Huron from 2003 to 2006. The specific objectives were to (1) quantify spatial and temporal variability in health indicators; (2) examine relationships among nutritional indicators and stock-specific spatial and temporal dynamics of pathogen prevalence and intensity of infection; and (3) examine relationships between indicators measured on individual fish and stock-specific estimates of natural mortality. The percent of the total variation attributed to spatial and temporal sources varied greatly depending on the health indicator examined. The most notable pattern was a downward trend in the concentration of highly unsaturated fatty acids (HUFAs), observed in all stocks, in the polar lipid fraction of lake whitefish dorsal muscle tissue over the three study years. Variation among stocks and years for some indicators were correlated with the prevalence and intensity of the swimbladder nematode Cystidicola farionis, suggesting that our measures of fish health were related, at some level, with disease dynamics. We did not find relationships between spatial patterns in fish health indicators and estimates of natural mortality rates for the stocks. Our research highlights the complexity of the interactions between fish nutritional status, disease dynamics, and natural mortality in wild fish populations. Additional research that identifies thresholds of health indicators, below (or above) which survival may be reduced, will greatly help in understanding the relationship between indicators measured on individual fish and potential population-level effects.

  6. Number Prompts Left-to-Right Spatial Mapping in Toddlerhood

    ERIC Educational Resources Information Center

    McCrink, Koleen; Perez, Jasmin; Baruch, Erica

    2017-01-01

    Toddlers performed a spatial mapping task in which they were required to learn the location of a hidden object in a vertical array and then transpose this location information 90° to a horizontal array. During the vertical training, they were given (a) no labels, (b) alphabetical labels, or (c) numerical labels for each potential spatial location.…

  7. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks.

    PubMed

    Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.

  8. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks

    PubMed Central

    Wu, Chenxue; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687

  9. Spatial distribution of 12 class B notifiable infectious diseases in China: A retrospective study

    PubMed Central

    Zhu, Bin; Fu, Yang; Liu, Jinlin

    2018-01-01

    Background China is the largest developing country with a relatively developed public health system. To further prevent and eliminate the spread of infectious diseases, China has listed 39 notifiable infectious diseases characterized by wide prevalence or great harm, and classified them into classes A, B, and C, with severity decreasing across classes. Class A diseases have been almost eradicated in China, thus making class B diseases a priority in infectious disease prevention and control. In this retrospective study, we analyze the spatial distribution patterns of 12 class B notifiable infectious diseases that remain active all over China. Methods Global and local Moran’s I and corresponding graphic tools are adopted to explore and visualize the global and local spatial distribution of the incidence of the selected epidemics, respectively. Inter-correlations of clustering patterns of each pair of diseases and a cumulative summary of the high/low cluster frequency of the provincial units are also provided by means of figures and maps. Results Of the 12 most commonly notifiable class B infectious diseases, viral hepatitis and tuberculosis show high incidence rates and account for more than half of the reported cases. Almost all the diseases, except pertussis, exhibit positive spatial autocorrelation at the provincial level. All diseases feature varying spatial concentrations. Nevertheless, associations exist between spatial distribution patterns, with some provincial units displaying the same type of cluster features for two or more infectious diseases. Overall, high–low (unit with high incidence surrounded by units with high incidence, the same below) and high–high spatial cluster areas tend to be prevalent in the provincial units located in western and southwest China, whereas low–low and low–high spatial cluster areas abound in provincial units in north and east China. Conclusion Despite the various distribution patterns of 12 class B notifiable infectious diseases, certain similarities between their spatial distributions are present. Substantial evidence is available to support disease-specific, location-specific, and disease-combined interventions. Regarding provinces that show high–high/high–low patterns of multiple diseases, comprehensive interventions targeting different diseases should be established. As to the adjacent provincial units revealing similar patterns, coordinated actions need to be taken across borders. PMID:29621351

  10. The Role of Experience in Location Estimation: Target Distributions Shift Location Memory Biases

    ERIC Educational Resources Information Center

    Lipinski, John; Simmering, Vanessa R.; Johnson, Jeffrey S.; Spencer, John P.

    2010-01-01

    Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. "Cognition, 93", 75-97]. This conflicts with earlier results showing…

  11. Practical guidance on characterizing availability in resource selection functions under a use-availability design

    USGS Publications Warehouse

    Northrup, Joseph M.; Hooten, Mevin B.; Anderson, Charles R.; Wittemyer, George

    2013-01-01

    Habitat selection is a fundamental aspect of animal ecology, the understanding of which is critical to management and conservation. Global positioning system data from animals allow fine-scale assessments of habitat selection and typically are analyzed in a use-availability framework, whereby animal locations are contrasted with random locations (the availability sample). Although most use-availability methods are in fact spatial point process models, they often are fit using logistic regression. This framework offers numerous methodological challenges, for which the literature provides little guidance. Specifically, the size and spatial extent of the availability sample influences coefficient estimates potentially causing interpretational bias. We examined the influence of availability on statistical inference through simulations and analysis of serially correlated mule deer GPS data. Bias in estimates arose from incorrectly assessing and sampling the spatial extent of availability. Spatial autocorrelation in covariates, which is common for landscape characteristics, exacerbated the error in availability sampling leading to increased bias. These results have strong implications for habitat selection analyses using GPS data, which are increasingly prevalent in the literature. We recommend researchers assess the sensitivity of their results to their availability sample and, where bias is likely, take care with interpretations and use cross validation to assess robustness.

  12. Variability in Spatially and Temporally Resolved Emissions and Hydrocarbon Source Fingerprints for Oil and Gas Sources in Shale Gas Production Regions.

    PubMed

    Allen, David T; Cardoso-Saldaña, Felipe J; Kimura, Yosuke

    2017-10-17

    A gridded inventory for emissions of methane, ethane, propane, and butanes from oil and gas sources in the Barnett Shale production region has been developed. This inventory extends previous spatially resolved inventories of emissions by characterizing the overall variability in emission magnitudes and the composition of emissions at an hourly time resolution. The inventory is divided into continuous and intermittent emission sources. Sources are defined as continuous if hourly averaged emissions are greater than zero in every hour; otherwise, they are classified as intermittent. In the Barnett Shale, intermittent sources accounted for 14-30% of the mean emissions for methane and 10-34% for ethane, leading to spatial and temporal variability in the location of hourly emissions. The combined variability due to intermittent sources and variability in emission factors can lead to wide confidence intervals in the magnitude and composition of time and location-specific emission inventories; therefore, including temporal and spatial variability in emission inventories is important when reconciling inventories and observations. Comparisons of individual aircraft measurement flights conducted in the Barnett Shale region versus the estimated emission rates for each flight from the emission inventory indicate agreement within the expected variability of the emission inventory for all flights for methane and for all but one flight for ethane.

  13. Exploring spatial patterns of farmland transactions and farmland use changes.

    PubMed

    Chang, Hsueh-Sheng; Chen, Tzu-Ling

    2015-09-01

    Strong economic incentives stimulate the conversion of farmland to non-farm uses possessing higher economic benefits, and rising land values can result in further conversions in the surrounding areas. However, previous studies focused exclusively on the analysis of attribute data, without concern for location or geographic information. Our study focuses on the application of spatial analysis method by exploring the magnitude and patterns of farmland use changes and farmland transactions in Tainan County in southwestern Taiwan. The results show that farmland use changes and transactions appear to cluster in specific locations-near urban planning areas, industrial parks, and science parks. Clustered farmland use changes indicate both excessive development of some farmland and possible protection of other farmland, while clustered farmland transactions indicate potential pressure for future conversion to non-farming uses. Overall, the spatial analyses indicate (without necessarily implying a cause-and-effect relationship) that the greater the farmland use change, the greater the number of farmland transactions. This approach to exploring the spatial patterns in and the interaction between farmland use change and farmland transactions can be applied to other regions facing increasing competition for farmland conversions and may be a useful tool for monitoring both urban expansion and increased farmland transactions. These occurrences should be closely monitored by governments to avoid excessive loss of farmland.

  14. What does visual suffix interference tell us about spatial location in working memory?

    PubMed

    Allen, Richard J; Castellà, Judit; Ueno, Taiji; Hitch, Graham J; Baddeley, Alan D

    2015-01-01

    A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system.

  15. Common Neural Representations for Visually Guided Reorientation and Spatial Imagery

    PubMed Central

    Vass, Lindsay K.; Epstein, Russell A.

    2017-01-01

    Abstract Spatial knowledge about an environment can be cued from memory by perception of a visual scene during active navigation or by imagination of the relationships between nonvisible landmarks, such as when providing directions. It is not known whether these different ways of accessing spatial knowledge elicit the same representations in the brain. To address this issue, we scanned participants with fMRI, while they performed a judgment of relative direction (JRD) task that required them to retrieve real-world spatial relationships in response to either pictorial or verbal cues. Multivoxel pattern analyses revealed several brain regions that exhibited representations that were independent of the cues to access spatial memory. Specifically, entorhinal cortex in the medial temporal lobe and the retrosplenial complex (RSC) in the medial parietal lobe coded for the heading assumed on a particular trial, whereas the parahippocampal place area (PPA) contained information about the starting location of the JRD. These results demonstrate the existence of spatial representations in RSC, ERC, and PPA that are common to visually guided navigation and spatial imagery. PMID:26759482

  16. Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada

    PubMed Central

    Bertazzon, Stefania; Shahid, Rizwan

    2017-01-01

    An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children. PMID:28757577

  17. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    PubMed

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys

    PubMed Central

    Wilke, Melanie; Kagan, Igor; Andersen, Richard A.

    2012-01-01

    Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye movement targets. We measured fMRI activity in control and inactivation sessions while monkeys performed memory saccades to either instructed or autonomously chosen spatial locations. Inactivation caused a reduction of contralesional choices. Inactivation effects on fMRI activity were anatomically and functionally specific and mainly consisted of: (i) activity reduction in the upper bank of the superior temporal sulcus (temporal parietal occipital area) for single contralesional targets, especially in the inactivated hemisphere; and (ii) activity increase accompanying contralesional choices between bilateral targets in several frontal and parieto-temporal areas in both hemispheres. There was no overactivation for ipsilesional targets or choices in the intact hemisphere. Task-specific effects of LIP inactivation on blood oxygen level-dependent activity in the temporal parietal occipital area underline the importance of the superior temporal sulcus for spatial processing. Furthermore, our results agree only partially with the influential interhemispheric competition model of spatial neglect and suggest an additional component of interhemispheric cooperation in the compensation of neglect deficits. PMID:22562793

  19. Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging

    PubMed Central

    Paltoglou, Aspasia E; Sumner, Christian J; Hall, Deborah A

    2011-01-01

    Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast. PMID:21447093

  20. Activity spaces of men who have sex with men: An initial exploration of geographic variation in locations of routine, potential sexual risk, and prevention behaviors.

    PubMed

    Vaughan, Adam S; Kramer, Michael R; Cooper, Hannah L F; Rosenberg, Eli S; Sullivan, Patrick S

    2017-02-01

    Theory and research on HIV and among men who have sex with men (MSM) have long suggested the importance of non-residential locations in defining structural exposures. Despite this, most studies within these fields define place as a residential context, neglecting the potential influence of non-residential locations on HIV-related outcomes. The concept of activity spaces, defined as a set of locations to which an individual is routinely exposed, represents one theoretical basis for addressing this potential imbalance. Using a one-time online survey to collect demographic, behavioral, and spatial data from MSM, this paper describes activity spaces and examines correlates of this spatial variation. We used latent class analysis to identify categories of activity spaces using spatial data on home, routine, potential sexual risk, and HIV prevention locations. We then assessed individual and area-level covariates for their associations with these categories. Classes were distinguished by the degree of spatial variation in routine and prevention behaviors (which were the same within each class) and in sexual risk behaviors (i.e., sex locations and locations of meeting sex partners). Partner type (e.g. casual or main) represented a key correlate of the activity space. In this early examination of activity spaces in an online sample of MSM, patterns of spatial behavior represent further evidence of significant spatial variation in locations of routine, potential HIV sexual risk, and HIV prevention behaviors among MSM. Although prevention behaviors tend to have similar geographic variation as routine behaviors, locations where men engage in potentially high-risk behaviors may be more spatially focused for some MSM than for others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Where do bike lanes work best? A Bayesian spatial model of bicycle lanes and bicycle crashes

    Treesearch

    Michelle C. Kondo; Christopher Morrison; Erick Guerra; Elinore J. Kaufman; Douglas J. Wiebe

    2018-01-01

    US municipalities are increasingly introducing bicycle lanes to promote bicycle use, increase roadway safety and improve public health. The aim of this study was to identify specific locations where bicycle lanes, if created, could most effectively reduce crash rates. Previous research has found that bike lanes reduce crash incidence, but a lack of comprehensive...

  2. The Head Bone's Connected to the Neck Bone: When Do Toddlers Represent Their Own Body Topography?

    ERIC Educational Resources Information Center

    Brownell, Celia A.; Nichols, Sara R.; Svetlova, Margarita; Zerwas, Stephanie; Ramani, Geetha

    2010-01-01

    Developments in very young children's topographic representations of their own bodies were examined. Sixty-one 20- and 30-month-old children were administered tasks that indexed the ability to locate specific body parts on oneself and knowledge of how one's body parts are spatially organized, as well as body-size knowledge and self-awareness. Age…

  3. Assessment of the Spectral Stability of Libya 4, Libya 1, and Mauritania 2 Sites Using Earth Observing One Hyperion

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaoxiong; Angal, Amit; Chander, Gyanesh; Qu, John J.

    2014-01-01

    The objective of this paper is to formulate a methodology to assess the spectral stability of the Libya 4, Libya 1, and Mauritania 2 pseudo-invariant calibration sites (PICS) using Earth Observing One (EO-1) Hyperion sensor. All the available Hyperion collections, downloaded from the Earth Explorer website, were utilized for the three PICS. In each site, a reference spectrum is selected at a specific day in the vicinity of the region of interest (ROI) defined by Committee on Earth Observation Satellites (CEOS). A series of ROIs are predefined in the along-track direction with 196 spectral top-of-atmosphere reflectance values in each ROI. Based on the reference ROI spectrum, the spectral stability of these ROIs is evaluated by average deviations (ADs) and spectral angle mapper (SAM) methods in the specific ranges of time and geo-spatial locations. Time and ROI location-dependent SAM and AD results are very stable within +/- 2 deg and +/-1.7% of 1sigma standard deviations. Consequently, the Libya 4, Mauritania 2, and Libya 1 CEOS selected PICS are spectrally stable targets within the time and spatial swath ranges of the Hyperion collections.

  4. Mapping the timecourse of goal-directed attention to location and colour in human vision.

    PubMed

    Adams, Rachel C; Chambers, Christopher D

    2012-03-01

    Goal-directed attention prioritises perception of task-relevant stimuli according to location, features, or onset time. In this study we compared the behavioural timecourse of goal-directed selection to locations and colours by varying the stimulus-onset asynchrony (SOA) between cue and target in a strategic cueing paradigm. Participants reported the presence or absence of a target following prior information regarding its location or colour. Results revealed that preparatory selection by colour is more effective at enhancing perceptual sensitivity than selection by location, even though both types of cue provided equivalent overall information. More detailed analysis revealed that this advantage arose due a limitation of spatial attention in maintaining a sufficiently broad focus (>2°) for target detection across multiple stimuli. In contrast, when target stimuli fell within 2° of the spatial attention spotlight, the strategic advantages and speed of spatial and colour attention were equated. Our findings are consistent with the conclusion that, under spatially optimal conditions, prior spatial and colour information are equally proficient at guiding top-down selection. When spatial locations are ambiguous, however, colour-based selection is the more efficient mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sustained Splits of Attention within versus across Visual Hemifields Produce Distinct Spatial Gain Profiles.

    PubMed

    Walter, Sabrina; Keitel, Christian; Müller, Matthias M

    2016-01-01

    Visual attention can be focused concurrently on two stimuli at noncontiguous locations while intermediate stimuli remain ignored. Nevertheless, behavioral performance in multifocal attention tasks falters when attended stimuli fall within one visual hemifield as opposed to when they are distributed across left and right hemifields. This "different-hemifield advantage" has been ascribed to largely independent processing capacities of each cerebral hemisphere in early visual cortices. Here, we investigated how this advantage influences the sustained division of spatial attention. We presented six isoeccentric light-emitting diodes (LEDs) in the lower visual field, each flickering at a different frequency. Participants attended to two LEDs that were spatially separated by an intermediate LED and responded to synchronous events at to-be-attended LEDs. Task-relevant pairs of LEDs were either located in the same hemifield ("within-hemifield" conditions) or separated by the vertical meridian ("across-hemifield" conditions). Flicker-driven brain oscillations, steady-state visual evoked potentials (SSVEPs), indexed the allocation of attention to individual LEDs. Both behavioral performance and SSVEPs indicated enhanced processing of attended LED pairs during "across-hemifield" relative to "within-hemifield" conditions. Moreover, SSVEPs demonstrated effective filtering of intermediate stimuli in "across-hemifield" condition only. Thus, despite identical physical distances between LEDs of attended pairs, the spatial profiles of gain effects differed profoundly between "across-hemifield" and "within-hemifield" conditions. These findings corroborate that early cortical visual processing stages rely on hemisphere-specific processing capacities and highlight their limiting role in the concurrent allocation of visual attention to multiple locations.

  6. A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete.

    PubMed

    Jarick, Michelle; Dixon, Mike J; Stewart, Mark T; Maxwell, Emily C; Smilek, Daniel

    2009-01-01

    Synaesthesia is a fascinating condition whereby individuals report extraordinary experiences when presented with ordinary stimuli. Here we examined an individual (L) who experiences time units (i.e., months of the year and hours of the day) as occupying specific spatial locations (January is 30 degrees to the left of midline). This form of time-space synaesthesia has been recently investigated by Smilek et al. (2007) who demonstrated that synaesthetic time-space associations are highly consistent, occur regardless of intention, and can direct spatial attention. We extended this work by showing that for the synaesthete L, her time-space vantage point changes depending on whether the time units are seen or heard. For example, when L sees the word JANUARY, she reports experiencing January on her left side, however when she hears the word "January" she experiences the month on her right side. L's subjective reports were validated using a spatial cueing paradigm. The names of months were centrally presented followed by targets on the left or right. L was faster at detecting targets in validly cued locations relative to invalidly cued locations both for visually presented cues (January orients attention to the left) and for aurally presented cues (January orients attention to the right). We replicated this difference in visual and aural cueing effects using hour of the day. Our findings support previous research showing that time-space synaesthesia can bias visual spatial attention, and further suggest that for this synaesthete, time-space associations differ depending on whether they are visually or aurally induced.

  7. High road utilizers surveys compared to police data for road traffic crash hotspot localization in Rwanda and Sri Lanka.

    PubMed

    Staton, Catherine A; De Silva, Vijitha; Krebs, Elizabeth; Andrade, Luciano; Rulisa, Stephen; Mallawaarachchi, Badra Chandanie; Jin, Kezhi; RicardoVissoci, Joao; Østbye, Truls

    2016-01-20

    Road traffic crashes (RTCs) are a leading cause of death. In low and middle income countries (LMIC) data to conduct hotspot analyses and safety audits are usually incomplete, poor quality, and not computerized. Police data are often limited, but there are no alternative gold standards. This project evaluates high road utilizer surveys as an alternative to police data to identify RTC hotspots. Retrospective police RTC data was compared to prospective data from high road utilizer surveys regarding dangerous road locations. Spatial analysis using geographic information systems was used to map dangerous locations and identify RTC hotspots. We assessed agreement (Cohen's Kappa), sensitivity/specificity, and cost differences. In Rwanda police data identified 1866 RTC locations from 2589 records while surveys identified 1264 locations from 602 surveys. In Sri Lanka, police data identified 721 RTC locations from 752 records while survey data found 3000 locations from 300 surveys. There was high agreement (97 %, 83 %) and kappa (0.60, 0.60) for Rwanda and Sri Lanka respectively. Sensitivity and specificity are 92 % and 95 % for Rwanda and 74 % and 93 % for Sri Lanka. The cost per crash location identified was $2.88 for police and $2.75 for survey data in Rwanda and $2.75 for police and $1.21 for survey data in Sri Lanka. Surveys to locate RTC hotspots have high sensitivity and specificity compared to police data. Therefore, surveys can be a viable, inexpensive, and rapid alternative to the use of police data in LMIC.

  8. Contact, Travel, and Transmission: The Impact of Winter Holidays on Influenza Dynamics in the United States

    PubMed Central

    Ewing, Anne; Lee, Elizabeth C.; Viboud, Cécile

    2017-01-01

    Abstract Background. The seasonality of influenza is thought to vary according to environmental factors and human behavior. During winter holidays, potential disease-causing contact and travel deviate from typical patterns. We aim to understand these changes on age-specific and spatial influenza transmission. Methods. We characterized the changes to transmission and epidemic trajectories among children and adults in a spatial context before, during, and after the winter holidays among aggregated physician medical claims in the United States from 2001 to 2009 and among synthetic data simulated from a deterministic, age-specific spatial metapopulation model. Results. Winter holidays reduced influenza transmission and delayed the trajectory of influenza season epidemics. The holiday period was marked by a shift in the relative risk of disease from children toward adults. Model results indicated that holidays delayed epidemic peaks and synchronized incidence across locations, and that contact reductions from school closures, rather than age-specific mixing and travel, produced these observed holiday influenza dynamics. Conclusions. Winter holidays delay seasonal influenza epidemic peaks and shift disease risk toward adults because of changes in contact patterns. These findings may inform targeted influenza information and vaccination campaigns during holiday periods. PMID:28031259

  9. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  10. Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames

    PubMed Central

    Kelemen, Eduard; Fenton, André A.

    2010-01-01

    Cognitive control is the ability to coordinate multiple streams of information to prevent confusion and select appropriate behavioral responses, especially when presented with competing alternatives. Despite its theoretical and clinical significance, the neural mechanisms of cognitive control are poorly understood. Using a two-frame place avoidance task and partial hippocampal inactivation, we confirmed that intact hippocampal function is necessary for coordinating two streams of spatial information. Rats were placed on a continuously rotating arena and trained to organize their behavior according to two concurrently relevant spatial frames: one stationary, the other rotating. We then studied how information about locations in these two spatial frames is organized in the action potential discharge of ensembles of hippocampal cells. Both streams of information were represented in neuronal discharge—place cell activity was organized according to both spatial frames, but almost all cells preferentially represented locations in one of the two spatial frames. At any given time, most coactive cells tended to represent locations in the same spatial frame, reducing the risk of interference between the two information streams. An ensemble's preference to represent locations in one or the other spatial frame alternated within a session, but at each moment, location in the more behaviorally relevant spatial frame was more likely to be represented. This discharge organized into transient groups of coactive neurons that fired together within 25 ms to represent locations in the same spatial frame. These findings show that dynamic grouping, the transient coactivation of neural subpopulations that represent the same stream of information, can coordinate representations of concurrent information streams and avoid confusion, demonstrating neural-ensemble correlates of cognitive control in hippocampus. PMID:20585373

  11. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia.

    PubMed

    Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David

    2017-10-01

    Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  13. Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition

    PubMed Central

    Wilson, David IG; Langston, Rosamund F; Schlesiger, Magdalene I; Wagner, Monica; Watanabe, Sakurako; Ainge, James A

    2013-01-01

    Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus. © 2013 Wiley Periodicals, Inc. PMID:23389958

  14. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    USGS Publications Warehouse

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  15. Spatiotemporal Analysis of Malaria in Urban Ahmedabad (Gujarat), India: Identification of Hot Spots and Risk Factors for Targeted Intervention

    PubMed Central

    Parizo, Justin; Sturrock, Hugh J. W.; Dhiman, Ramesh C.; Greenhouse, Bryan

    2016-01-01

    The world population, especially in developing countries, has experienced a rapid progression of urbanization over the last half century. Urbanization has been accompanied by a rise in cases of urban infectious diseases, such as malaria. The complexity and heterogeneity of the urban environment has made study of specific urban centers vital for urban malaria control programs, whereas more generalizable risk factor identification also remains essential. Ahmedabad city, India, is a large urban center located in the state of Gujarat, which has experienced a significant Plasmodium vivax and Plasmodium falciparum disease burden. Therefore, a targeted analysis of malaria in Ahmedabad city was undertaken to identify spatiotemporal patterns of malaria, risk factors, and methods of predicting future malaria cases. Malaria incidence in Ahmedabad city was found to be spatially heterogeneous, but temporally stable, with high spatial correlation between species. Because of this stability, a prediction method utilizing historic cases from prior years and seasons was used successfully to predict which areas of Ahmedabad city would experience the highest malaria burden and could be used to prospectively target interventions. Finally, spatial analysis showed that normalized difference vegetation index, proximity to water sources, and location within Ahmedabad city relative to the dense urban core were the best predictors of malaria incidence. Because of the heterogeneity of urban environments and urban malaria itself, the study of specific large urban centers is vital to assist in allocating resources and informing future urban planning. PMID:27382081

  16. a Comparative Analysis of Five Cropland Datasets in Africa

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Lu, M.; Wu, W.

    2018-04-01

    The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

  17. Spatial cues more salient than color cues in cotton-top tamarins (Saguinus oedipus) reversal learning.

    PubMed

    Gaudio, Jennifer L; Snowdon, Charles T

    2008-11-01

    Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  18. The Spatial Distribution of Attention within and across Objects

    PubMed Central

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2011-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a “grouped array”). Using a modified version of the Egly et al. object cuing task, we systematically manipulated within-object distance and object boundaries. Four major findings are reported: 1) spatial attention forms a gradient across the attended object; 2) object boundaries limit the distribution of this gradient, with the spread of attention constrained by a boundary; 3) boundaries within an object operate similarly to across-object boundaries: we observed object-based effects across a discontinuity within a single object, without the demand to divide or switch attention between discrete object representations; and 4) the gradient of spatial attention across an object directly modulates perceptual sensitivity, implicating a relatively early locus for the grouped array representation. PMID:21728455

  19. Spatial modeling of the geographic distribution of wildlife populations: A case study in the lower Mississippi River region

    USGS Publications Warehouse

    Ji, W.; Jeske, C.

    2000-01-01

    A geographic information system (GIS)-based spatial modeling approach was developed to study environmental and land use impacts on the geographic distribution of wintering northern pintails (Arias acuta) in the Lower Mississippi River region. Pintails were fitted with backpack radio transmitter packages at Catahoula Lake, LA, in October 1992-1994 and located weekly through the following March. Pintail survey data were converted into a digital database in ARC/INFO GIS format and integrated with environmental GIS data through a customized modeling interface. The study verified the relationship between pintail distributions and major environmental factors and developed a conceptual relation model. Visualization-based spatial simulations were used to display the movement patterns of specific population groups under spatial and temporal constraints. The spatial modeling helped understand the seasonal movement patterns of pintails in relation to their habitat usage in Arkansas and southwestern Louisiana for wintering and interchange situations among population groups wintering in Texas and southeastern Louisiana. (C) 2000 Elsevier Science B.V.

  20. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    NASA Astrophysics Data System (ADS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  1. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    PubMed

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  2. Joint Effect of Habitat Identity and Spatial Distance on Spiders' Community Similarity in a Fragmented Transition Zone.

    PubMed

    Gavish, Yoni; Ziv, Yaron

    2016-01-01

    Understanding the main processes that affect community similarity have been the focus of much ecological research. However, the relative effects of environmental and spatial aspects in structuring ecological communities is still unresolved and is probably scale-dependent. Here, we examine the effect of habitat identity and spatial distance on fine-grained community similarity within a biogeographic transition zone. We compared four hypotheses: i) habitat identity alone, ii) spatial proximity alone, iii) non-interactive effects of both habitat identity and spatial proximity, and iv) interactive effect of habitat identity and spatial proximity. We explored these hypotheses for spiders in three fragmented landscapes located along the sharp climatic gradient of Southern Judea Lowlands (SJL), Israel. We sampled 14,854 spiders (from 199 species or morphospecies) in 644 samples, taken in 35 patches and stratified to nine different habitats. We calculated the Bray-Curtis similarity between all samples-pairs. We divided the pairwise values to four functional distance categories (same patch, different patches from the same landscape, adjacent landscapes and distant landscapes) and two habitat categories (same or different habitats) and compared them using non-parametric MANOVA. A significant interaction between habitat identity and spatial distance was found, such that the difference in mean similarity between same-habitat pairs and different-habitat pairs decreases with spatial distance. Additionally, community similarity decayed with spatial distance. Furthermore, at all distances, same-habitat pairs had higher similarity than different-habitats pairs. Our results support the fourth hypothesis of interactive effect of habitat identity and spatial proximity. We suggest that the environmental complexity of habitats or increased habitat specificity of species near the edge of their distribution range may explain this pattern. Thus, in transitions zones care should be taken when using habitats as surrogate of community composition in conservation planning since similar habitats in different locations are more likely to support different communities.

  3. Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon

    NASA Astrophysics Data System (ADS)

    Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.

    2001-05-01

    Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.

  4. Reactivation of Rate Remapping in CA3.

    PubMed

    Schwindel, C Daniela; Navratilova, Zaneta; Ali, Karim; Tatsuno, Masami; McNaughton, Bruce L

    2016-09-07

    The hippocampus is thought to contribute to episodic memory by creating, storing, and reactivating patterns that are unique to each experience, including different experiences that happen at the same location. Hippocampus can combine spatial and contextual/episodic information using a dual coding scheme known as "global" and "rate" remapping. Global remapping selects which set of neurons can activate at a given location. Rate remapping readjusts the firing rates of this set depending on current experience, thus expressing experience-unique patterns at each location. But can the experience-unique component be retrieved spontaneously? Whereas reactivation of recent, spatially selective patterns in hippocampus is well established, it is never perfect, raising the issue of whether the experiential component might be absent. This question is key to the hypothesis that hippocampus can assist memory consolidation by reactivating and broadcasting experience-specific "index codes" to neocortex. In CA3, global remapping exhibits attractor-like dynamics, whereas rate remapping apparently does not, leading to the hypothesis that only the former can be retrieved associatively and casting doubt on the general consolidation hypothesis. Therefore, we studied whether the rate component is reactivated spontaneously during sleep. We conducted neural ensemble recordings from CA3 while rats ran on a circular track in different directions (in different sessions) and while they slept. It was shown previously that the two directions of running result in strong rate remapping. During sleep, the most recent rate distribution was reactivated preferentially. Therefore, CA3 can retrieve patterns spontaneously that are unique to both the location and the content of recent experience. The hippocampus is required for memory of events and their spatial contexts. The primary correlate of hippocampal activity is location in space, but multiple memories can occur in the same location. To be useful for distinguishing these memories, the hippocampus must be able, not only to express, but also to retrieve both spatial and nonspatial information about events. Whether it can retrieve nonspatial information has been challenged recently. We exposed rats to two different experiences (running in different directions) in the same locations and showed that even the nonspatial components of hippocampal cell firing are reactivated spontaneously during sleep, supporting the conclusion that both types of information about a recent experience can be retrieved. Copyright © 2016 the authors 0270-6474/16/369342-09$15.00/0.

  5. A public hedonic analysis of environmental attributes in an open space preservation program

    NASA Astrophysics Data System (ADS)

    Nordman, Erik E.

    The Town of Brookhaven, on Long Island, NY, has implemented an open space preservation program to protect natural areas, and the ecosystem services they provide, from suburban growth. I used a public hedonic model of Brookhaven's open space purchases to estimate implicit prices for various environmental attributes, locational variables and spatial metrics. I also measured the correlation between cost per acre and non-monetary environmental benefit scores and tested whether including cost data, as opposed to non-monetary environmental benefit score alone, would change the prioritization ranks of acquired properties. The mean acquisition cost per acre was 82,501. I identified the key on-site environmental and locational variables using stepwise regression for four functional forms. The log-log specification performed best ( R2adj= 0.727). I performed a second stepwise regression (log-log form) which included spatial metrics, calculated from a high-resolution land cover classification, in addition to the environmental and locational variables. This markedly improved the model's performance ( R2adj=0.866). Statistically significant variables included the property size, location in the Pine Barrens Compatible Growth Area, location in a FEMA flood zone, adjacency to public land, and several other environmental dummy variables. The single significant spatial metric, the fractal dimension of the tree cover class, had the largest elasticity of any variable. Of the dummy variables, location within the Compatible Growth Area had the largest implicit price (298,792 per acre). The priority rank for the two methods, non-monetary environmental benefit score alone and the ratio of non-monetary environmental benefit score to acquisition cost were significantly positively correlated. This suggests that, despite the lack of cost data in their ranking method, Brookhaven does not suffer from efficiency losses. The economics literature encourages using both environmental benefits and acquisition costs to ensure cost-effective conservation programs. I recommend that Brookhaven consider acquisition costs in addition to environmental benefits to avert potential efficiency losses in future open space purchases. This dissertation shows that the addition of spatial metrics can enhance the performance of hedonic models. It also provides a baseline valuation for the environmental attributes of Brookhaven' open spaces and shows that location is critical when dealing with open space preservation programs.

  6. The role of experience in location estimation: Target distributions shift location memory biases.

    PubMed

    Lipinski, John; Simmering, Vanessa R; Johnson, Jeffrey S; Spencer, John P

    2010-04-01

    Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93, 75-97]. This conflicts with earlier results showing that location estimation is biased relative to the spatial distribution of targets [Spencer, J. P., & Hund, A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial categories. Journal of Experimental Psychology: General, 131, 16-37]. Here, we resolve this controversy by using a task based on Huttenlocher et al. (Experiment 4) with minor modifications to enhance our ability to detect experience-dependent effects. Results after the first block of trials replicate the pattern reported in Huttenlocher et al. After additional experience, however, participants showed biases that significantly shifted according to the target distributions. These results are consistent with the Dynamic Field Theory, an alternative theory of spatial cognition that integrates long-term memory traces across trials relative to the perceived structure of the task space. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Interactions between space-based and feature-based attention.

    PubMed

    Leonard, Carly J; Balestreri, Angela; Luck, Steven J

    2015-02-01

    Although early research suggested that attention to nonspatial features (i.e., red) was confined to stimuli appearing at an attended spatial location, more recent research has emphasized the global nature of feature-based attention. For example, a distractor sharing a target feature may capture attention even if it occurs at a task-irrelevant location. Such findings have been used to argue that feature-based attention operates independently of spatial attention. However, feature-based attention may nonetheless interact with spatial attention, yielding larger feature-based effects at attended locations than at unattended locations. The present study tested this possibility. In 2 experiments, participants viewed a rapid serial visual presentation (RSVP) stream and identified a target letter defined by its color. Target-colored distractors were presented at various task-irrelevant locations during the RSVP stream. We found that feature-driven attentional capture effects were largest when the target-colored distractor was closer to the attended location. These results demonstrate that spatial attention modulates the strength of feature-based attention capture, calling into question the prior evidence that feature-based attention operates in a global manner that is independent of spatial attention.

  8. Ecosystem services from transborder migratory species: Implications for conservation governance

    USGS Publications Warehouse

    Lopez-Hoffman, Laura; Chester, Charles C.; Semmens, Darius J.; Thogmartin, Wayne E.; Rodriguez-McGoffin, M. Sofia; Merideth, Robert; Diffendorfer, Jay E.

    2017-01-01

    This article discusses the conservation challenges of volant migratory transborder species and conservation governance primarily in North America. Many migratory species provide ecosystem service benefits to society. For example, insectivorous bats prey on crop pests and reduce the need for pesticides; birds and insects pollinate food plants; and birds afford recreational opportunities to hunters and birdwatchers. Migration is driven by the seasonal availability of resources; as resources in one area become seasonally scarce, individuals move to locations where resources have become seasonally abundant. The separation of the annual lifecycle means that species management and governance is often fractured across international borders. Because migratory species depend on habitat in different locations, their ability to provide ecosystem services in one area depends on the spatial subsidies, or support, provided by habitat and ecological processes in other areas. This creates telecouplings, or interconnections across geographic space, of areas such that impacts to the habitat of a migratory species in one location will affect the benefits enjoyed by people in other locations. Information about telecoupling and spatial subsidies can be used to craft new governance arrangements such as Payment for Ecosystem Services programs that target specific stakeholder groups and locations. We illustrate these challenges and opportunities with three North American case studies: the Duck Stamp Program, Mexican free-tailed bats (Tadarida brasiliensis mexicana), and monarch butterflies (Danaus plexippus).

  9. Determination Of Slope Instability Using Spatially Integrated Mapping Framework

    NASA Astrophysics Data System (ADS)

    Baharuddin, I. N. Z.; Omar, R. C.; Roslan, R.; Khalid, N. H. N.; Hanifah, M. I. M.

    2016-11-01

    The determination and identification of slope instability are often rely on data obtained from in-situ soil investigation work where it involves the logistic of machineries and manpower, thus these aspects may increase the cost especially for remote locations. Therefore a method, which is able to identify possible slope instability without frequent ground walkabout survey, is needed. This paper presents the method used in prediction of slope instability using spatial integrated mapping framework which applicable for remote areas such as tropical forest and natural hilly terrain. Spatial data such as geology, topography, land use map, slope angle and elevation were used in regional analysis during desktop study. Through this framework, the occurrence of slope instability was able to be identified and was validate using a confirmatory site- specific analysis.

  10. Remembering Places in Space: A Human Analog Study of the Morris Water Maze

    NASA Astrophysics Data System (ADS)

    Fitting, Sylvia; Allen, Gary L.; Wedell, Douglas H.

    We conducted a human analog study of the Morris Water Maze, with individuals indicating a remembered location in a 3 m diameter arena over different intervals of time and with different memory loads. The primary focus of the study was to test a theory of how varying cue location and number of cues affects memory for spatial location. As expected, memory performance, as measured by proximity to the actual location, was negatively affected by increasing memory load, increasing delay interval, and decreasing the number of cues. As memory performance decremented, bias effects increased and were in accordance with the cue-based memory model described by Fitting, Wedell and Allen (2005). Specifically, remembered locations were biased toward the nearest cue and error decreased with more cues. These results demonstrate that localization processes that apply to small two-dimensional task fields may generalize to a larger traversable task field.

  11. Spatial distribution of Munida intermedia and M. sarsi (crustacea: Anomura) on the Galician continental shelf (NW Spain): Application of geostatistical analysis

    NASA Astrophysics Data System (ADS)

    Freire, J.; González-Gurriarán, E.; Olaso, I.

    1992-12-01

    Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.

  12. What versus where: Investigating how autobiographical memory retrieval differs when accessed with thematic versus spatial information.

    PubMed

    Sheldon, Signy; Chu, Sonja

    2017-09-01

    Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.

  13. Dorsal Hippocampus Function in Learning and Expressing a Spatial Discrimination

    ERIC Educational Resources Information Center

    White, Norman M.; Gaskin, Stephane

    2006-01-01

    Learning to discriminate between spatial locations defined by two adjacent arms of a radial maze in the conditioned cue preference paradigm requires two kinds of information: latent spatial learning when the rats explore the maze with no food available, and learning about food availability in two spatial locations when the rats are then confined…

  14. Object-centered representations support flexible exogenous visual attention across translation and reflection.

    PubMed

    Lin, Zhicheng

    2013-11-01

    Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, behavioralperformance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Object-centered representations support flexible exogenous visual attention across translation and reflection

    PubMed Central

    Lin, Zhicheng

    2013-01-01

    Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, human performance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. PMID:23942348

  16. Time-location analysis for exposure assessment studies of children using a novel global positioning system instrument.

    PubMed Central

    Elgethun, Kai; Fenske, Richard A; Yost, Michael G; Palcisko, Gary J

    2003-01-01

    Global positioning system (GPS) technology is used widely for business and leisure activities and offers promise for human time-location studies to evaluate potential exposure to environmental contaminants. In this article we describe the development of a novel GPS instrument suitable for tracking the movements of young children. Eleven children in the Seattle area (2-8 years old) wore custom-designed data-logging GPS units integrated into clothing. Location data were transferred into geographic information systems software for map overlay, visualization, and tabular analysis. Data were grouped into five location categories (in vehicle, inside house, inside school, inside business, and outside) to determine time spent and percentage reception in each location. Additional experiments focused on spatial resolution, reception efficiency in typical environments, and sources of signal interference. Significant signal interference occurred only inside concrete/steel-frame buildings and inside a power substation. The GPS instruments provided adequate spatial resolution (typically about 2-3 m outdoors and 4-5 m indoors) to locate subjects within distinct microenvironments and distinguish a variety of human activities. Reception experiments showed that location could be tracked outside, proximal to buildings, and inside some buildings. Specific location information could identify movement in a single room inside a home, on a playground, or along a fence line. The instrument, worn in a vest or in bib overalls, was accepted by children and parents. Durability of the wiring was improved early in the study to correct breakage problems. The use of GPS technology offers a new level of accuracy for direct quantification of time-location activity patterns in exposure assessment studies. PMID:12515689

  17. Spatial representations elicit dual-coding effects in mental imagery.

    PubMed

    Verges, Michelle; Duffy, Sean

    2009-08-01

    Spatial aspects of words are associated with their canonical locations in the real world. Yet little research has tested whether spatial associations denoted in language comprehension generalize to their corresponding images. We directly tested the spatial aspects of mental imagery in picture and word processing (Experiment 1). We also tested whether spatial representations of motion words produce similar perceptual-interference effects as demonstrated by object words (Experiment 2). Findings revealed that words denoting an upward spatial location produced slower responses to targets appearing at the top of the display, whereas words denoting a downward spatial location produced slower responses to targets appearing at the bottom of the display. Perceptual-interference effects did not obtain for pictures or for words lacking a spatial relation. These findings provide greater empirical support for the perceptual-symbols system theory (Barsalou, 1999, 2008). Copyright © 2009 Cognitive Science Society, Inc.

  18. Data on strategically located land and spatially integrated urban human settlements in South Africa.

    PubMed

    Musakwa, Walter

    2017-12-01

    In developing countries like South Africa processed geographic information systems (GIS) data on land suitability, is often not available for land use management. Data in this article is based on a published article "The strategically located land index support system for humans settlements land reform in South Africa" (Musakwa et al., 2017) [1]. This article utilities data from Musakwa et al. (2017) [1] and it goes on a step further by presenting the top 25th percentile of areas in the country that are strategically located and suited to develop spatially integrated human settlements. Furthermore the least 25th percentile of the country that are not strategically located and spatially integrated to establish human settlements are also presented. The article also presents the processed spatial datasets that where used to develop the strategically located land index as supplementary material. The data presented is meant to stir debate on spatially integrated human settlements in South Africa.

  19. Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research

    PubMed Central

    Zhang, Shaocun; Cao, Xiaocang; Huang, He

    2017-01-01

    Identifying intestinal microbiota is arguably an important task that is performed to determine the pathogenesis of inflammatory bowel diseases (IBD); thus, it is crucial to collect and analyze intestinally-associated microbiota. Analyzing a single niche to categorize individuals does not enable researchers to comprehensively study the spatial variations of the microbiota. Therefore, characterizing the spatial community structures of the inflammatory bowel disease microbiome is critical for advancing our understanding of the inflammatory landscape of IBD. However, at present there is no universally accepted consensus regarding the use of specific sampling strategies in different biogeographic locations. In this review, we discuss the spatial distribution when screening sample collections in IBD microbiota research. Here, we propose a novel model, a three-dimensional spatial community structure, which encompasses the x-, y-, and z-axis distributions; it can be used in some sampling sites, such as feces, colonoscopic biopsy, the mucus gel layer, and oral cavity. On the basis of this spatial model, this article also summarizes various sampling and processing strategies prior to and after DNA extraction and recommends guidelines for practical application in future research. PMID:28286741

  20. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain

    PubMed Central

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067

  1. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth). To check/test the spatial proposal of the ground station site, this analysis methodology uses mission simulation software of spatial vehicles to analyze and quantify how the geographic accuracy of the position of the spatial vehicles along the horizon visible from the antenna, increases communication time with the ground station. Experimental results that have been obtained from a ground station located at ETSIT-UPM in Spain (QBito Nanosatellite, UPM spacecraft mission within the QB50 project) show that selection of the optimal site increases the field of view from the antenna and hence helps to meet mission requirements.

  2. Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of the Visual Field With Glaucomatous Defects

    PubMed Central

    Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.

    2018-01-01

    Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116

  3. Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.

    PubMed

    Katus, Tobias; Andersen, Søren K; Müller, Matthias M

    2014-03-01

    Orienting attention to locations in mnemonic representations engages processes that functionally and anatomically overlap the neural circuitry guiding prospective shifts of spatial attention. The attention-based rehearsal account predicts that the requirement to withdraw attention from a memorized location impairs memory accuracy. In a dual-task study, we simultaneously presented retro-cues and pre-cues to guide spatial attention in short-term memory (STM) and perception, respectively. The spatial direction of each cue was independent of the other. The locations indicated by the combined cues could be compatible (same hand) or incompatible (opposite hands). Incompatible directional cues decreased lateralized activity in brain potentials evoked by visual cues, indicating interference in the generation of prospective attention shifts. The detection of external stimuli at the prospectively cued location was impaired when the memorized location was part of the perceptually ignored hand. The disruption of attention-based rehearsal by means of incompatible pre-cues reduced memory accuracy and affected encoding of tactile test stimuli at the retrospectively cued hand. These findings highlight the functional significance of spatial attention for spatial STM. The bidirectional interactions between both tasks demonstrate that spatial attention is a shared neural resource of a capacity-limited system that regulates information processing in internal and external stimulus representations.

  4. Age-related differences in the use of spatial and categorical relationships in a visuo-spatial working memory task.

    PubMed

    Dai, Ruizhi; Thomas, Ayanna K; Taylor, Holly A

    2018-01-30

    Research examining object identity and location processing in visuo-spatial working memory (VSWM) has yielded inconsistent results on whether age differences exist in VSWM. The present study investigated whether these inconsistencies may stem from age-related differences in VSWM sub-processes, and whether processing of component VSWM information can be facilitated. In two experiments, younger and older adults studied 5 × 5 grids containing five objects in separate locations. In a continuous recognition paradigm, participants were tested on memory for object identity, location, or identity and location information combined. Spatial and categorical relationships were manipulated within grids to provide trial-level facilitation. In Experiment 1, randomizing trial types (location, identity, combination) assured that participants could not predict the information that would be queried. In Experiment 2, blocking trials by type encouraged strategic processing. Thus, we manipulated the nature of the task through object categorical relationship and spatial organization, and trial blocking. Our findings support age-related declines in VSWM. Additionally, grid organizations (categorical and spatial relationships), and trial blocking differentially affected younger and older adults. Younger adults used spatial organizations more effectively whereas older adults demonstrated an association bias. Our finding also suggests that older adults may be less efficient than younger adults in strategically engaging information processing.

  5. MONET: multidimensional radiative cloud scene model

    NASA Astrophysics Data System (ADS)

    Chervet, Patrick

    1999-12-01

    All cloud fields exhibit variable structures (bulge) and heterogeneities in water distributions. With the development of multidimensional radiative models by the atmospheric community, it is now possible to describe horizontal heterogeneities of the cloud medium, to study these influences on radiative quantities. We have developed a complete radiative cloud scene generator, called MONET (French acronym for: MOdelisation des Nuages En Tridim.) to compute radiative cloud scene from visible to infrared wavelengths for various viewing and solar conditions, different spatial scales, and various locations on the Earth. MONET is composed of two parts: a cloud medium generator (CSSM -- Cloud Scene Simulation Model) developed by the Air Force Research Laboratory, and a multidimensional radiative code (SHDOM -- Spherical Harmonic Discrete Ordinate Method) developed at the University of Colorado by Evans. MONET computes images for several scenario defined by user inputs: date, location, viewing angles, wavelength, spatial resolution, meteorological conditions (atmospheric profiles, cloud types)... For the same cloud scene, we can output different viewing conditions, or/and various wavelengths. Shadowing effects on clouds or grounds are taken into account. This code is useful to study heterogeneity effects on satellite data for various cloud types and spatial resolutions, and to determine specifications of new imaging sensor.

  6. The supply of general practitioners across local areas: accounting for spatial heterogeneity.

    PubMed

    McIsaac, Michelle; Scott, Anthony; Kalb, Guyonne

    2015-10-03

    The geographic distribution of general practitioners (GPs) remains persistently unequal in many countries despite notable increases in overall supply. This paper explores how the factors associated with the supply of general practitioners (GPs) are aligned with the arbitrary geographic boundaries imposed by the use of spatially referenced GP supply data. Data on GP supply in postcodes within Australia are matched to data on the population characteristics and levels of amenities in postcodes. Tobit regression models are used that examine the associations between GP supply and postcode characteristics, whilst accounting for spatial heterogeneity. The results demonstrate that GPs do not consider space in a one-dimensional sense. Location choice is related to both neighbourhood-specific factors, such as hospitals, and broader area factors, such as area income and proximity to private schools. Although the proportion of females and elderly were related to GPs supply, mortality rate was not. This paper represents the first attempt to map the factors influencing GP supply to the appropriate geographic level at which GPs may be considering that factor. We suggest that both neighbourhood and broader regional characteristics can influence GPs' locational choices. This finding is highly relevant to the design and evaluation of relocation incentive programmes.

  7. Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals

    PubMed Central

    Daigle, Courtney L.; Banerjee, Debasmit; Montgomery, Robert A.; Biswas, Subir; Siegford, Janice M.

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare. PMID:25098421

  8. Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients

    PubMed Central

    Roach, Neil W.; Webb, Ben S.

    2013-01-01

    To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243

  9. Neural Correlates of Temporal-Order Judgments versus Those of Spatial-Location: Deactivation of Hippocampus May Facilitate Spatial Performance

    ERIC Educational Resources Information Center

    Rekkas, P. V.; Westerveld, M.; Skudlarski, P.; Zumer, J.; Pugh, K.; Spencer, D. D.; Constable, R. T.

    2005-01-01

    The retrieval of temporal-order versus spatial-location information was investigated using fMRI. The primary finding in the hippocampus proper, seen in region of interest analyses, was an increase in BOLD signal intensity for temporal retrieval, and a decrease in signal intensity for spatial retrieval, relative to baseline. The negative BOLD…

  10. Binding of Verbal and Spatial Features in Auditory Working Memory

    ERIC Educational Resources Information Center

    Maybery, Murray T.; Clissa, Peter J.; Parmentier, Fabrice B. R.; Leung, Doris; Harsa, Grefin; Fox, Allison M.; Jones, Dylan M.

    2009-01-01

    The present study investigated the binding of verbal identity and spatial location in the retention of sequences of spatially distributed acoustic stimuli. Study stimuli varying in verbal content and spatial location (e.g. V[subscript 1]S[subscript 1], V[subscript 2]S[subscript 2], V[subscript 3]S[subscript 3], V[subscript 4]S[subscript 4]) were…

  11. Spatial working memory in immersive virtual reality foraging: path organization, traveling distance and search efficiency in humans (Homo sapiens).

    PubMed

    De Lillo, Carlo; Kirby, Melissa; James, Frances C

    2014-05-01

    Search and serial recall tasks were used in the present study to characterize the factors affecting the ability of humans to keep track of a set of spatial locations while traveling in an immersive virtual reality foraging environment. The first experiment required the exhaustive exploration of a set of locations following a procedure previously used with other primate and non-primate species to assess their sensitivity to the geometric arrangement of foraging sites. The second experiment assessed the dependency of search performance on search organization by requiring the participants to recall specific trajectories throughout the foraging space. In the third experiment, the distance between the foraging sites was manipulated in order to contrast the effects of organization and traveling distance on recall accuracy. The results show that humans benefit from the use of organized search patterns when attempting to monitor their travel though either a clustered "patchy" space or a matrix of locations. Their ability to recall a series of locations is dependent on whether the order in which they are explored conformed or did not conform to specific organization principles. Moreover, the relationship between search efficiency and search organization is not confounded by effects of traveling distance. These results indicate that in humans, organizational factors may play a large role in their ability to forage efficiently. The extent to which such dependency may pertain to other primates and could be accounted for by visual organization processes is discussed on the basis of previous studies focused on perceptual grouping, search, and serial recall in non-human species. © 2013 Wiley Periodicals, Inc.

  12. Implicit representations of space after bilateral parietal lobe damage.

    PubMed

    Kim, M S; Robertson, L C

    2001-11-15

    There is substantial evidence that the primate cortex is grossly divided into two functional streams, an occipital-parietal-frontal pathway that processes "where" and an occipital-temporal-frontal pathway that processes "what" (Ungerleider and Mishkin, 1982). In humans, bilateral occipital-parietal damage results in severe spatial deficits and a neuropsychological disorder known as Balint's syndrome in which a single object can be perceived (simultanagnosia) but its location is unknown (Balint, 1995). The data reported here demonstrate that spatial information for visual features that cannot be explicitly located is represented normally below the level of spatial awareness even with large occipital-parietal lesions. They also demonstrate that parietal damage does not affect preattentive spatial coding of feature locations or complex spatial relationships between parts of a stimulus despite explicit spatial deficits and simultanagnosia.

  13. Age-related similarities and differences in monitoring spatial cognition.

    PubMed

    Ariel, Robert; Moffat, Scott D

    2018-05-01

    Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.

  14. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  15. Prototypes and particulars: geometric and experience-dependent spatial categories.

    PubMed

    Spencer, John P; Hund, Alycia M

    2002-03-01

    People use geometric cues to form spatial categories. This study investigated whether people also use the spatial distribution of exemplars. Adults pointed to remembered locations on a tabletop. In Experiment 1, a target was placed in each geometric category, and the location of targets was varied. Adults' responses were biased away from a midline category boundary toward geometric prototypes located at the centers of left and right categories. Experiment 2 showed that prototype effects were not influenced by cross-category interactions. In Experiment 3, subsets of targets were positioned at different locations within each category. When prototype effects were removed, there was a bias toward the center of the exemplar distribution, suggesting that common categorization processes operate across spatial and object domains.

  16. The timecourse of space- and object-based attentional prioritization with varying degrees of certainty

    PubMed Central

    Drummond, Leslie; Shomstein, Sarah

    2013-01-01

    The relative contributions of objects (i.e., object-based) and underlying spatial (i.e., space-based representations) to attentional prioritization and selection remain unclear. In most experimental circumstances, the two representations overlap thus their respective contributions cannot be evaluated. Here, a dynamic version of the two-rectangle paradigm allowed for a successful de-coupling of spatial and object representations. Space-based (cued spatial location), cued end of the object, and object-based (locations within the cued object) effects were sampled at several timepoints following the cue with high or low certainty as to target location. In the high uncertainty condition spatial benefits prevailed throughout most of the timecourse, as evidenced by facilitatory and inhibitory effects. Additionally, the cued end of the object, rather than a whole object, received the attentional benefit. When target location was predictable (low uncertainty manipulation), only probabilities guided selection (i.e., evidence by a benefit for the statistically biased location). These results suggest that with high spatial uncertainty, all available information present within the stimulus display is used for the purposes of attentional selection (e.g., spatial locations, cued end of the object) albeit to varying degrees and at different time points. However, as certainty increases, only spatial certainty guides selection (i.e., object ends and whole objects are filtered out). Taken together, these results further elucidate the contributing role of space- and object-representations to attentional guidance. PMID:24367302

  17. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors

    PubMed Central

    Pattyn, Alexandre; Vallstedt, Anna; Dias, José M.; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M.; Brunet, Jean-Francois; Ericson, Johan

    2003-01-01

    Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates. PMID:12651891

  18. The e-MapScholar project—an example of interoperability in GIScience education

    NASA Astrophysics Data System (ADS)

    Purves, R. S.; Medyckyj-Scott, D. J.; Mackaness, W. A.

    2005-03-01

    The proliferation of the use of digital spatial data in learning and teaching provides a set of opportunities and challenges for the development of e-learning materials suitable for use by a broad spectrum of disciplines in Higher Education. Effective e-learning materials must both provide engaging materials with which the learner can interact and be relevant to the learners' disciplinary and background knowledge. Interoperability aims to allow sharing of data and materials through the use of common agreements and specifications. Shared learning materials can take advantage of interoperable components to provide customisable components, and must consider issues in sharing data across institutional borders. The e-MapScholar project delivers teaching materials related to spatial data, which are customisable with respect to both context and location. Issues in the provision of such interoperable materials are discussed, including suitable levels of granularity of materials, the provision of tools to facilitate customisation and mechanisms to deliver multiple data sets and the metadata issues related to such materials. The examples shown make extensive use of the OpenGIS consortium specifications in the delivery of spatial data.

  19. Contribution of finger tracing to the recognition of Chinese characters.

    PubMed

    Yim-Ng, Y Y; Varley, R; Andrade, J

    2000-01-01

    Finger tracing is a simulation of the act of writing without the use of pen and paper. It is claimed to help in the processing of Chinese characters, possibly by providing additional motor coding. In this study, blindfolded subjects were equally good at identifying Chinese characters and novel visual stimuli through passive movements made with the index finger of the preferred hand and those made with the last finger of that hand. This suggests that finger tracing provides a relatively high level of coding specific to individual characters, but non-specific to motor effectors. Beginning each stroke from the same location, i.e. removing spatial information, impaired recognition of the familiar characters and the novel nonsense figures. Passively tracing the strokes in a random sequence also impaired recognition of the characters. These results therefore suggest that the beneficial effect of finger tracing on writing or recall of Chinese characters is mediated by sequence and spatial information embedded in the motor movements, and that proprioceptive channel may play a part in mediating visuo-spatial information. Finger tracing may be a useful strategy for remediation of Chinese language impairments.

  20. Sex Differences in Spatial Memory in Brown-Headed Cowbirds: Males Outperform Females on a Touchscreen Task

    PubMed Central

    Guigueno, Mélanie F.; MacDougall-Shackleton, Scott A.; Sherry, David F.

    2015-01-01

    Spatial cognition in females and males can differ in species in which there are sex-specific patterns in the use of space. Brown-headed cowbirds are brood parasites that show a reversal of sex-typical space use often seen in mammals. Female cowbirds, search for, revisit and parasitize hosts nests, have a larger hippocampus than males and have better memory than males for a rewarded location in an open spatial environment. In the current study, we tested female and male cowbirds in breeding and non-breeding conditions on a touchscreen delayed-match-to-sample task using both spatial and colour stimuli. Our goal was to determine whether sex differences in spatial memory in cowbirds generalizes to all spatial tasks or is task-dependant. Both sexes performed better on the spatial than on the colour touchscreen task. On the spatial task, breeding males outperformed breeding females. On the colour task, females and males did not differ, but females performed better in breeding condition than in non-breeding condition. Although female cowbirds were observed to outperform males on a previous larger-scale spatial task, males performed better than females on a task testing spatial memory in the cowbirds’ immediate visual field. Spatial abilities in cowbirds can favour males or females depending on the type of spatial task, as has been observed in mammals, including humans. PMID:26083573

  1. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  2. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.

    PubMed

    Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.

  3. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  4. Schematic representations of local environmental space guide goal-directed navigation

    PubMed Central

    Marchette, Steven A.; Ryan, Jack; Epstein, Russell A.

    2016-01-01

    To successfully navigate to a target, it is useful to be able to define its location at multiple levels of specificity. For example, the location of a favorite coffee mug can be described in terms of which room it is in, or in terms of where it is within the room. An appealing hypothesis is that these levels of description are retrieved from memory by accessing the same representation at progressively finer levels of granularity—first remembering the general location of an object and then “zooming in.” Here we provide evidence for an alternative view, in which navigational behavior is guided by independent representations at multiple spatial scales. Subjects learned the locations of objects that were positioned within four visually distinct but geometrically similar buildings, which were in turn positioned within a broader virtual park. They were then tested on their knowledge of object location by asking them to navigate to the remembered location of each object. We examined errors during the test phase for confusions among geometrically analogous locations in different buildings—that is, navigating to the right location in the wrong building. We observed that subjects frequently made these confusions, which are analogous to remembering a passage’s location on the page of a book but not remembering the page that the passage is on. This suggests that subjects were recalling the object’s local location without recalling its global location. Further manipulations across seven experiments indicated that geometric confusions were observed even between buildings that were not metrically identical as long as geometrical equivalence could be defined. However, removing the walls so that the larger environment was no longer divided into subspaces abolished these errors. Taken together, our results suggest that human spatial memory contains two separable representations of “where” an object can be found: (i) a schematic map of where an object lies with respect to local landmarks and boundaries; (ii) a representation of the identity and location of each local environment. PMID:27814459

  5. The neural substrates of deliberative decision making: contrasting effects of hippocampus lesions on performance and vicarious trial-and-error behavior in a spatial memory task and a visual discrimination task

    PubMed Central

    Bett, David; Allison, Elizabeth; Murdoch, Lauren H.; Kaefer, Karola; Wood, Emma R.; Dudchenko, Paul A.

    2012-01-01

    Vicarious trial-and-errors (VTEs) are back-and-forth movements of the head exhibited by rodents and other animals when faced with a decision. These behaviors have recently been associated with prospective sweeps of hippocampal place cell firing, and thus may reflect a rodent model of deliberative decision-making. The aim of the current study was to test whether the hippocampus is essential for VTEs in a spatial memory task and in a simple visual discrimination (VD) task. We found that lesions of the hippocampus with ibotenic acid produced a significant impairment in the accuracy of choices in a serial spatial reversal (SR) task. In terms of VTEs, whereas sham-lesioned animals engaged in more VTE behavior prior to identifying the location of the reward as opposed to repeated trials after it had been located, the lesioned animals failed to show this difference. In contrast, damage to the hippocampus had no effect on acquisition of a VD or on the VTEs seen in this task. For both lesion and sham-lesion animals, adding an additional choice to the VD increased the number of VTEs and decreased the accuracy of choices. Together, these results suggest that the hippocampus may be specifically involved in VTE behavior during spatial decision making. PMID:23115549

  6. Ecological studies of Eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat : II. The spatial pattern of abundance.

    PubMed

    Zalucki, M P; Drew, R A I; Hooper, G H S

    1984-10-01

    11 fruit fly species captured at 47 sites in a natural forest area at Cooloola (south-east Queensland) revealed specific patterns of spatial abundance. Although all species were collected throughout the study area, D. bryoniae, D. mayi, D. neohumeralis and D. tryoni were more prevalent (average number caught per trap) in the open Eucalypt forest than the rainforest, whereas C. aequalis, D. absonifacies and D. endiandrae were more prevalent in the rainforest. D. cacuminatus, D. choristus, D. quadratus and D. signatifrons were equally prevalent throughout both forest types. Fly numbers were not distributed randomly throughout the trap sites. The clumped dispersion patterns seemed to be species specific as assessed and summarised by Taylor's Power Law. The exponent (b) relating mean spatial abundance to its variance ranged from 1.6-5.11 for the 11 species captured. Changing patterns of trap catches from one sampling period to another were analysed using correlograms for the 6 most abundant species (D. tryoni, D. neohumeralis, D. endiandrae, C. aequalis, D. cacuminatus and D. mayi). These revealed changing patterns of relative spatial abundance which can be related, in part, to changing population abundance levels. The various spatial patterns recognised are related to each species movement, breeding and feeding behaviour. It is proposed that flies migrate into the rainforest area from distant locations and that the rainforest habitat is an important adult feeding site.

  7. Sex differences in the weighting of metric and categorical information in spatial location memory.

    PubMed

    Holden, Mark P; Duff-Canning, Sarah J; Hampson, Elizabeth

    2015-01-01

    According to the Category Adjustment model, remembering a spatial location involves the Bayesian combination of fine-grained and categorical information about that location, with each cue weighted by its relative certainty. However, individuals may differ in terms of their certainty about each cue, resulting in estimates that rely more or less on metric or categorical representations. To date, though, very little research has examined individual differences in the relative weighting of these cues in spatial location memory. Here, we address this gap in the literature. Participants were asked to recall point locations in uniform geometric shapes and in photographs of complex, natural scenes. Error patterns were analyzed for evidence of a sex difference in the relative use of metric and categorical information. As predicted, women placed relatively more emphasis on categorical cues, while men relied more heavily on metric information. Location reproduction tasks showed a similar effect, implying that the sex difference arises early in spatial processing, possibly during encoding.

  8. Classification of radiological errors in chest radiographs, using support vector machine on the spatial frequency features of false- negative and false-positive regions

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.

    2011-03-01

    Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.

  9. Neighborhoods and Adolescent Health-Risk Behavior: An Ecological Network Approach1

    PubMed Central

    Browning, Christopher R.; Soller, Brian; Jackson, Aubrey L.

    2014-01-01

    This study integrates insights from social network analysis, activity space perspectives, and theories of urban and spatial processes to present an innovative approach to neighborhood effects on health-risk behavior among youth. We suggest spatial patterns of neighborhood residents’ non-home routine activities may be conceptualized as ecological, or “eco”-networks, which are two-mode networks that indirectly link residents through socio-spatial overlap in routine activities. We further argue structural configurations of eco-networks are consequential for youth’s behavioral health. In this study we focus on a key structural feature of eco-networks—the neighborhood-level extent to which households share two or more activity locations, or eco-network reinforcement—and its association with two dimensions of health-risk behavior, substance use and delinquency/sexual activity. Using geographic data on non-home routine activity locations among respondents from the Los Angeles Family and Neighborhood Survey (L.A.FANS), we constructed neighborhood-specific eco-networks by connecting sampled households to “activity clusters,” which are sets of spatially-proximate activity locations. We then measured eco-network reinforcement and examined its association with adolescent dimensions of health risk behavior employing a sample of 830 youth ages 12-17 nested in 65 census tracts. We also examined whether neighborhood-level social processes (collective efficacy and intergenerational closure) mediate the association between eco-network reinforcement and the outcomes considered. Results indicated eco-network reinforcement exhibits robust negative associations with both substance use and delinquency/sexual activity scales. Eco-network reinforcement effects were not explained by potential mediating variables. In addition to introducing a novel theoretical and empirical approach to neighborhood effects on youth, our findings highlight the importance of eco-network reinforcement for adolescent behavioral health. PMID:25011958

  10. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions. © 2014 John Wiley & Sons Ltd.

  11. Learning strategy selection in the water maze and hippocampal CREB phosphorylation differ in two inbred strains of mice.

    PubMed

    Sung, Jin-Young; Goo, June-Seo; Lee, Dong-Eun; Jin, Da-Qing; Bizon, Jennifer L; Gallagher, Michela; Han, Jung-Soo

    2008-04-01

    Learning strategy selection was assessed in two different inbred strains of mice, C57BL/6 and DBA/2, which are used for developing genetically modified mouse models. Male mice received a training protocol in a water maze using alternating blocks of visible and hidden platform trials, during which mice escaped to a single location. After training, mice were required to choose between the spatial location where the platform had been during training (a place strategy) and a visible platform presented in a new location (a cued/response strategy). Both strains of mice had similar escape performance on the visible and hidden platform trials during training. However, in the strategy preference test, C57BL/6 mice selected a place strategy significantly more often than DBA/2 mice. Because much evidence implicates the hippocampus and striatum as important neural substrates for spatial/place and cued/response learning, respectively, the engagement of the hippocampus was then assessed after either place or cue training by determining levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) in these two mouse strains. Results revealed that hippocampal CREB levels in both strains of mice were significantly increased after place in comparison to cued training. However, the relation of hippocampal pCREB levels to training was strain dependent; pCREB was significantly higher in C57BL/6 mice than in DBA/2 mice after place training, while hippocampal pCREB levels did not differ between strains after cued training. These findings indicate that pCREB, specifically associated with place/spatial training, is closely tied to differences in spatial/place strategy preference between C57BL/6 and DBA/2 mice.

  12. Changing patterns of spatial clustering of schistosomiasis in Southwest China between 1999-2001 and 2007-2008: assessing progress toward eradication after the World Bank Loan Project.

    PubMed

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Cohen, Ted; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-01-03

    We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological data were obtained through standardized surveys conducted in 1999-2001 and again in 2007-2008. Two alternate spatial cluster methods were used to identify spatial clusters of cases: Anselin's Local Moran's I test and Kulldorff's spatial scan statistic. Substantial reductions in the burden of schistosomiasis were found after the end of the WBLP, but the spatial extent of schistosomiasis was not reduced across the study area. Spatial clusters continued to occur in three regions: Chengdu Plain, Yangtze River Valley, and Lancang River Valley during the two periods, and regularly involved five counties. These findings suggest that despite impressive reductions in burden, the hilly and mountainous regions of Southwest China remain at risk of schistosome re-emergence. Our results help to highlight specific locations where integrated control programs can focus to speed the elimination of schistosomiasis in China.

  13. A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities

    NASA Astrophysics Data System (ADS)

    Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.

    2017-12-01

    The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.

  14. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  15. Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

    NASA Astrophysics Data System (ADS)

    Trawinski, P. R.; Mackay, D. S.

    2009-03-01

    The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

  16. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  17. Modeling unobserved sources of heterogeneity in animal abundance using a Dirichlet process prior

    USGS Publications Warehouse

    Dorazio, R.M.; Mukherjee, B.; Zhang, L.; Ghosh, M.; Jelks, H.L.; Jordan, F.

    2008-01-01

    In surveys of natural populations of animals, a sampling protocol is often spatially replicated to collect a representative sample of the population. In these surveys, differences in abundance of animals among sample locations may induce spatial heterogeneity in the counts associated with a particular sampling protocol. For some species, the sources of heterogeneity in abundance may be unknown or unmeasurable, leading one to specify the variation in abundance among sample locations stochastically. However, choosing a parametric model for the distribution of unmeasured heterogeneity is potentially subject to error and can have profound effects on predictions of abundance at unsampled locations. In this article, we develop an alternative approach wherein a Dirichlet process prior is assumed for the distribution of latent abundances. This approach allows for uncertainty in model specification and for natural clustering in the distribution of abundances in a data-adaptive way. We apply this approach in an analysis of counts based on removal samples of an endangered fish species, the Okaloosa darter. Results of our data analysis and simulation studies suggest that our implementation of the Dirichlet process prior has several attractive features not shared by conventional, fully parametric alternatives. ?? 2008, The International Biometric Society.

  18. Temporal and spatial variation of beaked and sperm whales foraging activity in Hawai'i, as determined with passive acoustics.

    PubMed

    Giorli, Giacomo; Neuheimer, Anna; Copeland, Adrienne; Au, Whitlow W L

    2016-10-01

    Beaked and sperm whales are top predators living in the waters off the Kona coast of Hawai'i. Temporal and spatial analyses of the foraging activity of these two species were studied with passive acoustics techniques. Three passive acoustics recorders moored to the ocean floor were used to monitor the foraging activity of these whales in three locations along the Kona coast of the island of Hawaii. Data were analyzed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), and custom-designed Matlab programs. The temporal variation in foraging activity was species-specific: beaked whales foraged more at night in the north, and more during the day-time off Kailua-Kona. No day-time/night-time preference was found in the southern end of the sampling range. Sperm whales foraged mainly at night in the north, but no day-time/night-time preference was observed off Kailua-Kona and in the south. A Generalized Linear Model was then applied to assess whether location and chlorophyll concentration affected the foraging activity of each species. Chlorophyll concentration and location influenced the foraging activity of both these species of deep-diving odontocetes.

  19. Movements and habitat use locations of manatees within Kings Bay Florida during the Crystal River National Wildlife Refuge winter season (November 15–March 31)

    USGS Publications Warehouse

    Slone, Daniel H.; Butler, Susan M.; Reid, James P.

    2018-04-06

    Kings Bay, Florida, is one of the most important natural winter habitat locations for the federally threatened Trichechus manatus latirostris (Florida manatee). Crystal River National Wildlife Refuge was established in 1983 specifically to provide protection for manatees and their critical habitat. To aid managers at the refuge and other agencies with this task, spatial analyses of local habitat use locations and travel corridors of manatees in Kings Bay during manatee season (November 15–March 31) are presented based on Global Positioning System telemetry of 41 manatees over a 12-year timespan (2006−18). Local habitat use areas and travel corridors differed spatially when Gulf of Mexico water temperatures were cold (less than or equal to 17 degrees Celsius) versus when they were warm (greater than 17 degrees Celsius). During times of cold water, manatees were found in higher concentrations in the main springs and canals throughout the eastern side of the bay, whereas when waters were warm, they were found more generally throughout the bay and into Crystal River, except for the central open part of the bay and the southwest corner.

  20. Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis.

    PubMed

    Wolf, Anja; Aggio, Julian; Campbell, Clyde; Wright, Francis; Marquez, Gabriel; Traver, David; Stachura, David L

    2017-03-16

    Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system.

  1. Localization of yeast RNA polymerase I core subunits by immunoelectron microscopy.

    PubMed Central

    Klinger, C; Huet, J; Song, D; Petersen, G; Riva, M; Bautz, E K; Sentenac, A; Oudet, P; Schultz, P

    1996-01-01

    Immunoelectron microscopy was used to determine the spatial organization of the yeast RNA polymerase I core subunits on a three-dimensional model of the enzyme. Images of antibody-labeled enzymes were compared with the native enzyme to determine the localization of the antibody binding site on the surface of the model. Monoclonal antibodies were used as probes to identify the two largest subunits homologous to the bacterial beta and beta' subunits. The epitopes for the two monoclonal antibodies were mapped using subunit-specific phage display libraries, thus allowing a direct correlation of the structural data with functional information on conserved sequence elements. An epitope close to conserved region C of the beta-like subunit is located at the base of the finger-like domain, whereas a sequence between conserved regions C and D of the beta'-like subunit is located in the apical region of the enzyme. Polyclonal antibodies outlined the alpha-like subunit AC40 and subunit AC19 which were found co-localized also in the apical region of the enzyme. The spatial location of the subunits is correlated with their biological activity and the inhibitory effect of the antibodies. Images PMID:8887555

  2. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  3. Bayesian inference in camera trapping studies for a class of spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba

    2009-01-01

    We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.

  4. Influence of local objects on hippocampal representations: landmark vectors and memory

    PubMed Central

    Deshmukh, Sachin S.; Knierim, James J.

    2013-01-01

    The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. Here, we demonstrate correlates of both object-derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects. We describe a new form of CA1 place cells, called landmark-vector cells, that encode spatial locations as a vector relationship to local landmarks. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day’s recording sessions, in 8 cases the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. We also demonstrate object-location memory in the hippocampus. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object +place conjunctive memory; in other neurons the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal’s location and the location of objects in its environment. PMID:23447419

  5. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  6. Effects of Number of Animals Monitored on Representations of Cattle Group Movement Characteristics and Spatial Occupancy

    PubMed Central

    Liu, Tong; Green, Angela R.; Rodríguez, Luis F.; Ramirez, Brett C.; Shike, Daniel W.

    2015-01-01

    The number of animals required to represent the collective characteristics of a group remains a concern in animal movement monitoring with GPS. Monitoring a subset of animals from a group instead of all animals can reduce costs and labor; however, incomplete data may cause information losses and inaccuracy in subsequent data analyses. In cattle studies, little work has been conducted to determine the number of cattle within a group needed to be instrumented considering subsequent analyses. Two different groups of cattle (a mixed group of 24 beef cows and heifers, and another group of 8 beef cows) were monitored with GPS collars at 4 min intervals on intensively managed pastures and corn residue fields in 2011. The effects of subset group size on cattle movement characterization and spatial occupancy analysis were evaluated by comparing the results between subset groups and the entire group for a variety of summarization parameters. As expected, more animals yield better results for all parameters. Results show the average group travel speed and daily travel distances are overestimated as subset group size decreases, while the average group radius is underestimated. Accuracy of group centroid locations and group radii are improved linearly as subset group size increases. A kernel density estimation was performed to quantify the spatial occupancy by cattle via GPS location data. Results show animals among the group had high similarity of spatial occupancy. Decisions regarding choosing an appropriate subset group size for monitoring depend on the specific use of data for subsequent analysis: a small subset group may be adequate for identifying areas visited by cattle; larger subset group size (e.g. subset group containing more than 75% of animals) is recommended to achieve better accuracy of group movement characteristics and spatial occupancy for the use of correlating cattle locations with other environmental factors. PMID:25647571

  7. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients.

    PubMed

    Vaessen, Maarten J; Saj, Arnaud; Lovblad, Karl-Olof; Gschwind, Markus; Vuilleumier, Patrik

    2016-04-01

    Spatial neglect is a neuropsychological syndrome in which patients fail to perceive and orient to stimuli located in the space contralateral to the lesioned hemisphere. It is characterized by a wide heterogeneity in clinical symptoms which can be grouped into distinct behavioral components correlating with different lesion sites. Moreover, damage to white-matter (WM) fiber tracts has been suggested to disconnect brain networks that mediate different functions associated with spatial cognition and attention. However, it remains unclear what WM pathways are associated with functionally dissociable neglect components. In this study we examined nine patients with a focal right hemisphere stroke using a series of neuropsychological tests and diffusion tensor imaging (DTI) in order to disentangle the role of specific WM pathways in neglect symptoms. First, following previous work, the behavioral test scores of patients were factorized into three independent components reflecting perceptual, exploratory, and object-centered deficits in spatial awareness. We then examined the structural neural substrates of these components by correlating indices of WM integrity (fractional anisotropy) with the severity of deficits along each profile. Several locations in the right parietal and frontal WM correlated with neuropsychological scores. Fiber tracts projecting from these locations indicated that posterior parts of the superior longitudinal fasciculus (SLF), as well as nearby callosal fibers connecting ipsilateral and contralateral parietal areas, were associated with perceptual spatial deficits, whereas more anterior parts of SLF and inferior fronto-occipital fasciculus (IFOF) were predominantly associated with object-centered deficits. In addition, connections between frontal areas and superior colliculus were found to be associated with the exploratory deficits. Our results provide novel support to the view that neglect may result from disconnection lesions in distributed brain networks, but also extend these notions by highlighting the role of dissociable circuits in different functional components of the neglect syndrome. However these preliminary findings require replication with larger samples of patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. GALA: group analysis leads to accuracy, a novel approach for solving the inverse problem in exploratory analysis of group MEG recordings

    PubMed Central

    Kozunov, Vladimir V.; Ossadtchi, Alexei

    2015-01-01

    Although MEG/EEG signals are highly variable between subjects, they allow characterizing systematic changes of cortical activity in both space and time. Traditionally a two-step procedure is used. The first step is a transition from sensor to source space by the means of solving an ill-posed inverse problem for each subject individually. The second is mapping of cortical regions consistently active across subjects. In practice the first step often leads to a set of active cortical regions whose location and timecourses display a great amount of interindividual variability hindering the subsequent group analysis. We propose Group Analysis Leads to Accuracy (GALA)—a solution that combines the two steps into one. GALA takes advantage of individual variations of cortical geometry and sensor locations. It exploits the ensuing variability in electromagnetic forward model as a source of additional information. We assume that for different subjects functionally identical cortical regions are located in close proximity and partially overlap and their timecourses are correlated. This relaxed similarity constraint on the inverse solution can be expressed within a probabilistic framework, allowing for an iterative algorithm solving the inverse problem jointly for all subjects. A systematic simulation study showed that GALA, as compared with the standard min-norm approach, improves accuracy of true activity recovery, when accuracy is assessed both in terms of spatial proximity of the estimated and true activations and correct specification of spatial extent of the activated regions. This improvement obtained without using any noise normalization techniques for both solutions, preserved for a wide range of between-subject variations in both spatial and temporal features of regional activation. The corresponding activation timecourses exhibit significantly higher similarity across subjects. Similar results were obtained for a real MEG dataset of face-specific evoked responses. PMID:25954141

  9. Improving spatial prediction of Schistosoma haematobium prevalence in southern Ghana through new remote sensors and local water access profiles.

    PubMed

    Kulinkina, Alexandra V; Walz, Yvonne; Koch, Magaly; Biritwum, Nana-Kwadwo; Utzinger, Jürg; Naumova, Elena N

    2018-06-04

    Schistosomiasis is a water-related neglected tropical disease. In many endemic low- and middle-income countries, insufficient surveillance and reporting lead to poor characterization of the demographic and geographic distribution of schistosomiasis cases. Hence, modeling is relied upon to predict areas of high transmission and to inform control strategies. We hypothesized that utilizing remotely sensed (RS) environmental data in combination with water, sanitation, and hygiene (WASH) variables could improve on the current predictive modeling approaches. Schistosoma haematobium prevalence data, collected from 73 rural Ghanaian schools, were used in a random forest model to investigate the predictive capacity of 15 environmental variables derived from RS data (Landsat 8, Sentinel-2, and Global Digital Elevation Model) with fine spatial resolution (10-30 m). Five methods of variable extraction were tested to determine the spatial linkage between school-based prevalence and the environmental conditions of potential transmission sites, including applying the models to known human water contact locations. Lastly, measures of local water access and groundwater quality were incorporated into RS-based models to assess the relative importance of environmental and WASH variables. Predictive models based on environmental characterization of specific locations where people contact surface water bodies offered some improvement as compared to the traditional approach based on environmental characterization of locations where prevalence is measured. A water index (MNDWI) and topographic variables (elevation and slope) were important environmental risk factors, while overall, groundwater iron concentration predominated in the combined model that included WASH variables. The study helps to understand localized drivers of schistosomiasis transmission. Specifically, unsatisfactory water quality in boreholes perpetuates reliance of surface water bodies, indirectly increasing schistosomiasis risk and resulting in rapid reinfection (up to 40% prevalence six months following preventive chemotherapy). Considering WASH-related risk factors in schistosomiasis prediction can help shift the focus of control strategies from treating symptoms to reducing exposure.

  10. Spatial and temporal diet patterns of subadult and small adult striped bass in Massachusetts estuaries: Data, a synthesis, and trends across scales

    USGS Publications Warehouse

    Ferry, K.H.; Mather, Martha E.

    2012-01-01

    Subadult and small adult (375–475 mm total length) striped bass Morone saxatilis are abundant and represent an important component of the recovered U.S. Atlantic coast stocks. However, little is known about these large aggregations of striped bass during their annual foraging migrations to New England. A quantitative understanding of trends in the diets of subadult and small adult migrants is critical to research and management. Because of the complexity of the Massachusetts coast, we were able to compare diets at multiple spatial, temporal, and taxonomic scales and evaluate which of these provided the greatest insights into the foraging patterns of this size of fish. Specifically, during spring through autumn, we quantified the diets of 797 migratory striped bass collected from 13 Massachusetts estuaries distributed among three geographic regions in two biogeographic provinces. Our data provided three useful results. First, subadult and young adult striped bass ate a season-specific mixture of fish and invertebrates. For example, more juvenile Atlantic herring Clupea harengus were eaten in spring than in summer or autumn, more juvenile Atlantic menhaden Brevoortia tyrannus were eaten in autumn than in spring or summer, amphipods were eaten primarily in the southern biogeographic province, and shrimp Crangon sp. were eaten in all locations and seasons. Second, examining diets by season was essential because of the temporal variability in striped bass prey. Grouping prey by fish and invertebrates revealed the potential for predictable differences in growth across geographic locations and seasons, based on the output from simple bioenergetics simulations. Third, of the three spatial scales examined, region provided the most quantitative and interpretable ecological trends. Our results demonstrate the utility of comparing multiple scales to evaluate the best way to depict diet trends in a migrating predator that seasonally uses different geographic locations.

  11. On spatial attention and its field size on the repulsion effect

    PubMed Central

    Cutrone, Elizabeth K.; Heeger, David J.; Carrasco, Marisa

    2018-01-01

    We investigated the attentional repulsion effect—stimuli appear displaced further away from attended locations—in three experiments: one with exogenous (involuntary) attention, and two with endogenous (voluntary) attention with different attention-field sizes. It has been proposed that differences in attention-field size can account for qualitative differences in neural responses elicited by attended stimuli. We used psychophysical comparative judgments and manipulated either exogenous attention via peripheral cues or endogenous attention via central cues and a demanding rapid serial visual presentation task. We manipulated the attention field size of endogenous attention by presenting streams of letters at two specific locations or at two of many possible locations during each block. We found a robust attentional repulsion effect in all three experiments: with endogenous and exogenous attention and with both attention-field sizes. These findings advance our understanding of the influence of spatial attention on the perception of visual space and help relate this repulsion effect to possible neurophysiological correlates.

  12. Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

    PubMed Central

    Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas

    2015-01-01

    The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100

  13. Subliminal access to abstract face representations does not rely on attention.

    PubMed

    Harry, Bronson; Davis, Chris; Kim, Jeesun

    2012-03-01

    The present study used masked repetition priming to examine whether face representations can be accessed without attention. Two experiments using a face recognition task (fame judgement) presented masked repetition and control primes in spatially unattended locations prior to target onset. Experiment 1 (n=20) used the same images as primes and as targets and Experiment 2 (n=17) used different images of the same individual as primes and targets. Repetition priming was observed across both experiments regardless of whether spatial attention was cued to the location of the prime. Priming occurred for both famous and non-famous targets in Experiment 1 but was only reliable for famous targets in Experiment 2, suggesting that priming in Experiment 1 indexed access to view-specific representations whereas priming in Experiment 2 indexed access to view-invariant, abstract representations. Overall, the results indicate that subliminal access to abstract face representations does not rely on attention. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Gender differences associated with orienting attentional networks in healthy subjects.

    PubMed

    Liu, Gang; Hu, Pan-Pan; Fan, Jin; Wang, Kai

    2013-06-01

    Selective attention is considered one of the main components of cognitive functioning. A number of studies have demonstrated gender differences in cognition. This study aimed to investigate the gender differences in selective attention in healthy subjects. The present experiment examined the gender differences associated with the efficiency of three attentional networks: alerting, orienting, and executive control attention in 73 healthy subjects (38 males). All participants performed a modified version of the Attention Network Test (ANT). Females had higher orienting scores than males (t = 2.172, P < 0.05). Specifically, females were faster at covert orienting of attention to a spatially cued location. There were no gender differences between males and females in alerting (t = 0.813, P > 0.05) and executive control (t = 0.945, P > 0.05) attention networks. There was a significant gender difference between males and females associated with the orienting network. Enhanced orienting attention in females may function to motivate females to direct their attention to a spatially cued location.

  15. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  16. Contact, Travel, and Transmission: The Impact of Winter Holidays on Influenza Dynamics in the United States.

    PubMed

    Ewing, Anne; Lee, Elizabeth C; Viboud, Cécile; Bansal, Shweta

    2017-03-01

    The seasonality of influenza is thought to vary according to environmental factors and human behavior. During winter holidays, potential disease-causing contact and travel deviate from typical patterns. We aim to understand these changes on age-specific and spatial influenza transmission. We characterized the changes to transmission and epidemic trajectories among children and adults in a spatial context before, during, and after the winter holidays among aggregated physician medical claims in the United States from 2001 to 2009 and among synthetic data simulated from a deterministic, age-specific spatial metapopulation model. Winter holidays reduced influenza transmission and delayed the trajectory of influenza season epidemics. The holiday period was marked by a shift in the relative risk of disease from children toward adults. Model results indicated that holidays delayed epidemic peaks and synchronized incidence across locations, and that contact reductions from school closures, rather than age-specific mixing and travel, produced these observed holiday influenza dynamics. Winter holidays delay seasonal influenza epidemic peaks and shift disease risk toward adults because of changes in contact patterns. These findings may inform targeted influenza information and vaccination campaigns during holiday periods. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia

    NASA Astrophysics Data System (ADS)

    Woldemeskel, Fitsum M.; Sivakumar, Bellie; Sharma, Ashish

    2013-08-01

    Accurate estimation of spatial rainfall is crucial for modelling hydrological systems and planning and management of water resources. While spatial rainfall can be estimated either using rain gauge-based measurements or using satellite-based measurements, such estimates are subject to uncertainties due to various sources of errors in either case, including interpolation and retrieval errors. The purpose of the present study is twofold: (1) to investigate the benefit of merging rain gauge measurements and satellite rainfall data for Australian conditions and (2) to produce a database of retrospective rainfall along with a new uncertainty metric for each grid location at any timestep. The analysis involves four steps: First, a comparison of rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data at such rain gauge locations is carried out. Second, gridded monthly rain gauge rainfall is determined using thin plate smoothing splines (TPSS) and modified inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged with the monthly accumulated TRMM 3B42 using a linearised weighting procedure, the weights at each grid being calculated based on the error variances of each dataset. Finally, cross validation (CV) errors at rain gauge locations and standard errors at gridded locations for each timestep are estimated. The CV error statistics indicate that merging of the two datasets improves the estimation of spatial rainfall, and more so where the rain gauge network is sparse. The provision of spatio-temporal standard errors with the retrospective dataset is particularly useful for subsequent modelling applications where input error knowledge can help reduce the uncertainty associated with modelling outcomes.

  18. Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-01-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118

  19. Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning

    PubMed Central

    Lipinski, John; Spencer, John P.; Samuelson, Larissa K.

    2010-01-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881

  20. Memory for pictures, words, and spatial location in older adults: evidence for pictorial superiority.

    PubMed

    Park, D C; Puglisi, J T; Sovacool, M

    1983-09-01

    In the present study the spatial location of picture and word stimuli was varied across four quadrants of photographic slides. Young and old people received either pictures or words to study and were told to remember either just the item or the item and its location. Recognition memory for items and memory for spatial location were tested. A pictorial superiority effect occurred for both old and young people's item recognition. Additionally, instructions to study position decreased item memory and facilitated position memory in both age groups. Spatial memory was markedly superior for pictures compared with matched words for old and young adults. The results are interpreted within the Hasher and Zacks framework of automatic processing. The implications of the data for designing mnemonic aids for elderly persons are considered.

  1. Biased feedback in spatial recall yields a violation of delta rule learning.

    PubMed

    Lipinski, John; Spencer, John P; Samuelson, Larissa K

    2010-08-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.

  2. [Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain].

    PubMed

    Malinina, E S

    2014-01-01

    The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of psychometric curves and of the equiprobable estimation of direction of movement of test signals.

  3. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    PubMed

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  4. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    PubMed Central

    Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205

  5. The Role of Working Memory in Spatial S-R Correspondence Effects

    ERIC Educational Resources Information Center

    Wuhr, Peter; Biebl, Rupert

    2011-01-01

    This study investigates the impact of working memory (WM) load on response conflicts arising from spatial (non) correspondence between irrelevant stimulus location and response location (Simon effect). The dominant view attributes the Simon effect to automatic processes of location-based response priming. The automaticity view predicts…

  6. Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database

    NASA Astrophysics Data System (ADS)

    Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2017-10-01

    We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.

  7. The effects of sequential attention shifts within visual working memory.

    PubMed

    Li, Qi; Saiki, Jun

    2014-01-01

    Previous studies have shown conflicting data as to whether it is possible to sequentially shift spatial attention among visual working memory (VWM) representations. The present study investigated this issue by asynchronously presenting attentional cues during the retention interval of a change detection task. In particular, we focused on two types of sequential attention shifts: (1) orienting attention to one location, and then withdrawing attention from it, and (2) switching the focus of attention from one location to another. In Experiment 1, a withdrawal cue was presented after a spatial retro-cue to measure the effect of withdrawing attention. The withdrawal cue significantly reduced the cost of invalid spatial cues, but surprisingly, did not attenuate the benefit of valid spatial cues. This indicates that the withdrawal cue only triggered the activation of facilitative components but not inhibitory components of attention. In Experiment 2, two spatial retro-cues were presented successively to examine the effect of switching the focus of attention. We observed equivalent benefits of the first and second spatial cues, suggesting that participants were able to reorient attention from one location to another within VWM, and the reallocation of attention did not attenuate memory at the first-cued location. In Experiment 3, we found that reducing the validity of the preceding spatial cue did lead to a significant reduction in its benefit. However, performance was still better at first-cued locations than at uncued and neutral locations, indicating that the first cue benefit might have been preserved both partially under automatic control and partially under voluntary control. Our findings revealed new properties of dynamic attentional control in VWM maintenance.

  8. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence

    PubMed Central

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966

  9. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.

  10. Object Orientation Affects Spatial Language Comprehension

    ERIC Educational Resources Information Center

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…

  11. No Sex Differences in Spatial Location Memory for Abstract Designs

    ERIC Educational Resources Information Center

    Rahman, Qazi; Bakare, Monsurat; Serinsu, Ceydan

    2011-01-01

    Previous research has demonstrated a female advantage, albeit imperfectly, on tests of object location memory where object identity information is readily available. However, spatial and visual elements are often confounded in the experimental tasks used. Here spatial and visual memory performance was compared in 30 men and 30 women by presenting…

  12. Reconstructions of information in visual spatial working memory degrade with memory load.

    PubMed

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge.

    PubMed

    Rahman, M Azizur; Rusteberg, Bernd; Gogu, R C; Lobo Ferreira, J P; Sauter, Martin

    2012-05-30

    This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial multicriteria analysis tool has already been implemented within the GIS based Gabardine decision support system as an innovative MAR planning tool. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Do silhouettes and photographs produce fundamentally different object-based correspondence effects?

    PubMed

    Proctor, Robert W; Lien, Mei-Ching; Thompson, Lane

    2017-12-01

    When participants classify pictures of objects as upright or inverted with a left or right keypress, responses are faster if the response location (left/right) corresponds with the location of a handle (left/right) than if it does not. This result has typically been attributed to a grasping affordance (automatic activation of muscles associated with grasping the object with the ipsilateral hand), but several findings have indicated instead that the effect is a spatial correspondence effect, much like the Simon effect for object location. Pappas (2014) reported evidence he interpreted as showing that spatial coding predominates with silhouettes of objects, whereas photographs of objects yield affordance-based effects. We conducted two experiments similar to those of Pappas, using frying pans as stimuli, with our two experiments differing in whether the entire object was centered on the display screen or the base was centered. When the objects were centered, a positive correspondence effect relative to the handle was evident for the silhouettes but a negative correspondence effect for the photographs. When the base was centered, the handle was clearly located to the left or right side of the display, and both silhouettes and photographs produced correspondence effects of similar size relative to the handle location. Despite the main results being counter to the grasping affordance hypothesis, response-time distribution analyses suggest that, instead of activating automatically at fast responses, an effector-specific component of the hypothesized type may come into play for responses that are selected after the handle location has been identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of task constraints on reaching kinematics by healthy adults.

    PubMed

    Wu, Ching-Yi; Lin, Keh-Chung; Lin, Kwan-Hwa; Chang, Chein-Wei; Chen, Chia-Ling

    2005-06-01

    Understanding the control of movement requires an awareness of how tasks constrain movements. The present study investigated the effects of two types of task constraints--spatial accuracy (effector size) and target location--on reaching kinematics. 15 right-handed healthy young adults (7 men, 8 women) whose mean age was 23.6 yr. (SD=3.9 yr.) performed the ringing task under six conditions, formed by the crossing of effector size (larger vs smaller size) and target location (left, right, or a central position). Significant main effects of effector size and target location were found for peak velocity and movement time. There was a significant interaction for the percentage of time to peak velocity. The findings suggested that task constraints may modulate movement performance in specific ways. Effects of effector size might be a consequence of feedforward and feedback control, and location effects might be influenced by both biomechanical and neurological factors.

  16. Spatial pattern of dissolved organic matter (DOM) along a stream drainage in a forested, Piedmont catchment

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Singh, S.

    2013-12-01

    Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion of runoff along surficial flow paths produced a more aromatic and humic DOM with high DOC concentrations; whereas those with a greater proportion of groundwater contributions produced DOM with greater % of protein-like content. Overall, our observations suggest that occurrence of wetlands and the nature of hydrologic flow paths were the key determinants for the spatial pattern of DOM.

  17. The measurement of enhancement in mathematical abilities as a result of joint cognitive trainings in numerical and visual- spatial skills: A preliminary study

    NASA Astrophysics Data System (ADS)

    Agus, M.; Mascia, M. L.; Fastame, M. C.; Melis, V.; Pilloni, M. C.; Penna, M. P.

    2015-02-01

    A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment.

  18. Effects of memory instruction on attention and information processing: Further investigation of inhibition of return in item-method directed forgetting.

    PubMed

    Thompson, Kate M; Hamm, Jeff P; Taylor, Tracy L

    2014-02-01

    In the item-method directed-forgetting paradigm, the magnitude of inhibition of return (IOR) is larger after an instruction to forget (F) than after an instruction to remember (R). In the present experiments, we further investigated this increased magnitude of IOR after F as compared to R memory instructions (dubbed the F > R IOR difference), in order to understand both the consequences for information processing and the purpose of the differential withdrawal of attention that results in this difference. Words were presented in one of four peripheral locations, followed by either an F or an R memory instruction. Then, a target appeared in either the same location as the previous word or one of the other locations. The results showed that the F > R IOR difference cannot be explained by attentional momentum (Exp. 1), that the spatial compatibility of the response options with target locations is not necessary for the F > R IOR difference to emerge (Exp. 2), and that the F > R IOR difference is location-specific rather than response-specific (Exp. 3). These results are consistent with the view that F > R IOR represents a bias against responding to information emanating from an unreliable source (Taylor & Fawcett, 2011).

  19. The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language

    PubMed Central

    Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Ponto, Laura L. B.; Grabowski, Thomas J.

    2013-01-01

    Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual–spatial representations into a body-centered reference frame and reach toward target locations within signing space. PMID:23249348

  20. Persistent spatial information in the frontal eye field during object-based short-term memory.

    PubMed

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2012-08-08

    Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.

  1. Simon and Garner effects with color and location: Evidence for two independent routes by which irrelevant location influences performance.

    PubMed

    Fitousi, Daniel

    2016-11-01

    Classic theories of attention assume that the processing of a target's featural dimension (e.g., color) is contingent on the processing of its spatial location. The present study challenges this maxim. Three experiments evaluated the dimensional independence of spatial location and color using a combined Simon (Simon & Rudell Journal of Applied Psychology: 51, 300-304, 1967) and Garner (Garner, 1974) design. The results showed that when the stimulus's spatial location was rendered more discriminable than its color (Experiment 1 and 2), both Simon and Garner effects were obtained, and location interfered with color judgments to a larger extent than color intruded on location. However, when baseline discriminabilities of location and color were matched (Experiment 3), no Garner interference was obtained from location to color, yet Simon effects still emerged, proving resilient to manipulations of discriminability. Further correlational and distributional analyses showed that Garner and Simon effects have dissociable effects. A triple-route model is proposed to account for the results, according to which irrelevant location can influence performance via two independent location routes/codes.

  2. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  3. Disentangling working memory processes during spatial span assessment: a modeling analysis of preferred eye movement strategies.

    PubMed

    Patt, Virginie M; Thomas, Michael L; Minassian, Arpi; Geyer, Mark A; Brown, Gregory G; Perry, William

    2014-01-01

    The neurocognitive processes involved during classic spatial working memory (SWM) assessment were investigated by examining naturally preferred eye movement strategies. Cognitively healthy adult volunteers were tested in a computerized version of the Corsi Block-Tapping Task--a spatial span task requiring the short term maintenance of a series of locations presented in a specific order--coupled with eye tracking. Modeling analysis was developed to characterize eye-tracking patterns across all task phases, including encoding, retention, and recall. Results revealed a natural preference for local gaze maintenance during both encoding and retention, with fewer than 40% fixated targets. These findings contrasted with the stimulus retracing pattern expected during recall as a result of task demands, with 80% fixated targets. Along with participants' self-reported strategies of mentally "making shapes," these results suggest the involvement of covert attention shifts and higher order cognitive Gestalt processes during spatial span tasks, challenging instrument validity as a single measure of SWM storage capacity.

  4. Spatial distribution, temporal variation and specificity of microhabitat of Tropisternus species (Coleoptera: Hydrophilidae) in permanent ponds.

    PubMed

    Gómez Lutz, M C; Kehr, A I; Fernández, L A

    2015-06-01

    The spatial distribution and temporal variation of 11 species of Tropisternus were analyzed in two permanent ponds located in the province of Corrientes, Argentina. Samples were collected every 15 days, between October 2010 and March 2011. The species recorded were Tropisternus collaris (Fabricius), Tropisternus ovalis Castelnau, Tropisternus laevis (Sturm), Tropisternus lateralis limbatus (Brullé), Tropisternus longispina Fernández & Bachmann, Tropisternus carinispina Orchymont, Tropisternus bourmeisteri Fernández & Bachmann, Tropisternus apicipalpis (Chevrolat), Tropisternus dilatatus Bruch, Tropisternus obesus Bruch, and Tropisternus ignoratus Knisch. The first four were present in higher proportions than the remaining during most of the study period. The spatial distribution of individuals was mostly related to the homogeneity or heterogeneity of the ecosystem in relation to microhabitats with aquatic vegetation: In ponds with different microhabitats, individuals were mainly aggregated, whereas in ponds with homogenous features, individuals were randomly distributed. However, when species were analyzed individually, the spatial distribution and the use of microhabitat by each species were different with respect to preference and behavior.

  5. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    PubMed

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  6. Modeling Yeast Cell Polarization Induced by Pheromone Gradients

    NASA Astrophysics Data System (ADS)

    Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing

    2007-07-01

    Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

  7. Effects of verbal and nonverbal interference on spatial and object visual working memory

    PubMed Central

    POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE

    2005-01-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575

  8. Being Wheeled or Walking: A Qualitative Study of Patients' Spatial Experience in Two Distinct Day Surgery Centers.

    PubMed

    Annemans, Margo; Audenhove, Chantal Van; Vermolen, Hilde; Heylighen, Ann

    2016-04-01

    In this article, we explore what a different way of moving-being wheeled versus walking-means for the spatial experience of day surgery patients. Day surgery centers can be conceived in very different manners. Some are organized similar to traditional hospital admittance; others are located in a specifically designed part of the hospital and receive patients as guests who walk through the entire procedure. We conducted semistructured interviews with 37 patients at two distinct day surgery centers. Despite the different managerial concepts and corresponding spatial designs, in both centers, patients' spatial experience is shaped by the interrelation of material, social, and time-related aspects. However, the chosen concept results in a different experience throughout patients' journey. Based on an analysis of the different journeys, we conclude that patients' interpretation of a hospital's care vision is influenced not only by what the hospital communicates explicitly or how it educates its staff but also by what is implicitly told by the built environment. © The Author(s) 2016.

  9. Why is the sunny side always up? Explaining the spatial mapping of concepts by language use.

    PubMed

    Goodhew, Stephanie C; McGaw, Bethany; Kidd, Evan

    2014-10-01

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people's attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.

  10. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis

    PubMed Central

    Lal, Aparna

    2016-01-01

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change. PMID:26848669

  11. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis.

    PubMed

    Lal, Aparna

    2016-02-02

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.

  12. You are the one thinking this: locative poetry as deictic writing

    NASA Astrophysics Data System (ADS)

    Sundnes Løvlie, Anders

    2012-03-01

    This article presents an experiment in locative literature. Using the textopia system for sharing of literary texts through spatial annotation and locative exploration with mobile devices, a commissioned work was created for a poetry festival. The project aimed to explore how professional, renowned poets could contribute a deepened understanding of the locative medium. The texts produced show two important traits. Firstly, a particular use of deictic relationships, in which words like "you" and "here" take on a particular importance, indicating that these words work like entry points for fiction and markers of make-believe. Secondly, a preoccupation with relations of absence and presence, both temporal and spatial, producing poetic recreations of a location's memory and spatial connections to the rest of the world.

  13. Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods?

    PubMed Central

    Khan, Arshad M.

    2013-01-01

    Intracranial chemical injection (ICI) methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. Comparing injection sites with other types of location data would require careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY) can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial “gene-directed” injection (IGI) methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics, and pharmacosynthetics) that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and metabolic disorders. PMID:24385950

  14. Misleading contextual cues: how do they affect visual search?

    PubMed

    Manginelli, Angela A; Pollmann, Stefan

    2009-03-01

    Contextual cueing occurs when repetitions of the distractor configuration are implicitly learned. This implicit learning leads to faster search times in repeated displays. Here, we investigated how search adapts to a change of the target location in old displays from a consistent location in the learning phase to a consistent new location in the transfer phase. In agreement with the literature, contextual cueing was accompanied by fewer fixations, a more efficient scan path and, specifically, an earlier onset of a monotonic gaze approach phase towards the target location in repeated displays. When the repeated context was no longer predictive of the old target location, search times and number of fixations for old displays increased to the level of novel displays. Along with this, scan paths for old and new displays became equally efficient. After the target location change, there was a bias of exploration towards the old target location, which soon disappeared. Thus, change of implicitly learned spatial relations between target and distractor configuration eliminated the advantageous effects of contextual cueing, but did not lead to a lasting impairment of search in repeated displays relative to novel displays.

  15. Immunity to Attentional Capture at Ignored Locations

    PubMed Central

    Ruthruff, Eric; Gaspelin, Nicholas

    2017-01-01

    Certain stimuli have the power to rapidly and involuntarily capture spatial attention against our will. The present study investigated whether such stimuli capture spatial attention even when they appear in ignored regions of visual space. In other words, which force is more powerful: attentional capture or spatial filtering? Participants performed a spatial cuing task, searching for a letter target defined by color (e.g., green) and then reporting that letter’s identity. Two of the four search locations were always irrelevant. Unlike many previous experiments, participants were forced to ignore these locations because they always contained a target-colored distractor letter. Experiment 1 assessed capture by a salient-but-irrelevant abrupt onset cue appearing 150 ms before the search display. One might expect onset cues to capture attention even at ignored locations given that the main function of capture, presumably, is to rapidly alert observers to unexpected yet potentially important stimuli. However, they did not. Experiment 2 replicated this result with a different neutral baseline condition. Experiment 3 replicated the absence of capture effects at ignored locations with an even more potent stimulus: a relevant cue possessing the target color. We propose that people are effectively immune to attentional capture by objects in ignored locations – spatial filtering dominates attentional capture. PMID:29116615

  16. Are Places Concepts? Familarity and Expertise Effects in Neighborhood Cognition

    NASA Astrophysics Data System (ADS)

    Davies, Clare

    Named urban neighborhoods (localities) are often examples of vague place extents. These are compared with current knowledge of vagueness in concepts and categories within semantic memory, implying graded membership and typicality. If places are mentally constructed and used like concepts, this might account for their cognitive variability, and help us choose suitable geospatial (GIS) data models. An initial within-subjects study with expert geographic surveyors tested specific predictions about the role of central tendency, ideals, context specificity, familiarity and expertise in location judgements - theoretically equivalent to categorization. Implications for spatial data models and a further research agenda are suggested.

  17. Processing the presence, placement, and properties of a distractor in spatial language tasks.

    PubMed

    Carlson, Laura A; Hill, Patrick L

    2008-03-01

    A common way to describe the location of an object is to spatially relate it to a nearby object. For such descriptions, the object being described is referred to as the located object; the object to which it is spatially related is referred to as the reference object. Typically, however, there are many nearby objects (distractors), resulting in the need for selection. We report three experiments that examine the extent to which a distractor in the display is processed during the selection of a reference object. Using acceptability ratings and production measures, we show that the presence and the placement ofa distractor have a significant impact on the assessment of the spatial relation between the located and reference objects; there is also evidence that the properties of the distractor are processed, but only under limited conditions. One implication is that the dimension that is most relevant to reference object selection is its spatial relation to the located object, rather than its salience with respect to other objects in the display.

  18. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopenko, Andrey; Tuminaro, Raymond S.

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  19. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE PAGES

    Prokopenko, Andrey; Tuminaro, Raymond S.

    2016-07-01

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  20. Integration of Hand and Finger Location in External Spatial Coordinates for Tactile Localization

    ERIC Educational Resources Information Center

    Heed, Tobias; Backhaus, Jenny; Roder, Brigitte

    2012-01-01

    Tactile stimulus location is automatically transformed from somatotopic into external spatial coordinates, rendering information about the location of touch in three-dimensional space. This process is referred to as tactile remapping. Whereas remapping seems to occur automatically for the hands and feet, the fingers may constitute an exception in…

  1. Evaluating the long-term performance of pavements thermally imaged during construction phase 1 : developing spatial tools for location identification, final report January 13, 2009.

    DOT National Transportation Integrated Search

    2009-01-13

    This research effort was to investigate whether spatial locating equipment or Global Positioning System (GPS) equipment mounted on Connecticut Department of Transportation (ConnDOT) ARAN vans could be used to locate areas of distressed pavement. It w...

  2. A Category Adjustment Approach to Memory for Spatial Location in Natural Scenes

    ERIC Educational Resources Information Center

    Holden, Mark P.; Curby, Kim M.; Newcombe, Nora S.; Shipley, Thomas F.

    2010-01-01

    Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in…

  3. Reference frames in allocentric representations are invariant across static and active encoding

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2013-01-01

    An influential model of spatial memory—the so-called reference systems account—proposes that relationships between objects are biased by salient axes (“frames of reference”) provided by environmental cues, such as the geometry of a room. In this study, we sought to examine the extent to which a salient environmental feature influences the formation of spatial memories when learning occurs via a single, static viewpoint and via active navigation, where information has to be integrated across multiple viewpoints. In our study, participants learned the spatial layout of an object array that was arranged with respect to a prominent environmental feature within a virtual arena. Location memory was tested using judgments of relative direction. Experiment 1A employed a design similar to previous studies whereby learning of object-location information occurred from a single, static viewpoint. Consistent with previous studies, spatial judgments were significantly more accurate when made from an orientation that was aligned, as opposed to misaligned, with the salient environmental feature. In Experiment 1B, a fresh group of participants learned the same object-location information through active exploration, which required integration of spatial information over time from a ground-level perspective. As in Experiment 1A, object-location information was organized around the salient environmental cue. Taken together, the findings suggest that the learning condition (static vs. active) does not affect the reference system employed to encode object-location information. Spatial reference systems appear to be a ubiquitous property of spatial representations, and might serve to reduce the cognitive demands of spatial processing. PMID:24009595

  4. Egocentric and allocentric representations in auditory cortex

    PubMed Central

    Brimijoin, W. Owen; Bizley, Jennifer K.

    2017-01-01

    A key function of the brain is to provide a stable representation of an object’s location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position. PMID:28617796

  5. Development of a GIService based on spatial data mining for location choice of convenience stores in Taipei City

    NASA Astrophysics Data System (ADS)

    Jung, Chinte; Sun, Chih-Hong

    2006-10-01

    Motivated by the increasing accessibility of technology, more and more spatial data are being made digitally available. How to extract the valuable knowledge from these large (spatial) databases is becoming increasingly important to businesses, as well. It is essential to be able to analyze and utilize these large datasets, convert them into useful knowledge, and transmit them through GIS-enabled instruments and the Internet, conveying the key information to business decision-makers effectively and benefiting business entities. In this research, we combine the techniques of GIS, spatial decision support system (SDSS), spatial data mining (SDM), and ArcGIS Server to achieve the following goals: (1) integrate databases from spatial and non-spatial datasets about the locations of businesses in Taipei, Taiwan; (2) use the association rules, one of the SDM methods, to extract the knowledge from the integrated databases; and (3) develop a Web-based SDSS GIService as a location-selection tool for business by the product of ArcGIS Server.

  6. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  7. Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory.

    PubMed

    Goyal, Abhinav; Miller, Jonathan; Watrous, Andrew J; Lee, Sang Ah; Coffey, Tom; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn A; Inman, Cory; Sheth, Sameer A; Wanda, Paul A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Jacobs, Joshua

    2018-05-09

    The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning. During the verbal memory task, stimulation in the MTL disrupted the temporal organization of encoded memories such that items learned with stimulation tended to be recalled in a more randomized order. During the spatial task, MTL stimulation impaired subjects' abilities to remember items located far away from boundaries. These stimulation effects were specific to the MTL. Our findings thus provide the first causal demonstration in humans of the specific memory processes that are performed by the MTL to encode when and where events occurred. SIGNIFICANCE STATEMENT Numerous studies have implicated the medial temporal lobe (MTL) in encoding spatial and temporal memories, but they have not been able to causally demonstrate the nature of the cognitive processes by which this occurs in real-time. Electrical brain stimulation is able to demonstrate causal links between a brain region and a given function with high temporal precision. By examining behavior in a memory task as subjects received MTL stimulation, we provide the first causal evidence demonstrating the role of the MTL in organizing the spatial and temporal aspects of episodic memory. Copyright © 2018 the authors 0270-6474/18/384471-11$15.00/0.

  8. Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze

    ERIC Educational Resources Information Center

    Luna, David; Martínez, Héctor

    2015-01-01

    The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…

  9. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  10. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    NASA Astrophysics Data System (ADS)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were correlated to the temporal dynamics of potential evaporation. We conclude that spatial representation of transpiration in models could benefit from including patterns according to tree and site characteristics.

  11. Factors modulating social influence on spatial choice in rats.

    PubMed

    Bisbing, Teagan A; Saxon, Marie; Sayde, Justin M; Brown, Michael F

    2015-07-01

    Three experiments examined the conditions under which the spatial choices of rats searching for food are influenced by the choices made by other rats. Model rats learned a consistent set of baited locations in a 5 × 5 matrix of locations, some of which contained food. In Experiment 1, subject rats could determine the baited locations after choosing 1 location because all of the baited locations were on the same side of the matrix during each trial (the baited side varied over trials). Under these conditions, the social cues provided by the model rats had little or no effect on the choices made by the subject rats. The lack of social influence on choices occurred despite a simultaneous social influence on rats' location in the testing arena (Experiment 2). When the outcome of the subject rats' own choices provided no information about the positions of other baited locations, on the other hand, social cues strongly controlled spatial choices (Experiment 3). These results indicate that social information about the location of food influences spatial choices only when those cues provide valid information that is not redundant with the information provided by other cues. This suggests that social information is learned about, processed, and controls behavior via the same mechanisms as other kinds of stimuli. (c) 2015 APA, all rights reserved).

  12. Do you remember where sounds, pictures and words came from? The role of the stimulus format in object location memory.

    PubMed

    Delogu, Franco; Lilla, Christopher C

    2017-11-01

    Contrasting results in visual and auditory spatial memory stimulate the debate over the role of sensory modality and attention in identity-to-location binding. We investigated the role of sensory modality in the incidental/deliberate encoding of the location of a sequence of items. In 4 separated blocks, 88 participants memorised sequences of environmental sounds, spoken words, pictures and written words, respectively. After memorisation, participants were asked to recognise old from new items in a new sequence of stimuli. They were also asked to indicate from which side of the screen (visual stimuli) or headphone channel (sounds) the old stimuli were presented in encoding. In the first block, participants were not aware of the spatial requirement while, in blocks 2, 3 and 4 they knew that their memory for item location was going to be tested. Results show significantly lower accuracy of object location memory for the auditory stimuli (environmental sounds and spoken words) than for images (pictures and written words). Awareness of spatial requirement did not influence localisation accuracy. We conclude that: (a) object location memory is more effective for visual objects; (b) object location is implicitly associated with item identity during encoding and (c) visual supremacy in spatial memory does not depend on the automaticity of object location binding.

  13. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades

    PubMed Central

    Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location. PMID:27631767

  14. A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation

    NASA Astrophysics Data System (ADS)

    Suryowati, K.; Bekti, R. D.; Faradila, A.

    2018-04-01

    Spatial autocorrelation is one of spatial analysis to identify patterns of relationship or correlation between locations. This method is very important to get information on the dispersal patterns characteristic of a region and linkages between locations. In this study, it applied on the incidence of Dengue Hemorrhagic Fever (DHF) in 17 sub districts in Sleman, Daerah Istimewa Yogyakarta Province. The link among location indicated by a spatial weight matrix. It describe the structure of neighbouring and reflects the spatial influence. According to the spatial data, type of weighting matrix can be divided into two types: point type (distance) and the neighbourhood area (contiguity). Selection weighting function is one determinant of the results of the spatial analysis. This study use queen contiguity based on first order neighbour weights, queen contiguity based on second order neighbour weights, and inverse distance weights. Queen contiguity first order and inverse distance weights shows that there is the significance spatial autocorrelation in DHF, but not by queen contiguity second order. Queen contiguity first and second order compute 68 and 86 neighbour list

  15. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion.

    PubMed

    Kong, Ru; Li, Jingwei; Orban, Csaba; Sabuncu, Mert R; Liu, Hesheng; Schaefer, Alexander; Sun, Nanbo; Zuo, Xi-Nian; Holmes, Avram J; Eickhoff, Simon B; Yeo, B T Thomas

    2018-06-06

    Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

  16. Completeness and Reliability of Location Data Collected on the Web: Assessing the Quality of Self-Reported Locations in an Internet Sample of Men Who Have Sex With Men.

    PubMed

    Vaughan, Adam S; Kramer, Michael R; Cooper, Hannah Lf; Rosenberg, Eli S; Sullivan, Patrick S

    2016-06-09

    Place is critical to our understanding of human immunodeficiency virus (HIV) infections among men who have sex with men (MSM) in the United States. However, within the scientific literature, place is almost always represented by residential location, suggesting a fundamental assumption of equivalency between neighborhood of residence, place of risk, and place of prevention. However, the locations of behaviors among MSM show significant spatial variation, and theory has posited the importance of nonresidential contextual exposures. This focus on residential locations has been at least partially necessitated by the difficulties in collecting detailed geolocated data required to explore nonresidential locations. Using a Web-based map tool to collect locations, which may be relevant to the daily lives and health behaviors of MSM, this study examines the completeness and reliability of the collected data. MSM were recruited on the Web and completed a Web-based survey. Within this survey, men used a map tool embedded within a question to indicate their homes and multiple nonresidential locations, including those representing work, sex, socialization, physician, and others. We assessed data quality by examining data completeness and reliability. We used logistic regression to identify demographic, contextual, and location-specific predictors of answering all eligible map questions and answering specific map questions. We assessed data reliability by comparing selected locations with other participant-reported data. Of 247 men completing the survey, 167 (67.6%) answered the entire set of eligible map questions. Most participants (>80%) answered specific map questions, with sex locations being the least reported (80.6%). Participants with no college education were less likely than those with a college education to answer all map questions (prevalence ratio, 0.4; 95% CI, 0.2-0.8). Participants who reported sex at their partner's home were less likely to indicate the location of that sex (prevalence ratio, 0.8; 95% CI, 0.7-1.0). Overall, 83% of participants placed their home's location within the boundaries of their reported residential ZIP code. Of locations having a specific text description, the median distance between the participant-selected location and the location determined using the specific text description was 0.29 miles (25th and 75th percentiles, 0.06-0.88). Using this Web-based map tool, this Web-based sample of MSM was generally willing and able to provide accurate data regarding both home and nonresidential locations. This tool provides a mechanism to collect data that can be used in more nuanced studies of place and sexual risk and preventive behaviors of MSM.

  17. Orienting attention to locations in internal representations.

    PubMed

    Griffin, Ivan C; Nobre, Anna C

    2003-11-15

    Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.

  18. Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance.

    PubMed

    Stevenson, Ryan A; Fister, Juliane Krueger; Barnett, Zachary P; Nidiffer, Aaron R; Wallace, Mark T

    2012-05-01

    In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.

  19. The effects of sequential attention shifts within visual working memory

    PubMed Central

    Li, Qi; Saiki, Jun

    2014-01-01

    Previous studies have shown conflicting data as to whether it is possible to sequentially shift spatial attention among visual working memory (VWM) representations. The present study investigated this issue by asynchronously presenting attentional cues during the retention interval of a change detection task. In particular, we focused on two types of sequential attention shifts: (1) orienting attention to one location, and then withdrawing attention from it, and (2) switching the focus of attention from one location to another. In Experiment 1, a withdrawal cue was presented after a spatial retro-cue to measure the effect of withdrawing attention. The withdrawal cue significantly reduced the cost of invalid spatial cues, but surprisingly, did not attenuate the benefit of valid spatial cues. This indicates that the withdrawal cue only triggered the activation of facilitative components but not inhibitory components of attention. In Experiment 2, two spatial retro-cues were presented successively to examine the effect of switching the focus of attention. We observed equivalent benefits of the first and second spatial cues, suggesting that participants were able to reorient attention from one location to another within VWM, and the reallocation of attention did not attenuate memory at the first-cued location. In Experiment 3, we found that reducing the validity of the preceding spatial cue did lead to a significant reduction in its benefit. However, performance was still better at first-cued locations than at uncued and neutral locations, indicating that the first cue benefit might have been preserved both partially under automatic control and partially under voluntary control. Our findings revealed new properties of dynamic attentional control in VWM maintenance. PMID:25237306

  20. The effects of transient attention on spatial resolution and the size of the attentional cue.

    PubMed

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  1. A scoping review of spatial cluster analysis techniques for point-event data.

    PubMed

    Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott

    2013-05-01

    Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.

  2. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    PubMed

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  3. Geography of breast cancer incidence according to age & birth cohorts.

    PubMed

    Gregorio, David I; Ford, Chandler; Samociuk, Holly

    2017-06-01

    Geographic variation in breast cancer incidence across Connecticut was examined according to age and birth cohort -specific groups. We assigned each of 60,937 incident breast cancer cases diagnosed in Connecticut, 1986-2009, to one of 828 census tracts around the state. Global and local spatial statistics estimated rate variation across the state according to age and birth cohorts. We found the global distribution of incidence rates across places to be more heterogeneous for younger women and later birth cohorts. Concurrently, the spatial scan identified more locations with significantly high rates that pertained to larger proportions of at-risk women within these groups. Geographic variation by age groups was more pronounced than by birth cohorts. Geographic patterns of cancer incidence exhibit differences within and across age and birth cohorts. With the continued insights from descriptive epidemiology, our capacity to effectively limit spatial disparities in cancer will improve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  5. Using High-Resolution Population Data to Identify Neighborhoods and Establish Their Boundaries

    PubMed Central

    Spielman, Seth E.; Logan, John R.

    2012-01-01

    Neighborhoods are about local territory, but what territory? This paper offers one approach to this question through a novel application of “local” spatial statistics. We conceptualize a neighborhood in terms of both space and social composition; it is a contiguous territory defined by a bundle of social attributes that distinguish it from surrounding areas. Our method does not impose either a specific social characteristic or a predetermined spatial scale to define a neighborhood. Rather we infer neighborhoods from detailed information about individual residents and their locations. The analysis is based on geocoded complete-count census data from the late 19th Century in four cities: Albany, NY, Buffalo, NY, Cincinnati, OH, and Newark, NJ. We find striking regularities (and some anomalies) in the spatial structure of the cities studied. Our approach illustrates the “spatialization” of an important social scientific concept. PMID:23279975

  6. Who is where at risk for Chronic Obstructive Pulmonary Disease? A spatial epidemiological analysis of health insurance claims for COPD in Northeastern Germany

    PubMed Central

    Maier, Werner; Schweikart, Jürgen; Keste, Andrea; Moskwyn, Marita

    2018-01-01

    Background Chronic obstructive pulmonary disease (COPD) has a high prevalence rate in Germany and a further increase is expected within the next years. Although risk factors on an individual level are widely understood, only little is known about the spatial heterogeneity and population-based risk factors of COPD. Background knowledge about broader, population-based processes could help to plan the future provision of healthcare and prevention strategies more aligned to the expected demand. The aim of this study is to analyze how the prevalence of COPD varies across northeastern Germany on the smallest spatial-scale possible and to identify the location-specific population-based risk factors using health insurance claims of the AOK Nordost. Methods To visualize the spatial distribution of COPD prevalence at the level of municipalities and urban districts, we used the conditional autoregressive Besag–York–Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific ecological risk factors for COPD. Results The sex- and age-adjusted prevalence of COPD was 6.5% in 2012 and varied widely across northeastern Germany. Population-based risk factors consist of the proportions of insurants aged 65 and older, insurants with migration background, household size and area deprivation. The results of the GWR model revealed that the population at risk for COPD varies considerably across northeastern Germany. Conclusion Area deprivation has a direct and an indirect influence on the prevalence of COPD. Persons ageing in socially disadvantaged areas have a higher chance of developing COPD, even when they are not necessarily directly affected by deprivation on an individual level. This underlines the importance of considering the impact of area deprivation on health for planning of healthcare. Additionally, our results reveal that in some parts of the study area, insurants with migration background and persons living in multi-persons households are at elevated risk of COPD. PMID:29414997

  7. Behavioral, Cognitive, and Motor Preparation Deficits in a Visual Cued Spatial Attention Task in Autism Spectrum Disorder

    PubMed Central

    Sokhadze, Estate M.; Tasman, Allan; Sokhadze, Guela E.; El-Baz, Ayman S.; Casanova, Manuel F.

    2015-01-01

    Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80% of subjects with autism display “motor dyspraxia” or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N=30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more refined specifics of dyspraxia symptoms to investigate functional connectivity abnormalities underlying motor skills deficits in autism. PMID:26377686

  8. Who is where at risk for Chronic Obstructive Pulmonary Disease? A spatial epidemiological analysis of health insurance claims for COPD in Northeastern Germany.

    PubMed

    Kauhl, Boris; Maier, Werner; Schweikart, Jürgen; Keste, Andrea; Moskwyn, Marita

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) has a high prevalence rate in Germany and a further increase is expected within the next years. Although risk factors on an individual level are widely understood, only little is known about the spatial heterogeneity and population-based risk factors of COPD. Background knowledge about broader, population-based processes could help to plan the future provision of healthcare and prevention strategies more aligned to the expected demand. The aim of this study is to analyze how the prevalence of COPD varies across northeastern Germany on the smallest spatial-scale possible and to identify the location-specific population-based risk factors using health insurance claims of the AOK Nordost. To visualize the spatial distribution of COPD prevalence at the level of municipalities and urban districts, we used the conditional autoregressive Besag-York-Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific ecological risk factors for COPD. The sex- and age-adjusted prevalence of COPD was 6.5% in 2012 and varied widely across northeastern Germany. Population-based risk factors consist of the proportions of insurants aged 65 and older, insurants with migration background, household size and area deprivation. The results of the GWR model revealed that the population at risk for COPD varies considerably across northeastern Germany. Area deprivation has a direct and an indirect influence on the prevalence of COPD. Persons ageing in socially disadvantaged areas have a higher chance of developing COPD, even when they are not necessarily directly affected by deprivation on an individual level. This underlines the importance of considering the impact of area deprivation on health for planning of healthcare. Additionally, our results reveal that in some parts of the study area, insurants with migration background and persons living in multi-persons households are at elevated risk of COPD.

  9. Mobile, Collaborative Situated Knowledge Creation for Urban Planning

    PubMed Central

    Zurita, Gustavo; Baloian, Nelson

    2012-01-01

    Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations. PMID:22778639

  10. Mobile, collaborative situated knowledge creation for urban planning.

    PubMed

    Zurita, Gustavo; Baloian, Nelson

    2012-01-01

    Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.

  11. Mapping the ecosystem service delivery chain: Capacity, flow, and demand pertaining to aesthetic experiences in mountain landscapes.

    PubMed

    Egarter Vigl, Lukas; Depellegrin, Daniel; Pereira, Paulo; de Groot, Rudolf; Tappeiner, Ulrike

    2017-01-01

    Accounting for the spatial connectivity between the provision of ecosystem services (ES) and their beneficiaries (supply-benefit chain) is fundamental to understanding ecosystem functioning and its management. However, the interrelationships of the specific chain links within ecosystems and the actual benefits that flow from natural landscapes to surrounding land have rarely been analyzed. We present a spatially explicit model for the analysis of one cultural ecosystem service (aesthetic experience), which integrates the complete ecosystem service delivery chain for Puez-Geisler Nature Park (Italy): (1) The potential service stock (ES capacity) relies on an expert-based land use ranking matrix, (2) the actual supply (ES flow) is based on visibility properties of observation points along recreational routes, (3) the beneficiaries of the service (ES demand) are derived from socioeconomic data as a measure of the visitation rate to the recreation location, and (4) the supply-demand relationship (ES budget) addresses the spatially explicit oversupply and undersupply of ES. The results indicate that potential ES stocks are substantially higher in core and buffer zones of protected areas than in surrounding land owing to the specific landscape composition. ES flow maps reveal service delivery to 80% of the total area studied, with the highest actual service supply to locations with long and open vistas. ES beneficiary analyses show the highest demand for aesthetic experiences in all-season tourist destinations like Val Badia and Val Gardena, where both recreational amenity and overnight stays are equally high. ES budget maps identify ES hot and cold spots in terms of ES delivery, and they highlight ES undersupply in nature protection buffer zones although they are characterized by highest ES capacity. We show how decision/policy makers can use the presented methodology to plan landscape protection measures and develop specific regulation strategies for visitors based on the ES delivery chain concept. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2018-06-01

    Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.

  13. Understanding spatio-temporal mobility patterns for seniors, child/student and adult using smart card data

    NASA Astrophysics Data System (ADS)

    Huang, X.; Tan, J.

    2014-11-01

    Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.

  14. The Role of Categories and Spatial Cuing in Global-Scale Location Estimates

    ERIC Educational Resources Information Center

    Friedman, Alinda

    2009-01-01

    Seven independent groups estimated the location of North American cities using both spatial and numeric response modes and a variety of perceptual and memory supports. These supports included having location markers for each city color coded by nation and identified by name, giving participants the opportunity to see and update all their estimates…

  15. Exploring the small-scale spatial distribution of hypertension and its association to area deprivation based on health insurance claims in Northeastern Germany.

    PubMed

    Kauhl, B; Maier, W; Schweikart, J; Keste, A; Moskwyn, M

    2018-01-10

    Hypertension is one of the most frequently diagnosed chronic conditions in Germany. Targeted prevention strategies and allocation of general practitioners where they are needed most are necessary to prevent severe complications arising from high blood pressure. However, data on chronic diseases in Germany are mostly available through survey data, which do not only underestimate the actual prevalence but are also only available on coarse spatial scales. The discussion of including area deprivation for planning of healthcare is still relatively young in Germany, although previous studies have shown that area deprivation is associated with adverse health outcomes, irrespective of individual characteristics. The aim of this study is therefore to analyze the spatial distribution of hypertension at very fine geographic scales and to assess location-specific associations between hypertension, socio-demographic population characteristics and area deprivation based on health insurance claims of the AOK Nordost. To visualize the spatial distribution of hypertension prevalence at very fine geographic scales, we used the conditional autoregressive Besag-York-Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific association of hypertension to area deprivation and further socio-demographic population characteristics. The sex- and age-adjusted prevalence of hypertension was 33.1% in 2012 and varied widely across northeastern Germany. The main risk factors for hypertension were proportions of insurants aged 45-64, 65 and older, area deprivation and proportion of persons commuting to work outside their residential municipality. The GWR model revealed important regional variations in the strength of the examined associations. Area deprivation has only a significant and therefore direct influence in large parts of Mecklenburg-West Pomerania. However, the spatially varying strength of the association between demographic variables and hypertension indicates that there also exists an indirect effect of area deprivation on the prevalence of hypertension. It can therefore be expected that persons ageing in deprived areas will be at greater risk of hypertension, irrespective of their individual characteristics. The future planning and allocation of primary healthcare in northeastern Germany would therefore greatly benefit from considering the effect of area deprivation.

  16. The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: A panel study of 113 Chinese cities.

    PubMed

    Yang, Xue; Wang, Shaojian; Zhang, Wenzhong; Zhan, Dongsheng; Li, Jiaming

    2017-04-15

    China has received increased international criticism in recent years in relation to its air pollution levels, both in terms of the transmission of pollutants across international borders and the attendant adverse health effects being witnessed. Whilst existing research has examined the factors influencing ambient air pollutant concentrations, previous studies have failed to adequately explore the determinants of such concentrations from either a source or diffusion perspective. This study addressed both source (specifically, anthropogenic emissions) and diffusion (namely, meteorological conditions) indicators, in order to detect their respective impacts on the spatial variations seen in the distribution of air pollution. Spatial panel data for 113 major cities in China was processed using a range of global regression models-the ordinary least square model, the spatial lag model, and the spatial error model-as well as a local, geographic weighted regression (GWR) model. Results from the study suggest that in 2014, average SO 2 concentrations exceeded China's first-level target. The most polluted cities were found to be predominantly located in northern China, while less polluted cities were located in southern China. Global regression results indicated that precipitation exerts a significant effect on SO 2 reduction (p<0.001) and that a regional increase of 1mm in precipitation can reduce SO 2 concentrations by 0.026μg/m 3 . Both emission and temperature factors were found to aggravate SO 2 concentrations, although no such significant correlation was found in relation to wind speed. GWR results suggest that the association between SO 2 and its factors varied over space. Increased emissions were found to be able to produce more pollution in the northwest than in other parts of the country. Higher wind speeds and temperatures in northwestern areas were shown to reinforce SO 2 pollution, while in southern regions, they had the opposite effect. Further, increased precipitation was found to exert a greater inhibitory effect on SO 2 pollution in the country's northeast than that in other areas. Our findings could provide a detailed reference for formulating regionally specific emission reduction policies in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Spatial Searching for Solar Physics Data

    NASA Astrophysics Data System (ADS)

    Hourcle, Joseph; Spencer, J. L.; The VSO Team

    2013-07-01

    The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.

  18. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614

  19. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.

  20. Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons and Elemental Carbon in Bakersfield, California

    PubMed Central

    Noth, Elizabeth M.; Lurmann, Fred; Northcross, Amanda; Perrino, Charles; Vaughn, David; Hammond, S. Katharine

    2016-01-01

    Despite increasing evidence that airborne polycyclic aromatic hydrocarbon (PAH) exposures contribute to adverse health outcomes for sensitive populations, limited data are available on short-term intraurban spatial distributions for use in epidemiologic research. Exposure assessments for airborne PAHs are uncommon because air sampling for PAHs is a labor-, equipment-, and time-intensive task. To address this gap we measured wintertime PAH concentrations during 2010-2011 in Bakersfield, California, USA, a major city in the Southern San Joaquin Valley. Specifically, 58 96-hour integrated PAH samples were collected during 4 time periods at 14 locations from November 2010 to January 2011; duplicates were collected at two sites. We also collected elemental carbon (EC) at the same 14 sites and analyzed the two time periods with the highest ambient PAH pollution. We used linear regression models to quantify the relationship between potential spatial and temporal predictors of PAH concentrations. We found that wintertime PAH concentrations in Bakersfield, CA, are best predicted by meteorological variables and traffic proximity. Our model explains a moderate amount of the variability in the data (R2=0.58), likely reflecting the major sources of PAHs in Bakersfield. We also observed that PAH concentrations were more spatially variable than EC concentrations. Comparing our data to historical monitoring data at one location in Bakersfield showed that the relatively low PAH concentrations during the 2010-2011 winter in Bakersfield is part of a long-term trend in decreasing PAH concentrations. PMID:28083077

  1. Assessing spatial uncertainty in reservoir characterization for carbon sequestration planning using public well-log data: A case study

    USGS Publications Warehouse

    Venteris, E.R.; Carter, K.M.

    2009-01-01

    Mapping and characterization of potential geologic reservoirs are key components in planning carbon dioxide (CO2) injection projects. The geometry of target and confining layers is vital to ensure that the injected CO2 remains in a supercritical state and is confined to the target layer. Also, maps of injection volume (porosity) are necessary to estimate sequestration capacity at undrilled locations. Our study uses publicly filed geophysical logs and geostatistical modeling methods to investigate the reliability of spatial prediction for oil and gas plays in the Medina Group (sandstone and shale facies) in northwestern Pennsylvania. Specifically, the modeling focused on two targets: the Grimsby Formation and Whirlpool Sandstone. For each layer, thousands of data points were available to model structure and thickness but only hundreds were available to support volumetric modeling because of the rarity of density-porosity logs in the public records. Geostatistical analysis based on this data resulted in accurate structure models, less accurate isopach models, and inconsistent models of pore volume. Of the two layers studied, only the Whirlpool Sandstone data provided for a useful spatial model of pore volume. Where reliable models for spatial prediction are absent, the best predictor available for unsampled locations is the mean value of the data, and potential sequestration sites should be planned as close as possible to existing wells with volumetric data. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  2. Comparison of Extreme Precipitation Return Levels using Spatial Bayesian Hierarchical Modeling versus Regional Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2017-12-01

    We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two ­thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk­ informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.

  3. Developmental Differences in the Influence of Distractors on Maintenance in Spatial Working Memory

    ERIC Educational Resources Information Center

    Schutte, Anne R.; Keiser, Brian A.; Beattie, Heidi L.

    2017-01-01

    This study examined whether attention to a location plays a role in the maintenance of locations in spatial working memory in young children as it does in adults. This study was the first to investigate whether distractors presented during the delay of a spatial working-memory task influenced young children's memory responses. Across 2…

  4. Modulation of spatial attention by goals, statistical learning, and monetary reward.

    PubMed

    Jiang, Yuhong V; Sha, Li Z; Remington, Roger W

    2015-10-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention.

  5. Modulation of spatial attention by goals, statistical learning, and monetary reward

    PubMed Central

    Sha, Li Z.; Remington, Roger W.

    2015-01-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention. PMID:26105657

  6. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity

    PubMed Central

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object’s offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth’s gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects’ location. PMID:26910260

  7. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    PubMed

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  8. Do Sexually Oriented Massage Parlors Cluster in Specific Neighborhoods? A Spatial Analysis of Indoor Sex Work in Los Angeles and Orange Counties, California.

    PubMed

    Chin, John J; Kim, Anna J; Takahashi, Lois; Wiebe, Douglas J

    2015-01-01

    Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors ("hot spots") were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors.

  9. Spatiotemporal variation in survival rates: implications for population dynamics of yellow-bellied marmots.

    PubMed

    Ozgul, Arpat; Armitage, Kenneth B; Blumstein, Daniel T; Oli, Madan K

    2006-04-01

    Spatiotemporal variation in age-specific survival rates can profoundly influence population dynamics, but few studies of vertebrates have thoroughly investigated both spatial and temporal variability in age-specific survival rates. We used 28 years (1976-2003) of capture-mark-recapture (CMR) data from 17 locations to parameterize an age-structured Cormack-Jolly-Seber model, and investigated spatial and temporal variation in age-specific annual survival rates of yellow-bellied marmots (Marmota flaviventris). Survival rates varied both spatially and temporally, with survival of younger animals exhibiting the highest degree of variation. Juvenile survival rates varied from 0.52 +/- 0.05 to 0.78 +/- 0.10 among sites and from 0.15 +/- 0.14 to 0.89 +/- 0.06 over time. Adult survival rates varied from 0.62 +/- 0.09 to 0.80 +/- 0.03 among sites, but did not vary significantly over time. We used reverse-time CMR models to estimate the realized population growth rate (lamda), and to investigate the influence of the observed variation in age-specific survival rates on lamda. The realized growth rate of the population closely covaried with, and was significantly influenced by, spatiotemporal variation in juvenile survival rate. High variability in juvenile survival rates over space and time clearly influenced the dynamics of our study population and is also likely to be an important determinant of the spatiotemporal variation in the population dynamics of other mammals with similar life history characteristics.

  10. Effects of Spatial Ability, Gender Differences, and Pictorial Training on Children Using 2-D and 3-D Environments to Recall Landmark Locations from Memory

    ERIC Educational Resources Information Center

    Kopcha, Theodore J.; Otumfuor, Beryl A.; Wang, Lu

    2015-01-01

    This study examines the effects of spatial ability, gender differences, and pictorial training on fourth grade students' ability to recall landmark locations from memory. Ninety-six students used Google Earth over a 3-week period to locate landmarks (3-D) and mark their location on a 2-D topographical map. Analysis of covariance on posttest scores…

  11. Assessing patterns of spatial behavior in health studies: their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study).

    PubMed

    Perchoux, Camille; Kestens, Yan; Thomas, Frédérique; Van Hulst, Andraea; Thierry, Benoit; Chaix, Basile

    2014-10-01

    Prior epidemiological studies have mainly focused on local residential neighborhoods to assess environmental exposures. However, individual spatial behavior may modify residential neighborhood influences, with weaker health effects expected for mobile populations. By examining individual patterns of daily mobility and associated socio-demographic profiles and transportation modes, this article seeks to develop innovative methods to account for daily mobility in health studies. We used data from the RECORD Cohort Study collected in 2011-2012 in the Paris metropolitan area, France. A sample of 2062 individuals was investigated. Participants' perceived residential neighborhood boundaries and regular activity locations were geocoded using the VERITAS application. Twenty-four indicators were created to qualify individual space-time patterns, using spatial analysis methods and a geographic information system. Three domains of indicators were considered: lifestyle indicators, indicators related to the geometry of the activity space, and indicators related to the importance of the residential neighborhood in the overall activity space. Principal component analysis was used to identify main dimensions of spatial behavior. Multilevel linear regression was used to determine which individual characteristics were associated with each spatial behavior dimension. The factor analysis generated five dimensions of spatial behavior: importance of the residential neighborhood in the activity space, volume of activities, and size, eccentricity, and specialization of the activity space. Age, socioeconomic status, and location of the household in the region were the main predictors of daily mobility patterns. Activity spaces of small sizes centered on the residential neighborhood and implying a large volume of activities were associated with walking and/or biking as a transportation mode. Examination of patterns of spatial behavior by individual socio-demographic characteristics and in relation to transportation modes is useful to identify populations with specific mobility/accessibility needs and has implications for investigating transportation-related physical activity and assessing environmental exposures and their effects on health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Decoding rule search domain in the left inferior frontal gyrus

    PubMed Central

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  13. Optimising predictor domains for spatially coherent precipitation downscaling

    NASA Astrophysics Data System (ADS)

    Radanovics, S.; Vidal, J.-P.; Sauquet, E.; Ben Daoud, A.; Bontron, G.

    2013-10-01

    Statistical downscaling is widely used to overcome the scale gap between predictors from numerical weather prediction models or global circulation models and predictands like local precipitation, required for example for medium-term operational forecasts or climate change impact studies. The predictors are considered over a given spatial domain which is rarely optimised with respect to the target predictand location. In this study, an extended version of the growing rectangular domain algorithm is proposed to provide an ensemble of near-optimum predictor domains for a statistical downscaling method. This algorithm is applied to find five-member ensembles of near-optimum geopotential predictor domains for an analogue downscaling method for 608 individual target zones covering France. Results first show that very similar downscaling performances based on the continuous ranked probability score (CRPS) can be achieved by different predictor domains for any specific target zone, demonstrating the need for considering alternative domains in this context of high equifinality. A second result is the large diversity of optimised predictor domains over the country that questions the commonly made hypothesis of a common predictor domain for large areas. The domain centres are mainly distributed following the geographical location of the target location, but there are apparent differences between the windward and the lee side of mountain ridges. Moreover, domains for target zones located in southeastern France are centred more east and south than the ones for target locations on the same longitude. The size of the optimised domains tends to be larger in the southeastern part of the country, while domains with a very small meridional extent can be found in an east-west band around 47° N. Sensitivity experiments finally show that results are rather insensitive to the starting point of the optimisation algorithm except for zones located in the transition area north of this east-west band. Results also appear generally robust with respect to the archive length considered for the analogue method, except for zones with high interannual variability like in the Cévennes area. This study paves the way for defining regions with homogeneous geopotential predictor domains for precipitation downscaling over France, and therefore de facto ensuring the spatial coherence required for hydrological applications.

  14. Spatial overlap links seemingly unconnected genotype-matched TB cases in rural Uganda

    PubMed Central

    Kato-Maeda, Midori; Emperador, Devy M.; Wandera, Bonnie; Mugagga, Olive; Crandall, John; Janes, Michael; Marquez, Carina; Kamya, Moses R.; Charlebois, Edwin D.; Havlir, Diane V.

    2018-01-01

    Introduction Incomplete understanding of TB transmission dynamics in high HIV prevalence settings remains an obstacle for prevention. Understanding where transmission occurs could provide a platform for case finding and interrupting transmission. Methods From 2012–2015, we sought to recruit all adults starting TB treatment in a Ugandan community. Participants underwent household (HH) contact investigation, and provided names of social contacts, sites of work, healthcare and socializing, and two sputum samples. Mycobacterium tuberculosis culture-positive specimens underwent 24-loci MIRU-VNTR and spoligotyping. We sought to identify epidemiologic links between genotype-matched cases by analyzing social networks and mapping locations where cases reported spending ≥12 hours over the one-month pre-treatment. Sites of spatial overlap (≤100m) between genotype-matched cases were considered potential transmission sites. We analyzed social networks stratified by genotype clustering status, with cases linked by shared locations, and compared network density by location type between clustered vs. non-clustered cases. Results Of 173 adults with TB, 131 (76%) were enrolled, 108 provided sputum, and 84/131 (78%) were MTB culture-positive: 52% (66/131) tested HIV-positive. Of 118 adult HH contacts, 105 (89%) were screened and 3 (2.5%) diagnosed with active TB. Overall, 33 TB cases (39%) belonged to 15 distinct MTB genotype-matched clusters. Within each cluster, no cases shared a HH or reported shared non-HH contacts. In 6/15 (40%) clusters, potential epidemiologic links were identified by spatial overlap at specific locations: 5/6 involved health care settings. Genotype-clustered TB social networks had significantly greater network density based on shared clinics (p<0.001) and decreased density based on shared marketplaces (p<0.001), compared to non-clustered networks. Conclusions In this molecular epidemiologic study, links between MTB genotype-matched cases were only identifiable via shared locations, healthcare locations in particular, rather than named contacts. This suggests most transmission is occurring between casual contacts, and emphasizes the need for improved infection control in healthcare settings in rural Africa. PMID:29438413

  15. Object, spatial and social recognition testing in a single test paradigm.

    PubMed

    Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming

    2018-07-01

    Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social recognitions. These findings indicate that the new triple recognition paradigm is capable of recording the object, spatial location and social recognition together and revealing potential sex and age differences. This paradigm is also useful for the study of object and social exploration concurrently and can be used to evaluate cognition-altering drugs in various stages of recognition memories. Copyright © 2018. Published by Elsevier Inc.

  16. Direct statistical modeling and its implications for predictive mapping in mining exploration

    NASA Astrophysics Data System (ADS)

    Sterligov, Boris; Gumiaux, Charles; Barbanson, Luc; Chen, Yan; Cassard, Daniel; Cherkasov, Sergey; Zolotaya, Ludmila

    2010-05-01

    Recent advances in geosciences make more and more multidisciplinary data available for mining exploration. This allowed developing methodologies for computing forecast ore maps from the statistical combination of such different input parameters, all based on an inverse problem theory. Numerous statistical methods (e.g. algebraic method, weight of evidence, Siris method, etc) with varying degrees of complexity in their development and implementation, have been proposed and/or adapted for ore geology purposes. In literature, such approaches are often presented through applications on natural examples and the results obtained can present specificities due to local characteristics. Moreover, though crucial for statistical computations, "minimum requirements" needed for input parameters (number of minimum data points, spatial distribution of objects, etc) are often only poorly expressed. From these, problems often arise when one has to choose between one and the other method for her/his specific question. In this study, a direct statistical modeling approach is developed in order to i) evaluate the constraints on the input parameters and ii) test the validity of different existing inversion methods. The approach particularly focused on the analysis of spatial relationships between location of points and various objects (e.g. polygons and /or polylines) which is particularly well adapted to constrain the influence of intrusive bodies - such as a granite - and faults or ductile shear-zones on spatial location of ore deposits (point objects). The method is designed in a way to insure a-dimensionality with respect to scale. In this approach, both spatial distribution and topology of objects (polygons and polylines) can be parametrized by the user (e.g. density of objects, length, surface, orientation, clustering). Then, the distance of points with respect to a given type of objects (polygons or polylines) is given using a probability distribution. The location of points is computed assuming either independency or different grades of dependency between the two probability distributions. The results show that i)polygons surface mean value, polylines length mean value, the number of objects and their clustering are critical and ii) the validity of the different tested inversion methods strongly depends on the relative importance and on the dependency between the parameters used. In addition, this combined approach of direct and inverse modeling offers an opportunity to test the robustness of the inferred distribution point laws with respect to the quality of the input data set.

  17. Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach.

    PubMed

    Ecker, Christine; Marquand, Andre; Mourão-Miranda, Janaina; Johnston, Patrick; Daly, Eileen M; Brammer, Michael J; Maltezos, Stefanos; Murphy, Clodagh M; Robertson, Dene; Williams, Steven C; Murphy, Declan G M

    2010-08-11

    Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.

  18. Intra-specific competition (crowding) of giant sequoias (Sequoiadendron giganteum)

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1993-01-01

    Information on the size and location of 1916 giant sequoias (Sequoiadendron giganteum (Lindl.) Buchholz) in Muir Grove, Sequoia National Park, in the southern Sierra Nevada of California was used to assess intra-specific crowding. Study objectives were to: (1) determine which parameters associated with intra-specific competition (i.e. size and distance to nearest neighbor, crowding/root system area overlap, or number of neighbors) might be important in spatial pattern development, growth, and survivorship of established giant sequoias; (2) quantify the level of intra-specific crowding of different sized live sequoias based on a model of estimated overlapping root system areas (i.e. an index of relative crowding); (3) compare the level of intra-specific crowding of similarly sized live and dead giant sequoias (less than 30 cm diameter at breast height (dbh) at the time of inventory (1969). Mean distances to the nearest live giant sequoia neighbor were not significantly different (at α = 0.05) for live and dead sequoias in similar size classes. A zone of influence competition model (i.e. index of crowding) based on horizontal overlap of estimated root system areas was developed for 1753 live sequoias. The model, based only on the spatial arrangement of live sequoias, was then tested on dead sequoias of less than 30 cm dbh (n = 163 trees; also recorded in 1969). The dead sequoias had a significantly higher crowding index than 561 live trees of similar diameter. Results showed that dead sequoias of less than 16.6 cm dbh had a significantly greater mean number of live neighbors and mean crowding index than live sequoias of similar size. Intra-specific crowding may be an important mechanism in determining the spatial distribution of sequoias in old-growth forests.

  19. Groundwater productivity potential mapping using evidential belief function.

    PubMed

    Park, Inhye; Kim, Yongsung; Lee, Saro

    2014-09-01

    The evidential belief function (EBF) model was applied and validated for analysis of groundwater-productivity potential (GPP) in Boryeong and Pohang cities, agriculture region in Korea using geographic information systems (GIS). Data about related factors, including topography, lineament, geology, forest, soil, and groundwater data were collected and input into a spatial database. Additionally, in the Boryeong area, specific capacity (SPC) data not lower than 4.55 m3 /d/m were collected, corresponding to 300 m3 /d yield from 72 well locations. In the Pohang area, SPC data of ≥ 6.25 m3 /d/m were collected, corresponding to a yield of 500 m3 /d from 44 well locations. By using the constructed spatial database, 19 factors related to groundwater productivity were extracted. The relationships between the well locations and the factors were identified and quantified by using the EBF model. Four relationships were calculated: belief (Bel), disbelief (Dis), uncertainty (Unc), and plausibility (Pls). The relationships were used as factor ratings in the overlay analysis to create GPP indices and maps. The resulting GPP maps showed 83.41% and 77.53% accuracy in Boryeong and Pohang areas, respectively. The EBF model was found to be more effective in terms of prediction accuracy. © 2014, National Ground Water Association.

  20. Space-Based but not Object-Based Inhibition of Return is Impaired in Parkinson's Disease

    PubMed Central

    Possin, Katherine L.; Filoteo, J. Vincent; Song, David D.; Salmon, David P.

    2009-01-01

    Impairments in certain aspects of attention have frequently been reported in Parkinson's disease (PD), including reduced inhibition of return (IOR). Recent evidence suggests that IOR can occur when attention is directed at objects or locations, but previous investigations of IOR in PD have not systematically compared these two frames of reference. The present study compared the performance of 18 nondemented patients with PD and 18 normal controls on an IOR task with two conditions. In the “object-present” condition, objects surrounded the cues and targets so that attention was cued to both a spatial location and to a specific object. In the “object-absent” condition, surrounding objects were not presented so that attention was cued only to a spatial location. When participants had to rely on space-based cues, PD patients demonstrated reduced IOR compared to controls. In contrast, when objects were present in the display and participants could use object-based cues, PD patients exhibited normal IOR. These results suggest that PD patients are impaired in inhibitory aspects of space-based attention, but are able to overcome this impairment when their attention can be directed at object-based frames of reference. This dissociation supports the view that space-based and object-based components of attention involve distinct neurocognitive processes. PMID:19397864

  1. Space-based but not object-based inhibition of return is impaired in Parkinson's disease.

    PubMed

    Possin, Katherine L; Filoteo, J Vincent; Song, David D; Salmon, David P

    2009-06-01

    Impairments in certain aspects of attention have frequently been reported in Parkinson's disease (PD), including reduced inhibition of return (IOR). Recent evidence suggests that IOR can occur when attention is directed at objects or locations, but previous investigations of IOR in PD have not systematically compared these two frames of reference. The present study compared the performance of 18 nondemented patients with PD and 18 normal controls on an IOR task with two conditions. In the "object-present" condition, objects surrounded the cues and targets so that attention was cued to both a spatial location and to a specific object. In the "object-absent" condition, surrounding objects were not presented so that attention was cued only to a spatial location. When participants had to rely on space-based cues, PD patients demonstrated reduced IOR compared to controls. In contrast, when objects were present in the display and participants could use object-based cues, PD patients exhibited normal IOR. These results suggest that PD patients are impaired in inhibitory aspects of space-based attention, but are able to overcome this impairment when their attention can be directed at object-based frames of reference. This dissociation supports the view that space-based and object-based components of attention involve distinct neurocognitive processes.

  2. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D

    2012-01-01

    Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required for modelling contaminant loads from impermeable surfaces.

  3. Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation

    PubMed Central

    Kaping, Daniel; Vinck, Martin; Hutchison, R. Matthew; Everling, Stefan; Womelsdorf, Thilo

    2011-01-01

    Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network. PMID:22215982

  4. What Is "Odd" in Posner's Location-Cueing Paradigm? Neural Responses to Unexpected Location and Feature Changes Compared

    ERIC Educational Resources Information Center

    Vossel, Simone; Weidner, Ralph; Thiel, Christiane M.; Fink, Gereon R.

    2009-01-01

    Within the parietal cortex, the temporo-parietal junction (TPJ) and the intraparietal sulcus (IPS) seem to be involved in both spatial and nonspatial functions: Both areas are activated when misleading information is provided by invalid spatial cues in Posner's location-cueing paradigm, but also when infrequent deviant stimuli are presented within…

  5. Geographically Modified PageRank Algorithms: Identifying the Spatial Concentration of Human Movement in a Geospatial Network.

    PubMed

    Chin, Wei-Chien-Benny; Wen, Tzai-Hung

    2015-01-01

    A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms-Distance-Decay PageRank (DDPR) and Geographical PageRank (GPR)-that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility.

  6. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2012-01-01

    The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879

  7. Protecting Location Privacy for Outsourced Spatial Data in Cloud Storage

    PubMed Central

    Gui, Xiaolin; An, Jian; Zhao, Jianqiang; Zhang, Xuejun

    2014-01-01

    As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC∗) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC∗ and DSC are more secure than SHC, and DSC achieves the best index generation performance. PMID:25097865

  8. Protecting location privacy for outsourced spatial data in cloud storage.

    PubMed

    Tian, Feng; Gui, Xiaolin; An, Jian; Yang, Pan; Zhao, Jianqiang; Zhang, Xuejun

    2014-01-01

    As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC(∗)) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC(∗) and DSC are more secure than SHC, and DSC achieves the best index generation performance.

  9. Attraction of position preference by spatial attention throughout human visual cortex.

    PubMed

    Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O

    2014-10-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The role of working memory in spatial S-R correspondence effects.

    PubMed

    Wühr, Peter; Biebl, Rupert

    2011-04-01

    This study investigates the impact of working memory (WM) load on response conflicts arising from spatial (non) correspondence between irrelevant stimulus location and response location (Simon effect). The dominant view attributes the Simon effect to automatic processes of location-based response priming. The automaticity view predicts insensitivity of the Simon effect to manipulations of processing load. Four experiments investigated the role of spatial and verbal WM in horizontal and vertical Simon tasks by using a dual-task approach. Participants maintained different amounts of spatial or verbal information in WM while performing a horizontal or vertical Simon task. Results showed that high load generally decreased, and sometimes eliminated, the Simon effect. It is interesting to note that spatial load had a larger impact than verbal load on the horizontal Simon effect, whereas verbal load had a larger impact than spatial load on the vertical Simon effect. The results highlight the role of WM as the perception-action interface in choice-response tasks. Moreover, the results suggest spatial coding of horizontal stimulus-response (S-R) tasks, and verbal coding of vertical S-R tasks.

  11. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).

  12. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    PubMed Central

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  13. Landscape-level movement patterns by lions in western Serengeti: comparing the influence of inter-specific competitors, habitat attributes and prey availability.

    PubMed

    Kittle, Andrew M; Bukombe, John K; Sinclair, Anthony R E; Mduma, Simon A R; Fryxell, John M

    2016-01-01

    Where apex predators move on the landscape influences ecosystem structure and function and is therefore key to effective landscape-level management and species-specific conservation. However the factors underlying predator distribution patterns within functional ecosystems are poorly understood. Predator movement should be sensitive to the spatial patterns of inter-specific competitors, spatial variation in prey density, and landscape attributes that increase individual prey vulnerability. We investigated the relative role of these fundamental factors on seasonal resource utilization by a globally endangered apex carnivore, the African lion (Panthera leo) in Tanzania's Serengeti National Park. Lion space use was represented by novel landscape-level, modified utilization distributions (termed "localized density distributions") created from telemetry relocations of individual lions from multiple neighbouring prides. Spatial patterns of inter-specific competitors were similarly determined from telemetry re-locations of spotted hyenas (Crocuta crocuta), this system's primary competitor for lions; prey distribution was derived from 18 months of detailed census data; and remote sensing data was used to represent relevant habitat attributes. Lion space use was consistently influenced by landscape attributes that increase individual prey vulnerability to predation. Wet season activity, when available prey were scarce, was concentrated near embankments, which provide ambush opportunities, and dry season activity, when available prey were abundant, near remaining water sources where prey occurrence is predictable. Lion space use patterns were positively associated with areas of high prey biomass, but only in the prey abundant dry season. Finally, at the broad scale of this analysis, lion and hyena space use was positively correlated in the comparatively prey-rich dry season and unrelated in the wet season, suggesting lion movement was unconstrained by the spatial patterns of their main inter-specific competitors. The availability of potential prey and vulnerability of that prey to predation both motivate lion movement decisions, with their relative importance apparently mediated by overall prey abundance. With practical and theoretical implications, these results suggest that while top carnivores are consistently cognizant of how landscape features influence individual prey vulnerability, they also adopt a flexible approach to range use by adjusting spatial behaviour according to fluctuations in local prey abundance.

  14. Bow Your Head in Shame, or, Hold Your Head Up with Pride: Semantic Processing of Self-Esteem Concepts Orients Attention Vertically.

    PubMed

    Taylor, J Eric T; Lam, Timothy K; Chasteen, Alison L; Pratt, Jay

    2015-01-01

    Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space), instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid) before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues' semantics is required for conceptual cueing to occur.

  15. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  16. Tympanal travelling waves in migratory locusts.

    PubMed

    Windmill, James F C; Göpfert, Martin C; Robert, Daniel

    2005-01-01

    Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.

  17. Spatial transposition gradients in visual working memory.

    PubMed

    Rerko, Laura; Oberauer, Klaus; Lin, Hsuan-Yu

    2014-01-01

    In list memory, access to individual items reflects limits of temporal distinctiveness. This is reflected in the finding that neighbouring list items tend to be confused most often. This article investigates the analogous effect of spatial proximity in a visual working-memory task. Items were presented in different locations varying in spatial distance. A retro-cue indicated the location of the item relevant for the subsequent memory test. In two recognition experiments, probes matching spatially close neighbours of the relevant item led to more false alarms than probes matching distant neighbours or non-neighbouring memory items. In two probed-recall experiments, one with simultaneous, the other with sequential memory item presentation, items closer to the cued location were more frequently chosen for recall than more distant items. These results reflect a spatial transposition gradient analogous to the temporal transposition gradient in serial recall and challenge fixed-capacity models of visual working memory (WM).

  18. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.

    PubMed

    Doricchi, Fabrizio; Macci, Enrica; Silvetti, Massimo; Macaluso, Emiliano

    2010-07-01

    Voluntary orienting of visual attention is conventionally measured in tasks with predictive central cues followed by frequent valid targets at the cued location and by infrequent invalid targets at the uncued location. This implies that invalid targets entail both spatial reorienting of attention and breaching of the expected spatial congruency between cues and targets. Here, we used event-related functional magnetic resonance imaging (fMRI) to separate the neural correlates of the spatial and expectancy components of both endogenous orienting and stimulus-driven reorienting of attention. We found that during endogenous orienting with predictive cues, there was a significant deactivation of the right Temporal-Parietal Junction (TPJ). We also discovered that the lack of an equivalent deactivation with nonpredictive cues was matched to drop in attentional costs and preservation of attentional benefits. The right TPJ showed equivalent responses to invalid targets following predictive and nonpredictive cues. On the contrary, infrequent-unexpected invalid targets following predictive cues specifically activated the right Middle and Inferior Frontal Gyrus (MFG-IFG). Additional comparisons with spatially neutral trials demonstrated that, independently of cue predictiveness, valid targets activate the left TPJ, whereas invalid targets activate both the left and right TPJs. These findings show that the selective right TPJ activation that is found in the comparison between invalid and valid trials results from the reciprocal cancelling of the different activations that in the left TPJ are related to the processing of valid and invalid targets. We propose that left and right TPJs provide "matching and mismatching to attentional template" signals. These signals enable reorienting of attention and play a crucial role in the updating of the statistical contingency between cues and targets.

  19. What are we ‘tweeting’ about obesity? Mapping tweets with Topic Modeling and Geographic Information System

    PubMed Central

    Ghosh, Debarchana (Debs); Guha, Rajarshi

    2014-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are ‘food deserts’, ‘fast food’, and ‘childhood obesity’. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as ‘childhood obesity and schools’, ‘obesity prevention’, and ‘obesity and food habits’ are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets. PMID:25126022

  20. What are we 'tweeting' about obesity? Mapping tweets with Topic Modeling and Geographic Information System.

    PubMed

    Ghosh, Debarchana Debs; Guha, Rajarshi

    2013-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are 'food deserts', 'fast food', and 'childhood obesity'. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as 'childhood obesity and schools', 'obesity prevention', and 'obesity and food habits' are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets.

  1. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    PubMed

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  2. What aspects of vision facilitate haptic processing?

    PubMed

    Millar, Susanna; Al-Attar, Zainab

    2005-12-01

    We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.

  3. Ownership reform and the changing manufacturing landscape in Chinese cities: The case of Wuxi.

    PubMed

    Zhou, Lei; Yang, Shan; Wang, Shuguang; Xiong, Liyang

    2017-01-01

    Since the economic transition, manufacturing in China has undergone profound changes not only in number of enterprises, but also in ownership structure and intra-urban spatial distribution. Investigating the changing manufacturing landscape from the perspective of ownership structure is critical to a deep understanding of the changing role of market and government in re-shaping manufacturing location behavior. Through a case study of Wuxi, a city experiencing comprehensive ownership reform, this paper presents a detailed analysis of the intra-urban spatial shift of manufacturing, identifies the location discrepancies, and examines the underlying forces responsible for the geographical differentiations. Through zone- and district-based analysis, a distinctive trend of decentralization and suburbanization, as well as an uneven distribution of manufacturing, is unveiled. The results of Location Quotient analysis show that the distribution of manufacturing by ownership exhibits distinctive spatial patterns, which is characterized by a historically-based, market-led, and institutionally-created spatial variation. By employing Hot Spot analysis, the role of development zones in attracting manufacturing enterprises of different ownerships is established. Overall, the location behavior of the diversified manufacturing has been increasingly based on the forces of market since the land marketization began. A proactive role played by local governments has also guided the enterprise location decision through spatial planning and regulatory policies.

  4. Ownership reform and the changing manufacturing landscape in Chinese cities: The case of Wuxi

    PubMed Central

    Zhou, Lei; Yang, Shan; Wang, Shuguang

    2017-01-01

    Since the economic transition, manufacturing in China has undergone profound changes not only in number of enterprises, but also in ownership structure and intra-urban spatial distribution. Investigating the changing manufacturing landscape from the perspective of ownership structure is critical to a deep understanding of the changing role of market and government in re-shaping manufacturing location behavior. Through a case study of Wuxi, a city experiencing comprehensive ownership reform, this paper presents a detailed analysis of the intra-urban spatial shift of manufacturing, identifies the location discrepancies, and examines the underlying forces responsible for the geographical differentiations. Through zone- and district-based analysis, a distinctive trend of decentralization and suburbanization, as well as an uneven distribution of manufacturing, is unveiled. The results of Location Quotient analysis show that the distribution of manufacturing by ownership exhibits distinctive spatial patterns, which is characterized by a historically-based, market-led, and institutionally-created spatial variation. By employing Hot Spot analysis, the role of development zones in attracting manufacturing enterprises of different ownerships is established. Overall, the location behavior of the diversified manufacturing has been increasingly based on the forces of market since the land marketization began. A proactive role played by local governments has also guided the enterprise location decision through spatial planning and regulatory policies. PMID:28278284

  5. Spatial targeting of interventions against malaria.

    PubMed Central

    Carter, R.; Mendis, K. N.; Roberts, D.

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control. PMID:11196487

  6. Spatial targeting of interventions against malaria.

    PubMed

    Carter, R; Mendis, K N; Roberts, D

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control.

  7. Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalization

    PubMed Central

    Ashwell, Rachel; Ito, Rutsuko

    2014-01-01

    The prelimbic and infralimbic regions of the rat medial prefrontal cortex (mPFC) are important components of the limbic cortico-striatal circuit, receiving converging projections from the hippocampus (HPC) and amygdala. Mounting evidence points to these regions having opposing roles in the regulation of the expression of contextual fear and context-induced cocaine-seeking. To investigate this functional differentiation in motivated behavior further, this study employed a novel radial maze task previously shown to be dependent on the integrity of the hippocampus and its functional connection to the nucleus accumbens (NAc) shell, to investigate the effects of selective excitotoxic lesions of the prelimbic (PL) and infralimbic (IL) upon the spatial contextual control over reward learning. To this end, rats were trained to develop discriminative responding towards a reward-associated discrete cue presented in three out of six spatial locations (3 arms out of 6 radial maze arms), and to avoid the same discrete cue presented in the other three spatial locations. Once acquired, the reward contingencies of the spatial locations were reversed, such that responding to the cue presented in a previously rewarded location was no longer rewarded. Furthermore, the acquisition of spatial learning was probed separately using conditioned place preference (CPP) and the monitoring of arm selection at the beginning of each training session. Lesions of the PL transiently attenuated the acquisition of the initial cue approach training and spatial learning, while leaving reversal learning intact. In contrast, IL lesions led to a significantly superior performance of spatial context-dependent discriminative cue approach and reversal learning, in the absence of a significant preference for the new reward-associated spatial locations. These results indicate that the PL and IL have functionally dissociative, and potentially opposite roles in the regulation of spatial contextual control over appetitive learning. PMID:24616678

  8. GIS representation of coal-bearing areas in Antarctica

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  9. Spontaneous Spatial Mapping of Learned Sequence in Chimpanzees: Evidence for a SNARC-Like Effect

    PubMed Central

    Adachi, Ikuma

    2014-01-01

    In the last couple of decades, there has been a growing number of reports on space-based representation of numbers and serial order in humans. In the present study, to explore evolutionary origins of such representations, we examined whether our closest evolutionary relatives, chimpanzees, map an acquired sequence onto space in a similar way to humans. The subjects had been trained to perform a number sequence task in which they touched a sequence of “small” to “large” Arabic numerals presented in random locations on the monitor. This task was presented in sessions that also included test trials consisting of only two numerals (1 and 9) horizontally arranged. On half of the trials 1 was located to the left of 9, whereas on the other half 1 was to the right to 9. The Chimpanzees' performance was systematically influenced by the spatial arrangement of the stimuli; specifically, they responded quicker when 1 was on the left and 9 on the right compared to the other way around. This result suggests that chimpanzees, like humans, spontaneously map a learned sequence onto space. PMID:24643044

  10. Spatial release of cognitive load measured in a dual-task paradigm in normal-hearing and hearing-impaired listeners.

    PubMed

    Xia, Jing; Nooraei, Nazanin; Kalluri, Sridhar; Edwards, Brent

    2015-04-01

    This study investigated whether spatial separation between talkers helps reduce cognitive processing load, and how hearing impairment interacts with the cognitive load of individuals listening in multi-talker environments. A dual-task paradigm was used in which performance on a secondary task (visual tracking) served as a measure of the cognitive load imposed by a speech recognition task. Visual tracking performance was measured under four conditions in which the target and the interferers were distinguished by (1) gender and spatial location, (2) gender only, (3) spatial location only, and (4) neither gender nor spatial location. Results showed that when gender cues were available, a 15° spatial separation between talkers reduced the cognitive load of listening even though it did not provide further improvement in speech recognition (Experiment I). Compared to normal-hearing listeners, large individual variability in spatial release of cognitive load was observed among hearing-impaired listeners. Cognitive load was lower when talkers were spatially separated by 60° than when talkers were of different genders, even though speech recognition was comparable in these two conditions (Experiment II). These results suggest that a measure of cognitive load might provide valuable insight into the benefit of spatial cues in multi-talker environments.

  11. Spatial mapping and attribution of Wyoming wind turbines

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These specific data are being used for assessing the effect of disturbance resulting from wind energy development within Wyoming on sage-grouse populations.

  12. On the Effect of Preferential Sampling in Spatial Prediction

    EPA Science Inventory

    The choice of the sampling locations in a spatial network is often guided by practical demands. In particular, typically, locations are preferentially chosen to capture high values of a response, for example, air pollution levels in environmental monitoring. Then, model estimatio...

  13. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.

    PubMed

    Gunson, Kari E; Mountrakis, Giorgos; Quackenbush, Lindi J

    2011-04-01

    In addition to posing a serious risk to motorist safety, vehicle collisions with wildlife are a significant threat for many species. Previous spatial modeling has concluded that wildlife-vehicle collisions (WVCs) exhibit clustering on roads, which is attributed to specific landscape and road-related factors. We reviewed twenty-four published manuscripts that used generalized linear models to statistically determine the influence that numerous explanatory predictors have on the location of WVCs. Our motivation was to summarize empirical WVC findings to facilitate application of this knowledge to planning, and design of mitigation strategies on roads. In addition, commonalities between studies were discussed and recommendations for future model design were made. We summarized the type and measurement of each significant predictor and whether they potentially increased or decreased the occurrence of collisions with ungulates, carnivores, small-medium vertebrates, birds, and amphibians and reptiles. WVCs commonly occurred when roads bisect favorable cover, foraging, or breeding habitat for specific species or groups of species. WVCs were generally highest on road sections with high traffic volumes, or low motorist visibility, and when roads cut through drainage movement corridors, or level terrain. Ungulates, birds, small-medium vertebrates, and carnivore collision locations were associated with road-side vegetation and other features such as salt pools. In several cases, results were spurious due to confounding and interacting predictors within the same model. For example, WVCs were less likely to occur when a road bisected steep slopes; however, steep slopes may be located along specific road-types and habitat that also influence the occurrence of WVCs. In conclusion, this review showed that much of the current literature has gleaned the obvious, broad-scale relationships between WVCs and predictors from available data sets, and localized studies can provide unique and novel results. Future research requires specific modeling for each target species on a road-by-road basis, and measuring the predictive power of model results within similar landscapes. In addition, research that builds on the current literature by investigating rare anomalies and interacting variables will assist in providing sound comprehensive guidelines for wildlife mitigation planning on roads. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Deployment of spatial attention towards locations in memory representations. An EEG study.

    PubMed

    Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J

    2013-01-01

    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.

  15. COVARIATE-ADAPTIVE CLUSTERING OF EXPOSURES FOR AIR POLLUTION EPIDEMIOLOGY COHORTS*

    PubMed Central

    Keller, Joshua P.; Drton, Mathias; Larson, Timothy; Kaufman, Joel D.; Sandler, Dale P.; Szpiro, Adam A.

    2017-01-01

    Cohort studies in air pollution epidemiology aim to establish associations between health outcomes and air pollution exposures. Statistical analysis of such associations is complicated by the multivariate nature of the pollutant exposure data as well as the spatial misalignment that arises from the fact that exposure data are collected at regulatory monitoring network locations distinct from cohort locations. We present a novel clustering approach for addressing this challenge. Specifically, we present a method that uses geographic covariate information to cluster multi-pollutant observations and predict cluster membership at cohort locations. Our predictive k-means procedure identifies centers using a mixture model and is followed by multi-class spatial prediction. In simulations, we demonstrate that predictive k-means can reduce misclassification error by over 50% compared to ordinary k-means, with minimal loss in cluster representativeness. The improved prediction accuracy results in large gains of 30% or more in power for detecting effect modification by cluster in a simulated health analysis. In an analysis of the NIEHS Sister Study cohort using predictive k-means, we find that the association between systolic blood pressure (SBP) and long-term fine particulate matter (PM2.5) exposure varies significantly between different clusters of PM2.5 component profiles. Our cluster-based analysis shows that for subjects assigned to a cluster located in the Midwestern U.S., a 10 μg/m3 difference in exposure is associated with 4.37 mmHg (95% CI, 2.38, 6.35) higher SBP. PMID:28572869

  16. Development of the Neurochemical Architecture of the Central Complex

    PubMed Central

    Boyan, George S.; Liu, Yu

    2016-01-01

    The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors. PMID:27630548

  17. Evidence for an attentional component of inhibition of return in visual search.

    PubMed

    Pierce, Allison M; Crouse, Monique D; Green, Jessica J

    2017-11-01

    Inhibition of return (IOR) is typically described as an inhibitory bias against returning attention to a recently attended location as a means of promoting efficient visual search. Most studies examining IOR, however, either do not use visual search paradigms or do not effectively isolate attentional processes, making it difficult to conclusively link IOR to a bias in attention. Here, we recorded ERPs during a simple visual search task designed to isolate the attentional component of IOR to examine whether an inhibitory bias of attention is observed and, if so, how it influences visual search behavior. Across successive visual search displays, we found evidence of both a broad, hemisphere-wide inhibitory bias of attention along with a focal, target location-specific facilitation. When the target appeared in the same visual hemifield in successive searches, responses were slower and the N2pc component was reduced, reflecting a bias of attention away from the previously attended side of space. When the target occurred at the same location in successive searches, responses were facilitated and the P1 component was enhanced, likely reflecting spatial priming of the target. These two effects are combined in the response times, leading to a reduction in the IOR effect for repeated target locations. Using ERPs, however, these two opposing effects can be isolated in time, demonstrating that the inhibitory biasing of attention still occurs even when response-time slowing is ameliorated by spatial priming. © 2017 Society for Psychophysiological Research.

  18. Prediction of daily sea surface temperature using efficient neural networks

    NASA Astrophysics Data System (ADS)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-04-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  19. Electrophysiological recordings in humans reveal reduced location-specific attentional-shift activity prior to recentering saccades

    PubMed Central

    Boehler, C. Nicolas; Zhang, Helen H.; Schoenfeld, Mircea A.; Woldorff, Marty G.

    2012-01-01

    Being able to effectively explore the visual world is of fundamental importance, and it has been suggested that the straight-ahead gaze position within the egocentric reference frame (“primary position”) might play a special role in this context. In the present study we employed human electroencephalography (EEG) to examine neural activity related to the spatial guidance of saccadic eye movements. Moreover, we sought to investigate whether such activity would be modulated by the spatial relation of saccade direction to the primary gaze position (recentering saccades). Participants executed endogenously cued saccades between five equidistant locations along the horizontal meridian. This design allowed for the comparison of isoamplitude saccades from the same starting position that were oriented either toward the primary position (centripetal) or further away from it (centrifugal). By back-averaging time-locked to the saccade onset on each trial, we identified a parietally distributed, negative-polarity EEG deflection contralateral to the direction of the upcoming saccade. Importantly, this contralateral presaccadic negativity, which appeared to reflect the location-specific attentional guidance of the eye movement, was attenuated for recentering saccades relative to isoamplitude centrifugal saccades. This differential electrophysiological signature was paralleled by faster saccadic reaction times and was substantially more apparent when time-locking the data to the onset of the saccade rather than to the onset of the cue, suggesting a tight temporal association with saccade initiation. The diminished level of this presaccadic component for recentering saccades may reflect the preferential coding of the straight-ahead gaze position, in which both the eye-centered and head-centered reference frames are perfectly aligned and from which the visual world can be effectively explored. PMID:22157127

  20. Augmented Reality for the Assessment of Children's Spatial Memory in Real Settings

    PubMed Central

    Juan, M.-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5–6 year olds) and primary school (7–8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146

  1. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  2. Augmented reality for the assessment of children's spatial memory in real settings.

    PubMed

    Juan, M-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement.

  3. Summer spatial patterning of chukars in relation to free water in Western Utah

    USGS Publications Warehouse

    Larsen, R.T.; Bissonette, J.A.; Flinders, J.T.; Hooten, M.B.; Wilson, T.L.

    2010-01-01

    Free water is considered important to wildlife in arid regions. In the western United States, thousands of water developments have been built to benefit wildlife in arid landscapes. Agencies and researchers have yet to clearly demonstrate their effectiveness. We combined a spatial analysis of summer chukar (Alectoris chukar) covey locations with dietary composition analysis in western Utah. Our specific objectives were to determine if chukars showed a spatial pattern that suggested association with free water in four study areas and to document summer dietary moisture content in relation to average distance from water. The observed data for the Cedar Mountains study area fell within the middle of the random mean distance to water distribution suggesting no association with free water. The observed mean distance to water for the other three areas was much closer than expected compared to a random spatial process, suggesting the importance of free water to these populations. Dietary moisture content of chukar food items from the Cedar Mountains (59%) was significantly greater (P < 0.05) than that of birds from Box Elder (44%) and Keg-Dugway (44%). Water developments on the Cedar Mountains are likely ineffective for chukars. Spatial patterns on the other areas, however, suggest association with free water and our results demonstrate the need for site-specific considerations. Researchers should be aware of the potential to satisfy water demand with pre-formed and metabolic water for a variety of species in studies that address the effects of wildlife water developments. We encourage incorporation of spatial structure in model error components in future ecological research. ?? Springer Science+Business Media B.V. 2009.

  4. Not all memories are the same: Situational context influences spatial recall within one's city of residency.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2016-02-01

    Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition.

  5. Spatial interactions among ecosystem services in an urbanizing agricultural watershed

    PubMed Central

    Qiu, Jiangxiao; Turner, Monica G.

    2013-01-01

    Understanding spatial distributions, synergies, and tradeoffs of multiple ecosystem services (benefits people derive from ecosystems) remains challenging. We analyzed the supply of 10 ecosystem services for 2006 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) Where are areas of high and low supply of individual ecosystem services, and are these areas spatially concordant across services? (ii) Where on the landscape are the strongest tradeoffs and synergies among ecosystem services located? (iii) For ecosystem service pairs that experience tradeoffs, what distinguishes locations that are “win–win” exceptions from other locations? Spatial patterns of high supply for multiple ecosystem services often were not coincident; locations where six or more services were produced at high levels (upper 20th percentile) occupied only 3.3% of the landscape. Most relationships among ecosystem services were synergies, but tradeoffs occurred between crop production and water quality. Ecosystem services related to water quality and quantity separated into three different groups, indicating that management to sustain freshwater services along with other ecosystem services will not be simple. Despite overall tradeoffs between crop production and water quality, some locations were positive for both, suggesting that tradeoffs are not inevitable everywhere and might be ameliorated in some locations. Overall, we found that different areas of the landscape supplied different suites of ecosystem services, and their lack of spatial concordance suggests the importance of managing over large areas to sustain multiple ecosystem services. PMID:23818612

  6. Spatial interactions among ecosystem services in an urbanizing agricultural watershed.

    PubMed

    Qiu, Jiangxiao; Turner, Monica G

    2013-07-16

    Understanding spatial distributions, synergies, and tradeoffs of multiple ecosystem services (benefits people derive from ecosystems) remains challenging. We analyzed the supply of 10 ecosystem services for 2006 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) Where are areas of high and low supply of individual ecosystem services, and are these areas spatially concordant across services? (ii) Where on the landscape are the strongest tradeoffs and synergies among ecosystem services located? (iii) For ecosystem service pairs that experience tradeoffs, what distinguishes locations that are "win-win" exceptions from other locations? Spatial patterns of high supply for multiple ecosystem services often were not coincident; locations where six or more services were produced at high levels (upper 20th percentile) occupied only 3.3% of the landscape. Most relationships among ecosystem services were synergies, but tradeoffs occurred between crop production and water quality. Ecosystem services related to water quality and quantity separated into three different groups, indicating that management to sustain freshwater services along with other ecosystem services will not be simple. Despite overall tradeoffs between crop production and water quality, some locations were positive for both, suggesting that tradeoffs are not inevitable everywhere and might be ameliorated in some locations. Overall, we found that different areas of the landscape supplied different suites of ecosystem services, and their lack of spatial concordance suggests the importance of managing over large areas to sustain multiple ecosystem services.

  7. Application of the automated spatial surveillance program to birth defects surveillance data.

    PubMed

    Gardner, Bennett R; Strickland, Matthew J; Correa, Adolfo

    2007-07-01

    Although many birth defects surveillance programs incorporate georeferenced records into their databases, practical methods for routine spatial surveillance are lacking. We present a macroprogram written for the software package R designed for routine exploratory spatial analysis of birth defects data, the Automated Spatial Surveillance Program (ASSP), and present an application of this program using spina bifida prevalence data for metropolitan Atlanta. Birth defects surveillance data were collected by the Metropolitan Atlanta Congenital Defects Program. We generated ASSP maps for two groups of years that correspond roughly to the periods before (1994-1998) and after (1999-2002) folic acid fortification of flour. ASSP maps display census tract-specific spina bifida prevalence, smoothed prevalence contours, and locations of statistically elevated prevalence. We used these maps to identify areas of elevated prevalence for spina bifida. We identified a large area of potential concern in the years following fortification of grains and cereals with folic acid. This area overlapped census tracts containing large numbers of Hispanic residents. The potential utility of ASSP for spatial disease monitoring was demonstrated by the identification of areas of high prevalence of spina bifida and may warrant further study and monitoring. We intend to further develop ASSP so that it becomes practical for routine spatial monitoring of birth defects. (c) 2007 Wiley-Liss, Inc.

  8. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.

    PubMed

    Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone

    2016-11-15

    Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Measurement of spatial and temporal variation in volatile hazardous air pollutants in Tacoma, Washington, using a mobile membrane introduction mass spectrometry (MIMS) system.

    PubMed

    Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G

    2014-09-19

    The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.

  10. Logical recoding of S-R rules can reverse the effects of spatial S-R correspondence.

    PubMed

    Wühr, Peter; Biebl, Rupert

    2009-02-01

    Two experiments investigated competing explanations for the reversal of spatial stimulus-response (S-R) correspondence effects (i.e., Simon effects) with an incompatible S-R mapping on the relevant, nonspatial dimension. Competing explanations were based on generalized S-R rules (logical-recoding account) or referred to display-control arrangement correspondence or to S-S congruity. In Experiment 1, compatible responses to finger-name stimuli presented at left/right locations produced normal Simon effects, whereas incompatible responses to finger-name stimuli produced an inverted Simon effect. This finding supports the logical-recoding account. In Experiment 2, spatial S-R correspondence and color S-R correspondence were varied independently, and main effects of these variables were observed. The lack of an interaction between these variables, however, disconfirms a prediction of the display-control arrangement correspondence account. Together, the results provide converging evidence for the logical-recoding account. This account claims that participants derive generalized response selection rules (e.g., the identity or reversal rule) from specific S-R rules and inadvertently apply the generalized rules to the irrelevant (spatial) S-R dimension when selecting their response.

  11. What we remember affects how we see: spatial working memory steers saccade programming.

    PubMed

    Wong, Jason H; Peterson, Matthew S

    2013-02-01

    Relationships between visual attention, saccade programming, and visual working memory have been hypothesized for over a decade. Awh, Jonides, and Reuter-Lorenz (Journal of Experimental Psychology: Human Perception and Performance 24(3):780-90, 1998) and Awh et al. (Psychological Science 10(5):433-437, 1999) proposed that rehearsing a location in memory also leads to enhanced attentional processing at that location. In regard to eye movements, Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) found that holding a location in working memory affects saccade programming, albeit negatively. In three experiments, we attempted to replicate the findings of Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) and determine whether the spatial memory effect can occur in other saccade-cuing paradigms, including endogenous central arrow cues and exogenous irrelevant singletons. In the first experiment, our results were the opposite of those in Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009), in that we found facilitation (shorter saccade latencies) instead of inhibition when the saccade target matched the region in spatial working memory. In Experiment 2, we sought to determine whether the spatial working memory effect would generalize to other endogenous cuing tasks, such as a central arrow that pointed to one of six possible peripheral locations. As in Experiment 1, we found that saccade programming was facilitated when the cued location coincided with the saccade target. In Experiment 3, we explored how spatial memory interacts with other types of cues, such as a peripheral color singleton target or irrelevant onset. In both cases, the eyes were more likely to go to either singleton when it coincided with the location held in spatial working memory. On the basis of these results, we conclude that spatial working memory and saccade programming are likely to share common overlapping circuitry.

  12. New quantitative approaches reveal the spatial preference of nuclear compartments in mammalian fibroblasts.

    PubMed

    Weston, David J; Russell, Richard A; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A; Adams, Niall M; Freemont, Paul S

    2015-03-06

    The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate 'aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging.

  13. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Categorical spatial memory in patients with mild cognitive impairment and Alzheimer dementia: positional versus object-location recall.

    PubMed

    Kessels, Roy P C; Rijken, Stefan; Joosten-Weyn Banningh, Liesbeth W A; Van Schuylenborgh-VAN Es, Nelleke; Olde Rikkert, Marcel G M

    2010-01-01

    Memory for object locations, as part of spatial memory function, has rarely been studied in patients with Alzheimer dementia (AD), while studies in patients with Mild Cognitive Impairment (MCI) patients are lacking altogether. The present study examined categorical spatial memory function using the Location Learning Test (LLT) in MCI patients (n = 30), AD patients (n = 30), and healthy controls (n = 40). Two scoring methods were compared, aimed at disentangling positional recall (location irrespective of object identity) and object-location binding. The results showed that AD patients performed worse than the MCI patients on the LLT, both on recall of positional information and on recall of the locations of different objects. In addition, both measures could validly discriminate between AD and MCI patients. These findings are in agreement with the notion that visual cued-recall tests may have better diagnostic value than traditional (verbal) free-recall tests in the assessment of patients with suspected MCI or AD.

  15. No functional role of attention-based rehearsal in maintenance of spatial working memory representations.

    PubMed

    Belopolsky, Artem V; Theeuwes, Jan

    2009-10-01

    The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations.

  16. Daytime Locations in Spatial Mismatch: Job Accessibility and Employment at Reentry From Prison

    PubMed Central

    Lens, Michael C.

    2017-01-01

    Individuals recently released from prison confront many barriers to employment. One potential obstacle is spatial mismatch—the concentration of low-skilled, nonwhite job-seekers within central cities and the prevalence of relevant job opportunities in outlying areas. Prior research has found mixed results about the importance of residential place for reentry outcomes. In this article, we propose that residential location matters for finding work, but this largely static measure does not capture the range of geographic contexts that individuals inhabit throughout the day. We combine novel, real-time GPS information on daytime locations and self-reported employment collected from smartphones with sophisticated measures of job accessibility to test the relative importance of spatial mismatch based on residence and daytime locations. Our findings suggest that the ability of low-skilled, poor, and urban individuals to compensate for their residential deficits by traveling to job-rich areas is an overlooked and salient consideration in spatial mismatch perspectives. PMID:28224468

  17. Short-Term Memory Maintenance of Object Locations during Active Navigation: Which Working Memory Subsystem Is Essential?

    PubMed Central

    Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.

    2011-01-01

    The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686

  18. Marine protected areas and the value of spatially optimized fishery management

    PubMed Central

    Rassweiler, Andrew; Costello, Christopher; Siegel, David A.

    2012-01-01

    There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed. PMID:22753469

  19. Marine protected areas and the value of spatially optimized fishery management.

    PubMed

    Rassweiler, Andrew; Costello, Christopher; Siegel, David A

    2012-07-17

    There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed.

  20. [Sociodemographic context of homicide in Mexico City: a spatial analysis].

    PubMed

    Fuentes Flores, César; Sánchez Salinas, Omar

    2015-12-01

    Investigate the spatial distribution pattern of the homicide rate and its relation to sociodemographic features in the Benito Juárez, Coyoacán, and Cuauhtémoc districts of Mexico City in 2010. Inferential cross-sectional study that uses spatial analysis methods to study the spatial association of the homicide rate and demographic features. Spatial association was determined through the location quotient, multiple regression analysis, and the use of geographically weighted regression. Homicides show a heterogeneous location pattern with high rates in areas with non-residential land use, low population density, and low marginalization. Spatial analysis tools are powerful instruments for the design of prevention- and recreation-focused public safety policies that aim to reduce mortality from external causes such as homicides.

Top