Science.gov

Sample records for specific speed centrifugal

  1. Centrifugal pumps: which suction specific speeds are acceptable

    SciTech Connect

    Hallam, J.L.

    1982-04-01

    Suction specific speed is an important consideration when purchasing or analyzing centrifugal pumps. There is a direct correlation between this parameter, pump reliability and maintenance expenses. This article demonstrates that in a large Gulf Coast oil refinery, centrifugal pumps with a suction specific speed greater than 11,000 failed at a frequency nearly twice that of centrifugal pumps with suction specific speed less than 11,000. This study consisted primarily of hydrocarbon pumps with an average horsepower of 150 hp. Results may vary some from those found if high energy water pumps are studied. 5 refs.

  2. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  3. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  4. The analysis of unsteady characteristics in the low specific speed centrifugal pump with drainage gaps

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Chen, H. X.; Wei, Q.; Zhang, R.

    2012-11-01

    The gap drainage impeller is a new structure of impeller which is based on the idea of flow control, and it has been validated in experiments that this structure can increase the pump efficiency. The purpose of this paper is to explore a valid numerical analysis method for the simulation of low specific speed centrifugal pump, and then investigate the unsteady characteristics of the gap drainage impeller pump. The internal flow numerical simulations were done at multi-flow rates, and the calculated results were analyzed based on comparison with the experimental data of hydraulic performance, pressure pulsation and vibration acceleration. It was confirmed that: the results from the simulation tend to agree well with the experiments; the unsteady method is generally superior to the steady method in computing robustness and prediction accuracy at partial flow rates; the wall friction and clearance leakage should be considered in the performance prediction of the low specific centrifugal pump; the frequency spectra of pressure fluctuation is mainly controlled by the rotor-stator interaction, and the overall energy of pressure fluctuation and vibration is increased in part-load working conditions, especially at large flow rates; the pressure pulsation and the impeller radial fluid force are uneven in circumference, and they propagate in the opposite direction of the shaft rotating; however, the calculation error is considerable when comparing with experiments, and the reasons for which should be researched furthermore.

  5. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  6. The optimization of low specific speed centrifugal pump based on incomplete sensitivities

    NASA Astrophysics Data System (ADS)

    Zhang, R. H.; Zheng, K.; Yao, L. H.; Shi, F. X.

    2012-11-01

    In this research, the optimization method for low specific speed centrifugal pump impeller based on incomplete sensitivities was proposed. The main feature of the algorithm is that it avoids solving the flow field repeatedly in one optimization cycle in finite difference method and it avoids solving the adjoint equation in adjoint method. The blade meridional plan is considered as constant, and the blade camber line was parameterize by Taylor function. The coefficients in the Taylor function were taken as the control variable. The moment acting on the blade was considered as the objective function. With the incomplete sensitivities we can get the gradient of the objective function with respect to the control variable easily, and the blade shape can be renewed according to the inverse direction of the gradient. We will find the optimum design when the objective function is minimized. The computational cost is greatly reduced. The calculation cases show that the proposed theory and method is rotational.

  7. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng

    2016-09-01

    In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.

  8. Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu

    2016-07-01

    This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.

  9. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  10. Experimental research on internal flow in impeller of a low specific speed centrifugal pump by PIV

    NASA Astrophysics Data System (ADS)

    Zhang, J. F.; Wang, Y. F.; Yuan, S. Q.

    2016-05-01

    For the purpose of investigating the influence of two different impellers, one is with splitter blades and the other one is without splitter blades, on a low-specific centrifugal pump. The experimental investigation in impellers was conducted at different conditions and phases by means of PIV (Particle Image Velocimetry) to study the internal flow. Meanwhile, the absolute and relative velocity distributions in impellers were obtained. Experimental results show that the head value is higher in the impeller with splitter blades and both two head curves appear hump phenomena at small flow rate. The absolute velocity value increases with radius and from pressure side to suction side at the same radius gradually. The splitter blades can scour the wake, making outlet velocity distribution more uniform and improving the internal flow. The velocity distribution becomes less even in the process of closing to tongue due to reinforced interference of tongue on internal flow.

  11. Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds

    NASA Astrophysics Data System (ADS)

    Boitel, G.; Fedala, D.; Myon, N.

    2016-11-01

    Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.

  12. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds

    SciTech Connect

    Derakhshan, Shahram; Nourbakhsh, Ahmad

    2008-01-15

    Pump manufacturers do not normally provide the characteristic curves of their pumps working as turbines. Therefore, establishing a correlation between the performances of direct (pump) and reverse (turbine) modes is essential in selecting the proper machine. In this paper, several centrifugal pumps (N{sub s} < 60 (m, m{sup 3}/s)) were tested as turbines. Using experimental data, some relations were derived to predict the best efficiency point of a pump working as a turbine, based on pump hydraulic characteristics. Validity of the presented method was shown using some referenced experimental data. Two equations were presented to estimate the complete characteristic curves of centrifugal pumps as turbines based on their best efficiency point. Deviations of suggested method from experimental data were considered and discussed. Finally, a procedure was presented for selecting a suitable pump to work as a turbine in a small hydro-site. (author)

  13. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  14. Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.

  15. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  16. A study on energy saving rate for variable speed condition of multistage centrifugal pump

    NASA Astrophysics Data System (ADS)

    Suh, Sang-Ho; Rakibuzzaman; Kim, Kyung-Wuk; Kim, Hyoung-Ho; Yoon, In Sik; Cho, Min-Tae

    2015-11-01

    Centrifugal pumps are being widely used in many industrial and commercial applications. Many of these pumps are being operated at constant speed but could provide energy savings through adjustable speed operations. The purpose of this study was to get the energy saving rates of the multistage centrifugal pump with variable speed conditions. For this investigation an experimental set up of variable flow and pressure system was made to get energy saving rates and numerical analyses are applied to validate the pump performance. The energy saving and therefore the cost saving depends on the specific duty cycle of which the machine operates. Duty cycle is the proportion of time during which a component, device and system is operated. The duty cycle segmented into different flow rates and weighting the average value for each segment by the interval time. The system was operated at 50% or less of the pump capacity. The input power of the system was carried out by pump characteristics curve of each operating point. The energy consumption was done by the product of specific duty cycle and the input power of the system for constant speed and variable speed drive operation. The total energy consumed for constant speed drive pump was 75,770 kW.hr and for variable speed drive pump was 31,700 kW.hr. The total energy saving of the system was 44,070 kW.hr or 58.16% annually. So, this paper suggests a method of implementing an energy saving on variable-flow and pressure system of the multistage centrifugal pump.

  17. A HIGH SPEED VACUUM CENTRIFUGE SUITABLE FOR THE STUDY OF FILTERABLE VIRUSES

    PubMed Central

    Bauer, Johannes H.; Pickels, Edward G.

    1936-01-01

    1. A high speed centrifuge is described in which the speed is limited only by the strength of the material of which the rotor is made. It carries sixteen tubes, each of which conveniently accommodates 7 cc. of fluid. 2. The centrifuge operates in a very high vacuum and therefore requires only a small amount of driving energy. The arrangement has been found to eliminate the possibility of producing injurious frictional heat. 3. The rotating parts are supported by anair-bearing and are driven by compressed air. 4. The centrifuge has been successfully operated at a speed of 30,000 revolutions per minute, representing a maximum centrifugal force in the fluid of 95,000 times gravity. 5 Celluloid tubes used for centrifugation of fluid at high speeds are described. 6. Experiments are described in which good sedimentation of the yellow fever virus was obtained. PMID:19870550

  18. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    PubMed

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  19. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  20. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  1. CENTRIFUGE

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  2. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  3. Inference of optimal speed for sound centrifugal casting of Al-12Si alloys

    NASA Astrophysics Data System (ADS)

    Agari, Shailesh Rao; Mukunda, P. G.; Rao, Shrikantha S.; Sudhakar, K. G.

    2011-05-01

    True centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. When a mold is rotated at low and very high speeds defects are found in the final castings. Obtaining the critical speed for sound castings should not be a matter of guess or based on experience. The defects in the casting are mainly due to the behavior of the molten metal during the teeming and solidification process. Motion of molten metal at various speeds and its effect during casting are addressed in this paper. Eutectic Al-12Si alloy is taken as an experiment fluid and its performance during various rotational speeds is discussed.

  4. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  5. Experimental and computational results from a large low-speed centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1993-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and in several cases provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.

  6. Review of the gas centrifuge until 1962. Part II: Principles of high-speed rotation

    NASA Astrophysics Data System (ADS)

    Whitley, Stanley

    1984-01-01

    The principles of the separation physics of the gas centrifuge were described in Part I of this review. In this second section the principles involved in spinning the rotors of these centrifuges are described. Three types of rotor can be identified, depending on the ratio of length to diameter. If the rotor is very short, length-diameter ratio less than one, it is gyroscopically stable and easy to spin. If the length-diameter ratio is in the region of 4 or 5, the rotor behaves as a rigid body and is relatively easy to accelerate to speed; however, it has a tendency at full speed to exhibit gyroscopic precessions. Finally, if the length-diameter ratio is very large, the rotor becomes easy to stabilize gyroscopically, but it is difficult to get it to speed because long rotors are very flexible and have resonant frequencies of flexure lower than the operating speed. The problems of these three types of centrifuge (the rotor dynamics, the bearings used to support the rotor, and the stress analysis of the rotating components) were investigated in the last century as part of classical mechanics because of the emergence of steam turbines during the latter part of the industrial revolution. These early principles are briefly reviewed, with particular reference to the work of De Laval, who invented the principle of self-balancing, Reynolds and Evershed, who developed hydrodynamic and magnetic bearing, respectively, and Chree, who did the most extensive early work on the stress analysis of tubes and discs. The work is described as it applies to the centrifuges developed in America and Germany during the war and in the Soviet Union after the war. The work of Beams in America is described in most detail, since he and his colleagues developed all three types of centrifuge during the Manhattan Project. The other work described is that of Groth and Beyerle, who developed subcritical machines in Germany during the war, and of Steenbeck and Zippe, who helped to develop both

  7. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  8. Critical cavitation coefficient analysis of a space low specific centrifugal pump with micro gravity

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Li, Y.; Gao, Y.; Hu, Q.; Zhou, C.; Wu, Y. L.

    2016-05-01

    Centrifugal pump was used in the loop as a baselined unit. The flow rate of the pump was very small, while the head was high. This space pump must work stable for a long time (more than a year), so the performance of the pump attracted public attention. The rotational speed of the impeller was limited for stability, so the pump belonged to low specific centrifugal pump. In this paper, a single-phase centrifugal pump, which was designed for single-phase fluid loops in satellites, was modeled for numerical simulation. The hydraulic region of the pump was discretized by structured mesh. Three dimensional (3-D) flow in the pump was studied by the use of computational fluid dynamics. Partially-Averaged Navier- Stokes (PANS) model based on RNG k-ε turbulence model was developed for the simulation of the unsteady flow. Velocity inlet and pressure outlet was used as the boundary conditions. Interface was used between the impeller and the casing, as well as the impeller and inlet pipe. Performances and pressure fluctuation of the pump were investigated. The dominant frequency of the pressure fluctuation is blade passing frequency at the region close to the tongue of the casing, while it is twice of blade passing frequency at the other region.

  9. CENTRIFUGES

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    Damping bearings for use on the shafts of an ultracentrifuge were designed which are capable of passing through critical angular speeds. The shaft extending from one end of the rotor is journaled in fixed-plain bearings mounted on annular resilient shock-absorbing elements to dampen small vibrations. The shaft at the other end of the rotor is journaled in two damper-bearing assemblies which are so spaced on the shaft that a vibration node can at no time exist at both bearing assemblies. These bearings are similar to the other bearings except that the bearing housings are slidably mounted on the supporting structure for movement transverse to the rotational axis of the rotor.

  10. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  11. Quality evaluation of energy consumed in flow regulation method by speed variation in centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Morales, S.; Culman, M.; Acevedo, C.; Rey, C.

    2014-06-01

    Nowadays, energy efficiency and the Electric Power Quality are two inseparable issues in the evaluation of three-phase induction motors, framed within the program of Rational and Efficient Use of Energy (RUE).The use of efficient energy saving devices has been increasing significantly in RUE programs, for example the use of variable frequency drives (VFD) in pumping systems.The overall objective of the project was to evaluate the impact on power quality and energy efficiency in a centrifugal pump driven by an induction three-phase motor, using the flow control method of speed variation by VFD. The fundamental purpose was to test the opinions continuously heard about the use of flow control methods in centrifugal pumps, analyzing the advantages and disadvantages that have been formulated deliberately in order to offer support to the industry in taking correct decisions. The VFD changes the speed of the motor-pump system increasing efficiency compared to the classical methods of regulation. However, the VFD originates conditions that degrade the quality of the electric power supplied to the system and therefore its efficiency, due to the nonlinearity and presence of harmonic currents. It was possible to analyze the power quality, ensuring that the information that comes to the industry is generally biased.

  12. In-Situ Observation of Horizontal Centrifugal Casting using a High-Speed Camera

    NASA Astrophysics Data System (ADS)

    Esaka, Hisao; Kawai, Kohsuke; Kaneko, Hiroshi; Shinozuka, Kei

    2012-07-01

    In order to understand the solidification process of horizontal centrifugal casting, experimental equipment for in-situ observation using transparent organic substance has been constructed. Succinonitrile-1 mass% water alloy was filled in the round glass cell and the glass cell was completely sealed. To observe the movement of equiaxed grains more clearly and to understand the effect of movement of free surface, a high-speed camera has been installed on the equipment. The most advantageous point of this equipment is that the camera rotates with mold, so that one can observe the same location of the glass cell. Because the recording rate could be increased up to 250 frames per second, the quality of movie was dramatically modified and this made easier and more precise to pursue the certain equiaxed grain. The amplitude of oscillation of equiaxed grain ( = At) decreased as the solidification proceeded.

  13. Compound planetary hydro-mechanical transmission with speed-responsive centrifugal clutch means

    SciTech Connect

    Smith, R.R.

    1986-02-04

    This patent describes a power transmission consisting of a first sun gear constituting a first drive, a ring gear constituting a driven output, a number of first non-orbiting planet gears arranged between the first sun gear and ring gear to constitute a first driving connection. A second sun gear constitutes a second drive, the second sun gear having a different rotation axis than the first sun gear. A number of second non-orbiting planet gears individually are rotatable on the same axis as the first planet gears. The second planet gears are meshed with the second sun gear to be driven. Each of the second planet gears have a different diameter whereby each second planet gear has a different rotational speed. Each also has a centrifugal clutch arranged between each of the first planet gears and the associated second planet gear. When each first planet gear attains a predetermined rotational speed, a second driving connection is established from each second planet gear to the associated first planet gear.

  14. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  15. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  16. Correlation of microstructure and thermal-fatigue properties of centrifugally cast high-speed steel rolls

    NASA Astrophysics Data System (ADS)

    Kim, Chang Kyu; Park, Jong Il; Ryu, Jae Hwa; Lee, Sunghak

    2004-02-01

    This is a study of thermal-fatigue properties in centrifugally cast high-speed steel (HSS) rolls. The thermal-fatigue mechanism was investigated, with special focus on the roll microstructure and the increase in tensile stress which led the specimens to fracture when it reached the tensile strength. The thermal-fatigue test results indicated that the thermal-fatigue life decreased with increasing maximum temperature of the thermal-fatigue cycle. The results were then interpreted based on the amount of carbides and the cyclic-softening phenomenon associated with the exposed time to elevated temperatures. The coarse intercellular carbides on the specimen surface acted as fatigue-crack initiation sites as they cleaved at a low stress level to form cracks. The roll having the lowest matrix hardness and the smallest amount of intercellular carbides, thus, showed better thermal fatigue properties than the other rolls. For the improvement of the thermal-fatigue properties of the rolls, this study suggests a homogeneous distribution of carbides by reducing the carbide segregation formed along the solidification cell boundary and by optimizing the roll compositions.

  17. Numerical study of unsteady flows with cavitation in a high-speed micro centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, Yeqiang; Yuan, Shiwei; Lai, Huanxin

    2017-02-01

    The unsteady flows caused by the interaction between the impeller and the volute in a high-speed micro centrifugal pump are numerically studied. The internal flows of both with and without cavitations are analyzed using the CFX. The characteristics of unsteady pressure on the blade surfaces and the symmetric plane of the volute are presented and compared. The results show that the amplitudes of pressure fluctuations of critical cavitation on the blade pressure surface (PS) are bigger as compared with those at the non-cavitation condition, but on the suction surface (SS), the situation is on the contrary. When cavitation occurs, reduction of load in the impeller is a result. In the present study, such reduction of load is observed mainly on the first half of the blades. Pressure fluctuations at five monitoring points, denoted by WK1 to WK5 in the volute, are also analyzed. No matter at the critical cavitation or at the non-cavitation conditions, the monitored pressure fluctuations are at the same frequencies, which equal to the blade passing frequency (BPF) and its multiples. However, the amplitudes of the fluctuations at critical cavitation condition are considerably stronger, as compared with those for without cavitation.

  18. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  19. Development of the seeding system used for laser velocimeter surveys of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.; Hathaway, Michael D.

    1993-01-01

    An atomizer-based system for distributing high-volume rates of seed material was developed to support laser velocimeter investigations of the NASA Low-Speed Centrifugal Compressor flow field. The seeding system and the major concerns that were addressed during its development are described. Of primary importance were that the seed material be dispersed as single particles and that the liquid carrier used be completely evaporated before entering the compressor.

  20. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  1. Study of interactions between cells and microbubbles in high speed centrifugation field for biomolecule delivery.

    PubMed

    He, Chuan; Chen, Jie

    2014-01-01

    Biomolecule delivery has a very wide range of applications in biology and medicine. In this study, a microbubble based delivery method was developed. In a high centrifugation field, cells deform and collide with microbubbles to induce intracellular pathways on cell membranes. As a result, biomaterials can then easily enter cells. Experimental results show that this delivery method can achieve high delivery efficiency. Simulation results showed that cells with more deformed structure experienced higher strain on cell membranes than cells with less deformed structure. The models can help explain how centrifugation affects cell membrane permeability. By controlling cell morphology and its mechanical properties, high biomolecule delivery efficiency can be achieved.

  2. Hydraulic losses in the spiral case of low specific speed pumps

    NASA Astrophysics Data System (ADS)

    Klas, Roman; Pochylý, František; Rudolf, Pavel

    2014-03-01

    This contribution is focused on analysis of pressure losses in spiral case of centrifugal pump with thick trailing edges and with recirculation channels. Recirculation channels have different geometrical configuration and influence the size of available specific energy as well as hydraulic efficiency. Subsequently, the contribution analyses the flow in spiral case itself with respect to its function and its filling with liquid. Studied phenomena affect the research of pumps with low specific speed, the stability of specific energy characteristic curves and also the configuration of recirculation channels.

  3. Low speed centrifugal casting of Functionally Graded solid cast ingot by anomalous particle distribution

    NASA Astrophysics Data System (ADS)

    Mer, K. K. S.; Ray, S.

    2011-12-01

    Functionally graded cylindrical ingot of Al-Al2O3 composite synthesized by centrifugal casting shows particle distribution and hardness decreasing radially from the outer radius to inner radius. The progressive decrease in alumina content and hardness from the outer radius towards the center may be attributed to higher centrifugal force acting on relatively denser alumina particles during rotation, as compared to that acting on lighter alloy melt. It is also observed, as one moves down from the top to the bottom of cast ingot the alumina content decreases. This is surprising in view of higher density of alumina particles relative to the melt. The particle settling should have resulted at more particles towards the bottom, but distribution observed is in contradiction.

  4. The Use of a "Qual" Centrifuge for Greatly Simplifying and Speeding the Study of Milk

    NASA Astrophysics Data System (ADS)

    Petersen, Quentin R.

    1996-09-01

    Laboratory study of the constituents of milk is almost always slowed by difficult separation of relatively large amounts of curd and whey by filtration. In the two-and-one-half hour experiment described, only 5 mL of skim milk is used and the curd is separated from the whey by using a simple "qual" centrifuge. Casein and serum proteins are quickly isolated as solids in essentially-quantitative yields in a procedure utilizing only two 13 x 100 mm test tubes and a 50 mL beaker along with the centrifuge and a hotplate. Protein solutions are prepared in the test tubes in which they were isolated and subjected to a variety of classical tests, the most dramatic of which is the Hopkins-Cole test which shows the presence of tryptophan in casein and its absence in serum protein. An essentially-quantitative yield of solid lactose is obtained by evaporation of the supernatant liquid obtained from the serum protein centrifugation. A lactose solution is subjected to Benedict's and Barfoed's tests, identifying it as a disaccharide. Sufficient time is available to compare the fat and enzyme contents of raw milk and skim milk.

  5. Measurement of rock-core capillary pressure curves using a single-speed centrifuge and one-dimensional magnetic-resonance imaging

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Balcom, Bruce J.

    2005-06-01

    Capillary pressure curves are widely used in materials, soil, and environmental sciences, and especially in the petroleum industry. The traditional (Hassler-Brunner) interpretation of centrifugal capillary pressure data is based on several assumptions. These assumptions are known to lead to significant errors in the measurement of capillary pressure curves. In this work, we propose a new "single-shot" method to measure the capillary pressure curve of a long sedimentary rock core using a single-speed centrifuge experiment and magnetic-resonance imaging to directly determine the water saturation distribution along the length of the sample. Since only a single moderate centrifuge speed is employed, the effect of gravity can be ignored and the outlet boundary condition of the core plug was maintained. The capillary pressure curve obtained by the single-shot method is remarkably consistent with results determined with conventional mercury-intrusion methods. The proposed method is much faster and more precise than traditional centrifuge methods.

  6. Determination of the specific gravity of certain helminth eggs using sucrose density gradient centrifugation.

    PubMed

    David, E D; Lindquist, W D

    1982-10-01

    The specific gravities of ten species of helminth eggs were determined using sucrose density gradient centrifugation. Fecal or egg concentrate was layered over a 3 to 54% sucrose density gradient. The gradient was then centrifuged at 800 g for 20 min, allowing 5 min for acceleration and 5 for deceleration. Bands formed were identified and measured. Refractive index was measured at the middle of narrow bands, or at the level at which the concentration of eggs was highest, in the case of wide bands or when no band was formed. The specific gravity corresponding to this refractive index was taken as the specific gravity of the eggs. The ten species of helminth eggs studied and specific gravities measured on three or four gradients were: Toxascaris leonina, 1.0559; Ancylostoma caninum, 1.0559; Toxocara canis, 1.0900; Parascaris equorum, 1.0969; Toxocara cati (embryonated), 1.1005; Ascaris suum, 1.1299; Trichuris suis, 1.1299; Trichuris vulpis, 1.1453; Taenia sp., 1.2251; and Physaloptera sp., 1.2376. These determinations agree with or approximate those of previous workers. The specific gravities of P. equorum, T. suis, Taenia sp., and Physaloptera sp., are reported for the first time.

  7. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  8. The Effects of Austenitizing Conditions on the Microstructure and Wear Resistance of a Centrifugally Cast High-Speed Steel Roll

    NASA Astrophysics Data System (ADS)

    Kang, Minwoo; Lee, Young-Kook

    2016-07-01

    The influences of austenitizing conditions on the microstructure and wear resistance of a centrifugally cast high-speed steel roll were investigated through thermodynamic calculation, microstructural analysis, and high-temperature wear tests. When the austenitizing temperature was between 1323 K and 1423 K (1050 °C and 1150 °C), coarse eutectic M2C plates were decomposed into a mixture of MC and M6C particles. However, at 1473 K (1200 °C), the M2C plates were first replaced by both new austenite grains and MC particles without M6C particles, and then remaining M2C particles were dissolved during the growth of MC particles. The wear resistance of the HSS roll was improved with increasing austenitizing temperature up to 1473 K (1200 °C) because the coarse eutectic M2C plates, which are vulnerable to crack propagation, changed to disconnected hard M6C and MC particles.

  9. Influence of rotational speed of centrifugal casting process on appearance, microstructure, and sliding wear behaviour of Al-2Si cast alloy

    NASA Astrophysics Data System (ADS)

    Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.

    2010-02-01

    Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.

  10. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  11. Effects of Alloying Elements on Microstructure, Hardness, Wear Resistance, and Surface Roughness of Centrifugally Cast High-Speed Steel Rolls

    NASA Astrophysics Data System (ADS)

    Ha, Dae Jin; Sung, Hyo Kyung; Park, Joon Wook; Lee, Sunghak

    2009-11-01

    A study was made of the effects of carbon, tungsten, molybdenum, and vanadium on the wear resistance and surface roughness of five high-speed steel (HSS) rolls manufactured by the centrifugal casting method. High-temperature wear tests were conducted on these rolls to experimentally simulate the wear process during hot rolling. The HSS rolls contained a large amount (up to 25 vol pct) of carbides, such as MC, M2C, and M7C3 carbides formed in the tempered martensite matrix. The matrix consisted mainly of tempered lath martensite when the carbon content in the matrix was small, and contained a considerable amount of tempered plate martensite when the carbon content increased. The high-temperature wear test results indicated that the wear resistance and surface roughness of the rolls were enhanced when the amount of hard MC carbides formed inside solidification cells increased and their distribution was homogeneous. The best wear resistance and surface roughness were obtained from a roll in which a large amount of MC carbides were homogeneously distributed in the tempered lath martensite matrix. The appropriate contents of the carbon equivalent, tungsten equivalent, and vanadium were 2.0 to 2.3, 9 to 10, and 5 to 6 pct, respectively.

  12. An investigational study of minimum rotational pump speed to avoid retrograde flow in three centrifugal blood pumps in a pediatric extracorporeal life support model.

    PubMed

    Clark, Joseph B; Guan, Yulong; McCoach, Robert; Kunselman, Allen R; Myers, John L; Undar, Akif

    2011-05-01

    During extracorporeal life support with centrifugal blood pumps, retrograde pump flow may occur when the pump revolutions decrease below a critical value determined by the circuit resistance and the characteristics of the pump. We created a laboratory model to evaluate the occurrence of retrograde flow in each of three centrifugal blood pumps: the Rotaflow, the CentriMag, and the Bio-Medicus BP-50. At simulated patient pressures of 60, 80, and 100 mmHg, each pump was evaluated at speeds from 1000 to 2200 rpm and flow rates were measured. Retrograde flow occurred at low revolution speeds in all three centrifugal pumps. The Bio-Medicus pump was the least likely to demonstrate retrograde flow at low speeds, followed by the Rotaflow pump. The CentriMag pump showed the earliest transition to retrograde flow, as well as the highest degree of retrograde flow. At every pump speed evaluated, the Bio-Medicus pump delivered the highest antegrade flow and the CentriMag pump delivered the least.

  13. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021...

  14. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Factors for Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021...

  15. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021...

  16. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Factors for Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021...

  17. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Factors for Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021...

  18. General and specific perceptual learning in radial speed discrimination.

    PubMed

    Huang, Xuan; Lu, Hongjing; Zhou, Yifeng; Liu, Zili

    2011-04-14

    The specificity of learning in speed discrimination was examined in three psychophysical experiments. In Experiment 1, half of the observers trained with inward motion direction on a speed discrimination task, whereas the other half trained on the same task but with outward motion direction. The results indicated that significant training-based improvement transferred from a trained radial direction to an untrained radial direction. Experiment 2 confirmed this transfer by showing that complete transfer was obtained even when stimuli moving in an untrained radial direction were used in the transfer task. In Experiment 3, observers were trained at a viewing distance of 114 cm. The results showed that learning transferred partly to the viewing distances of 57 cm and 228 cm. In summary, the present transfer results indicate that reliable generalizations can be obtained in perceptual learning of radial speed discrimination.

  19. Variations in battery life of a heart-lung machine using different pump speeds, pressure loads, boot material, centrifugal pump head, multiple pump usage, and battery age.

    PubMed

    Marshall, Cornelius; Hargrove, Martin; O'Donnell, Aonghus; Aherne, Thomas

    2005-09-01

    Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.

  20. Fluid forces on rotating centrifugal impeller with whirling motion

    NASA Technical Reports Server (NTRS)

    Shoji, H.; Ohashi, H.

    1980-01-01

    Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory. Calculations were performed for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given.

  1. Action-specific perception of speed is independent of attention.

    PubMed

    Witt, Jessica K; Sugovic, Mila; Dodd, Michael D

    2016-04-01

    According to the action-specific account of perception, a perceiver's ability to act influences how the environment is perceived. For example, in a computer-based task, participants perceive fish as moving faster when they use a smaller net, and are thus less effective at catching the fish (Witt & Sugovic, 2013a). Here, we examined the degree to which attention may influence perceptual judgments by requiring participants to engage in a secondary task that directed their attention either toward (Exp. 1) or away from (Exp. 2) the to-be-caught fish. Though perceived fish speed was influenced by participants' catching performance-replicating previous results-attentional allocation did not impact this relationship between catching performance and perceived fish speed. The present results suggest that action directly influences spatial perception, rather than exerting indirect effects via attentional processes.

  2. Novel speed test for evaluation of badminton-specific movements.

    PubMed

    Madsen, Christian M; Karlsen, Anders; Nybo, Lars

    2015-05-01

    In this study, we developed a novel badminton-specific speed test (BST). The test was designed to mimic match play. The test starts in the center of the court and consists of 5 maximal actions to sensors located in each of the 4 corners of the court. The 20 actions are performed in randomized order as dictated by computer screen shots displayed 1 second after completion of the previous action. We assessed day-to-day variation in elite players, and specificity of the test was evaluated by comparing 30-m sprint performance and time to complete the BST in 20 elite players, 21 skilled players, and 20 age-matched physical active subjects (non-badminton players). Sprint performance was similar across groups, whereas the elite players were significantly (p ≤ 0.05) faster in the BST (total test time: 32.3 ± 1.1 seconds; average: 1.6 seconds per action) than the skilled (34.1 ± 2.0 seconds) and non-badminton players (35.7 ± 1.7 seconds). Day-to-day coefficient of variation (CV) of the BST was 0.7% for the elite players, whereas CV for repeated tests on the same day was 1.7% for elite, 2.6% for skilled, and 2.5% for non-badminton players. On this basis, we suggest that the BST may be valuable for evaluation of short-term maximal movement speed in badminton players. Thus, the BST seems to be sport specific, as it may discriminate between groups (elite, less trained players, and non-badminton players) with similar sprinting performance, and the low test-retest variation may allow for using the BST to evaluate longitudinal changes, for example, training effects or seasonal variations.

  3. Correlations between adolescent processing speed and specific spindle frequencies

    PubMed Central

    Nader, Rebecca S.; Smith, Carlyle T.

    2015-01-01

    Sleep spindles are waxing and waning thalamocortical oscillations with accepted frequencies of between 11 and 16 Hz and a minimum duration of 0.5 s. Our research has suggested that there is spindle activity in all of the sleep stages, and thus for the present analysis we examined the link between spindle activity (Stage 2, rapid eye movement (REM) and slow wave sleep (SWS)) and waking cognitive abilities in 32 healthy adolescents. After software was used to filter frequencies outside the desired range, slow spindles (11.00–13.50 Hz), fast spindles (13.51–16.00 Hz) and spindle-like activity (16.01–18.50 Hz) were observed in Stage 2, SWS and REM sleep. Our analysis suggests that these specific EEG frequencies were significantly related to processing speed, which is one of the subscales of the intelligence score, in adolescents. The relationship was prominent in SWS and REM sleep. Further, the spindle-like activity (16.01–18.50 Hz) that occurred during SWS was strongly related to processing speed. Results suggest that the ability of adolescents to respond to tasks in an accurate, efficient and timely manner is related to their sleep quality. These findings support earlier research reporting relationships between learning, learning potential and sleep spindle activity in adults and adolescents. PMID:25709575

  4. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  5. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  6. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  7. Specific Relations Between Alphanumeric-Naming Speed and Reading Speeds of Monosyllabic and Multisyllabic Words.

    ERIC Educational Resources Information Center

    Van den Bos, Kees P.; Zijlstra, Bonne J. H.; Van den Broeck, Wim

    2003-01-01

    Investigated, at three elementary levels, how word reading speed is related to rapidly naming series of numbers, letters, colors, and pictures, and to general processing speed. Also sought to determine how these relationships vary with the reading task employed. (Author/VWL)

  8. Centrifuge apparatus

    DOEpatents

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  9. Application of centrifugal precipitation chromatography and high-speed counter-current chromatography equipped with a spiral tubing support rotor for the isolation and partial characterization of carotenoid cleavage-like enzymes in Enteromorpha compressa (L.) Nees.

    PubMed

    Baldermann, Susanne; Mulyadi, Andriati N; Yang, Ziyin; Murata, Ariaka; Fleischmann, Peter; Winterhalter, Peter; Knight, Martha; Finn, Thomas M; Watanabe, Naoharu

    2011-10-01

    Centrifugal precipitation chromatography and a high-speed counter-current chromatography system equipped with a spiral tubing support rotor (spHSCCC) were successfully applied for the identification and isolation of carotenoid cleavage-like enzymes from Enteromorpha compressa (L.) Nees. This is the first study separating active enzymes from a complex natural matrix by spHSCCC. The target enzymes were identified after fractionation of the proteins in an acetone Tris-buffer gradient by centrifugal precipitation chromatography. Also, an aqueous two-phase solvent system consisting of PEG 1000 and mono- and dibasic potassium phosphate was used for the isolation of the enzymes by spHSCCC. The purified fractions contained two proteins of 65 and 72 kDa, respectively. The enzymes could cleave β-carotene and β-apo-8'-carotenal to produce β-ionone.

  10. A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force

    NASA Astrophysics Data System (ADS)

    Black, Steven D.

    Determination of the body pattern in Xenopus embryos is known to involve at least six steps. One of these steps can be experimentally simulated by inclining the fertilized egg with respect to gravity or centrifugal force (10-30 g × 4 min, directed 90° to the animal-vegetal axis). In these eggs, the dorsal structures of the body axis form from the side of the egg that was uppermost in the gravitational or centrifugal field. This topography is seen even if the sperm entry point side (the prospective ventral side in control eggs) was uppermost. In addition, conjoined twin embryos form at very high frequencies in response to certain conditions of single or double centrifugation. Cytological analysis shows that the dorsal structures invariably form from the side(s) of the egg away from which vegetal cytoplasm was displaced. This is similar to the situation in the unperturbed egg, where the subcortical cytoplasm of the vegetal hemisphere rotates some 30° relative to the surface, and the dorsal structures form from the side of the egg away from which the subcortical cytoplasm moved. The displacements elicited by centrifugation probably substitute for the normal displacements brought about by the subcortical rotation. These and other data suggest that the subcortical rotation is a crucial step in the process of axis determination. The subcortical rotation is an autonomous activity of the activated egg, and can displace cytoplasm against gravity. I believe that the subcortical rotation will function normally at microgravity, and I expect that overall development and axis polarity at microgravity will be normal. This will be tested in spaceflight.

  11. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  12. Optimum design for LRE centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhu, Zuchao; Zhang, Guoqian; Sun, Jiren

    1995-05-01

    We set up a mathematical model to predict low specific speed liquid rocket engine (LRE) centrifugal pump unit performance. Using the model in question, performance predictions were carried out for 10 types of LRE centrifugal pumps. Relative errors between experimental values and predicted values associated with efficiency and lift were all within 4%. Using the model in question, design optimization with efficiency as the target function was carried out on AM-7H and O pumps as well as AM-1R pumps and AM-50 pumps. Results clearly show that, with a presupposition of surety systems possessing high vapor corrosion characteristics, the efficiencies of these four types of pumps can be respectively raised 6.5%, 5.22%, 5.2%, and 4.41%.

  13. Centrifugal pump fuel system

    SciTech Connect

    McGlone, M.E.; Larkins, L.J.; Johnson, R.O.; Moeller, K.A.

    1993-06-22

    A centrifugal pump fuel system for an engine driven fuel pump for an aircraft gas turbine engine is described comprising: a centrifugal pump having at constant speed rising head/flow characteristic at low flows; a plumbing system receiving flow from the pump, and having at least one control valve located down stream of and defining a discrete volume of the plumbing system; a plumbing resonant frequency defined by the discrete volume, the geometry of the plumbing system, and the bulk modulus of the fuel; a pressure difference regulating valve located adjacent to the discharge of the pump, up stream of the vast majority of the discrete volume; and the frequency response of the regulating valve being significantly less than the frequency response of the plumbing system such that the response of the regulating valve is attenuated at the resonant frequency of the plumbing system.

  14. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  15. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  16. Liquid rocket engine centrifugal flow turbopumps. [design criteria

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.

  17. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  18. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-04-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  19. Specific binding of sup 125 I-rErythropoietin to Friend polycythemia virus-transformed erythroleukemia cells purified by centrifugal elutriation

    SciTech Connect

    Correa, P.N.; Bard, V.; Axelrad, A.A. )

    1990-01-01

    We have used countercurrent centrifugal elutriation (CCE) to determine the distribution of cells with respect to cell volume and buoyant density for an erythroleukemia cell line (JG6) transformed by the polycythemia strain of Friend virus (FV-P), and to determine the effect of inducing the cells to differentiate with dimethylsulfoxide (DMSO) on this distribution. CCE made it possible to obtain suspensions of modal JG6 populations virtually free of dead cells and uniform with respect to volume and buoyant density. These modal populations were assayed for specific binding of erythropoietin (Epo). Between 500 and 550 Epo receptors per cell were detected. These belonged to a single class having a dissociation constant of 0.36 nM. DMSO induction of differentiation of the JG6 cells had no effect on the number of Epo receptors expressed.

  20. Performance Measurements of a Low Specific Speed TurboClaw® Compressor

    NASA Astrophysics Data System (ADS)

    Parra, J.; Cattell, R.; Etemad, S.; Pullen, K. R.

    2015-08-01

    Low specific speed compressors have been historically based on positive displacement machines. Attempts to bring advantages of turbomachinery such as oil free, low parts counts, low cost of manufacture, and reliability to low flow rate applications have not been sparse, but the principle difficulty has always been that the conventional turbomachine design operates at ultra-high speed to deliver low volume flow rates. This is synonymous with low efficiency due to higher losses (windage, surface finish, and tip clearances). The innovative TurboClaw® design is a low specific speed turbomachinery with forward swept impeller geometry. It owes its high efficiency and operational stability to careful design of its nearly tangential forward swept blading and diffuser geometry.

  1. Effect of Rotational Speeds on the Cast Tube During Vertical Centrifugal Casting Process on Appearance, Microstructure, and Hardness Behavior for Al-2Si Alloy

    NASA Astrophysics Data System (ADS)

    Shailesh Rao, A.; Tattimani, Mahantesh S.; Rao, Shrikantha S.

    2015-04-01

    The flow of molten metal plays a crucial role in determining casting quality. During rotation of the mold, melt flow around its inner circumference determines the final configurations and properties of the cast tube. In this paper, Al-2Si alloy is cast in the vertical mold at the various rotational speeds of the mold. The uniform cylinder tube is formed at a rotational speed of 1000 rpm, while before and beyond this speed, irregular-shaped cast tube is formed. Finally, fine structured grain size with high hardness value is found in uniform cast tube compared with others.

  2. Can reading-specific training stimuli improve the effect of perceptual learning on peripheral reading speed?

    PubMed

    Bernard, Jean-Baptiste; Arunkumar, Amit; Chung, Susana T L

    2012-08-01

    In a previous study, Chung, Legge, and Cheung (2004) showed that training using repeated presentation of trigrams (sequences of three random letters) resulted in an increase in the size of the visual span (number of letters recognized in a glance) and reading speed in the normal periphery. In this study, we asked whether we could optimize the benefit of trigram training on reading speed by using trigrams more specific to the reading task (i.e., trigrams frequently used in the English language) and presenting them according to their frequencies of occurrence in normal English usage and observers' performance. Averaged across seven observers, our training paradigm (4 days of training) increased the size of the visual span by 6.44 bits, with an accompanied 63.6% increase in the maximum reading speed, compared with the values before training. However, these benefits were not statistically different from those of Chung, Legge, and Cheung (2004) using a random-trigram training paradigm. Our findings confirm the possibility of increasing the size of the visual span and reading speed in the normal periphery with perceptual learning, and suggest that the benefits of training on letter recognition and maximum reading speed may not be linked to the types of letter strings presented during training.

  3. Assessing specific deterrence effects of increased speeding penalties using four measures of recidivism.

    PubMed

    Watson, B; Siskind, V; Fleiter, J J; Watson, A; Soole, D

    2015-11-01

    Traffic law enforcement sanctions can impact on road user behaviour through general and specific deterrence mechanisms. The manner in which specific deterrence can influence recidivist behaviour can be conceptualised in different ways. While any reduction in speeding will have road safety benefits, the ways in which a 'reduction' is determined deserves greater methodological attention and has implications for countermeasure evaluation more generally. The primary aim of this research was to assess the specific deterrent impact of penalty increases for speeding offences in Queensland, Australia, in 2003 on two cohorts of drivers detected for speeding prior to and after the penalty changes were investigated. Since the literature is relatively silent on how to assess recidivism in the speeding context, the secondary research aim was to contribute to the literature regarding ways to conceptualise and measure specific deterrence in the speeding context. We propose a novel way of operationalising four measures which reflect different ways in which a specific deterrence effect could be conceptualised: (1) the proportion of offenders who re-offended in the follow up period; (2) the overall frequency of re-offending in the follow up period; (3) the length of delay to re-offence among those who re-offended; and (4) the average number of re-offences during the follow up period among those who re-offended. Consistent with expectations, results suggested an absolute deterrent effect of penalty changes, as evidenced by significant reductions in the proportion of drivers who re-offended and the overall frequency of re-offending, although effect sizes were small. Contrary to expectations, however, there was no evidence of a marginal specific deterrent effect among those who re-offended, with a significant reduction in the length of time to re-offence and no significant change in the average number of offences committed. Additional exploratory analyses investigating potential

  4. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  5. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  6. Power transmission mechanism equipped with fluid and centrifugal clutch

    SciTech Connect

    Tamura, K.; Takeshita, S.; Fukunaga, T.

    1986-12-30

    This patent describes a power transmission mechanism equipped with a fluid coupling, an input shaft thereof interconnected to a power source being interconnected through the fluid coupling to an output shaft, and the output shaft being interconnected to a forward-rearward changeover mechanism including a speed changer. It is characterized in that the fluid coupling includes a shell, an impeller in the shell and a centrifugal clutch means in the shell for engaging the impeller and for driving the impeller when the shell is rotated by the input shaft at a speed above idle speed and for disengaging the impeller and the driving of the impeller when the shell is rotated by the input shaft at the idle speed. A turbine is included in the shell for standing idle in the shell when the centrifugal clutch means is disengaged and for drive by the impeller when the centrifugal clutch means is engaged and for driving the output shaft. The centrifugal clutch means comprises a support member fixed to the shell, a centrifugal shoe mounted on the support member for radial movement outwardly of the support member by centrifugal force and radial movement inwardly toward the support member. It also comprises spring means for moving the shoe inwardly toward the support member when the shell is rotated at idle speed, a cylindrical casing fixed to the impeller radially outward from the shoe and having an engaging surface for engagement by the centrifugal shoe when the shell is rotated at a speed above idle speed and the centrifugal shoe is moved radially outward by centrifugal force. The forward-rearward changeover mechanism, including the speed changer, is driven by the turbine when the centrifugal clutch means is engaged with the engaging surface and standing idle when the centrifugal clutch means is disengaged from the engaging surface and the turbine is standing idle.

  7. Investigation on internal flow of draft tube at overload condition in low specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Tamura, Yuta; Tani, Kiyohito

    2016-11-01

    The cavitating vortices causes the unsteady phenomena like the pressure fluctuation, the noise and the vibration in the draft tube at the overload condition which is the far operating point from the design point. Because the full load was normally near the design point, there were few troubles due to cavitating vortices at the full load. Today, however, the design point is sometimes set to lower load to achieve the high efficiency from the partial load to the full load in low specific speed Francis turbines, which have good performance to a change in a discharge. Then, the full load is relatively further from the design point. As the result, the potential for the cavitating vortices at the full load is increased. To control of the unsteady phenomena at the full load, the study focused on the cavitating vortices at the overload condition is important. This paper presents the unsteady behavior of the cavitating vortices at the overload condition with the scaled model of specific speed NQE=0.083. On the experimental approach, the pressure pulsation in the upper draft tube was measured and the unsteady behavior of cavitating vortices was taken movies with a high speed camera. On the numerical approach, Computational Fluid Dynamics (CFD) adopting a two-phase unsteady analysis was carried out. The pressure fluctuation and the velocity distribution of two runners, an original and a newly designed, were compared.

  8. Action-specific effects in a social context: others' abilities influence perceived speed.

    PubMed

    Witt, Jessica K; Sugovic, Mila; Taylor, J Eric T

    2012-06-01

    According to the action-specific account of perception, perceivers see the environment relative to their ability to perform the intended action. For example, in a modified version of the computer game Pong, balls that were easier to block looked to be moving slower than balls that were more difficult to block (Witt & Sugovic, 2010). It is unknown, however, if perception can be influenced by another person's abilities. In the current experiment, we examined whether another person's ability to block a ball influenced the observer's perception of ball speed. Participants played and observed others play the modified version of Pong where the task was to successfully block the ball with paddles that varied in size, and both the actor and observer estimated the speed of the ball. The results showed that both judged the ball to be moving faster when it was harder to block. However, the same effect of difficulty on speed estimates was not found when observers watched a computer play, suggesting the effect is specific to people and not to the task. These studies suggest that the environment can be perceived relative to another person's abilities.

  9. Effects of domain-specific exercise load on speed and accuracy of a domain-specific perceptual-cognitive task.

    PubMed

    Schapschröer, M; Baker, J; Schorer, J

    2016-08-01

    In the context of perceptual-cognitive expertise it is important to know whether physiological loads influence perceptual-cognitive performance. This study examined whether a handball specific physical exercise load influenced participants' speed and accuracy in a flicker task. At rest and during a specific interval exercise of 86.5-90% HRmax, 35 participants (experts: n=8, advanced: n=13, novices, n=14) performed a handball specific flicker task with two types of patterns (structured and unstructured). For reaction time, results revealed moderate effect sizes for group, with experts reacting faster than advanced and advanced reacting faster than novices, and for structure, with structured videos being performed faster than unstructured ones. A significant interaction for structure×group was also found, with experts and advanced players faster for structured videos, and novices faster for unstructured videos. For accuracy, significant main effects were found for structure with structured videos solved more accurately. A significant interaction for structure×group was revealed, with experts and advanced more accurate for structured scenes and novices more accurate for unstructured scenes. A significant interaction was also found for condition×structure; at rest, unstructured and structured scenes were performed with the same accuracy while under physical exercise, structured scenes were solved more accurately. No other interactions were found. These results were somewhat surprising given previous work in this area, although the impact of a specific physical exercise on a specific perceptual-cognitive task may be different from those tested generally.

  10. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  11. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  12. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.

    PubMed

    Clime, Liviu; Brassard, Daniel; Geissler, Matthias; Veres, Teodor

    2015-06-07

    This paper reports a novel method of controlling liquid motion on a centrifugal microfluidic platform based on the integration of a regulated pressure pump and a programmable electromechanical valving system. We demonstrate accurate control over the displacement of liquids within the system by pressurizing simultaneously multiple ports of the microfluidic device while the platform is rotating at high speed. Compared to classical centrifugal microfluidic platforms where liquids are solely driven by centrifugal and capillary forces, the method presented herein adds a new degree of freedom for fluidic manipulation, which represents a paradigm change in centrifugal microfluidics. We first demonstrate how various core microfluidic functions such as valving, switching, and reverse pumping (i.e., against the centrifugal field) can be easily achieved by programming the pressures applied at dedicated access ports of the microfluidic device. We then show, for the first time, that the combination of centrifugal force and active pneumatic pumping offers the possibility of mixing fluids rapidly (~0.1 s) and efficiently based on the creation of air bubbles at the bottom of a microfluidic reservoir. Finally, the suitability of the developed platform for performing complex bioanalytical assays in an automated fashion is demonstrated in a DNA harvesting experiment where recovery rates of about 70% were systematically achieved. The proposed concept offers the interesting prospect to decouple basic microfluidic functions from specific material properties, channel dimensions and fabrication tolerances, surface treatments, or on-chip active components, thus promoting integration of complex assays on simple and low-cost microfluidic cartridges.

  13. Research on energy conversion mechanism of a screw centrifugal pump under the water

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Su, Q. M.; Han, W.; Cheng, X. R.; Shen, Z. J.

    2013-12-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase.

  14. Design of a centrifugal blood pump: Heart Turcica Centrifugal.

    PubMed

    Demir, Onur; Biyikli, Emre; Lazoglu, Ismail; Kucukaksu, Suha

    2011-07-01

    A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.

  15. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  16. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  17. [Rapid centrifugation assay standarization for dengue virus isolation].

    PubMed

    Palomino, Miryam; Gutierrez, Victoria; Salas, Ramses

    2010-03-01

    The plate centrifugation assay was standardized for dengue virus isolation from serum samples. C6/36-HT cells were used determining the optimal values for centrifugation spin speed, inoculum, sera dilution, and incubation time. Then, 22 positive serum samples with viral isolation and viral strains of the four reference dengue virus serotypes were tested simultaneously by the standardized plate centrifugation method and the conventional tube culture. The isolations were typified by indirect immunofluorescent test using monoclonal antibodies. The plate centrifugation method was optimized to 200 μL of inoculum, dilution of sera 1/20, centrifugation speed at 1600 rpm/30 min, and sensitivity of 95,5% after 5 days post-inoculation. We concluded that the plate centrifugation method increased dengue virus isolation, with a significant reduction of the time of isolation for dengue virus.

  18. Gender-specific influences of balance, speed, and power on agility performance.

    PubMed

    Sekulic, Damir; Spasic, Miodrag; Mirkov, Dragan; Cavar, Mile; Sattler, Tine

    2013-03-01

    The quick change of direction (i.e., agility) is an important athletic ability in numerous sports. Because of the diverse and therefore hardly predictable manifestations of agility in sports, studies noted that the improvement in speed, power, and balance should result in an improvement of agility. However, there is evident lack of data regarding the influence of potential predictors on different agility manifestations. The aim of this study was to determine the gender-specific influence of speed, power, and balance on different agility tests. A total of 32 college-aged male athletes and 31 college-aged female athletes (age 20.02 ± 1.89 years) participated in this study. The subjects were mostly involved in team sports (soccer, team handball, basketball, and volleyball; 80% of men, and 75% of women), martial arts, gymnastics, and dance. Anthropometric variables consisted of body height, body weight, and the body mass index. Five agility tests were used: a t-test (T-TEST), zig-zag test, 20-yard shuttle test, agility test with a 180-degree turn, and forward-backward running agility test (FWDBWD). Other tests included 1 jumping ability power test (squat jump, SQJ), 2 balance tests to determine the overall stability index and an overall limit of stability score (both measured by Biodex Balance System), and 2 running speed tests using a straight sprint for 10 and 20 m (S10 and S20, respectively). A reliability analysis showed that all the agility tests were reliable. Multiple regression and correlation analysis found speed and power (among women), and balance (among men), as most significant predictors of agility. The highest Pearson's correlation in both genders is found between the results of the FWDBWD and S10M tests (0.77 and 0.81 for men and women, respectively; p < 0.05). Power, measured using the SQJ, is significantly (p < 0.05) related to FWDBWD and T-TEST results but only for women (-0.44; -0.41). The balance measures were significantly related to the agility

  19. Visual tracking speed is related to basketball-specific measures of performance in NBA players.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Wells, Adam J; Gonzalez, Adam M; Rogowski, Joseph P; Townsend, Jeremy R; Jajtner, Adam R; Beyer, Kyle S; Bohner, Jonathan D; Pruna, Gabriel J; Fragala, Maren S; Stout, Jeffrey R

    2014-09-01

    The purpose of this study was to determine the relationship between visual tracking speed (VTS) and reaction time (RT) on basketball-specific measures of performance. Twelve professional basketball players were tested before the 2012-13 season. Visual tracking speed was obtained from 1 core session (20 trials) of the multiple object tracking test, whereas RT was measured by fixed- and variable-region choice reaction tests, using a light-based testing device. Performance in VTS and RT was compared with basketball-specific measures of performance (assists [AST]; turnovers [TO]; assist-to-turnover ratio [AST/TO]; steals [STL]) during the regular basketball season. All performance measures were reported per 100 minutes played. Performance differences between backcourt (guards; n = 5) and frontcourt (forward/centers; n = 7) positions were also examined. Relationships were most likely present between VTS and AST (r = 0.78; p < 0.003), STL (r = 0.77; p < 0.003), and AST/TO (r = 0.78; p < 0.003), whereas a likely relationship was also observed with TO (r = 0.49; p < 0.109). Reaction time was not related to any of the basketball-specific performance measures. Backcourt players were most likely to outperform frontcourt players in AST and very likely to do so for VTS, TO, and AST/TO. In conclusion, VTS seems to be related to a basketball player's ability to see and respond to various stimuli on the basketball court that results in more positive plays as reflected by greater number of AST and STL and lower turnovers.

  20. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 1: Theoretical analysis

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    Frequently, particles get associated with gas bubbles in a melt and their interaction influences the final distribution of particles and porosity in the casting. An analytical model for the separation of a particle from a bubble in melts containing dispersed particles and bubbles is proposed. During centrifugal casting of alloys containing dispersed particles, both the particles and gas bubbles present in the melt move with the centrifugal forces. Using the force balance between surface tension and net centrifugal forces (centrifugal force minus buoyancy force), the critical rotational speed of the mold for the separation of the particles and the bubbles during centrifugal casting is calculated. The critical rotational speed of the mold to separate the particle from the bubble is lower for a small particle attached to a larger bubble, as compared to the case when a large particle is attached to a smaller bubble. For a given bubble size, the critical rotational speed of the mold to separate the bubble from the particle decreases with increasing particle size. For the specific case of spherical 5-{micro}m radius graphite particles dispersed in copper alloy melt, it was found that even at a low semiapical angle of about 9 deg, the critical rotational speed needs to be around 5000 rpm for a bubble size of 500-{micro}m radius and 0.09-m-diameter mold. The rotational speed decreases to 1000 rpm when the graphite particle radius increases to 100 {micro}m for the same bubble size in copper alloy melt.

  1. Dissociating perception from judgment in the action-specific effect of blocking ease on perceived speed.

    PubMed

    Witt, Jessica K; Tenhundfeld, Nathan L; Bielak, Allison A M

    2017-01-01

    The action-specific approach to perception claims that a person's ability to act directly influences perceptual processes related to spatial vision. For example, a person's ability to block a moving ball impacts perceptual judgments of the ball's speed. However, an alternative explanation is that action rather than perception influences judgments. Here, we explore this distinction directly. Our method produces two distinct effects, one that is clearly a judgment-based effect and is based on the outcome of the trial (trial-outcome effect) and one that is under debate as to whether or not it is perceptual and is based on the ease with which the ball can be blocked (paddle-size effect). We explored whether these two effects would produce convergence or dissociations across various populations and manipulations. A dissociation is evidence for two separate underlying processes, whereas if the two effects did not dissociate, this would be consistent with claims that both effects were judgment-based. In Experiment 1, we examined whether older and younger adults would show a dissociation between the two effects given some precedent for older adults to show greater susceptibility to nonperceptual factors in their judgments. In Experiment 2, we used a cover story to excuse poor performance and examined its effects on both types of effects. Both experiments revealed dissociations, suggesting that while one effect is judgment-based, the other effect is not. Coupled with prior research, we conclude that the action-specific effect of ease to block a ball on estimated ball speed is perceptual.

  2. Effect of particle size on the performance of batchwise centrifugal filtration.

    PubMed

    Hwang, K J

    2001-01-01

    The effect of particle size distribution on the performance of batchwise centrifugal filtration is studied. By analyzing the velocity of particles in a filter, a numerical program is designed for simulating the migration and deposition of particles. The particle size distributions and the average specific filtration resistances of cake are then estimated under various rotating speeds of the centrifuge. A large deviation of particle concentration profiles in the filter chamber will occur if the particle size distribution is not taken into consideration. A more heterogeneous cake will form under a lower rotating speed due to the sedimentation effect of particles. The predicted results of particle size distribution and average specific filtration resistance of cake agree well with the available experimental data.

  3. Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices.

    PubMed

    Korakianitis, Theodosios; Rezaienia, Mohammad A; Paul, Gordon M; Rahideh, Akbar; Rothman, Martin T; Mozafari, Sahand

    2016-01-01

    The application of artificial mechanical pumps as heart assist devices impose power and size limitations on the pumping mechanism, and therefore requires careful optimization of pump characteristics. Typically new pumps are designed by relying on the performance of other previously designed pumps of known performance using concepts of fluid dynamic similarity. Such data are readily available for industrial pumps, which operate in Reynolds numbers region of 10. Heart assist pumps operate in Reynolds numbers of 10. There are few data available for the design of centrifugal pumps in this characteristic range. This article develops specific speed versus specific diameter graphs suitable for the design and optimization of these smaller centrifugal pumps concentrating in dimensions suitable for ventricular assist devices (VADs) and mechanical circulatory support (MCS) devices. A combination of experimental and numerical techniques was used to measure and analyze the performance of 100 optimized pumps designed for this application. The data are presented in the traditional Cordier diagram of nondimensional specific speed versus specific diameter. Using these data, nine efficient designs were selected to be manufactured and tested in different operating conditions of flow, pressure, and rotational speed. The nondimensional results presented in this article enable preliminary design of centrifugal pumps for VADs and MCS devices.

  4. Hydraulic design of a low-specific speed Francis runner for a hydraulic cooling tower

    NASA Astrophysics Data System (ADS)

    Ruan, H.; Luo, X. Q.; Liao, W. L.; Zhao, Y. P.

    2012-11-01

    The air blower in a cooling tower is normally driven by an electromotor, and the electric energy consumed by the electromotor is tremendous. The remaining energy at the outlet of the cooling cycle is considerable. This energy can be utilized to drive a hydraulic turbine and consequently to rotate the air blower. The purpose of this project is to recycle energy, lower energy consumption and reduce pollutant discharge. Firstly, a two-order polynomial is proposed to describe the blade setting angle distribution law along the meridional streamline in the streamline equation. The runner is designed by the point-to-point integration method with a specific blade setting angle distribution. Three different ultra-low-specificspeed Francis runners with different wrap angles are obtained in this method. Secondly, based on CFD numerical simulations, the effects of blade setting angle distribution on pressure coefficient distribution and relative efficiency have been analyzed. Finally, blade angles of inlet and outlet and control coefficients of blade setting angle distribution law are optimal variables, efficiency and minimum pressure are objective functions, adopting NSGA-II algorithm, a multi-objective optimization for ultra-low-specific speed Francis runner is carried out. The obtained results show that the optimal runner has higher efficiency and better cavitation performance.

  5. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  6. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  7. Centrifuge: rapid and sensitive classification of metagenomic sequences

    PubMed Central

    Song, Li; Breitwieser, Florian P.

    2016-01-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649

  8. Centrifuge workers study. Phase II, completion report

    SciTech Connect

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  9. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Thapa, B. S.; Dahlhaug, O. G.; Thapa, B.

    2016-11-01

    In Francis turbine, a small clearance gap between the guide vanes and the cover plates is usually required to pivot guide vanes as a part of governing system. Deflection of cover plates and erosion of mating surfaces causes this gap to increase from its design value. The clearance gap induces the secondary flow in the distributor system. This effects the main flow at the runner inlet, which causes losses in efficiency and instability. A guide vane cascade of a low specific speed Francis turbine has been developed for experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. The setup is designed for particle image velocimetry (PIV) measurements from the position of stay vane outlet to the position of runner inlet. In this study, velocity and pressure measurements are conducted with 2 mm clearance gap on one side of guide vane. Leakage flow is observed and measured together with pressure measurements. It is concluded that the leakage flow behaves as a jet and mixes with the main flow in cross-wise direction and forms a vortex filament. This causes non-uniform inlet flow conditions at runner blades.

  10. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  11. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  12. Two-Stage Centrifugal Fan

    NASA Technical Reports Server (NTRS)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  13. Naming Speed as a Clinical Marker in Predicting Basic Calculation Skills in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2012-01-01

    The present study investigated the role of naming speed in predicting the basic calculation skills (i.e., addition and subtraction) of kindergartners with Specific Language Impairment (SLI), when compared to a group of Normal Language Achieving (NLA) children. Fifty-three kindergartners with SLI and 107 kindergartners with NLA were tested on…

  14. MHD Stability of Centrifugally Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Min

    2003-10-01

    Centrifugally confined plasmas utilize centrifugal forces from plasma rotation to augment magnetic confinement, as an alternative approach to fusion. One magnetic geometry is mirror-type, with rotation about the axis induced from a central, biased core conductor. The outward centrifugal forces from the rotation have a component along the field lines, thus confining ions to the center. The immediate concern, of course, is that the system could be flute unstable to the interchange. The antidote here is that the radial shear in the rotation could stabilize the flute. Our 2D simulations show, first, that plasma pressure is highly peaked at the center away from the mirror end coils. Next, 3D simulations show unequivocally that velocity shear is providing the stability. Further study indicates that the flute stability is sensitive to the density profile. A favorable density profile could be achieved by judiciously placing the particle source, also necessary for a steady state centrifuge. As flows approach the Alfven speed, electromagnetic modes could be involved. The latter is motivated by the question of whether magnetorotational instability, thought to be an angular momentum transporter in accretion disks, could be found in centrifugal plasmas, since all the ingredients are there. We show that the MRI as understood should be stable; however, a related astrophysical instability, the Parker instability, could arise. The Parker instability results in plasma accumulating in regions of bent field lines, further accentuating the bending.

  15. Small centrifugal pumps for low-thrust rocket engines

    NASA Technical Reports Server (NTRS)

    Furst, R. B.

    1986-01-01

    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.

  16. Naming speed as a clinical marker in predicting basic calculation skills in children with specific language impairment.

    PubMed

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2012-01-01

    The present study investigated the role of naming speed in predicting the basic calculation skills (i.e., addition and subtraction) of kindergartners with Specific Language Impairment (SLI), when compared to a group of Normal Language Achieving (NLA) children. Fifty-three kindergartners with SLI and 107 kindergartners with NLA were tested on cognitive, linguistic and basic calculation skills. The results showed that phonological awareness, grammatical ability, general intelligence and working memory accounted for the variation in the basic calculation skills of both groups. However, an additional effect of naming speed on both addition and subtraction was found for the group of children with SLI, suggesting that naming speed may act as a clinical marker in identifying those children who are likely to develop problems in basic calculation skills.

  17. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    PubMed

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-01-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD.

  18. Centrifugal main fuel pump

    SciTech Connect

    Cole, E.F.

    1986-08-26

    For a gas turbine power plant having a fuel supply and a fuel metering valve and variable geometry for the power plant including servo actuating mechanisms for the fuel metering valve and variable geometry, a fuel pumping system, is described to supply pressurized fuel for the servo actuating mechanisms and for the engine working fluid medium. The pumping system includes a centrifugal pump solely supplying the fuel to the fuel metering valve to be delivered to the power plant for its working fluid medium, a positive displacement pump in parallel with the centrifugal pump and solely to supply pressurized fuel to the servo actuating mechanisms for the fuel metering valve and for the variable geometry, and a boost pump means disposed in serial relationship with the positive displacement pump and the centrifugal pump for augmenting the pressure supplied by the positive displacement pump and the centrifugal pump during predetermined operating conditions of the power plant. The combined boost pump and centrifugal pump capability is sufficient to satisfy the vapor to liquid ratio requirements of the power during its entire operating envelope.

  19. Operating and maintenance guidelines for screenbowl centrifuges

    SciTech Connect

    Jahnig, W.S.R.; Bratton, R.; Luttrell, G.

    2009-01-15

    Plant dewatering circuits equipped with screenbowl centrifuges need to be well designed, properly operated, and adequately maintained to maximize the dewatering performance. The most important 'feed variables' are particle size, dry solids feed rate and slurry flow rate. The most important 'machine variables' include pool depth, rotational speed and gearbox ratio. The article discusses the effect of these parameters and offers some maintenance guidelines. The article was adapted from a paper presented at CoalPrep 2008. 6 refs., 2 figs., 2 tabs.

  20. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  1. Tropic Responses of Phycomyces Sporangiophores to Gravitational and Centrifugal Stimuli

    PubMed Central

    Dennison, David S.

    1961-01-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5°/min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell. PMID:13721903

  2. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  3. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  4. The Human Centrifuge

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    2009-01-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

  5. NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature, and Wind Speed Algorithms for Ascending/Descending Directions and Clear or Cloudy Conditions

    DTIC Science & Technology

    2015-06-18

    Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/ Descending Directions and Clear or Cloudy...LIMITATION OF ABSTRACT NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/Descending...satellite retrieval algorithms. In addition to data from the Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Sounding

  6. Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump with Gap Impeller

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Hongxun; Wei, Qun

    2014-06-01

    This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.

  7. Solvent-free cleaning using a centrifugal cryogenic pellet accelerator

    SciTech Connect

    Haines, J.R.; Fisher, P.W.; Foster, C.A.

    1995-06-01

    An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

  8. A review of leakage flow in centrifugal blood pumps.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah

    2006-05-01

    This article presents a new approach in determining the functional relationship between the leakage flow in a centrifugal blood pump and various parameters that affect it. While high leakage flow in a blood pump is essential for good washout and can help prevent thrombus formation, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Dimensional analysis is employed to provide a functional relationship between leakage flow rate and other important parameters governing the operation of a centrifugal blood pump. Results showed that pump performance with a smaller gap clearance is clearly superior compared to those of two other similar pumps with larger gap clearances. It was also observed that the nondimensional leakage flow rate varies almost linearly with dimensionless pump head. It also decreases with increasing volume flow rate. A smaller gap clearance will also increase the flow resistance and hence, decrease the nondimensional leakage flow rate. Increasing surface roughness, length of the gap clearance passage, or loss coefficient of the gap geometry will increase losses and hence, decrease the leakage flow rate. It is also interesting to note that for a given pump and gap clearance geometry, the nondimensional leakage flow rate is almost independent of the Reynolds number when specific speed is constant.

  9. Centrifugal inertia effects in two-phase face seal films

    NASA Technical Reports Server (NTRS)

    Basu, P.; Hughes, W. F.; Beeler, R. M.

    1987-01-01

    A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.

  10. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  11. Reproductive-tactic-specific variation in sperm swimming speeds in a shell-brooding cichlid.

    PubMed

    Fitzpatrick, J L; Desjardins, J K; Milligan, N; Montgomerie, R; Balshine, S

    2007-08-01

    Theory predicts that males experiencing elevated levels of sperm competition will invest more in gonads and produce faster-swimming sperm. Although there is ample evidence in support of the first prediction, few studies have examined sperm swimming speed in relation to sperm competition. In this study, we tested these predictions from sperm competition theory by examining sperm characteristics in Telmatochromis vittatus, a small shell-brooding cichlid fish endemic to Lake Tanganyika. Males exhibit four different reproductive tactics: pirate, territorial, satellite, and sneaker. Pirate males temporarily displace all other competing males from a shell nest, whereas sneaker males always release sperm in the presence of territorial and satellite males. Due to the fact that sneakers spawn in the presence of another male, sneakers face the highest levels of sperm competition and pirates the lowest, whereas satellites and territorials experience intermediate levels. In accordance with predictions, sperm from sneakers swam faster than sperm from males adopting the other reproductive tactics, whereas sperm from pirates was slowest. Interestingly, we were unable to detect any variation in sperm tail length among these reproductive tactics. Thus, sperm competition appears to have influenced sperm energetics in this species without having any influence on sperm size.

  12. Centrifugal adsorption system

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)

    2006-01-01

    A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.

  13. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  14. Specification and Design Methodologies for High-Speed Fault-Tolerant Array Algorithms and Structures for VLSI.

    DTIC Science & Technology

    1987-06-01

    A182 772 SPECIFICATION AND DESIGN METHODOLOGIES FOR NIGH-SPEED 11 FAULT-TOLERANT ARRA.. CU) CALIFORNIA UNIY LOS ANGELES DEPT OF COMPUTER SCIENCE M D ...ERCEGOVAC ET AL. JUN 0? UNLASSIFIED N611-03--K-S49 F/ 91 ML Ji 1 2. ~ iiii -i ’IfIhIN I_______ IIIII .l n. ’ 3 ’ 3 .3 .5 *. .. w w, - .. .J’. ~ d ...STRUCTURES FOR VLSI Office of Naval Research Contract No. N00014-83-K-0493 Principal Investigator Milo D . Ercegovac ELECTE Co-Principal Ivestigator S AUG 0

  15. Action-Specific Effects in a Social Context: Others' Abilities Influence Perceived Speed

    ERIC Educational Resources Information Center

    Witt, Jessica K.; Sugovic, Mila; Taylor, J. Eric T.

    2012-01-01

    According to the action-specific account of perception, perceivers see the environment relative to their ability to perform the intended action. For example, in a modified version of the computer game Pong, balls that were easier to block looked to be moving slower than balls that were more difficult to block (Witt & Sugovic, 2010). It is unknown,…

  16. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  17. Characteristic analysis on the pressure fluctuation in the impeller of a low specific speed mixed flow pump

    NASA Astrophysics Data System (ADS)

    Zhang, W. W.; Yu, Z. Y.; Zhu, B. S.

    2016-05-01

    To explore the pressure fluctuation characteristics of a low speed specific speed mixed flow pump caused by rotor-stator interaction, the unsteady flow was simulated with CFX for the whole flow passage of a mixed flow pump with a specific speed of 148.8. The structured mesh of the computation domain was generated with ICEM CFD and TurboGrid, and mesh-independent analysis was done in the design condition. Through the comparison with the experiment data, the reliability of the simulation was verified. In different locations of the impeller passage, monitoring points were set. With Fast Fourier Transform (FFT), the characteristic analysis on the pressure fluctuation in the impeller passage was done for three flow rate conditions (0.75Qd, Qd, 1.25Qd). The results show that the pressure fluctuation amplitude increases from the inlet to the outlet. And the maximum values in different flow rates exist near the hub of the outlet; The pressure fluctuation is small in the design condition, but the largest in the small flow rate condition, accompanied by the secondary dominant frequencies with large amplitudes; In the small flow rate condition and design condition, the dominant frequency varies from the inlet to the outlet because the combine action of the impeller and guide vane; while in the large flow rate condition, the pressure fluctuation in the whole impeller passage is affected significantly by the guide vane, and the domain frequency is 8 times the rotational frequency of impeller. In addition, the change of pressure fluctuation from the pressure surface to the suction surface in the off-design conditions is investigated, and the results demonstrates that the intensity of the pressure fluctuation in the impeller passage is closely related with the impeller as well as the distribution of the vorticity and the pressure.

  18. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  19. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain.

    PubMed

    Pirazzini, Marco; Henke, Tina; Rossetto, Ornella; Mahrhold, Stefan; Krez, Nadja; Rummel, Andreas; Montecucco, Cesare; Binz, Thomas

    2013-11-29

    Botulinum neurotoxins translocate their enzymatic domain across vesicular membranes. The molecular triggers of this process are unknown. Here, we tested the possibility that this is elicited by protonation of conserved surface carboxylates. Glutamate-48, glutamate-653 and aspartate-877 were identified as possible candidates and changed into amide. This triple mutant showed increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain; membrane translocation could take place at less acidic pH. Thus, neutralisation of specific negative surface charges facilitates membrane contact permitting a faster initiation of the toxin membrane insertion.

  20. The American Gas Centrifuge Past, Present, and Future

    SciTech Connect

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  1. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  2. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  3. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  4. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  5. Relationship between Insulin-Resistance Processing Speed and Specific Executive Function Profiles in Neurologically Intact Older Adults.

    PubMed

    Frazier, Darvis T; Bettcher, Brianne M; Dutt, Shubir; Patel, Nihar; Mungas, Dan; Miller, Joshua; Green, Ralph; Kramer, Joel H

    2015-09-01

    This study investigated the relationship between insulin-resistance and constituent components of executive function in a sample of neurologically intact older adult subjects using the homeostasis model assessment (HOMA-IR) and latent factors of working memory, cognitive control and processing speed derived from confirmatory factor analysis. Low-density lipoprotein (LDL), mean arterial pressure (MAP), along with body mass index (BMI) and white matter hypointensity (WMH) were used to control for vascular risk factors, adiposity and cerebrovascular injury. The study included 119 elderly subjects recruited from the University of California, San Francisco Memory and Aging Center. Subjects underwent neuropsychological assessment, fasting blood draw and brain magnetic resonance imaging (MRI). Partial correlations and linear regression models were used to examine the HOMA-IR-executive function relationship. Pearson correlation adjusting for age showed a significant relationship between HOMA-IR and working memory (rp = -.18; p = .047), a trend with cognitive control (rp = -.17; p = .068), and no relationship with processing speed (rp = .013; p = .892). Linear regression models adjusting for demographic factors (age, education, and gender), LDL, MAP, BMI, and WMH indicated that HOMA-IR was negatively associated with cognitive control (r = -.256; p = .026) and working memory (r = -.234; p = .054). These results suggest a greater level of peripheral insulin-resistance is associated with decreased cognitive control and working memory. After controlling for demographic factors, vascular risk, adiposity and cerebrovascular injury, HOMA-IR remained significantly associated with cognitive control, with working memory showing a trend. These findings substantiate the insulin-resistance-executive function hypothesis and suggest a complex interaction, demonstrated by the differential impact of insulin-resistance on processing speed and specific aspects of executive function.

  6. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  7. Prediction of performance of centrifugal pumps during starts under pressure

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  8. Latex micro-balloon pumping in centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Madou, Marc

    2014-03-07

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.

  9. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  10. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles

  11. Centrifuge treatment of coal tar

    SciTech Connect

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  12. Exosome enrichment of human serum using multiple cycles of centrifugation.

    PubMed

    Kim, Jeongkwon; Tan, Zhijing; Lubman, David M

    2015-09-01

    In this work, we compared the use of repeated cycles of centrifugation at conventional speeds for enrichment of exosomes from human serum compared to the use of ultracentrifugation (UC). After removal of cells and cell debris, a speed of 110 000 × g or 40 000 × g was used for the UC or centrifugation enrichment process, respectively. The enriched exosomes were analyzed using the bicinchoninic acid assay, 1D gel separation, transmission electron microscopy, Western blotting, and high-resolution LC-MS/MS analysis. It was found that a five-cycle repetition of UC or centrifugation is necessary for successful removal of nonexosomal proteins in the enrichment of exosomes from human serum. More significantly, 5× centrifugation enrichment was found to provide similar or better performance than 5× UC enrichment in terms of enriched exosome protein amount, Western blot band intensity for detection of CD-63, and numbers of identified exosome-related proteins and cluster of differentiation (CD) proteins. A total of 478 proteins were identified in the LC-MS/MS analyses of exosome proteins obtained from 5× UCs and 5× centrifugations including many important CD membrane proteins. The presence of previously reported exosome-related proteins including key exosome protein markers demonstrates the utility of this method for analysis of proteins in human serum.

  13. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  14. Aerodynamically induced radial forces in a centrifugal gas compressor. Part 1: Experimental measurement

    SciTech Connect

    Moore, J.J.; Flathers, M.B.

    1998-04-01

    Net radial loading arising from asymmetric pressure fields in the volutes of centrifugal pumps during off-design operation is well known and has been studied extensively. In order to achieve a marked improvement in overall efficiency in centrifugal gas compressors, vaneless volute diffusers are matched to specific impellers to yield improved performance over a wide application envelope. As observed in centrifugal pumps, nonuniform pressure distributions that develop during operation above and below the design flow create static radial loads on the rotor. In order to characterize these radial forces, a novel experimental measurement and post-processing technique is employed that yields both the magnitude and direction of the load by measuring the shaft centerline locus in the tilt-pad bearings. The method is applicable to any turbomachinery operating on fluid film radial bearings equipped with proximity probes. The forces are found to be a maximum near surge and increase with higher pressures and speeds. The results are nondimensionalized, allowing the radial loading for different operating conditions to be predicted.

  15. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  16. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  17. [Hemodynamic analysis of a centrifugal blood pump].

    PubMed

    Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang

    2015-01-01

    This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.

  18. Numerical simulation of centrifugal casting of pipes

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.

    2012-07-01

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  19. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  20. On the characteristics of centrifugal-reciprocating machines. [cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1980-01-01

    A method of compressing helium gas for cryogenic coolers is presented which uses centrifugal force to reduce the forces on the connecting rod and crankshaft in the usual reciprocating compressor. This is achieved by rotating the piston-cylinder assembly at a speed sufficient for the centrifugal force on the piston to overcome the compressional force due to the working fluid. The rotating assembly is dynamically braked in order to recharge the working space with fluid. The intake stroke consists of decelerating the rotating piston-cylinder assembly and the exhaust stroke consists of accelerating the assembly.

  1. Numerical Simulation and Cold Modeling experiments on Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar

    2011-02-01

    In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.

  2. Aerodynamic and mechanical design of an 8:1 pressure ratio centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Osborne, C.; Runstadler, P. W., Jr.; Stacy, W. D.

    1974-01-01

    A high-pressure-ratio, low-mass-flow centrifugal compressor stage was designed, fabricated, and tested. The design followed specifications that the stage be representative of state-of-the-art performance and that the stage is to be used as a workhorse compressor for planned experiments using laser Doppler velocimeter equipment. The final design is a 75,000-RPM, 19-blade impeller with an axial inducer and 30 degrees of backward leaning at the impeller tip. The compressor design was tested for two- and/or quasi-three-dimensional aerodynamic and stress characteristics. Critical speed analyses were performed for the high speed rotating impeller assembly. An optimally matched, 17-channel vane island diffuser was also designed and built.

  3. The simulation and performance of a centrifugal chiller

    NASA Astrophysics Data System (ADS)

    Jackson, W. L.; Chen, F. C.; Hwang, B. C.

    A computer simulation model was developed to analyze the performance of a water-cooled centrifugal chiller. The model is based on a heat pump thermodynamic cycle and empirical correlations for the performance of the system components. The system simulated is composed of a variable-speed centrifugal compressor with a hot-gas bypass option for capacity control, two shell-and-tube heat exchangers, and an expansion device. The model was validated and calibrated against the experimental test results of a 125-ton chiller. The performance of a similar chiller system at various operating conditions and design modifications was analyzed. System performance comparisons were made between a baseline case, cases with high-performance heat exchanger tubes and compressor motor, and various variable-speed compressor operating strategies. It was found that significant performance improvement can be realized by using variable-speed drive and on-demand control strategy.

  4. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ɛ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  5. Oil-free centrifugal hydrogen compression technology demonstration

    SciTech Connect

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  6. Realization of Low Power High-Speed Channel Filters with Stringent Adjacent Channel Attenuation Specifications for Wireless Communication Receivers

    NASA Astrophysics Data System (ADS)

    Mathew, Jimson; Mahesh, R.; Vinod, A. P.; Lai, Edmund M.-K.

    Finite impulse response (FIR) filtering is the most computationally intensive operation in the channelizer of a wireless communication receiver. Higher order FIR channel filters are needed in the channelizer to meet the stringent adjacent channel attenuation specifications of wireless communications standards. The computational cost of FIR filters is dominated by the complexity of the coefficient multipliers. Even though many methods for reducing the complexity of filter multipliers have been proposed in literature, these works focused on lower order filters. This paper presents a coefficient-partitioning-based binary subexpression elimination method for realizing low power FIR filters. We show that the FIR filters implemented using proposed method consume less power and achieve speed improvement compared to existing filter implementations. Design examples of the channel filters employed in the Digital Advanced Mobile Phone System (D-AMPS) and Personal Digital Cellular (PDC) receivers show that the proposed method achieved 23% average reductions of full adder and power consumption and 23.3% reduction of delay over the best existing method. Synthesis results show that the proposed method offers average area reduction of 8% and power reduction of 22% over the best known method in literature.

  7. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section...) through (d) of this section to meet the standards for open molding or centrifugal casting operations in... centrifugal casting, or site-specific organic HAP emissions factors discussed in § 63.5796. The...

  8. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section...) through (d) of this section to meet the standards for open molding or centrifugal casting operations in... centrifugal casting, or site-specific organic HAP emissions factors discussed in § 63.5796. The...

  9. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section...) through (d) of this section to meet the standards for open molding or centrifugal casting operations in... centrifugal casting, or site-specific organic HAP emissions factors discussed in § 63.5796. The...

  10. HOUSINGS AND MOUNTINGS FOR CENTRIFUGES

    DOEpatents

    Rushing, F.C.

    1960-08-16

    A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.

  11. The slide centrifuge gram stain as a urine screening method.

    PubMed

    Olson, M L; Shanholtzer, C J; Willard, K E; Peterson, L R

    1991-10-01

    A slide centrifuge Gram stain procedure was performed to screen for bacteriuria 4161 urine specimens submitted in urine preservative tubes for routine culture. For slide centrifuge Gram staining, each urine sample was mixed well. Thereafter, 0.2 mL of each sample was placed, using a pipette, into a slide centrifuge chamber and centrifuged at 2,000 rpm for 5 minutes. The slides were heat fixed, Gram stained, and read by laboratory personnel who scanned 12 consecutive oil-immersion fields using a set pattern. The presence of the same organism in six or more fields was defined as a positive urine screen. Urine samples were cultured using a 0.001-mL loop and a comparison of culture growth with slide centrifuge screening was made. When growth of 100,000 or more colony-forming units per milliliter (CFU/mL) was the reference for comparison, the screen had a sensitivity rate of 98%, a specificity rate of 90%, a negative predictive value of 99%, and a positive predictive value of 65%. When a lower colony count of 10,000 or more CFU/mL was the reference for comparison, the screen had a sensitivity rate of 88%, a specificity rate of 95%, a negative predictive value of 96%, and a positive predictive value of 84%. The slide centrifuge Gram stain is a very sensitive screening method to detect bacteriuria in an adult male population.

  12. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  13. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  14. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.

    PubMed

    O'Neill, Matthew C

    2012-11-01

    Metabolic costs of resting and locomotion have been used to gain novel insights into the behavioral ecology and evolution of a wide range of primates; however, most previous studies have not considered gait-specific effects. Here, metabolic costs of ring-tailed lemurs (Lemur catta) walking, cantering and galloping are used to test for gait-specific effects and a potential correspondence between costs and preferred speeds. Metabolic costs, including the net cost of locomotion (COL) and net cost of transport (COT), change as a curvilinear function of walking speed and (at least provisionally) as a linear function of cantering and galloping speeds. The baseline quantity used to calculate net costs had a significant effect on the magnitude of speed-specific estimates of COL and COT, especially for walking. This is because non-locomotor metabolism constitutes a substantial fraction (41-61%, on average) of gross metabolic rate at slow speeds. The slope-based estimate of the COT was 5.26 J kg(-1) m(-1) for all gaits and speeds, while the gait-specific estimates differed between walking (0.5 m s(-1) : 6.69 J kg(-1) m(-1) ) and cantering/galloping (2.0 m s(-1) : 5.61 J kg(-1) m(-1) ). During laboratory-based overground locomotion, ring-tailed lemurs preferred to walk at ~0.5 m s(-1) and canter/gallop at ~2.0 m s(-1) , with the preferred walking speed corresponding well to the COT minima. Compared with birds and other mammals, ring-tailed lemurs are relatively economical in walking, cantering, and galloping. These results support the view that energetic optima are an important movement criterion for locomotion in ring-tailed lemurs, and other terrestrial animals.

  15. Control of centrifugal blood pump based on the motor current.

    PubMed

    Iijima, T; Inamoto, T; Nogawa, M; Takatani, S

    1997-07-01

    In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.

  16. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  17. Experimental and Theoretical Study on Circular Disk Particles Suspended in Centrifugal and Non-Centrifugal Force Environments

    SciTech Connect

    Torii, Shuichi; Watanabe, Yoshimi; Tanaka, Satoyuki; Yano, Toshiaki; Iino, Naoko

    2008-02-15

    Theoretical and experimental studies are performed on suspension particle motion in Centrifugal and Non-Centrifugal Force Environment, i.e., in both an axially rotating drum and a stable liquid tank. The particle velocity of circular disks is measured by PTV (Particle Tracking Velocimetry) method and is predicted by BBO (Basset-Boussinesq-Ossen) equation. It is found that (1) as time progresses, one side of the disk in the axially rotating drum is attracted toward the drum wall and its velocity is affected by the rotating speed, (2) when the particle moves in the Stokes' regime, its velocity is linearly increased with the distance from the center of the drum, (3) in contrast, the autorotation of the disk occurs in the non-centrifugal force field, and (4) the corresponding drag coefficient in the low Reynolds number region is in good agreement with the theoretical value of the sphere.

  18. Splitter-bladed centrifugal compressor impeller designed for automotive gas turbine application. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Pampreen, R. C.

    1977-01-01

    Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.

  19. High efficiency centrifugal pump

    SciTech Connect

    Nasvytis, P.J.; Jahrstorfer, G.W.

    1983-10-11

    A high speed fuel pump for a gas turnbine engine has a positively-driven shroud positioned between a main impeller and the wall of a pumping cavity to reduce impeller drag. The shroud is formed by a first disc having a boost impeller connected to its central hub portion and a second disc having a gear carried by its central hub portion. The main drive shaft assembly to which the main impeller is connected, carries a gear which meshes with gear mounted upon a shaft. The shaft also carries a gear which meshes with the gear. The gears are sized so that the shroud is driven at one-half the speed of the main impeller in order to maximize impeller drag reduction and enhance pumping capability when severe inlet conditions are present at the pump inlet.

  20. Lack of sex-specific movement patterns in an alien species at its invasion front - consequences for invasion speed.

    PubMed

    Herfindal, Ivar; Melis, Claudia; Åhlén, Per-Arne; Dahl, Fredrik

    2016-08-01

    Efficient targeting of actions to reduce the spread of invasive alien species relies on understanding the spatial, temporal, and individual variation of movement, in particular related to dispersal. Such patterns may differ between individuals at the invasion front compared to individuals in established and dense populations due to differences in environmental and ecological conditions such as abundance of conspecifics or sex-specific dispersal affecting the encounter rate of potential mates. We assessed seasonal and diurnal variation in movement pattern (step length and turning angle) of adult male and female raccoon dog at their invasion front in northern Sweden using data from Global Positioning System (GPS)-marked adult individuals and assessed whether male and female raccoon dog differed in their movement behavior. There were few consistent sex differences in movement. The rate of dispersal was rather similar over the months, suggesting that both male and female raccoon dog disperse during most of the year, but with higher speed during spring and summer. There were diurnal movement patterns in both sexes with more directional and faster movement during the dark hours. However, the short summer nights may limit such movement patterns, and long-distance displacement was best explained by fine-scale movement patterns from 18:00 to 05:00, rather than by movement patterns only from twilight and night. Simulation of dispersing raccoon dogs suggested a higher frequency of male-female encounters that were further away from the source population for the empirical data compared to a scenario with sex differences in movement pattern. The lack of sex differences in movement pattern at the invasion front results in an increased likelihood for reproductive events far from the source population. Animals outside the source population should be considered potential reproducing individuals, and a high effort to capture such individuals is needed throughout the year to prevent

  1. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman

    2016-08-01

    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment

  2. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and

  3. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2014-04-02

    Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into...THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air...The regional algorithm products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one

  4. Centrifuge-Based Fluidic Platforms

    NASA Astrophysics Data System (ADS)

    Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui; Madou, Marc

    In this chapter centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation are introduced. Those fluidic functions have been combined with analytical measurements techniques such as optical imaging, absorbance and fluorescence spectroscopy and mass spectrometry to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high-throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include: two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare the technical barriers involved in applying microfluidics for sensing and diagnostic as opposed to applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, while we might have to wait longer to see commercial CD-based diagnostics.

  5. Hemolysis in different centrifugal pumps.

    PubMed

    Kawahito, K; Nosé, Y

    1997-04-01

    Different types of centrifugal pumps cause different amounts of hemolysis based on shear stress and blood exposure time. However, the hemolytic characteristics of centrifugal pumps in each clinical condition are not always clear. We compared the hemolytic characteristics of one cone-type centrifugal pump (Medtronic BioMedicus BP-80) and 2 impeller-type centrifugal pumps (Nikkiso HMS-12 and Terumo Capiox) under experimental conditions simulating their use in cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and percutaneous cardiopulmonary support (PCPS) as well as their use as left ventricular assist devices (LVADs). The normalized indexes of hemolysis (NIHs; grams free plasma hemoglobin per 100 L blood pumped) during use as LVADs were not significantly different among the 3 pumps. The BP-80 pump produced almost 3-fold more hemolysis than the HMS-12 and Capiox pumps during CPB, 3- to 4-fold more hemolysis during ECMO, and 5.5-fold more hemolysis during PCPS. The 2 impeller-type centrifugal pumps will therefore cause less hemolysis under high flow, high pressure difference (as in CPB) and low flow, high pressure difference (as in ECMO and PCPS) conditions than the cone-type pump.

  6. Analysis of cantilever NEMS in centrifugal-fluidic systems

    NASA Astrophysics Data System (ADS)

    Mohsen-Nia, Mohsen; Abadian, Fateme; Abadian, Naeime; Dehkordi, Keivan Mosaiebi; Keivani, Maryam; Abadyan, Mohamadreza

    2016-07-01

    Electromechanical nanocantilevers are promising for using as sensors/detectors in centrifugal-fluidic systems. For this application, the presence of angular speed and electrolyte environment should be considered in the theoretical analysis. Herein, the pull-in instability of the nanocantilever incorporating the effects of angular velocity and liquid media is investigated using a size-dependent continuum theory. Using d’Alembert principle, the angular speed is transformed into an equivalent centrifugal force. The electrochemical and dispersion forces are incorporated considering the corrections due to the presence of electrolyte media. Two different approaches, i.e., the Rayleigh-Ritz method (RRM) and proposing a lumped parameter model (LPM), were applied to analyze the system. The models are validated with the results presented in literature. Impacts of the angular velocity, electrolyte media, dispersion forces, and size effect on the instability characteristics of the nanocantilever are discussed.

  7. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-09-23

    A centrifugal governor is described for use with an internal combustion engine which consists of: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; an idling spring for urging the tension lever against radially outward displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack, and another end adapted to engage with the cam surface of the torque cam; a cancelling spring interposed between the torque cam and the tension lever; a control lever; a floating lever interlocking with the control lever; and spring force adjusting means arranged at one end of the idling spring.

  8. Centrifugal slip casting of components

    SciTech Connect

    Steinlage, G.A.; Roeder, R.K.; Trumble, K.P.; Bowman, K.J.

    1996-05-01

    Research in layered and functionally gradient materials has emerged because of the increasing demand for high-performance engineering materials. Many techniques have been used to produce layered and functionally gradient components. Common examples include thermal spray processing, powder processing, chemical and physical vapor deposition, high-temperature or combustion synthesis, diffusion treatments, microwave processing and infiltration. Of these techniques, powder processing routes offer excellent microstructural control and product quality, and they are capable of producing large components. Centrifugal slip casting is a powder-processing technique combining the effects of slip casting and centrifugation. In slip casting, consolidation takes place as fluid is removed by the porous mold. Particles within the slip move with the suspending fluid until reaching the mold wall, at which point they are consolidated. In centrifugation, particles within the slip move through the fluid at a rate dependent upon the gravitational force and particle drag.

  9. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  10. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and

  11. Validation of Temporal and Spatial Consistency of Facility- and Speed-specific VSP Distribution for Emission Estimation: A Case Study in Beijing.

    PubMed

    Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei

    2017-02-22

    Vehicle specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emissions modeling such as the MOVES model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city CBD area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis on the CO2 emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. Implications The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still develop accurate VSP distributions based on better data from other

  12. Lightweight, high speed bearing balls: A concept

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1974-01-01

    Low mass bearing balls with hardened iron-plated surfaces can eliminate problems of low fatigue strength and flexure fatigue, and lead to increased life and reliability of high speed ball bearings. Low mass balls exert lower centrifugal forces on outer race of bearing thus eliminating detrimental effect of high speed operation.

  13. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  14. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  15. Axial-Centrifugal Compressor Program

    DTIC Science & Technology

    1975-10-01

    We also wish to thank Robert Langworthy of the Eustis Directorate for his timely assistance and constructive guidance. 3, INj TABLE OF CONTENTS Page...34 PREFACE 3 LIST OF ILLUSTRATIONS ..................... 7 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . 17 INTRODUCTIONB...Blow Test. 132 Axial IGV Blow Test . . . . . . . . ........... 141 PMIZ ?crn AM BLANK-NOT 1=43D TABLE OF CONTENTS - Continued Centrifugal Compressor

  16. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  17. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  18. Sandia National Laboratories 8. 8 metre (29-foot) and 10. 7-metre (35-foot) centrifuge facilities

    SciTech Connect

    Adams, P.H.; Ault, R.L.; Fulton, D.L.

    1980-05-01

    This report outlines the capabilities and limitations of the two centrifuges and gives other details which must be considered in preparing test specifications and designing fixtures, gives the theory and terminology of centrifuge testing, and describes the layout, operating principles, support functions, and reference material for each facility.

  19. Quasi-steady centrifuge method for unsaturated hydraulic properties

    USGS Publications Warehouse

    Caputo, M.C.; Nimmo, J.R.

    2005-01-01

    [1] We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations. Copyright 2005 by the American Geophysical Union.

  20. Application of Individualized Speed Thresholds to Interpret Position Specific Running Demands in Elite Professional Rugby Union: A GPS Study

    PubMed Central

    Reardon, Cillian; Tobin, Daniel P.; Delahunt, Eamonn

    2015-01-01

    A number of studies have used GPS technology to categorise rugby union locomotive demands. However, the utility of the results of these studies is confounded by small sample sizes, sub-elite player status and the global application of absolute speed thresholds to all player positions. Furthermore, many of these studies have used GPS units with low sampling frequencies. The aim of the present study was to compare and contrast the high speed running (HSR) demands of professional rugby union when utilizing micro-technology units sampling at 10 Hz and applying relative or individualised speed zones. The results of this study indicate that application of individualised speed zones results in a significant shift in the interpretation of the HSR demands of both forwards and backs and positional sub-categories therein. When considering the use of an absolute in comparison to an individualised HSR threshold, there was a significant underestimation for forwards of HSR distance (HSRD) (absolute = 269 ± 172.02, individualised = 354.72 ± 99.22, p < 0.001), HSR% (absolute = 5.15 ± 3.18, individualised = 7.06 ± 2.48, p < 0.001) and HSR efforts (HSRE) (absolute = 18.81 ± 12.25; individualised = 24.78 ± 8.30, p < 0.001). In contrast, there was a significant overestimation of the same HSR metrics for backs with the use of an absolute threshold (HSRD absolute = 697.79 ± 198.11, individualised = 570.02 ± 171.14, p < 0.001; HSR% absolute = 10.85 ± 2.82, individualised = 8.95 ± 2.76, p < 0.001; HSRE absolute = 41.55 ± 11.25; individualised = 34.54 ± 9.24, p < 0.001). This under- or overestimation associated with an absolute speed zone applies to varying degrees across the ten positional sub-categories analyzed and also to individuals within the same positional sub-category. The results of the present study indicated that although use of an individulised HSR threshold improves the interpretation of the HSR demands on a positional basis, inter-individual variability in maximum

  1. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2013-12-17

    NRL/MR/7320--14-9523 Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed...REPORT DATE 17 DEC 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Validation Test Report for NFLUX PRE...products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one of the regional areas

  2. High efficiency, variable geometry, centrifugal cryogenic pump

    SciTech Connect

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-12-31

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions.

  3. Specification of minimum short circuit capacity for three-phase unbalance evaluation of high-speed railway power system

    SciTech Connect

    Chen, S.L.; Kao, F.C.; Lee, T.M.

    1995-12-31

    In the paper, firstly, the authors present an efficient computational algorithm to evaluate the short circuit capacity distribution at a substation bus, and on basis of this distribution to specify the minimum short circuit capacity for the year under evaluation. Secondly, the authors estimate the maximum traction load at seven 161kv substations of Taiwan high-speed railway system which is now under planning. Thirdly, using the maximum traction load and the minimum short circuit capacity derived, the authors estimate the maximum unbalance of the 3{phi} voltage at these seven 161kv substations, and compare their results with that by Taipower to demonstrate the effectiveness of their proposed algorithm.

  4. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  5. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection.

    PubMed

    Oh, Seung Jun; Park, Byung Hyun; Jung, Jae Hwan; Choi, Goro; Lee, Doh C; Kim, Do Hyun; Seo, Tae Seok

    2016-01-15

    We present a centrifugal microfluidic device which enables multiplex foodborne pathogen identification by loop-mediated isothermal amplification (LAMP) and colorimetric detection using Eriochrome Black T (EBT). Five identical structures were designed in the centrifugal microfluidic system to perform the genetic analysis of 25 pathogen samples in a high-throughput manner. The sequential loading and aliquoting of the LAMP cocktail, the primer mixtures, and the DNA sample solutions were accomplished by the optimized zigzag-shaped microchannels and RPM control. We targeted three kinds of pathogenic bacteria (Escherichia coli O157:H7, Salmonella typhimurium and Vibrio parahaemolyticus) and detected the amplicons of the LAMP reaction by the EBT-mediated colorimetric method. For the limit-of-detection (LOD) test, we carried out the LAMP reaction on a chip with serially diluted DNA templates of E. coli O157:H7, and could observe the color change with 380 copies. The used primer sets in the LAMP reaction were specific only to the genomic DNA of E. coli O157:H7, enabling the on-chip selective, sensitive, and high-throughput pathogen identification with the naked eyes. The entire process was completed in 60min. Since the proposed microsystem does not require any bulky and expensive instrumentation for end-point detection, our microdevice would be adequate for point-of-care (POC) testing with high simplicity and high speed, providing an advanced genetic analysis microsystem for foodborne pathogen detection.

  6. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  7. Theory and experiments on centrifuge cratering

    NASA Astrophysics Data System (ADS)

    Schmidt, R. M.; Holsapple, K. A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuum show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of constitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rate-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g3E. Consequently, experiments at 500 G with 8 grams of explosives can be used to simulate a kiloton in the field. A series of centrifuge experiments was performed to validate the derived similarity requirements and to determine the practicality of applying the technique to dry granular soils having little or no cohesion. Ten shots using Ottawa sand at various gravities confirmed reproducibility of results in the centrifuge environment, provided information on particle size effects, and demonstrated the applicability of the derived similitude requirements. These experiments used 0.5-4 grams of pentaerythritol-tetranitrate (PETN) and 1.7 grams of lead-azide explosives. They

  8. Dynamic considerations in the development of centrifugal separators used for reprocessing nuclear fuel

    SciTech Connect

    Strunk, W.D.; Singh, S.P.; Tuft, R.M.

    1988-01-01

    The development of centrifugal separators has been a key ingredient in improving the process used for reprocessing of spent nuclear fuel. The separators are used to segregate uranium and plutonium from the fission products produced by a controlled nuclear reaction. The separators are small variable speed centrifuges, designed to operate in a harsh environment. Dynamic problems were detected by vibration analysis and resolved using modal analysis and trending. Problems with critical speeds, resonances in the base, balancing, weak components, precision manufacturing, and short life have been solved.

  9. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    NASA Astrophysics Data System (ADS)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  10. When to maintain centrifugal pumps

    SciTech Connect

    Karassik, I.J.

    1993-04-01

    Centrifugal pumps comprise critical maintenance equipment. The rationale of when to maintain them relates to a spreading tendency to contain costs in the face of tight money. Plant managers are thus entitled to a thorough analysis of whether reduced expenditures truly lower costs or actually hinder maintenance and increase costs. Absence of such an analysis hides the fact that proper and timely maintenance has a double effect: it not only reduces power consumption but also extends equipment life, and thus reduces the frequency of labor and material expenditures for scheduled or crisis maintenance. Centrifugal pump maintenance can demonstrate well the validity of this observation. The paper discusses: restoring internal clearances; real cost of renewing clearances; and monitoring clearances and pump performance.

  11. Development of Advanced Centrifugal Pumps

    SciTech Connect

    Rohatgi, U.

    2009-09-30

    A CRADA project was performed between BNL and Flowserve, California, under the auspices of Initiative for Proliferation Prevention (IPP) with the DOE support. The purpose was to jointly support a team of Russian institutes led by Kurchatov Institute to develop technology to increase operating life of centrifugal pumps. The work was performed from March 1, 2002 to September 30, 2009. The project resulted in development and validation the total cost of the sub-contract with Kurchatov Institute was $700,000, with matching fund from the industrial partner, Flowserve. The technical objective of this project is to develop advanced centrifugal pumps for the power, petroleum, chemical and water services industries by increasing the reliability of pumping equipment without a corresponding increase in life cycle cost. This major market need can be served by developing centrifugal pumps that generate only modest forces on the mechanical system even when operating under significant off-design conditions. This project is focused towards understanding the origin of hydraulic forces (both radial and axial, steady and time-dependent) and to develop design options, which reduce these forces over a broad flow range. This focus will include the force generation due to cavitation inside the pump as the operating conditions extend to low suction pressures. The results of research will reduce the inception of cavitation that leads to surface erosion and to find passive method of reducing peaks in axial thrust during whole range of flow rates.

  12. Velocity thresholds for women's soccer matches: sex specificity dictates high-speed running and sprinting thresholds - Female Athletes in Motion (FAiM).

    PubMed

    Bradley, Paul S; Vescovi, Jason D

    2015-01-01

    There is no methodological standardization of velocity thresholds for the quantification of distances covered in various locomotor activities for women's soccer matches, especially for high-speed running and sprinting. Applying velocity thresholds used for motion analysis of men's soccer has likely created skewed observations about high-intensity movement demands for the women's game because these thresholds do not accurately reflect the capabilities of elite female players. Subsequently, a cohesive view of the locomotor characteristics of women's soccer does not yet exist. The aim of this commentary is to provide suggestions for standardizing high-speed running and sprint velocity thresholds specific to women's soccer. The authors also comment on using generic vs individualized thresholds, as well as age-related considerations, to establish velocity thresholds.

  13. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    PubMed

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration.

  14. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  16. Comparative hemolysis study of clinically available centrifugal pumps.

    PubMed

    Naito, K; Suenaga, E; Cao, Z L; Suda, H; Ueno, T; Natsuaki, M; Itoh, T

    1996-06-01

    Centrifugal pumps have become important devices for cardiopulmonary bypass and circulatory assistance. Five types of centrifugal pumps are clinically available in Japan. To evaluate the blood trauma caused by centrifugal pumps, a comparative hemolysis study was performed under identical conditions. In vitro hemolysis test circuits were constructed to operate the BioMedicus BP-80 (Medtronic, BioMedicus), Sarns Delphin (Sarns/3M Healthcare), Isoflow (St. Jude Medical [SJM]), HPM-15 (Nikkiso), and Capiox CX-SP45 (Terumo). The hemolysis test loop consisted of two 1.5 m lengths of polyvinyl chloride tubing with a 3/8-inch internal diameter, a reservoir with a sampling port, and a pump head. All pumps were set to flow at 6 L/min against the total pressure head of 120 mm Hg. Experiments were conducted simultaneously for 6 h at room temperature (21 degrees C) with fresh bovine blood. Blood samples for plasma-free hemoglobin testing were taken, and the change in temperature at the pump outlet port was measured during the experiment. The mean pump rotational speeds were 1,570, 1,374, 1,438, 1,944, and 1,296 rpm, and the normalized indexes of hemolysis were 0.00070, 0.00745, 0.00096, 0.00066, 0.00090 g/100 L for the BP-80, Sarns, SJM, Nikkiso, and Terumo pumps, respectively. The change in temperature at the pump outlet port was the least for the Nikkiso pump (1.8 degrees C) and the most with the SJM pump (3.8 degrees C). This study showed that there is no relationship between the pump rotational speed (rpm) and the normalized index of hemolysis in 5 types of centrifugal pumps. The pump design and number of impellers could be more notable factors in blood damage.

  17. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  18. Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein-free medium.

    PubMed

    Johnson, M; Lanthier, S; Massie, B; Lefebvre, G; Kamen, A A

    1996-01-01

    As part of an effort to develop a suspension-culture perfusion-based process with high flow rate without the fouling and antibody retention inherent to filter-based cell-separation devices, we have evaluated and contributed to the development of the Centritech Lab centrifuge for the perfusion culture of hybridoma cells in protein-free medium. Culture start-ups showed that cell growth and monoclonal-antibody (MAb) production rates were similar in both a spinner flask and continuous centrifugation coupled to a bioreactor. The centrifuge efficiently separated viable cells from dead ones. Viable-cell recoveries were never below 98%, whereas dead-cell recoveries were usually around 80%. The cell content of the centrifuge supernatant and concentrate was strongly determined by the total amount of cells, viable and dead, in the culture broth, but an influence of the centrifugation parameters (feed rate, times of separation and discharge, and rotor speed) was observed. This understanding of the separation process inside the centrifuge is important and may apply to other similar devices. Monoclonal antibodies were not retained in the bioreactor during centrifugation perfusion. However, whereas similar growth rates were obtained in perfusion cultures using either continuous centrifugation or filtration, MAb concentrations were 35% lower in the former case. Utilization of the centrifuge in an intermittent fashion decreased the daily cell residence time outside the bioreactor, the daily pelleted-cell residence time in the centrifuge, and the frequency of cell passage to the centrifuge. This led to higher viable-cell numbers in the bioreactor and an accompanying increase in MAb concentrations, 225-250 mg of IgM L-1, equal to the performance of filter-based perfusion systems with the same cell line. It was hypothesized that having cells periodically packed at the bottom of the centrifuge insert (up to 800 x 10(6) cells mL-1) is deleterious to the culture by exposing the pelleted

  19. Pressure data from a 64A010 airfoil at transonic speeds in heavy gas media of ratio of specific heats from 1.67 to 1.12

    NASA Technical Reports Server (NTRS)

    Gross, A. R.; Steinle, F. W., Jr.

    1975-01-01

    A NACA 64A010 pressure-instrumented airfoil was tested at transonic speeds over a range of angle of attack from -1 to 12 degrees at various Reynolds numbers ranging from 2 to 6 million in air, argon, Freon 12, and a mixture of argon and Freon 12 having a ratio of specific heats corresponding to air. Good agreement of results is obtained for conditions where compressibility is not significant and for the air and comparable argon-Freon 12 mixture. Comparison of heavy gas results with air, when adjusted for transonic similarity, show improved, but less than desired agreement.

  20. Ultrasound-Assisted Extraction, Centrifugation and Ultrafiltration: Multistage Process for Polyphenol Recovery from Purple Sweet Potatoes.

    PubMed

    Zhu, Zhenzhou; Jiang, Tian; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Koubaa, Mohamed

    2016-11-20

    This work provides an evaluation of an ultrasound-assisted, combined extraction, centrifugation and ultrafiltration process for the optimal recovery of polyphenols. A purple sweet potato (PSP) extract has been obtained using ultrasonic circulating extraction equipment at a power of 840 W, a frequency of 59 kHz and using water as solvent. Extract ultrafiltration, using polyethersulfone (PES), was carried out for the recovery of polyphenol, protein and anthocyanin. Pre-treatment, via the centrifugation of purple sweet potato extract at 2500 rpm over 6 min, led to better polyphenol recovery, with satisfactory protein removal (reused for future purposes), than PSP extract filtration without centrifugation. Results showed that anthocyanin was efficiently recovered (99%) from permeate. The exponential model fit well with the experimental ultrafiltration data and led to the calculation of the membrane's fouling coefficient. The optimization of centrifugation conditions showed that, at a centrifugation speed of 4000 rpm (1195× g) and duration of 7.74 min, the optimized polyphenol recovery and fouling coefficient were 34.5% and 29.5 m(-1), respectively. The removal of proteins in the centrifugation process means that most of the anthocyanin content (90%) remained after filtration. No significant differences in the intensities of the HPLC-DAD-ESI-MS² peaks were found in the samples taken before and after centrifugation for the main anthocyanins; peonidin-3-feruloylsophoroside-5-glucoside, peonidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, and peonidin-3-caffeoyl-feruloyl sophoroside-5-glucoside. This proves that centrifugation is an efficient method for protein removal without anthocyanin loss. This study considers this process an ultrasound-assisted extraction-centrifugation-ultrafiltration for purple sweet potato valorization in "green" technology.

  1. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2015-01-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities. PMID:26997860

  2. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms.

    PubMed

    Shaffer, Justin F; Kier, William M

    2016-03-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities.

  3. A modeling study of a centrifugal compressor

    SciTech Connect

    Popovic, P.; Shapiro, H.N.

    1998-12-31

    A centrifugal compressor, which is part of a chlorofluorocarbon R-114 chiller installation, was investigated, operating with a new refrigerant, hydrofluorocarbon R-236ea, a proposed alternative to R-114. A large set of R-236ea operating data, as well as a limited amount of R-114 data, were available for this study. A relatively simple analytical compressor model was developed to describe compressor performance. The model was built upon a thorough literature search, experimental data, and some compressor design parameters. Two original empirical relations were developed, providing a new approach to the compressor modeling. The model was developed in a format that would permit it to be easily incorporated into a complete chiller simulation. The model was found to improve somewhat on the quantitative and physical aspects of a compressor model of the same format found in the literature. It was found that the compressor model is specific to the particular refrigerant.

  4. Centrifugal separators and related devices and methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  5. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-08-12

    A centrifugal governor is described for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable about a stationary fulcrum in response to the radial displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack and another end disposed for engagement with the cam surface of the torque cam, the sensor lever being adapted to engage with the cam surface of the torque cam when the engine is in a starting condition, to cause displacement of the control rack into a fuel increasing position for the start of the engine; and spring means interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever in a direction of disengaging the sensor lever from the cam surface of the torque cam; the spring means comprising first and second springs, one of the first and second springs being formed of a thermosensitive material having a smaller spring constant at a low temperature below a predetermined value, and a larger spring constant at a temperature above the predetermined value; and the first and second springs of the spring means comprising coiled springs disposed concentrically with each other.

  6. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohkoshi, M.

    1987-04-14

    This patent describes a centrifugal governor for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; a torque cam pivotable about and relative to a fulcrum shaft thereof and having a cam surface including a cam surface portion determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack; the sensor lever having another end disposed to engage with the cam surface portion of the torque cam when the engine is in a starting condition, to permit displacement of the control rack into a fuel increasing position for the start of the engine; and a cancelling spring interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever to cause pivoting of the torque cam about the fulcrum shaft thereof in a direction of disengaging the sensor lever from the cam surface portion of the torque cam. The improvement is described comprising biasing means for forcibly pivotally displacing, immediately before operation of a starter of the engine, the torque cam in one direction against the urging force of the cancelling spring to a predetermined position.

  7. Hydraulic forces on a centrifugal impeller undergoing synchronous whirl

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Sato, C. J.; Branagan, L. A.

    1984-01-01

    High speed centrifugal rotating machinery with large vibrations caused by aerodynamic forces on impellers was examined. A method to calculate forces in a two dimensional orbiting impeller in an unbounded fluid with nonuniform entering flow was developed. A finite element model of the full impeller is employed to solve the inviscid flow equations. Five forces acting on the impeller are: Coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotation and pressure changes due to linear momentum. Both principal and cross coupled stiffness coefficients are calculated for the impeller.

  8. Modelling of horizontal centrifugal casting of work roll

    NASA Astrophysics Data System (ADS)

    Xu, Zhian; Song, Nannan; Tol, Rob Val; Luan, Yikun; Li, Dianzhong

    2012-07-01

    A numerical model to simulate horizontal centrifugal roll castings is presented in this paper. In order to simulate the flow fluid and solidification of horizontal centrifugal roll casting correctly, the model uses a body fitted mesh technique to represent the geometry. This new method maps a plate layer mesh to a circular mesh. The smooth body fitted mesh method gives more accurate calculation results for cylindrical geometries. A velocity depending on the angular velocity and inner radius of the mould is set up as a velocity boundary condition. The fluid flow coupled with heat transfer and solidification in a rapidly rotating roll is simulated. A gravity free falling method is applied as a pouring condition. A moveable pouring system is also used in the simulations. High speed steel is used to produce the work roll. Two different gating positions and a moveable gating system are simulated in this paper. Results show that the position of pouring system has a significant influence on the temperature distribution. The temperature distribution at a fixed central pouring system is more favourable than the distribution from a side pouring system. A moving gating system method is a better way to obtain a uniform temperature field in centrifugal casting and offers an alternative for existing techniques.

  9. Effect of centrifugal forces on dimensional error of bored shapes

    NASA Astrophysics Data System (ADS)

    Arsuaga, M.; de Lacalle, L. N. López; Lobato, R.; Urbikain, G.; Campa, F.

    2012-04-01

    Boring operations of deep holes with a slender boring bar are often hindered by the precision because of their low static stiffness and high deformations. Because of that, it is not possible to remove much larger depths of cuts than the nose radius of the tool, unlike the case of turning and face milling operations, and consequently, the relationship between the cutting force distribution, tool geometry, feed rate and depth of cut becomes non-linear and complex. This problem gets worse when working with a rotating boring head where apart from the cutting forces and the variation of the inclination angle because of shape boring, the bar and head are affected by de centrifugal forces. The centrifugal forces, and therefore the centrifugal deflection, will vary as a function of the rotating speed, boring bar mass distribution and variable radial position of the bar in shape boring. Taking in to account all this effects, a load and deformation model was created. This model has been experimentally validated to use as a corrector factor of the radial position of the U axis in the boring head.

  10. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    NASA Astrophysics Data System (ADS)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  11. Apparatus for centrifugal separation of coal particles

    SciTech Connect

    Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  12. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  13. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  14. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  15. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    DTIC Science & Technology

    2015-02-01

    axial blower design was chosen to achieve the highest possible efficiency within the size constraints of the system. The blower is able to deliver 10...of the blower were used to minimize losses and increase efficiency through adjustments of the specific blower geometry. CFD outputs included the...functionality. 15. SUBJECT TERMS COOLING SBIR REPORTS AXIAL FLOW FANS OFF THE SHELF EQUIPMENT BLOWERS LIGHTWEIGHT CENTRIFUGAL FORCE

  16. Centrifugal membrane filtration -- Task 9

    SciTech Connect

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  17. Performance of high pressure COIL with centrifugal bubble singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Zagidullin, Marsel V.; Nikolaev, Valery D.; Khvatov, Nikolay A.; Svistun, Michael I.

    2007-05-01

    A centrifugal bubbling SOG is a perspective source of oxygen at high pressure with high depletion of the BHP in the single burn dawn. The theoretical estimations show that at high centrifugal acceleration gas-liquid contact specific surface 30cm -1, frequency of the surface renewal can less than 10 -3s and bubble rise velocity up to 500 cm/s be realized in the bubble SOG. The results of the measurements of O II(1Δ) yield, chlorine utilization and water fraction at the exit of the centrifugal bubble SOG are presented. A high O II(1Δ) yield and chlorine utilization higher than 90% have been obtained at chlorine gas loading up to 6 mmole/s per 1 cm2 of the bubbler surface. The ejector COIL powered by centrifugal bubbling SOG demonstrated ~25% of chemical efficiency with specific power 6 kW per 1 litre/s of the BHP volumetric rate.

  18. Cavitation Performance of a Centrifugal Pump with Water and Mercury

    NASA Technical Reports Server (NTRS)

    Hammitt, F. G.; Barton, R. K.; Cramer, V. F.; Robinson, M. J.

    1961-01-01

    The cavitation performance of a given centrifugal pump with water (hot and cold) and mercury is compared. It is found that there are significant scale effects with all fluids tested, with the Thoma cavitation parameter decreasing in all cases for increased pump speed or fluid Reynolds' number. The data for a fixed flow coefficient fall into a single curve when plotted against pump speed (or fluid velocity), rather than against Reynolds' number. Conversely, the Thoma parameter for a given Reynolds' number is approximately twice as large for mercury as for water. The direction of this variation is as predicted from consideration of the cavitation thermodynamic parameters which vary by a factor of 10(exp 7) between these fluids. No difference in cavitation performance between hot and cold water (approximately 160 F and 80 F) was observed, However, the thermodynamic parameters vary only by a factor of 5.

  19. Evaluation and prediction of blade-passing frequency noise generated by a centrifugal blower

    SciTech Connect

    Ohta, Y.; Outa, E.; Tajima, K.

    1996-07-01

    The blade-passing frequency noise, abbreviated to BPF noise, of a low-specific-speed centrifugal blower is analyzed by separating the frequency response of the transmission passage and the intensity of the noise source. Frequency response has previously been evaluated by the authors using a one-dimensional linear wave model, and the results have agreed well with the experimental response in a practical range of the blower speed. In the present study, the intensity of the noise source is estimated by introducing the quasi-steady model of the blade wake impingement on the scroll surface. The effective location of the noise source is determined by analyzing the cross-correlation between measured data of the blower suction noise and pressure fluctuation on the scroll surface. Then, the surface density distribution of a dipole noise source is determined from pressure fluctuations expressed in terms of quasi-steady dynamic pressure of the traveling blade wake. Finally, the free-field noise level is predicted by integrating the density spectrum of the noise source over the effective source area. The sound pressure level of the blower suction noise is easily predicted by multiplying the free-field noise level by the frequency-response characteristics of the noise transmission passage.

  20. Extraction of phenol in wastewater with annular centrifugal contactors.

    PubMed

    Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen

    2006-04-17

    Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.

  1. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  2. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report

    SciTech Connect

    1997-07-31

    The centrifugal shot blaster technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The centrifugal shot blaster is an electronically operated shot blast machine that has been modified to remove layers of concrete to varying depths. A hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is recycled and used over until it is pulverized into dust, which ends up in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  3. Numerical investigation of nonlinear vibration for rotor-seal system of centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Yang, Y. C.; Xing, G. K.; Wang, L. Q.

    2013-12-01

    The exciting force in the seal is an important factor for the stability of a multiple stage centrifugal pump. With the speed increasing, the rotor system of multiple stage centrifugal pump presents some nonlinear characters. In order to provide supports for the research of nonlinear characters of multiple stage centrifugal pump, a rotor-seal system model of centrifugal pump is presented and the Muszynska nonlinear seal model is used to express the seal exciting force with multiple parameters in the paper. The fourth-order Runge-Kutta method is also used to determine the vibration response at the impeller place and obtain bifurcation diagram, axis orbit, phase diagram as well as Poincaré Map. The bifurcation results show that the rotor-seal system would be stable under a lower speed and change to be unstable as the rotor speed increases. Various multi-periodic motions and quasi-periodic motions are found showing the complicated motions in the rotor-seal system under nonlinear seal forces.

  4. Gas dynamics in strong centrifugal fields

    SciTech Connect

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  5. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  6. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  7. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    NASA Astrophysics Data System (ADS)

    Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.

    2012-11-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  8. Modeling of Centrifugal Force Field and the Effect on Filling and Solidification in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sheng, Wenbin; Ma, Chunxue; Gu, Wanli

    2011-06-01

    Based on the steady flow in a tube, a mathematical model has been established for the consideration of centrifuging force field by combining the equations of continuity, conservation of momentum and general energy. Effects of centrifugal field on the filling and solidification are modeled by two accessional terms: centrifugal force and Chorios force. In addition, the transfer of heat by convection is considered to achieve a coupling calculation of velocity field and temperature field. The solution of pressure item is avoided by introducing the stream function ψ(x,y) and the eddy function ξ(x,y). Corresponding difference formats for the simultaneous equations of centrifugal filling, the accessional terms and the solidifying latent heat have been established by the finite difference technique. Furthermore, the centrifugal filling and solidification processes in a horizontal tube are summarized to interpret the mechanism by which internal defects are formed in centrifugal castings.

  9. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Simunek, J.; Nimmo, J.R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.

  10. Improved methodology for the quantitative analysis of mixtures by band centrifugation: reversible equilibration in immunoglobulin preparations.

    PubMed

    Kranz, T; Schmidt, K H

    1979-01-01

    Double-sector aluminium centerpieces are modified for use in analytical high-speed band centrifugation up to 60,000 rpm. A method has been developed for testing IG preparations according to administrative regulations with special regard to precision and reproducibility. The proposed band-forming centrifugation method with scanner registration in UV absorption optics and special evaluation of the curves gives values in comparison to well-known procedures by Svedberg and Pedersen. Subjective and systematic errors are especially estimated with this method and the sensitivity is best suited to automatic computerization and results are therefore readily available at the end of the centrifuge run within a few minutes. Investigations have been undertaken to analyze reversible equilibration in immunoglobulin preparations; the results are discussed.

  11. Gas centrifuge with driving motor

    DOEpatents

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  12. Optical detection strategies for centrifugal microfluidic platforms

    NASA Astrophysics Data System (ADS)

    King, Damien; O'Sullivan, Mary; Ducrée, Jens

    2014-01-01

    Centrifugal microfluidic systems have become one of the principal platforms for implementing bioanalytical assays, most notably for biomedical point-of-care diagnostics. These so-called 'lab-on-a-disc' systems primarily utilise the rotationally controlled centrifugal field in combination with capillary forces to automate a range of laboratory unit operations (LUOs) for sample preparation, such as metering, aliquoting, mixing and extraction for biofluids as well as sorting, isolation and counting of bioparticles. These centrifugal microfluidic LUOs have been regularly surveyed in the literature. However, even though absolutely essential to provide true sample-to-answer functionality of lab-on-a-disc platforms, systematic examination of associated, often optical, read-out technologies has been so far neglected. This review focusses on the history and state-of-the-art of optical read-out strategies for centrifugal microfluidic platforms, arising (commercial) application potential and future opportunities.

  13. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  14. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  15. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H

    2013-03-01

    Recently, continuous-flow ventricular assist devices (CF-VADs) have supplanted older, pulsatile-flow pumps, for treating patients with advanced heart failure. Despite the excellent results of the newer generation devices, the effects of long-term loss of pulsatility remain unknown. The aim of this study is to compare the ability of both axial and centrifugal continuous-flow pumps to intrinsically modify pulsatility when placed under physiologically diverse conditions. Four VADs, two axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. Each VAD was operated at a constant impeller speed over three hypothetical cardiac conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was compared for each device under each condition. Centrifugal-flow devices had a higher PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial and centrifugal groups, respectively (p < 0.01). Under hypertension, flow PI was 1.90 ± 0.16 and 4.21 ± 0.29 for the axial and centrifugal pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs were capable of maintaining some pulsatile-flow when connected in parallel with our mock ventricle. We conclude that centrifugal-flow devices outperform the axial pumps from the basis of PI under tested conditions.

  16. Determination of the Heat Transfer Coefficient at the Metal-Mold Interface During Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Vacca, Santiago; Martorano, Marcelo A.; Heringer, Romulo; Boccalini, Mário

    2015-05-01

    The heat transfer coefficient at the metal-mold interface ( h MM) has been determined for the first time during the centrifugal casting of a Fe-C alloy tube using the inverse solution method. To apply this method, a centrifugal casting experiment was carried out to measure cooling curves within the tube wall under a mold rotation speed of 900 rpm, imposing a centrifugal force 106 times as large as the gravity force (106 G). As part of the solution method, a comprehensive heat transfer model of the centrifugal casting was also developed and coupled to an optimization algorithm. Finally, the evolution of h MM with time that gives the minimum squared error between measured and calculated cooling curves was obtained. The determined h MM is approximately 870 W m-2 K-1 immediately after melt pouring, decreasing to about 50 W m-2 K-1 when the average temperature of the tube is ~973 K (700 °C), after the end of solidification. Despite the existence of a centrifugal force that could enhance the metal-mold contact, these values are lower than those generally reported for static molds with or without an insulating coating at the mold inner surface. The implemented model shows that the heat loss by radiation is dominant over that by convection at the tube inner surface, causing the formation of a solidification front that meets another front coming from the outer surface of the tube.

  17. A novel centrifuge for animal physiological researches in hypergravity and variable gravity forces

    NASA Astrophysics Data System (ADS)

    Kumei, Yasuhiro; Hasegawa, Katsuya; Inoue, Katarzyna; Zeredo, . Jorge; Kimiya Narikiyo, .; Maezawa, Yukio; Yuuki Watanabe, .; Aou, Shuji

    2012-07-01

    Understanding the physiological responses to altered gravitational environments is essential for space exploration and long-term human life in space. Currently available centrifuges restrict experimentation due to limited space for laboratory equipments. We developed a medium-sized disc-type centrifuge to conduct ground-based studies on animal physiological response to hypergravity and variable gravity forces, which features the following advantages: 1) It enables simultaneous examination into the effects of various gravity levels including rotation control. 2) Beside the constant G force, variable G forces (delta-G) can be loaded to generate gravitational acceleration and deceleration. 3) Multiple imaging techniques can be used, such as high-speed video (16 channels wireless) and photography, X-ray, and infra-red imaging. 4) Telemetry is available on the disc table of the centrifuge through 128-channel analog and 32-channel digital signals, with sampling rate of 100 kHz for 2 hours. Our dynamic-balanced centrifuge can hold payloads of 600 kg that enable experimentation on various models of living organisms, from cells to animals and plants. We use this novel centrifuge for neurochemical and neurophysiological approaches such as microdialysis and telemetrical recording of neuronal activity in the rat brain. Financial supports from JSPS to K. Hasegawa (2011) and from JAXA to Y. Kumei (2011).

  18. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  19. Transient thermal analysis of solidification in a centrifugal casting for composite materials containing particle segregation

    SciTech Connect

    Kang, C.G.; Rohatgi, P.K.

    1996-04-01

    One-dimensional heat-transfer analysis during centrifugal casting of aluminum alloy and copper base metal matrix composites containing Al{sub 2}O{sub 3}, SiC{sub p}, and graphite particles has been studied. The model of the particle segregation is calculated by varying the volume fraction during centrifugal casting, and a finite difference technique has been adopted. The results indicate that the thickness of the region in which dispersed particles are segregated due to the centrifugal force is strongly influenced by the speed of rotation of the mold, the solidification time, and the density difference between the base alloy and the reinforcement. In the case where the base alloy density is larger than that of the particles, the thickness of the particle-rich region near the inner periphery decreases with an increase in speed, thereby increasing the volume fraction of dispersion. The solidification time of the casting is also dependent upon the speed of rotation of the mold, and it decreases with an increase in speed. This study also indicates that the presence of particles increases the solidification time of the casting.

  20. Determining the Effect of Centrifugal Force on the Desired Growth and Properties of PCPDTBT as p-Type Nanowires

    NASA Astrophysics Data System (ADS)

    Doris, Muhamad; Aziz, Fakhra; Alhummiany, Haya; Bawazeer, Tahani; Alsenany, Nourah; Mahmoud, Alaa; Zakaria, Rozalina; Sulaiman, Khaulah; Supangat, Azzuliani

    2017-01-01

    In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1- b;3,4- b')dithiophen]-2,6-diyl- alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.

  1. Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 1--Modeling fuel consumption and emissions based on speed and vehicle-specific power.

    PubMed

    Wang, Haikun; Fu, Lixin

    2010-12-01

    To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.

  2. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing

    In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.

  3. Magnetically suspended centrifugal blood pump with a self bearing motor.

    PubMed

    Masuzawa, Toru; Onuma, Hiroyuki; Kim, Seung-Jong; Okada, Yohji

    2002-01-01

    A magnetically suspended centrifugal blood pump with a self bearing motor has been developed for long-term ventricular assistance. A rotor of the self bearing motor is actively suspended and rotated by an electromagnetic field without mechanical bearings. Radial position of the rotor is controlled actively, and axial position of the rotor is passively stable within the thin rotor structure. An open impeller and a semiopened impeller were examined to determine the best impeller structure. The outer diameter and height of the impeller are 63 and 34 mm, respectively. Both the impellers indicated similar pump performance. Single volute and double volute structures were also tested to confirm the performance of the double volute. Power consumption for levitation and radial displacement of the impeller with a rotational speed of 1,500 rpm were 0.7 W and 0.04 mm in the double volute, while those in the single volute were 1.3 W and 0.07 mm, respectively. The stator of the self bearing motor was redesigned to avoid magnetic saturation and improve motor performance. Maximum flow rate and pressure head were 9 L/min and 250 mm Hg, respectively. The developed magnetically suspended centrifugal blood pump is a candidate for an implantable left ventricular assist device.

  4. Prediction of leakage flow in a shrouded centrifugal blood pump.

    PubMed

    Teo, Ji-Bin; Chan, Weng-Kong; Wong, Yew-Wah

    2010-09-01

    This article proposes a phenomenological model to predict the leakage flow in the clearance gap of shrouded centrifugal blood pumps. A good washout in the gap clearance between the rotating impeller surfaces and volute casing is essential to avoid thrombosis. However, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Computational fluid dynamics (CFD) analysis was performed to investigate the leakage flow in a miniaturized shrouded centrifugal blood pump operating at a speed of 2000 rpm. Based on an analytical model derived earlier, a phenomenological model is proposed to predict the leakage flow. The leakage flow rate is found to be proportional to h(α) , where h is the gap size and the exponent α ranges from 2.955 to 3.15 for corresponding gap sizes of 0.2-0.5 mm. In addition, it is observed that α is a linear function of the gap size h. The exponent α compensates for the variation of pressure difference along the circumferential direction as well as inertia effects that are dominant for larger gap clearances. The proposed model displays good agreement with computational results. The CFD analysis also showed that for larger gap sizes, the total leakage flow rate is of the same order of magnitude as the operating flow rate, thus suggesting low volumetric efficiency.

  5. Creating porous tubes by centrifugal forces for soft tissue application.

    PubMed

    Dalto, P D; Shoichet, M S

    2001-10-01

    Chemically crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) tubes were synthesized by applying centrifugal forces to propagating polymer chains in solution. Initiated monomer solutions, with a composition typical for PHEMA sponges, were placed into a cylindrical mold that was rotated about its long axis. As polymerization proceeded, phase separated PHEMA formed a sediment at the periphery under centrifugal action. The solvent remained in the center of the mold while the PHEMA phase gelled, resulting in a tube. By controlling the rotational speed and the formulation chemistry (i.e., monomer, initiator and crosslinking agent concentrations), the tube dimensions and wall morphology were manipulated. Tube manufacture was limited by a critical casting concentration [M]c, above which only rods formed. All tubes had an outer diameter of 2.4 mm, reflecting the internal diameter of the mold and a wall thickness of approximately 40-400 microm. Wall morphologies varied from interconnecting polymer and water phases to a closed cell, gel-like, structure. Concentric tubes were successfully prepared by using formulations that enhanced phase separation over gelation/network formation. This was achieved by using formulations with lower concentrations of monomer and crosslinking agent and higher concentrations of initiator. This technique offers a new approach to the synthesis of polymeric tubes for use in soft tissue applications, such as nerve guidance channels.

  6. Prediction of active control of subsonic centrifugal compressor rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  7. Mechanical properties and microstructure of centrifugally cast alloy 718

    NASA Astrophysics Data System (ADS)

    Michel, D. J.; Smith, H. H.

    1985-07-01

    The relationship between the microstructure and mechanical properties of alloy 718 was investigated for two discs centrifugally cast at 50 and 200 rpm and given a duplex age heat treatment. The results of mechanical property tests at temperatures from 426 to 649 °C showed that the tensile yield and ultimate strength levels of both castings were similar. However, the creep-rupture properties were considerably enhanced for the casting produced at 200 rpm. Comparison of the radial and transverse creep properties of each disc indicated that creep life was generally independent of orientation, but ductility was greatest for specimens oriented transverse to the radial direction of the casting. Fatigue crack propagation performance was not greatly influenced by orientation or mold speed parameters and was comparable to wrought alloy 718 when compared on the basis of stress intensity factor range. The centrifugal casting process was found to produce a homogeneous microstructure free of porosity but with the expected segregation of solute alloying elements to Laves and carbide phases. The effect of the as-cast microstructure on the mechanical behavior and the potential influence of hot isostatic pressing to improve the microstructure are discussed.

  8. Water Containment Systems for Testing High-Speed Flywheels

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  9. Runtime and Inversion Impacts on Estimation of Moisture Retention Relations by Centrifuge

    NASA Astrophysics Data System (ADS)

    Sigda, J. M.; Wilson, J. L.

    2003-12-01

    Standard laboratory methods in soil physics for measuring the moisture retention relation (drainage matric potential-volumetric moisture content relation) are each limited to only part of the moisture content range. Centrifuge systems allow intensive accurate measurements across much of the saturation range, and typically require much less time than traditional laboratory methods. An initially liquid-saturated sample is subjected to a stepwise-increasing series of angular velocities while carefully monitoring changes in liquid content. Angular velocity is held constant until the capillary and centrifugal forces equilibrate, forcing liquid flux to zero, and then a final average liquid content is noted. The procedure is repeated after increasing the angular velocity. Centrifuge measurement time is greatly reduced because the centrifugal body force gradient can far exceed the driving forces utilized in standard lab methods. Widely-used in the petroleum industry for decades, centrifuge measurement of moisture retention relations is seldom encountered in the soil physics or vadose hydrology literatures. Yet there is a need to better understand and improve the experimental methodology given the increasing number of centrifuges employed in these fields. Errors in centrifuge measurement of moisture retention relations originate from both experimental protocol and from data inversion. Like standard methods, centrifuge methods assume equilibrium conditions, and so are sensitive to errors introduced by insufficient runtimes. Unlike standard methods, centrifuge experiments require inversion of the angular velocity and average sample moisture content data to a location-specific pair of matric potential and moisture content values, The force balance causes matric potential and moisture content to vary with sample length while the sample is spinning. Numerous data inversion techniques exist, each yielding different moisture retention relations. We present analyses demonstrating

  10. Influence of hydrophibization of impellers of centrifugal pumps on their operating characteristics

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Šoukal, J.; Sedlář, M.; Komárek, M.

    2016-12-01

    This work presents experimental estimation results of changing of basic operation characteristics of a group of centrifugal pumps covering a range of values of dimensionless power-speed coefficient n s from 33 to 330 after hydrophobization of their impellers' surfaces. Hydrophobization of functional surfaces of impellers in all experiments was performed by formation of structures of organic covers by technology of MPEI NRU, which provides increasing of limiting wetting angle of surfaces to 120° and greater. Results of experimental researches of the influence of hydrophobization of impeller surfaces for high-speed pump ( n s = 330) on its characteristics is presented for the first time. Positive effect of applying hydrophobization technology to impeller surfaces in all the considered range of power-speed coefficient was generalized and estimated. It was shown that hydrophobization of impeller surfaces of centrifugal pumps provides increment to their efficiency factors within an acceptable operation range from 0.5 to 7.5%. Empiric function defining dependencies of efficiency factor increment of pump on relative supply and power-speed coefficient are suggested. Possibilities and estimation of extending acceptable operation range of a pump depending on powerspeed coefficient as a result of impeller surface hydrophobization are shown. Experimental data of comparative cavitation tests of high-speed pumps before and after hydrophobization of their impeller surfaces are generalized for the first time for considered range of power-speed coefficient values. The influence of power-speed coefficient on changing of critical net pump suction head (critical positive suction pressure) is shown. Based on existing knowledge on pumps, an attempt to validate experimentally obtained lows of changing of power and anticavitation features of centrifugal pumps after hydrophobization of their impeller surfaces is made.

  11. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  12. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  13. Characterization of a centrifugal pump in He II

    NASA Technical Reports Server (NTRS)

    Weisend, J. G., II; Van Sciver, S. W.

    1988-01-01

    As part of an effort to determine the feasibility of helium transfer in space, a centrifugal pump was tested in He II at a variety of flow rates, pump speeds, and fluid temperatures. The pump, which has a straight bladed impeller 6.86 cm in diameter, generated a maximum pressure rise of 15 kPa and a maximum flow rate of 22 g/s for the conditions of the test. Pump performance seems to be independent of fluid temperature and is in good agreement with the values predicted by the manufacturer. Over the range of flow coefficients, the measured maximum efficiency is around 50 percent. Cavitation is observed in the pump and is thought to be highly dependent on the local heating of the helium in the pump. Preliminary measurements of the noise spectra of the pump suggest a possible mechanism to predict the onset of cavitation.

  14. Novel Design for Centrifugal Countercurrent Chromatography: I. Zigzag Toroidal Column

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal coil using an equilateral triangular core has improved both retention of the stationary phase and peak resolution of the conventional toroidal coil in centrifugal countercurrent chromatography. To further improve the retention of stationary phase and peak resolution, a novel zigzag toroidal coil was designed and the performance of the system was evaluated at various flow rates. The results indicated that both retention of stationary phase and peak resolution were improved as the flow rate was decreased. Modification of the tubing by pressing at given intervals with a pair of pliers improved the peak resolution without increasing the column pressure. All these separations were performed under low column pressure indicating the separation can be further improved by increasing the column length and/or revolution speed without damaging the separation column. PMID:20046954

  15. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.

  16. Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser

    SciTech Connect

    Pinarbasi, A.; Johnson, M.W.

    1996-04-01

    Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the high kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.

  17. [Automatic polishing of dental prostheses. 1. Development of a centrifugal barrel finishing apparatus].

    PubMed

    Tamaki, Y; Miyazaki, T; Aoyama, N; Suzuki, E; Miyaji, T

    1990-09-01

    A centrifugal barrel finishing apparatus with a variable turn table rotational speed (250-1,000 rpm) was newly developed and barrel finishing of Ni-Cr casting plates (10 x 10 x 2 mm) was performed using alumina base chips. When using the sample with a mirror face the amount of polishing and the surface roughness increased and the surface gloss decreased with the increase in rotation speed. A high rotational speed was useful for coarse polishing and low rotational speed was useful for fine polishing. The continuous barrel polishing was trially performed using the sample prepared by the carborundum wheel under variable rotational speed. Automatic polishing to fine polishing could be done using this apparatus.

  18. Centrifugal compressors for automotive air conditioners -- Component design

    SciTech Connect

    Yun, H.; Smith, J.L. Jr.

    1996-12-31

    The application of a novel, electric motor-driven, variable-speed centrifugal compressor for automotive air conditioners has been investigated. For the feasibility analysis, a configuration design has been performed. It includes refrigerant selection, thermodynamic cycle analysis, compressor aerodynamic design, and mechanical layout of the integrated motor-compressor structure. Both the motor constraints (provided by the Laboratory for Electromagnetic and Electronic Systems at M.I.T.) and the compressor constraints were considered for the configuration design. The result is an inter-cooled two-stage compression system using R123 as the refrigerant. The inter-cooling is achieved by feeding back a small fraction of the condenser liquid into the return channel between the first and the second stage through the electric motor. At the design condition, the pressure ratio is 3.2 for the first stage and 1.9 for the second stage. The design rotational speed is 75,000 rpm, and the maximum cooling capacity is 5,275 Watts. High efficiency is expected by varying the compressor speed to match the required cooling load at each instant.

  19. Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Somers, Jeffery T.; Krnavek, Jody; Fisher, Elizibeth; Ford, George; Paloski, William H.

    2007-01-01

    It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are

  20. Liquid egg white pasteurization using a centrifugal UV irradiator.

    PubMed

    Geveke, David J; Torres, Daniel

    2013-03-01

    Studies are limited on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximately 8 log cfu/ml and was processed at the following conditions: UV intensity 1.5 to 9.0 mW/cm²; cylinder rotational speed 450 to 750 RPM, cylinder inclination angle 15° to 45°, and flow rate 300 to 900 ml/min, and treatment time 1.1 to 3.2s. Appropriate dilutions of the samples were pourplated with tryptic soy agar (TSA). Sublethal injury was determined using TSA+4% NaCl. The regrowth of surviving E. coli during refrigerated storage for 28 days was investigated. The electrical energy of the UV process was also determined. The results demonstrated that UV processing of LEW at a dose of 29 mJ/cm² at 10°C reduced E. coli by 5 log cfu/ml. Inactivation significantly increased with increasing UV dose and decreasing flow rate. The results at cylinder inclination angles of 30° and 45° were similar and were significantly better than those at 15°. The cylinder rotational speed had no significant effect on inactivation. The occurrence of sublethal injury was detected. Storage of UV processed LEW at 4° and 10°C for 21 days further reduced the population of E. coli to approximately 1 log cfu/ml where it remained for an additional 7 days. The UV energy applied to the LEW to obtain a 5 log reduction of E. coli was 3.9 J/ml. These results suggest that LEW may be efficiently pasteurized, albeit at low flow rates, using a nonthermal UV device that centrifugally forms a thin film.

  1. Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.

    2017-01-01

    Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.

  2. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  3. Possible segregation caused by centrifugal titanium casting.

    PubMed

    Watanabe, K; Okawa, S; Kanatani, M; Nakano, S; Miyakawa, O; Kobayashi, M

    1996-12-01

    The possibility of the segregation under solidification process using a centrifugal casting machine was investigated using an electron probe microanalyzer with elemental distribution map, line analysis and quantitative analysis. When a very small quantity of platinum was added to local molten titanium during the casting process, macroscopic segregation was observed under conditions of density difference of 0.1 g/cm3 at the most, confirming that the centrifugal force of the casting machine is extremely strong. When a Ti-6Al-4V alloy was cast, however, no macroscopic segregation was observed. The centrifugal force of the casting machine examined in the present study hardly results in the body-force segregation in this titanium alloy.

  4. 26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. Development of an autoflow cruise control system for a centrifugal pump.

    PubMed

    Nishida, H; Beppu, T; Nakajima, M; Nishinaka, T; Nakatani, H; Ihashi, K; Katsumata, T; Kitamura, M; Aomi, S; Endo, M

    1995-07-01

    To improve the ease of driving a centrifugal pump that is afterload dependent, we have developed an automatic flow control system for the Terumo Capiox centrifugal pump system. This system consists of an autoflow cruise control system with a safety cutoff. The Capiox Pump Console 3000 was controlled by a personal computer through a serial communication line. In the usual manual mode, the motor speed knob works as a pump speed control, and in the autoflow mode, the same knob works as a blood flow rate control. After selecting and obtaining the desired flow rate, the mode was changed from manual to autoflow mode. In the autoflow mode, the computer compares the desired flow rate with the actual flow measured by an ultrasonic Doppler flowmeter and adjusts the motor rotational speed accordingly. During both in vivo and in vitro testing, this autoflow mode was able to return the changed flow that was disrupted by either clamping and declamping of the tubing or by the bolus injection of a vasomotor drug to the selected flow rate within 10 s without any significant fluctuation. In conclusion, the newly developed computer controlled autoflow system was able to produce a reliable and effective flow regulation for a centrifugal pump.

  6. A real-time dynamic imaging system for centrifugal microflow platforms

    NASA Astrophysics Data System (ADS)

    Chang, Hsing-Cheng; Tsou, Chingfu; Lai, Chi-Chih; Wun, Guo-Hong

    2008-07-01

    Based on the operational concept of quasi-static state and optoelectronic measurement technology, this research develops a real-time dynamic imaging system for centrifugal microfluidic platforms. Unlike the conventional centrifugal inspection system, which can only be used for examination of the final steady stage in microflow analysis, the developed system with a multi-speed controller and object tracking design is fabricated with low cost to recognize dynamic microflow patterns for different kinds of compact disc-type centrifugal microstructures. The characteristics of rotational control efficiency and image acquisition quality are obtained from fluidic microvalve experiments that are achieved in measuring microflow dynamic responses and in visualizing transient microflow patterns. A man-machine interface was connected with a computer to perform the control and alignment adjustments to catch exact image data for following analysis. The rotation stability of the system has been evaluated, and the rotation speed up to 4500 rpm with vertical vibration less than ±0.2 mm is achieved measured at radial distance of 5 cm. The image acquisition is transferred via USB 2.0 at a speed of up to 30 images per second to the display and memory module.

  7. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1992-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  8. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1997-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  9. Detection methods for centrifugal microfluidic platforms.

    PubMed

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-02-15

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles.

  10. Wave-Driven Rotation In Centrifugal Mirrors

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-03-28

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  11. Invited Review Article: Review of centrifugal microfluidic and bio-optical disks

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2009-10-01

    Spinning biodisks have advantages that make them attractive for specialized biochip applications. The two main classes of spinning biodisks are microfluidic disks and bio-optical compact disks (BioCD). Microfluidic biodisks take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal and Coriolis forces to distribute fluids about the disks. BioCDs use spinning-disk interferometry, under the condition of common-path phase quadrature, to perform interferometric label-free detection of molecular recognition and binding. The optical detection of bound molecules on a disk is facilitated by rapid spinning that enables high-speed repetitive sampling to eliminate 1/f noise through common-mode rejection of intensity fluctuations and extensive signal averaging. Multiple quadrature classes have been developed, such as microdiffraction, in-line, phase contrast, and holographic adaptive optics. Thin molecular films are detected through the surface dipole density with a surface height sensitivity for the detection of protein spots that is approximately 1 pm. This sensitivity easily resolves a submonolayer of solid-support immobilized antibodies and their antigen targets. Fluorescence and light scattering provide additional optical detection techniques on spinning disks. Immunoassays have been applied to haptoglobin using protein A/G immobilization of antibodies and to prostate specific antigen. Small protein spots enable scalability to many spots per disk for high-throughput and highly multiplexed immonoassays.

  12. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  13. Development of small centrifugal pumps for an electric propellant pump system

    NASA Astrophysics Data System (ADS)

    Johnsson, Göran; Bigert, Mikael

    Small centrifugal pumps with low specific speeds have been designed, manufactured and performance tested at Volvo Flygmotor AB under a contract from the European Space Agency (ESA) over the period mid-1985 to mid-1988. The development of the pumps is a part of the work carried out to develop an Electric Propellant Pump System (EPPS) for the storable propellant monomethyl hydrazine (MMH) and nitrogen tetraoxide (NTO). Supporting technology development has been funded by the Swedish Delegation for Space Activities (DFR) and Swedish Space Corporation (SSC) together with Volvo Flygmotor. The main advantages of a typical EPPS communication satellite application are weight and volume reduction of the propellant system compared with a pressure-fed system. Active engine mixture ratio control and improved propellant utilization are also possible. Refuelling in space is another potential application where EPPS can be used. The development work was focused on communication satellite apogee propulsion and used the MBB 3 kN engine as reference. This paper presents the pump design and analyses and the results from the test campaigns of three different pump configurations, carried out with water as test liquid. The head rise, efficiency and suction performance together with other characteristics are also given. The planned next development step is to demonstrate pump performance in the propellants and primarily in NTO. The step is funded by (DFR)/(SSC) together with Volvo Flygmotor.

  14. Numerical comparisons of the performance of a hydraulic coupling with different pump rotational speeds

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Feng, L. H.; Liu, S. H.; Chen, T. J.; Fan, H. G.

    2013-12-01

    A hydraulic coupling is a hydrodynamic device for transmitting rotating mechanical power. It is widely used in the machinery industry because of its advantages of high energy transmission efficiency, shock absorption and good adaptability, etc. In this paper, SIMPLEC algorithm and SST k-ω turbulence model were employed to simulate the steady state flows at operating conditions of two different rotational speeds (3000r/min and 7500 r/min) of the pump of a specified hydraulic coupling model. The results indicate the existence of similarity in the distributions of the flow fields between the two speeds, but the efficiency at the optimum condition is larger with higher rotational speed. It is concluded that the similarity principle of the efficiency of the hydraulic couplings does not apply in this case due to the relatively high rotating speed and small geometric specifications. It is also shown that the radially stratified pressure distribution on the torus section becomes more obvious with larger speed ratios, since the centrifugal movement plays more dominant roles over the circulating movement in these situations. When the speed ratio is small, with the completion of the circulating flow, the pressure distribution presents in a more circular pattern around the neutral zone of the torus section.

  15. Experimental on-stream elimination of resonant whirl in a large centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bhat, G. I.; Eierman, R. G.

    1984-01-01

    Resonant whirl condition during operation of a multi-stage centrifugal compressor at higher than anticipated speeds and loads was reported. The condition was diagnosed by a large scale computerized Machinery Condition Monitoring System (MACMOS). This computerized system verified that the predominant subsynchronous whirl frequency locked in on the first resonant frequency of the compressor rotor and did not vary with compressor speed. Compressor stability calculations showed the rotor system had excessive hearing stiffness and inadequate effective damping. An optimum bearing design which was developed to minimize the unbalance response and to maximize the stability threshold is presented.

  16. Experimental validation of single pass ion cyclotron resonance absorption in a high speed flowing plasma applied to the variable specific impulse magnetoplasma rocket (VASIMR)

    NASA Astrophysics Data System (ADS)

    Davis, Christopher Nelson

    The topic of this thesis is the experimental characterization and analysis of single pass ion cyclotron resonance heating as applied to acceleration of ions for electric propulsion. The experimental work was done on the VX-10 experiment of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) concept. In ion cyclotron resonance heating (ICRH) a RF wave is launched into a magnetized plasma where it then accelerates the ions by increasing their rotational speed around the magnetic field lines. The electric field vector of the right hand component of the wave will rotate around the field lines with a frequency oRF in the same direction as the ion's cyclotron motion about the field lines. Consequently, when oRF ≈ oci (where oci is the ion's cyclotron frequency) the force from the electric field of the wave on the ions will result in a continuous rotational energy gain. The perpendicular velocity of the ions generated by ICRH is then converted into axial velocity by the decreasing gradient of the axial magnetic field at the exhaust of the propulsion system from conservation of the magnet moment. This increase in axial velocity is predicted to cause a decrease in density due to conservation of current in the plasma. In order to characterize this density drop during ion cyclotron heating, a single channel interferometer system was developed and implemented on the VX-10. Interferometer density measurements were taken at three different locations on the VX-10 experiment upstream and downstream of the ion acceleration zone. Measurements were made of the density drop in both Helium and Deuterium plasma discharges during ICRH under a variety of operating conditions including magnetic field profile, gas flow rate and ICRH power pulse timing, and ICRH power. A clear measurement of a density drop was observed downstream of the ion resonance zone characteristic of ion acceleration and measurement of little change in density upstream of the resonance zone where no

  17. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  18. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  19. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  20. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  1. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  2. Extracting hydrocarbons from water using a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Ilyina, A. A.; Chuikin, A. V.; Velikov, A. A.

    2014-09-01

    An original method for the solid-phase microextraction of hydrocarbons from water using a centrifuge is proposed. Comparative results from the chromatographic elution of substances after liquid-phase and solid-phase microextraction are presented. The percentage of the extraction of substances from aqueous solutions and the minimum detection limit for aromatic and aliphatic compounds are calculated.

  3. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  4. Centrifugal blood pumps for various clinical needs.

    PubMed

    Ichikawa, Seiji; Nosé, Yukihiko

    2002-11-01

    During the past 10 years, different types of blood pumps were developed to address various clinical needs. The Nikkiso centrifugal blood pump was developed for cardiopulmonary bypass application. This blood pump has been widely used in Japan in more than 20% of the cardiopulmonary bypass procedures. The Kyocera C1E3 Gryo pump was developed for short-term circulatory assistance and extracorporeal membrane oxygenation application for up to 2 weeks. This blood pump has been clinically used for up to 28 days without any blood clot formation. Through Phase I of the Japanese government New Energy and Industrial Technology Development Organization (NEDO) program, a chronically implanted centrifugal pump for left ventricular assistance was developed. This pump has already demonstrated its effectiveness, safety, and durability as a 2 year blood pump through in vitro and in vivo experiments. Currently, it is in the process of being converted from an experimental to a clinical device. Through Phase II of the NEDO program, a permanently implantable biventricular assist centrifugal blood pump system is under development. It has demonstrated that the previously mentioned left ventricular assist device blood pump is easily converted into a right ventricular assist pump by simply adding a spacer between the pump and the actuator. This communication discusses the historical development strategies for centrifugal blood pumps and their current status for different clinical needs.

  5. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  6. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  7. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  8. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines.

  9. Pressure distribution in centrifugal dental casting.

    PubMed

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  10. Flow Pattern Characterization for a Centrifugal Impeller

    NASA Astrophysics Data System (ADS)

    Benavides, Efrén M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  11. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  12. Mass Transfer in 12-CM Centrifugal Contactors

    SciTech Connect

    Chesna, J.C.

    2001-06-26

    One eight-stage unit (8-pack) of centrifugal contactors was tested in both extraction and stripping modes. Efficiencies approaching 100 percent were obtained in both modes. The contactors were operated successfully at a wide range of combined flow rates, including the HEF conditions. This report discusses the results of that test.

  13. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... use source and special nuclear material at the Lead Cascade at the Portsmouth Gaseous Diffusion Plant... operate a gas centrifuge uranium enrichment facility (the ACP) at the Portsmouth Gaseous Diffusion...

  14. Mechanisms of Sensorimotor Adaptation to Centrifugation

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Wood, S. J.; Kaufman, G. D.

    1999-01-01

    We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.

  15. Centrifugal Modelling of Soil Structures. Part I. Centrifugal Modelling of Slope Failures.

    DTIC Science & Technology

    1979-03-01

    centrifugal loading in multiples of earth’s gravitational acceleration Nd number of equipotential drops in a flow net Nf number of flow channels in a... straight line from point A to point B. It is valid for laminar flow , where v - discharge velocity, k - coefficient of permeability, i - hydraulic gradient...number) Soil mechanics, embankmen’: stability, sloPe Stability, centrifuge modelling, clay slopes, mine waste slltpes, sea clay, landslides, flow slides

  16. A centrifugal pump driven tidal flow extracorporeal membrane oxygenation system tested with neonatal mock circulation.

    PubMed

    Trittenwein, G; Kölbl, R; Trittenwein, H; Golej, J; Burda, G; Hermon, M; Pollak, A

    1999-06-01

    In 1993, Chevalier published his experiences with tidal flow venovenous extracorporeal membrane oxygenation (ECMO) featuring a single lumen cannula, non-occlusive roller pump, and alternating clamps. Using a neonatal mock circulation (NMC), which enables different hemodynamic states for neonatal ECMO research, the tested hypothesis was that it is possible to create a centrifugal pump driven tidal flow neonatal venovenous ECMO system. Additionally, the resulting hemodynamic effects in a condition of circulatory impairment were investigated. The ECMO circuit tested was assembled using a pediatric centrifugal pump head, a distensible reservoir, and a rotary clamp separating drainage from the injection phase. Using the NMC, end tidal volumes, mock circulation flow, and arterial and venous pressures were measured at different pump speeds after the drainage and injection phases. Effective venovenous ECMO flow (evvEF) was calculated. Mock circulation baseline values (ECMO clamped) were compared to values during tidal flow ECMO. At 3,000 rpm, a centrifugal pump speed of 75 ml/kg/min evvEF was reached, and it increased with higher pump speeds. At this point, the end tidal mock circulation flow (representing cardiac output) after drainage differed significantly from that during the injection phase (p < 0.01) but not from the baseline value. The end tidal arterial and venous pressures after the drainage phase were found to be significantly decreased compared to the baselines (p < 0.01). In conclusion, a centrifugal pump driven tidal flow venovenous ECMO system can be created enabling sufficient tidal volumes. Tested in the described NMC simulating posthypoxic circulatory impairment, significant hemodynamic effects could be demonstrated. Animal experiments for confirmation are necessary.

  17. Dual asymmetric centrifugation (DAC)--a new technique for liposome preparation.

    PubMed

    Massing, Ulrich; Cicko, Sanja; Ziroli, Vittorio

    2008-01-04

    This is the first report on the use of a "dual asymmetric centrifuge (DAC)" for preparing liposomes. DAC differs from conventional centrifugation by an additional rotation of the sample around its own vertical axis: While the conventional centrifugation constantly pushes the sample material outwards, this additional rotation constantly forces the sample material towards the center of the centrifuge. This unique combination of two contra rotating movements results in shear forces and thus, in efficient homogenization. We demonstrated that it is possible to prepare liposomes by DAC, by homogenizing a rather concentrated blend of hydrogenated phosphatidylcholine and cholesterol (55:45 mol%) and 0.9% NaCl-solution, which results in a viscous vesicular phospholipid gel (VPG). The resulting VPG can subsequently be diluted to a conventional liposome dispersion. Since DAC is intended to make sterile preparations of liposomes, or to entrap toxic/radioactive compounds, the process was performed within a sealed vial. It could be shown that the DAC speed, the lipid concentration, the homogenization time and the addition of a mixing aid (glass beads) are all critical for the size of the liposomes. Optimized conditions resulted in liposomes of 60+/-5 nm and a trapping efficacy of 56+/-3.3% for the model compound calcein.

  18. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  19. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1991-01-01

    A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

  20. Study on vibration suppression based on particle damping in centrifugal field of gear transmission

    NASA Astrophysics Data System (ADS)

    Xiao, Wangqiang; Li, Jiani; Wang, Sheng; Fang, Xiaomeng

    2016-03-01

    Though particle damping technology has been applied to vibration suppression in steady state, there are few reports about the study of particle dampers in centrifugal fields because of its nonlinear damping performance and complex mechanism. Introducing particle damping technology into gear transmission will effectively reduce the vibration from gear engaging, especially for harsh working conditions, such as high temperature and oil lubrication. In this paper, we have explored the mechanism of gear excitation and determined the relationship between the rotational speed and gear's modal parameters in centrifugal fields. A mechanical model of the particle damper based on the discrete element method (DEM) in centrifugal fields has been established. Furthermore, the DEM model has been verified by comparing simulation data with experimental data. Based on the model, we have discussed the particle damper's energy dissipation mechanism in centrifugal fields, as well as the calculation method of energy dissipation. Moreover, the influence of the particle size on energy dissipation characteristics has been analyzed. The results can provide theoretical guidance for vibration and noise reduction of the gear transmission.

  1. Continuous back extraction operation by a single liquid-liquid centrifugal extractor

    SciTech Connect

    Nakase, M.; Takeshita, K.

    2013-07-01

    We have developed a small, high-performance liquid-liquid countercurrent centrifugal extractor for the nuclear fuel cycle. The single extractor allows extraction with many multiple theoretical stages due to the formation of Taylor vortices. We have previously demonstrated multistage extraction for a forward extraction system. In this study, we have applied the centrifugal extractor to a continuous back extraction system with di(2-ethylhexyl)phosphoric acid. We examined the performance of our concept of the centrifugal extractor by varying the rotational speeds of the inner rotor and the nitric acid concentration in the stripping solution. The dispersion behavior, flow characteristics were determined and the back extraction performance was examined for a single chemical species and for multiple species. Complete back extraction by continuous process was achieved and it showed the possibility to minimize the volume and nitric acid concentration of the stripping solution. Our centrifugal extractors may provide a more effective separation system than the conventional separation process that uses many continuously connected extractors. (authors)

  2. Linear and Logarithmic Speed-Accuracy Trade-Offs in Reciprocal Aiming Result from Task-Specific Parameterization of an Invariant Underlying Dynamics

    ERIC Educational Resources Information Center

    Bongers, Raoul M.; Fernandez, Laure; Bootsma, Reinoud J.

    2009-01-01

    The authors examined the origins of linear and logarithmic speed-accuracy trade-offs from a dynamic systems perspective on motor control. In each experiment, participants performed 2 reciprocal aiming tasks: (a) a velocity-constrained task in which movement time was imposed and accuracy had to be maximized, and (b) a distance-constrained task in…

  3. Centrifugal instability of semidilute non-Brownian fiber suspensions

    NASA Astrophysics Data System (ADS)

    Gupta, V. K.; Sureshkumar, R.; Khomami, B.; Azaiez, J.

    2002-06-01

    Linear stability of the Taylor-Couette (TC) flow of semidilute non-Brownian suspension is investigated by utilizing the fiber orientation model developed by Hinch and Leal [J. Fluid Mech. 76, 187 (1976)] in conjunction with a quadratic and hybrid closure proposed by Advani and Tucker [J. Rheol. 34, 367 (1990)]. It is found that irrespective of the closure approximation used the fiber additives suppress the centrifugal TC instability, i.e., the critical Reynolds number (Re) increases with the fiber volume fraction and aspect ratio as well as the interfiber interaction coefficient. This increase in the critical Re is significantly larger than that in the total viscosity, except for very small values of the volume fraction and the interaction coefficient. The enhanced stabilization can be attributed to the fact that the suspension develops negative first and second normal stresses in the TC flow when the inner cylinder rotates and the outer one is stationary, i.e., the fluid is in a state of compression. Moreover, the interfiber interactions result in alignment of the fiber orientation tensor with respect to the rate of deformation tensor. This coupling enhances the ability of the fluid elements to resist the amplification of radial velocity disturbances that give rise to the centrifugal instability. This mechanism is substantiated based on a rigorous energy analysis, demonstrating that the coupling between the fiber orientation and perturbation radial velocities gives rise to fiber-induced perturbation shear stresses that are dissipative. Specifically, the coupling of fiber-induced perturbation shear stresses with the base flow velocity leads to a compressive force that dissipates energy leading to the suppression of the centrifugal instability.

  4. Supersonic COIL driven by centrifugal bubbling SOG with efficient depletion of chemicals in single pass

    NASA Astrophysics Data System (ADS)

    Zagidullin, Marsel V.; Nikolaev, Valery D.; Khvatov, Nikolay A.; Svistun, Michael I.

    2008-10-01

    An efficient and compact centrifugal bubbling SOG was employed as energy source in supersonic COIL. A centrifugal bubbling SOG generated gas at 100 torr of total pressure providing 90% of chlorine utilization and 60% of O2(1Δ) yield with efficient depletion of BHP chemicals in single pass through SOG. A 1 kW class ejector COIL powered by this SOG demonstrated a specific power of 12.5 W per 1cm3/s of BHP volumetric rate at chemical efficiency 22.7%.

  5. Mechanisms of flow through compressible porous beds in sedimentation, centrifugation, deliquoring, and ceramic processing

    SciTech Connect

    1996-01-25

    The major topics covered in the investigation include: centrifugation; cake filtration; sedimentation and thickening; capillary suction operations; ceramics, slip casting; optimization studies; and wastewater. The research program was aimed at the specific areas of solid/liquid separation including sedimentation, thickening, cake filtration, centrifugation, expression, washing, deep-bed filtration, screening, and membrane separation. Unification of the theoretical approaches to the various solid/liquid separation operations was the principle objective of the research. Exploring new aspects of basic separation mechanisms, verification of theory with experiment, development of laboratory procedures for obtaining data for design, optimizing operational methods, and transferring the results to industry were part of the program.

  6. Centrifugal governor for injection type internal combustion engine

    SciTech Connect

    Takahashi, M

    1989-05-23

    A centrifugal governor for an injection type internal combustion engine, comprising: a housing in which a cam shaft is rotatably supported at its lower section and a fuel injection pump is disposed above the cam shaft; a flyweight disposed at an end of the cam shaft so as to be displaced in accordance with a rotational speed of the engine; a tension lever rotatable upon a driving force of the flyweight with an intermediate fixed shaft as a pivot; a governor spring assembly supported so as not to exert any supporting load between a housing side spring seat and another spring seat provided to the tension lever, and so as to be compressed upon rotation of the tension lever; a guide lever and a floating lever, both rotatable with a pin provided at a lower end of the tension lever as a pivot, and normally connected to each other as an integrated element by a cancellation spring surrounding the pin; the speed lever have a shaped like bell crank, rotatably supported at one end with a shaft connecting the control lever as a pivot, and engaged with an intermediated guide of the guide lever at the other end.

  7. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  8. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    PubMed

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  9. Effects of bedrest and centrifugation of humans on serum thyroid function tests.

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Driscoll, T. B.

    1972-01-01

    Changes in plasma volume and protein concentration have been reported when normal subjects are bedrested or centrifuged. Since thyroid hormones are transported by specific plasma proteins, each of these procedures could be expected to change plasma levels of these hormones. In this study centrifugation of normal healthy human subjects produced an increased concentration of total protein and albumin. When these same subjects were bedrested for six days, no change in total protein, albumin or thyroxine binding globulin were found although there was an eight per cent decrease in plasma volume. Centrifugation and, to a lesser extent, bedrest produced changes in serum T-4 levels and the T-3 test results. The direction of these changes (decreased % T-3 values and increased T-4 levels) indicate that these two situations produce an increased plasma concentration of thyroxine binding sites.

  10. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage

  11. Self-Assembly of Ag Nanoparticles Induced by Centrifuging and Broken by Silanization.

    PubMed

    Yang, Ping; Zhang, Yulan

    2015-08-01

    A novel method was developed to assemble Ag nanoparticles (NPs) into chain-like structures. The assembly of the NPs was created by suspending in an ethanol and water solution as well as centrifuging at a high speed (a force of more than 29 Kg for the NPs with an average diameter of 18 nm). The composition of solvents and centrifuged speeds of samples play important roles for the formation of regular assemblies. The number of Ag NPs in the chain-like assemblies was adjusted by changing centrifuging forces. The assemblies of the NPs were fixed by a SiO2 coating through a St6ber synthesis. In addition, the assemblies were broken through a silanization process because of partially hydrolyzed tetraethyl-orthosilicate molecules adsorbed on the surface of Ag NPs to form a SiO2 layer opposite aggregation. A slow silanization process made Ag NPs monodispersed in solutions, in which Ag/SiO2 core/shell NPs were created.

  12. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps.

    PubMed

    Mozafari, Sahand; Rezaienia, Mohammad A; Paul, Gordon M; Rothman, Martin T; Wen, Pihua; Korakianitis, Theodosios

    The application of centrifugal pumps as heart assist devices imposes design limitations on the impeller geometry. Geometry and operating parameters will affect the performance and the hemocompatibility of the device. Among all the parameters affecting the hemocompatibility, pressure, rotational speed, blade numbers, angle, and width have significant impact on the blood trauma. These parameters directly (pressure, speed) and indirectly (geometry) affect the efficiency of the pump as well. This study describes the experimental investigation on geometric parameters and their effect on the performance of small centrifugal pumps suitable for Mechanical Circulatory Support (MCS) devices. Experimental and numerical techniques were implemented to analyze the performance of 15 centrifugal impellers with different characteristics. The effect of each parameter on the pump performance and hemolysis was studied by calculating the normalized index of hemolysis (NIH) and the shear stress induced in each pump. The results show five and six blades, 15-35° outlet angle, and the lowest outlet width that meets the required pressure rise are optimum values for an efficient hemocompatible pump.

  13. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    NASA Astrophysics Data System (ADS)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  14. Axial and centrifugal pump meanline performance analysis

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1994-01-01

    A meanline pump flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump flow code (PUMPA) has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design point rotor efficiency is obtained from empirically derived correlations of loss to rotor specific speed. The rapid input setup and computer run time for the meanline pump flow code makes it an effective analysis and conceptual design tool. The map generation capabilities of the PUMPA code provide the information needed for interfacing with a rocket engine system modeling code.

  15. Small centrifugal pumps for low thrust rockets

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.

    1985-01-01

    This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.

  16. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  17. A centrifugal pump used as a turbine

    SciTech Connect

    Yap, F.U.; Lasnier, F. )

    1990-06-01

    Due to the high cost of putting up conventional turbines for micro-hydropower installations, Inversin (1986) mentioned the use of pumps being run in reverse to function as turbines. Typical performance characteristics of a centrifugal pump running as a turbine are shown in a figure. Pump/turbine maximum efficiencies tend to occur over a wide range of capacity. This study is concerned with the use of non-conventional hydro equipment, locally and readily available for small rural electricity applications. Here, the operation of a small centrifugal pump, used as a turbine and coupled with a conventional car alternator, was investigated. The article reveals a method for evaluating not only this but other small generating systems for appropriateness to the conditions of the site.

  18. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  19. Experimental and Theoretical Study of Centrifugal Flow Singlet Oxygen Generator

    NASA Astrophysics Data System (ADS)

    Shi, Wenbo; Deng, Liezheng; Yang, Heping; Sha, Guohe; Zhang, Cunhao

    2008-07-01

    We designed and realized a novel centrifugal flow singlet oxygen generator (CFSOG) that was originally proposed by Emanuel [Proc. SPIE 5448 (2004) 233]. In this device, singlet oxygen O2(1Δ) is generated by the reaction of gaseous Cl2 with aqueous basic hydrogen peroxide (BHP) that flows rapidly along an arc-shaped concave to form a rotating liquid layer, so that the nascent O2(1Δ) generated in the liquid phase will be separated from it quickly to suppress the collision quenching loss of O2(1Δ) with the help of the enormous centrifugal force produced by the rotating fluid. Our preliminary experiment shows that, because the specific reactive surface area of this novel singlet oxygen generator (SOG) is much larger than that of the jet-type SOG normally used in current chemical oxygen-iodine laser (COIL), enhanced performance of O2(1Δ) yield ˜60%, O2(1Δ) partial pressure ˜31 Torr, and an extremely high chlorine utilization within 96-98% have been realized.

  20. Mathematical simulation of centrifugal casting of pipes

    SciTech Connect

    Minosyan, Ya.P.; Gerasimov, V.G.; Ryadno, A.A.; Solov'yev, Yu.G.

    1983-01-01

    A mathematical description of centrifugal casting of long pipes in rapidly-rotating ingot molds is given. The effect of gravity force is neglected. A numerical solution is obtained for the solidification of a steel casting in a thermally insulated mold. The effect of the rate of metal pouring on the motion of the solidification interface is investigated. The disagreement with experimental data is less then 7 percent.

  1. Centrifugal shot blasting. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  2. Potential flow through centrifugal pumps and turbines

    NASA Technical Reports Server (NTRS)

    Sorensen, E

    1941-01-01

    The methods of conformal transformation up to the present have been applied to the potential flows in the rotation of solid bodies only to a limited extent. This report deals with aspects of centrifugal pumps and turbines such as: the complex potential for rotation, potential for the flow due to the blade rotation, velocities at the blade tip, comparison with "infinite number of blades," and a variable number of blades.

  3. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  4. Femoral development in chronically centrifuged rats

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1977-01-01

    Groups of 30-d-old male and female rats were centrifuged at 2.00 G (RE, Rotation Experimental), 1.05 G (RC, Rotation Control) or exposed to the noise and wind of the centrifuge at 1.00 G (EC, Earth Control) for periods of 1, 2, 4, 8, and 16 weeks. Measurements of their femurs indicated that exposure to centrifugation a) decreased femoral length in RE animals, b) increased femoral length in RC animals, c) reduced femoral diameter in RE and RC animals, d) increased L/D ratios in RC animals, e) decreased L/D ratios in RE animals, f) increased femur length/body weight in RE animals, g) decreased cortical thickness (CT) in RE animals, h) increased relative CT in RE animals, and decreased it in RC animals, i) accelerated ossification in RC femoral heads, j) thinned and distorted RE epiphyseal plates, and k) thickened condylar cartilage in RE females. The effects tended to be strongly sexually dimorphic, with females more severely affected by the stress than males.

  5. Avoid self-priming centrifugal pump

    SciTech Connect

    Reeves, G.G.

    1987-01-01

    The self-priming horizontal centrifugal pump becomes known to its operator either as a good pump or a bad pump. The latter is usually replaced by another type of pump, even though a properly specified self-priming centrifugal pump might have been a good choice. Use of the guidelines described in this article are intended to help in the purchase and installation of a good pump. Self-priming centrifugal pumps are used for removing liquids from below grade sumps or pits that may also contain solids, fibers and/or muck. Alternate pumps for this service include submersible pumps, vertical turbine pumps and positive displacement pumps. These alternate pumps do not pass solid particles as large as self-priming pumps do without damage. Positive displacement pumps are not normally cost-effective when pumping liquid at rates in excess of 500 gallons per minute in low-head applications. Vertical and submersible pumps must be removed when cleaning of the pump is required. Self-priming pumps are easily cleaned by opening the access plates without moving the pump; and they cost less than the other types.

  6. Effects of scaling on centrifugal blood pumps.

    PubMed

    Wong, Yew Wah; Chan, Weng Kong; Yu, S C M; Chua, Leok Poh

    2002-11-01

    Experimental studies on the effects of scaling on the performance of centrifugal blood pumps were conducted in a closed-loop test rig. For the prototype, eight different impellers of the same outer diameter of 25 mm were tested at 1,500, 2,000, and 2,500 revolutions per minute (rpm) using blood analog as fluid medium. This corresponds to Reynolds numbers (Re) of 25,900, 34,500, and 43,200, respectively. The results indicated that the nondimensional pump characteristic is a function of Re. This is understandable since the typical operating Re for centrifugal blood pumps is less than 100,000. Thus, the effects of scaling cannot be ignored for centrifugal blood pumps. Experiments on a 5x scaled-up model have also indicated that the scaled-up model is more efficient than the prototype model. Our results showed that in the range of Re tested, the nondimensional head versus flow curve is a function of Re to the power of approximately 0.25. It is observed that the nondimensional head versus flow is a function of diameter ratio to the power of 0.2.

  7. Research opportunities with the Centrifuge Facility

    NASA Astrophysics Data System (ADS)

    Funk, Glenn A.

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  8. Research opportunities with the Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.

    1992-01-01

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  9. Shallow water model for horizontal centrifugal casting

    NASA Astrophysics Data System (ADS)

    Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.

    2012-07-01

    A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.

  10. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  11. Achieved slime flotation in centrifugal force field by float-hydrocyclone

    SciTech Connect

    Guode Xuzhanxian; Gaozhenshen Songzhiwei

    1997-12-31

    Based on the theory of intensifying flotation in a centrifugal force field, float-hydrocyclone (FH) is developed, which is a new type of equipment for slime flotation and consists of an air bubble generator and the cylindrical section of a hydrocyclone. The combination of pulp and air bubbles is fed into the FH tangentially at a high speed to effect the separation of slime in the centrifugal force field. It offers many advantages over mechanically agitated flotation cells. Commercial test results show that slime, especially fine slime, can be perfectly floated in the FH with rapid flotation and fine froth size. The quality and quantity of concentrate and tailings can be adjusted conveniently within a certain range according to different requirements.

  12. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    SciTech Connect

    Osborne, Matthew G.

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  13. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  14. 2011 IEEE Visualization Contest winner: Visualizing unsteady vortical behavior of a centrifugal pump.

    PubMed

    Otto, Mathias; Kuhn, Alexander; Engelke, Wito; Theisel, Holger

    2012-01-01

    In the 2011 IEEE Visualization Contest, the dataset represented a high-resolution simulation of a centrifugal pump operating below optimal speed. The goal was to find suitable visualization techniques to identify regions of rotating stall that impede the pump's effectiveness. The winning entry split analysis of the pump into three parts based on the pump's functional behavior. It then applied local and integration-based methods to communicate the unsteady flow behavior in different regions of the dataset. This research formed the basis for a comparison of common vortex extractors and more recent methods. In particular, integration-based methods (separation measures, accumulated scalar fields, particle path lines, and advection textures) are well suited to capture the complex time-dependent flow behavior. This video (http://youtu.be/oD7QuabY0oU) shows simulations of unsteady flow in a centrifugal pump.

  15. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    PubMed

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  16. Hydrodynamic performance and heat generation by centrifugal pumps.

    PubMed

    Ganushchak, Y; van Marken Lichtenbelt, W; van der Nagel, T; de Jong, D S

    2006-11-01

    For over a century, centrifugal pumps (CP) have been used in various applications, from large industrial pumps to flow pumps for aquariums. However, the use of CP as blood pumps has a rather short history. Consequently, the hydraulic performance data for a blood CP are limited. The aim of our investigation was to study the hydraulic performance and the heat generation of three commercially available CP: Bio-Medicus Bio-Pump BP80 (Medtronic), Rotaflow (Jostra Medizintechnik), and DeltaStream DP2 (MEDOS Medizintechnik AQ). The study was performed using a circuit primed with a water-glycerin mixture with a dynamic viscosity of 0.00272 pa/s. Pressure-flow curves were obtained by a stepwise stagnation of the pump outlet or inlet. The temperature changes were observed using ThermaCAM SC2000 (Flir Systems). The pumps' performance in close to clinical conditions ('operating region') was analysed in this report. The 'operating region' in the case of the BP80 is positioned around the pressure-flow curve at a pump speed of 3000 rpm. In the case of the Rotaflow, the 'operating region' was between the pump pressure-flow curves at a speed of 3000 and 4000 rpm, and the DP2 was found between 7000 and 8000 rpm. The standard deviation of mean pressure through the pump was used to characterise the stability of the pump. In experiments with outlet stagnation, the BP80 demonstrated high negative association between flow and pressure variability (r = -0.68, p < 0.001). In experiments with the DP2, this association was positive (r = 0.68, p < 0.001). All pumps demonstrated significantly higher variability of pressure in experiments with inlet stagnation in comparison to the experiments with outlet stagnation. The rise of relative temperature in the inlet of a pump was closely related to the flow rate. The heating of fluid was more pronounced in the 'zero-flow' mode, especially in experiments with inlet stagnation. In summary, (1) the 'zero-flow' regime, which is described in the manuals

  17. Effects of Individualized Centrifugation Training on Orthostatic Tolerance in Men and Women

    PubMed Central

    Goswami, Nandu; Evans, Joyce; Schneider, Stefan; von der Wiesche, Melanie; Mulder, Edwin; Rössler, Andreas; Hinghofer-Szalkay, Helmut; Blaber, Andrew P.

    2015-01-01

    Aims Exposure to artificial gravity (AG) at different G loads and durations on human centrifuges has been shown to improve orthostatic tolerance in men. However, the effects on women and of an individual-specific AG training protocol on tolerance are not known. Methods We examined the effects of 90 minutes of AG vs. 90 minutes of supine rest on the orthostatic tolerance limit (OTL), using head up tilt and lower body negative pressure until presyncope of 7 men and 5 women. Subjects were placed in the centrifuge nacelle while instrumented and after one-hour they underwent either: 1) AG exposure (90 minutes) in supine position [protocol 1, artificial gravity exposure], or 2) lay supine on the centrifuge for 90 minutes in supine position without AG exposure [protocol 2, control]. The AG training protocol was individualized, by first determining each subject’s maximum tolerable G load, and then exposing them to 45 minutes of ramp training at sub-presyncopal levels. Results Both sexes had improved OTL (14 minutes vs 11 minutes, p < 0.0019) following AG exposure. When cardiovascular (CV) variables at presyncope in the control test were compared with the CV variables at the same tilt-test time (isotime) during post-centrifuge, higher blood pressure, stroke volume and cardiac output and similar heart rates and peripheral resistance were found post-centrifuge. Conclusions These data suggest a better-maintained central circulating blood volume post-centrifugation across gender and provide an integrated insight into mechanisms of blood pressure regulation and the possible implementation of in-flight AG countermeasure profiles during spaceflights. PMID:26020542

  18. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change.

  19. SPEEDE Made Easy.

    ERIC Educational Resources Information Center

    Palmer, Barbara H.; Wei, P. Betty

    1993-01-01

    A nontechnical overview of electronic data interchange (EDI) and of the SPEEDE/ExPRESS Project, which uses EDI to transmit transcripts between schools and colleges, is presented. It explores the fundamental value of the technology, specific costs and benefits, and its potential to transform the delivery of academic support services. (Author/MSE)

  20. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  1. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire

  2. Active control of surge in centrifugal compressors using magnetic thrust bearing actuation

    NASA Astrophysics Data System (ADS)

    Sanadgol, Dorsa

    This research presents a new method for active surge control in centrifugal compressors with unshrouded impellers using a magnetic thrust bearing to modulate the impeller tip clearance. Magnetic bearings offer the potential for active control of flow instabilities. This capability is highly dependent on the sensitivity of the compressor characteristics to blade tip clearance. If the position of the shaft can be actuated with sufficient authority and speed, the induced pressure modulation makes control of surge promising. The active nature of the magnetic bearing system makes the real-time static and dynamic positioning of the rotor and therefore modulation of the impeller tip clearance possible. A theoretical model is first established that describes the sensitivity of the centrifugal compressor characteristic curve to tip clearance variations induced by axial motion of the rotor. Results from simulation of the nonlinear model for a single stage high-speed centrifugal compressor show that using the proposed control method, mass flow and pressure oscillations associated with compressor surge are quickly suppressed with acceptable tip clearance excursions, typically less than 20% of the available clearance. It is shown that it is possible to produce adequate axial excursions in the clearance between the impeller blades and the adjacent stationary shroud using a magnetic thrust bearing with practical levels of drive voltage. This surge control method would allow centrifugal compressors to reliably and safely operate with a wider range than is currently done in the field. The principal advantage of the proposed approach over conventional surge control methods lies in that, in machines already equipped with magnetic bearing, the method can potentially be implemented by simply modifying controller software. This dispenses with the need to introduce additional hardware, permitting adaptation of existing machinery at virtually no cost. In addition, since the controller is

  3. Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl

    1996-01-01

    A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.

  4. Subsynchronous vibrations in a high pressure centrifugal compressor: A case history

    NASA Technical Reports Server (NTRS)

    Evans, B. F.; Smalley, A. J.

    1984-01-01

    Two distinct aerodynamically excited vibrations in a high pressure low flow centrifugal compressor are documented. A measured vibration near 21% of running speed was identified as a nonresonant forced vibration which results from rotating stall in the diffuser; a measured vibration near 50% of running speed was identified as a self excited vibration sustained by cross coupling forces acting at the compressor wheels. The dependence of these characteristics on speed, discharge pressure, and changes in bearing design are shown. The exciting mechanisms of diffuser stall and aerodynamic cross coupling are evidenced. It is shown how the rotor characteristics are expected to change as a result of modifications. The operation of the compressor after the modifications is described.

  5. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  6. Modeling Platform Dynamics and Physiological Response to Short Arm Centrifugation

    DTIC Science & Technology

    1994-03-01

    parametric design study for a small radius centrifuge revealed such a centrifuge could fit on the NASA Space Shuttle and provide artificial gravity and...the heart are modelled as variable capacitances separated by one-way valves. The pulmonic and aortic valves are also modelled as one-way valves. The...1992 June. 10. Halstead, TW; Brown, AH; Fuller, CA; Oyama, J. Artificial gravity studies and design considerations for space station centrifuges

  7. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  8. Impeller blade design method for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  9. Antithrombogenic properties of a monopivot magnetic suspension centrifugal pump for circulatory assist.

    PubMed

    Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Kosaka, Ryo; Chida, Takahiro; Kawamura, Hiroshi; Kuwana, Katsuyuki; Ishihara, Kazuhiko; Sankai, Yoshiyuki; Matsuzaki, Mio; Shigeta, Osamu; Enomoto, Yoshiharu; Tsutsui, Tatsuo

    2008-06-01

    The National Institute of Advanced Industrial Science and Technology (AIST) monopivot magnetic suspension centrifugal pump (MC105) was developed for open-heart surgery and several weeks of circulatory assist. The monopivot centrifugal pump has a closed impeller of 50 mm in diameter, supported by a single pivot bearing, and is driven through a magnetic coupling to widen the fluid gap. Design parameters such as pivot length and tongue radius were determined through flow visualization experiments, and the effectiveness was verified in preliminary animal experiments. The maximum overall pump efficiency reached 18%, and the normalized index of hemolysis tested with bovine blood was as low as 0.0013 g/100 L. Animal experiments with MC105 were conducted in sheep for 3, 15, 29, and 35 days in a configuration of left ventricle bypass. No thrombus was formed around the pivot bearing except when the pump speed was reduced by 20% of normal operational speed, which reduced the pump flow by 40% to avoid inlet suction. Subsequently, the antithrombogenic design was verified in animal experiments for 5 weeks at a minimum rotational speed of greater than 1500 rpm and a minimum pump flow greater than 1.0 L/min; no thrombus formation was observed under these conditions.

  10. Autobalancing and FDIR for a space-based centrifuge prototype

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  11. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  12. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... American Centrifuge Operating, LLC (ACO), pursuant to Sections 161(b), 161(i), 161(o) and 184 of the Atomic... that due to uncertainty, it appears that the date for completion of activities associated with the sub... be completed. IV Accordingly, pursuant to Sections 161b, 161i, 161o, and 184 of the Atomic Energy...

  13. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    NASA Astrophysics Data System (ADS)

    Jeon, H. J.; Kim, D. I.; Kim, M. J.; Nguyen, X. D.; Park, D. H.; Go, J. S.

    2015-11-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times.

  14. Development of a novel centrifugal pump: magnetic rotary pump.

    PubMed

    Naganuma, S; Yambe, T; Sonobe, T; Kobayashi, S; Nitta, S

    1997-07-01

    The rotational axis of the centrifugal pump has some associated problems such as blood destruction and sealing between the axis and pump housing. To improve upon these deficits we have developed a new type of blood pump, the magnetic rotary pump (MRP). The MRP has an original design with no rotational axis and no impellers. We made a prototype MRP and examined its hemodynamics in mock circulation. The prototype MRP flow rate is only 1.0 L/min with an afterload of 30 mm Hg, and we have made some modifications in the size and drive mechanisms from these results. The modified MRP can achieve high flow rates and rotational speeds (6.0 L/min with an afterload of 100 mm Hg, 2,000 rpm) in a mock circuit, and the modified MRP was used for left heart assistance in an acute animal experiment. The MRP could maintain the hemodynamics of an anesthetized adult goat. These results suggest that the MRP needs to be improved in several areas, but the MRP may be useful as a blood pump.

  15. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  16. Magnetically suspended centrifugal blood pump with an axially levitated motor.

    PubMed

    Masuzawa, Toru; Ezoe, Shiroh; Kato, Tsuyoshi; Okada, Yohji

    2003-07-01

    The longevity of a rotary blood pump is mainly determined by the durability of its wearing mechanical parts such as bearings and seals. Magnetic suspension techniques can be used to eliminate these mechanical parts altogether. This article describes a magnetically suspended centrifugal blood pump using an axially levitated motor. The motor comprises an upper stator, a bottom stator, and a levitated rotor-impeller between the stators. The upper stator has permanent magnets to generate an attractive axial bias force on the rotor and electric magnets to control the inclination of the rotor. The bottom stator has electric magnets to generate attractive forces and rotating torque to control the axial displacement and rotation of the rotor. The radial displacement of the rotor is restricted by passive stability. A shrouded impeller is integrated within the rotor. The performance of the magnetic suspension and pump were evaluated in a closed mock loop circuit filled with water. The maximum amplitude of the rotor displacement in the axial direction was only 0.06 mm. The maximum possible rotational speed during levitation was 1,600 rpm. The maximum pressure head and flow rate were 120 mm Hg and 7 L/min, respectively. The pump shows promise as a ventricular assist device.

  17. Scaled centrifugal compressor, collector and running gear program

    NASA Technical Reports Server (NTRS)

    Kenehan, J. G.

    1983-01-01

    The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.

  18. Performance of a newly developed implantable centrifugal blood pump.

    PubMed

    Tsukiya, T; Taenaka, Y; Tatsumi, E; Takano, H

    2001-01-01

    The performance of the newly developed implantable centrifugal blood pump was investigated in vitro. The pump was developed with the end goal of building a versatile system that includes a left ventricular assist system with an internal secondary battery or an implantable biventricular assist system with two implantable blood pumps. The hydrodynamic characteristics and efficiency of the blood pump were evaluated, and the mechanical damage to the blood caused by the blood pump was assessed through a hemolysis test using fresh goat blood. The pump could generate 120 mm Hg at a flow rate of 5 L/min and a motor speed of 2,500 rpm. The electric input power to the pump was approximately 5 watts under these working conditions. The hemolysis caused by the pump was a bit higher than that by the former model, but stayed within an acceptable range. Performance of the pump in vitro was considered sufficient for a left ventricular assist device, although further design improvement is necessary in terms of hemolysis and system efficiency to improve biocompatibility of the pump.

  19. Sound generation by a centrifugal pump at blade passing frequency

    SciTech Connect

    Morgenroth, M.; Weaver, D.S.

    1996-12-01

    This paper reports the results of an experimental study of the pressure pulsations produced by a centrifugal volute pump at its blade passing frequency and their amplification by acoustic resonance in a connected piping system. Detailed measurements were made of the pressure fluctuations in the piping as a function of pump speed and flow rate. A semi-empirical model was used to separate acoustic standing waves from hydraulic pressure fluctuations. The effects of modifying the cut-water geometry were also studied, including the use of flow visualization to observe the flow behavior at the cut-water. The results suggest that the pump may act as an acoustic pressure or velocity source, depending on the flow rate. At conditions of acoustic resonance, the pump acted as an open termination of the piping, i.e., as a node in the acoustic pressure standing waves. Rounding the cut-water had the effect of reducing the amplitude of acoustic resonance, apparently because of the ability of the stagnation point to move and thereby reduce the vorticity generated. A notable example of this acoustic resonance in the Primary Heat Transport (PHT) system at Ontario Hydro`s Darlington nuclear power station.

  20. RELATIONSHIP BETWEEN VIBRATIONS AND MECHANICAL SEAL LIFE IN CENTRIFUGAL PUMPS

    SciTech Connect

    Leishear, R; Jerald Newton, J; David Stefanko, D

    2007-04-30

    A reduction of vibrations in mechanical seals increases the life of the seals in centrifugal pumps by minimizing fatigue damage. Mechanical seals consist of two smooth seal faces. one face is stationary with respect to the pump. The other rotates. Between the faces a fluid film evaporates as the fluid moves radially outward across the seal face. ideally, the film evaporates as it reaches the outer surface of the seal faces, thereby preventing leakage from the pump and effectively lubricating the two surfaces. Relative vibrations between the two surfaces affect the fluid film and lead to stresses on the seal faces, which lead to fatigue damage. As the fluid film breaks down impacts between the two seal faces create tensile stresses on the faces, which cycle at the speed of the motor rotation. These cyclic stresses provide the mechanism leading to fatigue crack growth. The magnitude of the stress is directly related to the rate of crack growth and time to failure of a seal. Related to the stress magnitude, vibration data is related to the life of mechanical seals in pumps.

  1. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.

    PubMed

    Nishimura, Ikuya; Ichikawa, S; Mikami, M; Ishitoya, H; Motomura, T; Kawamura, M; Linneweber, J; Glueck, J; Shinohara, T; Nosé, Y

    2013-01-01

    The Gyro centrifugal pump developed as a totally implantable artificial heart was designed with a free impeller, in which the rotational shaft (male bearing) of the impeller was completely separated from the female bearing. For this type of pump, it is very important to keep the proper magnet balance (impeller-magnet and actuator-magnet) in order to prevent thrombus formation and/or bearing wear. When the magnet balance is not proper, the impeller is jerked down into the bottom bearing. On the other hand, if magnet balance is proper, the impeller lifted off the bottom of the pump housing within a certain range of pumping conditions. In this study, this floating phenomenon was investigated in detail. The floating phenomenon was proved by observation of the impeller behavior using a transparent acrylic pump. The impeller floating phenomenon was mapped on a pump performance curve. The impeller floating phenomenon is affected by the magnet-magnet coupling distance and rotational speed of the impeller. In order to keep the proper magnet balance and to maintain the impeller floating phenomenon at the driving condition of right and left pump, the magnet-magnet coupling distance was altered by a spacer which was installed between the pump and actuator. It became clear that the same pump could handle different conditions (right and left ventricular assist), by just changing the thickness of the spacer. When magnet balance is proper, the floating impeller phenomenon occurs automatically in response to the impeller rev. It is called "the dynamic RPM suspension".

  2. Monitoring microbial numbers in food by density centrifugation.

    PubMed

    Basel, R M; Richter, E R; Banwart, G J

    1983-03-01

    Some foods contain low numbers of microbes that may be difficult to enumerate by the plate count method due to small food particles that interfere with the counting of colonies. Ludox colloidal silicon was coated with reducing agents to produce a nontoxic density material. Food homogenates were applied to a layered 10 and 80% mixture of modified Ludox and centrifuged at low speed. The top and bottom of the tube contained the food material, and the Ludox-containing portion was evaluated by conventional pour plate techniques. Plate counts of the Ludox mixture agreed with plate counts of the food homogenate alone. The absence of small food particles from pour plates resulted in a plate that was more easily read than pour plates of the homogenate alone. Modified Ludox was evaluated for its effect on bacteria at 4 degrees C during a 24-h incubation period. No inhibition was observed. This method is applicable to food products, such as doughnuts, spices, tomato products, and meat, in which small food particles often interfere with routine plate counts or low dilution may inhibit colony formation. Inhibitory substances can be removed from spices, resulting in higher counts. Ludox is more economical than similar products, such as Percoll. Modified Ludox is easily rendered nontoxic by the addition of common laboratory reagents. In addition, the mixture is compatible with microbiological media.

  3. Homotopic method applied to solving the flow field in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zeng, S.

    2016-09-01

    To investigate the flow field in a hyper-speed gas centrifuge, a hybrid difference scheme is used to discretize the axisymmetric Navier-Stokes equation. Source terms are included to simulate the injection and extraction of gas, also the mechanical drive of the scoops. The nonlinearity is obvious as the drive is strong. A Newton iteration used to solve the equation system becomes sensitive to the initial guess of the solution, which makes it difficult to converge. A homotopic method with self-adaptive steps is adopted to cope with this problem and to accelerate the iteration process. Numerical experiments simulating different strengths of scoop drive prove the effectiveness of the algorithm.

  4. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  5. Centrifugation of coal-derived liquids

    SciTech Connect

    Weintraub, Murray; Weiss, Milton L.; Akhtar, Sayeed

    1980-06-01

    The application of the continuous solid bowl centrifuge to the removal of solids from coal liquefaction products was investigated. The centrifuge removed from 23 to 88% of the input ash from 8 to 73% of the input organic benzene insolubles while flow rates, viscosities, and dam heights were varied. Viscosity ..mu.., effluent liquid rate Q/sub e/, and Ambler's geometric parameter ..sigma.. were graphically correlated with attained separations. The separation was relatively insensitive to the variables, as a 50-fold increase in Q/sub e//..sigma.. corresponded to a decrease in ash removal only from 84% to 60% and to a decrease in organic solids removal only from 77% to 22%. Organic solids removal was poorer and more erratic than ash removal because of the lesser density differences and greater size variability of the organics. Ancillary studies demonstrated that coal liquefaction products may behave as a Bingham Plastic fluid, and that this results in an absolute limit on the attainable solids separation. Additional studies showed that little difference in density may exist between the organic solids and liquids, and that effects of aging may threaten the validity of viscosity measurements.

  6. Some aversive characteristics of centrifugally generated gravity.

    NASA Technical Reports Server (NTRS)

    Altman, F.

    1973-01-01

    The effective weight of rats was manipulated by centrifugation. Two effective weight levels were obtained. In three escape avoidance conditions a lever press produced a change from a base level of 2.1 g to a response level of 1.1 g. In a punishment condition a response produced a change from a 1.1 g level to a 2.1 g level and in an extinction condition responses had no effect on the 2.1 g effective weight level present. All changes took 30 sec and were maintained for an additional 10 sec before a return to base level was initiated. When responses occurred closer together than the 40 sec, they delayed the return to base level by 40 sec. This 40 sec interval is referred to as response-contingent-time. The response rate and amount of response-contingent-time served as the data. The results confirmed previous data that centrifugation is aversive. The results are interpreted as indicating that the aversiveness is attributable to the increase in effective weight, and that rats can discriminate the different angular velocity-radius of rotation combinations used.

  7. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  8. Development of an implantable centrifugal blood pump.

    PubMed

    Goldstein, A H; Pacella, J J; Trumble, D R; Clark, R E

    1992-01-01

    The efficacy of centrifugal pumps for short-term (0-30 days) ventricular support has been widely reported and favorably compared with pulsatile systems. A small, durable, implantable centrifugal blood pump is being developed for medium-term use (up to 6 months). The pump is based on the Medtronic Hemadyne system that has existed in multiple forms over the past 30 years. The pump is approximately the size of a tennis ball, weighs 240 g, and is comprised of a 2.5 cm plastic impeller driven by a radially coupled brushless DC motor. In vitro hydraulic performance was recorded over a wide range of flow conditions on a mock circulatory loop. The pump generated 7 L/min flow against an afterload of 100 mmHg pressure, with a maximum power draw of 10.4 watts. Pulsatile flow was preserved when placed in conjunction with a simulated left ventricle. In vivo testing was performed in 10 healthy sheep for 10-292 hr. Heparin was used to facilitate cannulation, and no anticoagulation was administered after pump implantation. Blood chemistries reflecting hematologic, pulmonary, renal, and hepatic functions were recorded and demonstrated no adverse effects with normal pump operation. Complications were related to kinking of blood conduits and thrombus formation within the cannulae. These results are encouraging and warrant further studies to prove feasibility of this pump as a medium-term implantable ventricular assist device.

  9. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  10. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Murashige, Tomotaka; Kosaka, Ryo; Sakota, Daisuke; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu

    2015-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump for extracorporeal circulatory support. In the blood pump, a spiral groove bearing was adopted for a thrust bearing. In the spiral groove bearing, separation of erythrocytes and plasma by plasma skimming has been postulated to occur. However, it is not clarified that plasma skimming occurs in a spiral groove bearing. The purpose of this study is to verify whether plasma skimming occurs in the spiral groove bearing of a hydrodynamically levitated centrifugal blood pump. For evaluation of plasma skimming in the spiral groove bearing, an impeller levitation performance test using a laser focus displacement meter and a microscopic visualization test of erythrocyte flow using a high-speed microscope were conducted. Bovine blood diluted with autologous plasma to adjust hematocrit to 1.0% was used as a working fluid. Hematocrit on the ridge region in the spiral groove bearing was estimated using image analysis. As a result, hematocrits on the ridge region with gaps of 45 μm, 31 μm, and 25 μm were calculated as 1.0%, 0.6%, and 0.3%, respectively. Maximum skimming efficiency in this study was calculated as 70% with a gap of 25 μm. We confirmed that separation of erythrocyte and plasma occurred in the spiral groove bearing with decrease in bearing gap in a hydrodynamically levitated centrifugal blood pump.

  11. Artificial gravity in space: Vestibular tolerance assessed by human centrifuge spinning on Earth

    NASA Astrophysics Data System (ADS)

    Antonutto, G.; Linnarsson, D.; Sundberg, C. J.; di Prampero, P. E.

    Artificial gravity created by the astronauts themselves, without any external power supply, by pedalling on a coupled of couterrotating bicycles along the inner wall of the space module (Twin Bikes System, TBS), was previously suggested (Antonutto et al., 1991) to prevent musculo-skeletal decay and cardiovascular deconditioning during long term space flights. To investigate whether this unusual rotating environment would determine abnormal stimulations of the vestibular system due to Coriolis cross coupled accelerations, thus leading to acute motion sickness (AMS), the conditions of a rotating environment were reproduced in a human centrifuge. A cycloergometer was fixed to the arm of the centrifuge, the rotation speed of which was equal to that yielding 1 g at the feet level in the TBS (i.e. ranging from 19 to 21 RPM). The ergometer position was such that the combination of the horizontal and gravitational acceleration vectors was 1.414 at the inner ear level and was aligned along the head to feet axis. Three subjects, pedalling at 50 W on a cycloergometer during centrifuge's spinning, were asked to move the head following an AMS' provocation protocol. None of them developed any AMS symptoms. This supports the look of the TBS as tool for avoiding musculo-skeletal and cardiovascular deconditioning during long term space flights.

  12. Blade design loads on the flow exciting force in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  13. Comparison of rotordynamic fluid forces in axial inducers and centrifugal turbopump impellers

    NASA Astrophysics Data System (ADS)

    d'Agostino, Luca

    2016-05-01

    The paper illustrates and compares the results of the experimental campaigns carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF) at Alta, Italy, under ESA funding for the characterization of the lateral rotordynamic fluid forces acting on high-head axial inducers and centrifugal turbopump impellers for space propulsion applications. The configurations presented here refer to a three-bladed tapered-hub, variable-pitch, inducer (DAPROT3) and a single-stage centrifugal pump (VAMPIRE) with vaneless diffuser and single spiral volute. Both the centrifugal pump and the inducer have been designed by means of reduced order models specifically developed by the author and his collaborators for the geometric definition and performance prediction of this kind of hydraulic turbomachinery. Continuous spectra of the rotordynamic forces acting on the impellers as functions of the whirl frequency have been obtained by means of the novel technique recently developed and demonstrated at Alta. The influence of the rotor whirl motion, flow rate, cavitating conditions, and liquid temperature (thermal cavitation effects) on the rotordynamic fluid forces is illustrated and the observed differences in their behavior in axial inducers and centrifugal turbpumps are discussed and interpreted in the light of the outcome of recent cavitation visualization experiments carried out by the Chemical Propulsion Team at Alta.

  14. Centrifugally Driven Flow in Diverse Porous Media Over Wide-Ranging Moisture Conditions

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Caputo, M. C.

    2003-12-01

    Centrifugal force has been successfully applied to measurement of saturated and unsaturated hydraulic properties of soils and rock. The basis of most methods is to apply a steady flow of water, by either a constant head or a metering pump, to a sample in a centrifuge. If the centrifugal force is great enough to constitute the dominant driving force, measurements of the steady-state flux, water content, and matric pressure can yield highly accurate values of hydraulic conductivity and water retention. The great force permits measurement of properties and conditions that are otherwise impossible or impractical. For example an experiment lasting a few days can measure unsaturated conductivity as low as 1E-9 cm/s. Our new approach expands the range of media and conditions to which centrifugal techniques are applicable, using an assessment of the deviations from steadiness that can be tolerated without appreciable loss of accuracy and a quasi-steady methodology that controls flow within acceptable limits. Secondary goals are to reduce the cost and specialized nature of the necessary equipment, and to reduce the operator time and level of training required. Recent tests demonstrate these new techniques for carbonatic rock and other porous media. Numerical simulations predict the performance of the quasi-steady approach over a wide range of speeds and radii of rotation corresponding to various configurations, including centrifuges that are mass-produced for general laboratory use and the much larger ones designed for geotechnical applications. These simulations use a solution of Darcy's law in a centrifugal field to predict moisture conditions and net driving force within a sample, in order to assess the validity of these conditions for hydraulic property measurement. The tests and simulations show the improved techniques are useful for most porous rock and sedimentary media. With its simplified apparatus, capacity for larger samples, and the adaptability to various

  15. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  16. A review of centrifugal testing of gasoline contamination and remediation.

    PubMed

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  17. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    PubMed Central

    Meegoda, Jay N.; Hu, Liming

    2011-01-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced. PMID:21909320

  18. Afterload-dependent flow fluctuation of centrifugal pump: should it be actively fixed?

    PubMed

    Nishida, H; Akazawa, T; Nishinaka, T; Aomi, S; Endo, M; Koyanagi, H

    1998-05-01

    To evaluate the clinical meaning and effects of afterload-dependent flow fluctuation in a centrifugal pump, concomitant measurement of flow rate and mixed venous oxygen saturation (SVO2) was performed in 5 cases of open heart surgery in which the patients underwent cardiopulmonary bypass (CPB) with the Terumo Capiox centrifugal pump. Continuous measurement of SVO2 using the 3M CDI System 100 was performed with a disposable cuvette incorporated into the drainage circuit. After the target flow rate of 2.4 L/min/m2 was obtained under a nonbeating condition, the pump rotational speed was fixed. During the cooling and low temperature period, SVO2 decreased as the flow rate spontaneously decreased but still stayed around 80% even with a 15-20% decrease in blood flow rate. This indicates that a luxury perfusion condition is ensured as long as the body temperature is kept low. In contrast, during the rewarming period, SVO2 decreased to around 70-75% despite a 15-25% spontaneous increase in flow rate. Although this level of SVO2 still indicates adequate systemic perfusion, there is a possibility of regional hypoperfusion in patients with such conditions as cerebrovascular disease. In conclusion, although diligent adjustment of the physiological fluctuating flow rate in the centrifugal pump seems unnecessary during conventional open heart surgery, manual control may be necessary especially during the rewarming period, normothermic surgery, or circulatory assist for shocked patients. From this study, we also conclude that the major benefit of the afterload-independent autoflow control system of the centrifugal pump is the improvement of safety in terms of the fixed reservoir level and the handling of cardiopulmonary bypass.

  19. Parameter Study of Melt Spun Polypropylene Fibers by Centrifugal Spinning

    DTIC Science & Technology

    2014-07-01

    including drawing, template synthesis, phase separation, self- assembly, and electrospinning . Most methods are only relevant on a laboratory scale...attention as an alternative to electrospinning , the most common nanofiber formation method. Fibers of low dielectric constants and insoluble polymers that...generally cannot be used in electrospinning can be produced through centrifugal spinning. The centrifugal spinning process has several key

  20. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  1. Centrifugal Barrel Finishing Of Turbine-Blade "Fir Trees"

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.

    1990-01-01

    Modified centrifugal barrel-finishing machine imparts desired residual compressive stresses to "fir trees" of turbine blades. Centrifugal forces generate compressive stresses, which are transmitted to turbine blades through abrasive slurries in which suspended. Eliminates need for shot peening, rounding of edges and burrs caused by shot peening and, consequently, need for mass finishing operations to remove burrs. Improves surface finish of "fir trees".

  2. Supersonic rotation in the Maryland Centrifugal Experiment

    NASA Astrophysics Data System (ADS)

    Messer, Sarah

    The Maryland Centrifugal Experiment (MCX) has been built to study the confinement of supersonically-rotating plasmas and velocity shear stabilization of MHD instabilities. Theory predicts improved stability and confinement when a strong radial electric field is introduced into a magnetic-mirror geometry. The resulting radial currents establish a stable highly sheared plasma rotating at supersonic velocities in the azimuthal direction under the influence of J x B forces. This arrangement leads to increased confinement because the supersonic rotation creates an artificial radial gravity which draws the plasma away from the mirrors, closing the mirror loss cone. The large vφ shear stabilizes the plasma and enforces laminar flow. Based on these concepts, we have designed and constructed a machine to produce supersonically rotating highly-ionized plasmas. It typically does this by introducing a radial voltage of 7 kV in a magnetic-mirror geometry, 2 kG at the midplane and 19 kG at each mirror. MCX has completed its main construction phase and is acquiring data, here analyzed primarily in terms of a circuit model which infers plasma characteristics from the radial voltage across the plasma and the total radial current. The theory and simulations supporting the MCX centrifugal confinement scheme are presented here with the data and analysis from its first nine months of operation, including a description of basic plasma characteristics and evidence for both stability and confinement. Theory simulation, and initial experimental data all indicate that this centrifugal confinement scheme provides good stability and confinement at the temperatures and densities under study, as well as at the larger temperatures, fields, and dimensions expected for a fusion reactor. In particular, spectroscopic and circuit-model data indicate rotational velocities in MCX of up to 100 km/s, ion temperatures of approximately 30 eV, and ion densities upwards of 1020m-3. These parameters give

  3. Centrifugal regulator for control of deployment rates of deployable elements

    NASA Technical Reports Server (NTRS)

    Vermalle, J. C.

    1980-01-01

    The requirements, design, and performance of a centrifugal regulator aimed at limiting deployment rates of deployable elements are discussed. The overall mechanism is comprised of four distinct functional parts in a machined housing: (1) the centrifugal brake device, which checks the payout of a deployment cable; (2) the reducing gear, which produces the spin rate necesary for the braking device; (3) the payout device, which allows the unwinding of the cable; and (4) the locking device, which prevents untimely unwinding. The centrifugal regulator is set into operation by a threshold tension of the cable which unlocks the mechanism and allows unwinding. The pulley of the windout device drives the centrifugal brake with the help of the reducing gear. The centrifugal force pushes aside weights that produce friction of the studs in a cylindrical housing. The mechanism behaved well at qualification temperature and vibrations.

  4. Infiltration of fibrous preform in the centrifugal force field

    SciTech Connect

    Nishida, Yoshinori; Shirayanagi, Itaru; Sakai, Yoshibumi; Tozawa, Yasuhisa

    1994-12-31

    The pressure to infiltrate molten aluminum into alumina short fiber preform was generated by centrifugal force, and the start pressure for the infiltration was measured. The fundamental equation of infiltration phenomenon was derived from the equation of the conservation of momentum of fluid flow in the porous media in the centrifugal force field. One-dimensional solution of the equation was obtained to discuss the characteristics of fluid flow in a centrifugal force field. It was made clear that centrifugal force is effective as a motive force to infiltrate molten metal into fibrous preform, the pressure distribution of molten metal in the preform is different from that predicted by D`Arcy`s law and the infiltration is enhanced by centrifugal force.

  5. Development of Centrifugal Contactor with High Reliability

    SciTech Connect

    Okamura, Nobuo; Takeuchi, Masayuki; Ogino, Hideki; Kase, Takeshi; Koizumi, Tsutomu

    2007-07-01

    In Japan Atomic Energy Agency (JAEA), an innovative centrifugal contactor system has been developed for a future reprocessing plant. It was confirmed that it had a higher extraction capacity through the uranium test already. But it was necessary that it had the higher mechanical reliability to be applied in a reprocessing plant. In this study, two types of driving units that use a ball bearing or a magnetic bearing have been developed for it. It was confirmed that they had enough abilities trough endurance tests. The driving unit with ball bearing could be operated continuously for 5000 hours that was equal to a term of an annual operation. It was found that it could be operated for a year without maintenance. JAEA will continue to improve them and select more advantageous one on the basis of economy and lifetime in near future. (authors)

  6. Implantable centrifugal pump with hybrid magnetic bearings.

    PubMed

    Bearnson, G B; Olsen, D B; Khanwilkar, P S; Long, J W; Sinnott, M; Kumar, A; Allaire, P E; Baloh, M; Decker, J

    1998-01-01

    Test methods and results of in vitro assessment of a centrifugal pump with a magnetically suspended impeller are provided. In vitro blood tests have been completed with a resulting normalized milligram index of hemolysis (NmIH) of 12.4 +/- 4.1, indicating that hemolysis is not a problem. Hydraulic characterization of the system with water has shown that a nominal pumping condition of 6 L/min at 100 mmHg was met at 2,200 rpm. Maximum clinically usable cardiac output is predicted be 10 L/min. The magnetic bearing supported impeller did not contact the housing and was shown to be stable under a variety of pumping conditions. The driving motor efficiency is 75% at the nominal condition. Finally, a description of the clinical version of the pump under development is provided.

  7. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  8. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  9. Reciprocating flow-based centrifugal microfluidics mixer

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  10. Method and centrifugal apparatus for slurry testing

    SciTech Connect

    Tuzson, J.J.

    1984-04-17

    In accordance with the centrifugal erosion testing method of the invention, a material specimen is rotated with a flat surface facing the direction of rotation and a narrow stream of an abrasive particle slurry is concurrently flowed at a preselected rate in a radial direction across the flat surface, the rotating step being at sufficiently high angular velocity to urge the abrasive particles by Coriolis acceleration into a compacted mass against the flat surface and erode material therefrom by scouring type action as the particles flow radially outward. The rotating and flowing steps are continued for a sufficient preselected duration to erode material to a measurable depth, and the depth to which the flat surface is worn by the abrasive particles is measured as an indication of the erosion resistance of the specimen material. The centrifugal slurry erosion testing apparatus includes a rotatable cylindrical vessel into the interior of which the abrasive slurry is fed and a specimen holder extending radially from the vessel having a cavity for receiving the specimen and a radial slurry flow passage communicating with the interior of the vessel. One of the radial passage longitudinal walls is defined by the flat surface of the specimen. Preferably the specimen holder comprises mating semicylindrical halves one of which has a specimen-receiving cavity in its abutting surface and the other has a narrow rectangular-in-cross section groove in its abutting surface which communicates with the interior of the vessel and together with the flat surface of the specimen defines the radial slurry flow passage. The mating semicylindrical halves are enclosed by a sleeve having an annular rim disposed interiorly of the vessel to prevent radially outward movement of the specimen holder.

  11. Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb.

    PubMed

    Matsutani, S

    2010-08-11

    The olfactory bulb receives a large number of centrifugal fibers whose functions remain unclear. To gain insight into the function of the bulbar centrifugal system, the morphology of individual centrifugal axons from olfactory cortical areas was examined in detail. An anterograde tracer, Phaseolus vulgaris leucoagglutinin, was injected into rat olfactory cortical areas, including the pars lateralis of the anterior olfactory nucleus (lAON) and the anterior part of the piriform cortex (aPC). Reconstruction from serial sections revealed that the extrabulbar segments of centrifugal axons from the lAON and those from the aPC had distinct trajectories: the former tended to innervate the pars externa of the AON before entering the olfactory bulb, while the latter had extrabulbar collaterals that extended to a variety of targets. In contrast to the extrabulbar segments, no clear differences were found between the intrabulbar segments of axons from the lAON and from the aPC. The intrabulbar segments of centrifugal axons were mainly found in the granule cell layer but a few axons extended into the external plexiform and glomerular layer. Approximately 40% of centrifugal axons innervated both the medial and lateral aspects of the olfactory bulb. The number of boutons found on single intrabulbar segments was typically less than 1000. Boutons tended to aggregate and form complex terminal tufts with short axonal branches. Terminal tufts, no more than 10 in single axons from ipsilateral cortical areas, were localized to the granule cell layer with varying intervals; some tufts formed patchy clusters and others were scattered over areas that extended for a few millimeters. The patchy, widespread distribution of terminals suggests that the centrifugal axons are able to couple the activity of specific subsets of bulbar neurons even when the subsets are spatially separated.

  12. In vivo evaluation of centrifugal blood pump for cardiopulmonary bypass-Spiral Pump.

    PubMed

    da Silva, Cibele; da Silva, Bruno Utiyama; Leme, Juliana; Uebelhart, Beatriz; Dinkhuysen, Jarbas; Biscegli, José F; Andrade, Aron; Zavaglia, Cecília

    2013-11-01

    The Spiral Pump (SP), a centrifugal blood pump for cardiopulmonary bypass (CPB), has been developed at the Dante Pazzanese Institute of Cardiology/Adib Jatene Foundation laboratories, with support from Sintegra Company (Pompeia, Brazil). The SP is a disposable pump with an internal rotor-a conically shaped fuse with double entrance threads. This rotor is supported by two ball bearings, attached to a stainless steel shaft fixed to the housing base. Worm gears provide axial motion to the blood column, and the rotational motion of the conically shaped impeller generates a centrifugal pumping effect, improving pump efficiency without increasing hemolysis. In vitro tests were performed to evaluate the SP's hydrodynamic performance, and in vivo experiments were performed to evaluate hemodynamic impact during usual CPB. A commercially available centrifugal blood pump was used as reference. In vivo experiments were conducted in six male pigs weighing between 60 and 90 kg, placed on CPB for 6 h each. Blood samples were collected just before CPB (T0) and after every hour of CPB (T1-T6) for hemolysis determination and laboratory tests (hematological and biochemical). Values of blood pressure, mean flow, pump rotational speed, and corporeal temperature were recorded. Also, ergonomic conditions were recorded: presence of noise, difficulty in removing air bubbles, trouble in installing the pump in the drive module (console), and difficulties in mounting the CPB circuit. Comparing the laboratory and hemolysis results for the SP with those of the reference pump, we can conclude that there is no significant difference between the two devices. In addition, reports made by medical staff and perfusionists described a close similarity between the two devices. During in vivo experiments, the SP maintained blood flow and pressure at physiological levels, consistent with those applied in cardiac surgery with CPB, without presenting any malfunction. Also, the SP needed lower rotational

  13. Impact of dewatering technologies on specific methanogenic activity.

    PubMed

    Batstone, Damien J; Lu, Yang; Jensen, Paul D

    2015-10-01

    Dewatering methods for recuperative thickening and final dewatering can potentially impact methanogenic activity and microbial community. This influences both the feasibility of recuperative thickening to increase solids residence time within a digester, and the utilisation of dewatered digestate as inoculum for new digesters. Thickening technology can reduce methanogenic activity through either air contact (rotary drum, DAF, or belt filter press), or by lysing cells through shear (centrifuge). To assess this, two plants with recuperative thickening (rotary drum) in their anaerobic digester, and five without recuperative thickening, had specific methanogenic activity tested in all related streams, including dewatering feed, thickened return, final cake, and centrate. All plants had high speed centrifuges for final dewatering. The digester microbial community was also assessed through 16s pyrotag sequencing and subsequent principal component analysis (PCA). The specific methanogenic activity of all samples was in the expected range of 0.2-0.4 gCOD gVS(-1)d(-1). Plants with recuperative thickening did not have lower digester activity. Centrifuge based dewatering had a significant and variable impact on methanogenic activity in all samples, ranging between 20% and 90% decrease but averaging 54%. Rotary drum based recuperative thickening had a far smaller impact on activity, with a 0% per-pass drop in activity in one plant, and a 20% drop in another. However, the presence of recuperative thickening was a major predictor of overall microbial community (PC1, p = 0.0024). Microbial community PC3 (mainly driven by a shift in methanogens) was a strong predictor for sensitivity in activity to shear (p = 0.0005, p = 0.00001 without outlier). The one outlier was related to a plant producing the wettest cake (17% solids). This indicates that high solids is a potential driver of sensitivity to shear, but that a resilient microbial community can also bestow resilience

  14. Hydraulic characterization of centrifugal pumps in He I near saturated conditions

    NASA Astrophysics Data System (ADS)

    Baudouy, B.; Takeda, M.; Van Sciver, S. W.

    The hydraulic characteristics of a variable speed liquid helium centrifugal pump in He I near saturated conditions (4.2 K and ˜100 kPa) are presented. Three different housings are tested, a simple impeller housing and two housings with an impeller with an associated screw inducer, to investigate the effect of the inducer and the effect of the diffuser throat diameter dimension on the performance of the pump. The three housings have been tested in an open loop without discharge line. The pressure difference across the pumps and the mass flow rates have been recorded for different pump speeds. We compare the pump performances with predicted values. For different inlet tube length, cavitation effects, that might occur near saturated conditions, were also investigated.

  15. Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping.

    PubMed

    Wang, Lin; Kropinski, Mary-Catherine; Li, Paul C H

    2011-06-21

    This paper describes the experimental measurement and mathematical modeling of centrifugally-pumped flow in spiral microchannels. Here, the liquid is delivered by the rotation of a circular microchip as depicted before (X. Y. Peng, P. C. H. Li, H. Z. Yu, M. Parameswaran and W. L. Chou, Sens. Actuators, B, 2007, 128, 64-69). The spiral microchannel in it was specially designed to produce a constant centrifugal force component. From experimental measurements, it was found that the flow velocity inside the spiral microchannels was associated with the rotation speed only, but not with the length of the liquid column. The mathematical modeling of liquid flow was constructed based on solving the Navier-Stokes equations of incompressible flow formulated in a new orthogonal curvilinear coordinate system aligned with the channel geometry. The governing equations were simplified under various assumptions, rendering a mathematically-tractable physical model. In addition, a commercial computational fluid dynamics (CFD) program was used to simulate the flow in the spiral microchannel. The predicted liquid flow velocities from the mathematical model and the CFD program showed reasonable agreement with the experimental data. Under proper assumptions, the mathematical model gave a flexible and rather accurate analytical solution using much less computing power. The proposed study demonstrated the effectiveness of the spiral microchannel design in microfluidic applications using centrifugal force. With modifications, this study could be adapted to the simulation and modeling of other centrifugal-pumping microflow systems.

  16. A Finite-Difference Numerical Method for Onsager's Pancake Approximation for Fluid Flow in a Gas Centrifuge

    SciTech Connect

    de Stadler, M; Chand, K

    2007-11-12

    Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.

  17. Numerical study of a centrifugal blood pump with different impeller profiles.

    PubMed

    Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng

    2010-01-01

    Computational fluid dynamic simulations of the Kyoto-NTN magnetically suspended centrifugal blood pump with 16 forward-bending blades (16FB), 16 straight blades (16SB), and eight backward-bending blades (8BB) impellers were performed in this study. Commercial CFD software package FLUENT were used as the solver. The purpose of this study is to find out how the impeller blade profiles affect the inner flow and the performance of the centrifugal blood pump. The simulations were carried out with the same impeller rotating speed of 2,000 rpm and pump flow rate of 5 L/min to compare the three pump models. It was found that the 16SB impeller can produce higher pressure head than the 16FB and 8BB impellers under the same impeller rotating speed and pump flow rate. The flow particle tracing was carried out to estimate the blood damage level caused by the three different impeller profiles. It was found that the 16FB and 8BB models have caused the highest and lowest blood damage, respectively. The 16SB is recommended among the three pumps because it can generate the highest pressure head and induce mild blood damage index, although it was higher than that of the 8BB model.

  18. Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors

    SciTech Connect

    David Meikrantz; Troy Garn; Nick Mann; Jack Law; Terry Todd

    2007-09-01

    Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.

  19. Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996

    SciTech Connect

    Stepan, D.J.; Moe, T.A.; Collings, M.E.

    1997-05-01

    This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{mu}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit with a surrogate tank waste solution. The performance of the unit was evaluated with a statistical test design that determined the effect of temperature, pressure, membrane rotational speed, and solids loading on permeate flux. All four variables were found to be statistically significant, with the magnitude of the effect in the order of temperature, solids loading, rotor speed, and pressure. Temperature, rotor speed, and pressure had an increasing effect on flux with increasing value, while increases in solids loading showed a decrease in permeate flux. Significant interactions between rotor speed and solids loading and pressure and solids loading were also observed. The regression equation derived from test data had a correlation coefficient of 0.934, which represents a useful predictive capability for integrating the technology into DOE cleanup efforts. An extended test run performed on surrogate waste showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  20. Effects of the pulsatile flow settings on pulsatile waveforms and hemodynamic energy in a PediVAS centrifugal pump.

    PubMed

    Wang, Shigang; Rider, Alan R; Kunselman, Allen R; Richardson, J Scott; Dasse, Kurt A; Undar, Akif

    2009-01-01

    The objective of this study was to test different pulsatile flow settings of the PediVAS centrifugal pump to seek an optimum setting for pulsatile flow to achieve better pulsatile energy and minimal backflow. The PediVAS centrifugal pump and the conventional pediatric clinical circuit, including a pediatric membrane oxygenator, arterial filter, arterial cannula, and 1/4 in circuit tubing were used. The circuit was primed with 40% glycerin water mixture. Postcannula pressure was maintained at 40 mm Hg by a Hoffman clamp. The experiment was conducted at 800 ml/min of pump flow with a modified pulsatile flow setting at room temperature. Pump flow and pressure readings at preoxygenator and precannula sites were simultaneously recorded by a data acquisition system. The results showed that backflows appeared at flow rates of 200-800 ml/min (200 ml/min increments) with the default pulsatile flow setting and only at 200 ml/min with the modified pulsatile flow setting. With an increased rotational speed difference ratio and a decreased pulsatile width, the pulsatility increased in terms of surplus hemodynamic energy and total hemodynamic energy at preoxygenator and precannula sites. Backflows seemed at preoxygenator and precannula sites at a 70% of rotational speed difference ratio. The modified pulsatile flow setting was better than the default pulsatile flow setting in respect to pulsatile energy and backflow. The pulsatile width and the rotational speed difference ratio significantly affected pulsatility. The parameter of the rotational speed difference ratio can automatically increase pulsatility with increased rotational speeds. Further studies will be conducted to optimize the pulsatile flow setting of the centrifugal pump.

  1. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    SciTech Connect

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-02-15

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  2. Design of a continuous flow centrifugal pediatric ventricular assist device.

    PubMed

    Throckmorton, A L; Wood, H G; Day, S W; Song, X; Click, P C; Allaire, P E; Olsen, D B

    2003-11-01

    Thousands of pediatric patients suffering from cardiomyopathy or single ventricular physiologies secondary to debilitating heart defects may benefit from long-term mechanical circulatory support due to the limited number of donor hearts available. This article presents the initial design of a fully implantable centrifugal pediatric ventricular assist device (PVAD) for 2 to 12 year olds. Conventional pump design equations, including a nondimensional scaling approach, enabled performance estimations of smaller scale versions (25 mm and 35 mm impeller diameters) of our adult support VAD. Based on this estimated performance, a computational model of the PVAD with a 35 mm impeller diameter was generated. Employing computational fluid dynamics (CFD) software, the flow paths through the PVAD and overall performance were analyzed for steady state flow conditions. The numerical simulations involved flow rates of 2 to 5 LPM for rotational speeds of 2750 to 3250 RPM and incorporated a k-epsilon fluid turbulence model with a logarithmic wall function to characterize near-wall flow conditions. The CFD results indicated best efficiency points ranging from 25% to 28%, which correlate well with typical values of blood pumps. The results further demonstrated that the pump could deliver 2 to 5 LPM at 70 to 95 mmHg for desired physiologic conditions in resting 2 to 12 year olds. Scalar stress levels remained below 300 Pa, thereby signifying potentially low levels of hemolysis. Several flow regions in the pump exhibited signs of vortices, retrograde flow, and stagnation points, which require optimization and further study. This CFD model represents a reasonable starting point for future model enhancements, leading to prototype manufacturing and experimental validation.

  3. The design and application of a pediatric centrifugal pump.

    PubMed

    Ding, W X; Yu, X Q; Su, Z K; Huang, H M

    1997-12-01

    This centrifugal pump (CP) includes two parts: the blood pump and the driving apparatus. They are connected by six twin magnetic disc plates and driven by a magnetic DC motor (120W). The blood pump had six leaves deadlocked between two plastic discs. Six leaves were set at 30 degrees angles, separately. In the lower chamber of the CP, there was an inlay magnetic disc, which is connected with the disc leaves by an axis. This axis was sealed by silicon rubber and a ceramic ring. The priming volume of the blood chamber was 34 ml. In vitro testing showed that the free hemoglobin caused by the CP was much less than that caused by a roller pump after 180 min. The effect of this CP on blood cell damage was also studied in an animal model. Six goats were placed on cardiopulmonary bypass for 180 min. Perfusion flow rates were maintained between 1.5 and 2.5 L/min. The plasma free hemoglobin was lower in the CP group (6.04 mg/dL) than in the roller pump group (32.25 mg/dL), p < 0.01. The CP has been used in ten pediatric patients undergoing cardiopulmonary bypass surgery. The patients' ages were from three to five years, and body weights were from 15 to 20 kg. Perfusion flow rates were maintained between 1.8 and 2.5 L/min, and bypass times were from 30 to 50 min. The rotation speeds were from 2000 to 2500 rpm. All the patients recovered smoothly, and no hemoglobinuria occurred.

  4. Direct digital manufacturing of autonomous centrifugal microfluidic device

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshiaki; Takamura, Yuzuru; Utsumi, Yuichi

    2016-06-01

    This paper presents strategies that attempt to solve two key problems facing the commercialization of microfluidics: cost reduction in microfluidic chip manufacturing and microfluidic device driver development. To reduce the cost of microfluidic chip manufacturing, we propose to use of three-dimensional (3D) printers for direct digital manufacturing (DDM). An evaluation of 3D micro-scale structure printing using several 3D printers is reported, and some of the technical issues to be addressed in the future are suggested. To evaluate micro-scale printing, three types of 3D printers, with the ability to print structures on the scale of several hundred meters, were selected by first screening six 3D printers. Line and space patterns with line widths of 100-500 µm and an aspect ratio of one were printed and evaluated. The estimated critical dimension was around 200 µm. The manufacturing of a monolithic microfluidic chip with embedded channels was also demonstrated. Monolithic microfluidic chips with embedded microchannels having 500 × 500 and 250 × 250 µm2 cross sections and 2-20 mm lengths were printed, and the fidelity of the channel shape, residual supporting material, and flow of liquid water were evaluated. The liquid flow evaluation showed that liquid water could flow through all of the microchannels with the 500 × 500 µm2 cross section, whereas this was not possible through some of the channels with the 250 × 250 µm2 cross section because of the residual resin or supporting material. To reduce the device-driver cost, we propose to use of the centrifugal microfluidic concept. An autonomous microfluidic device that could implement sequential flow control under a steadily rotating condition was printed. Four-step flow injection under a steadily rotating condition at 1500 rpm was successfully demonstrated without any external triggering such as changing the rotational speed.

  5. Ocular counterrolling induced by centrifugation during orbital space flight

    NASA Technical Reports Server (NTRS)

    Moore, S. T.; Clement, G.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural centripetal accelerations (Gy centrifugation) of 0.5 g and 1 g during rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear out or right-ear out, facing or back to motion. Binocular eye movements were measured in three dimensions using a video technique. On Earth, tangential centrifugation that produces 1 g of interaural linear acceleration combines with gravity to tilt the gravitoinertial acceleration (GIA) vector 45 degrees in the roll plane relative to the head vertical, generating a summed vector of 1.4 g. Before flight, this elicited mean ocular counterrolling (OCR) of 5.7 degrees. Due to the relative absence of gravity during flight, there was no linear acceleration along the dorsoventral axis of the head. As a result, during in-flight centrifugation, gravitoinertial acceleration was strictly aligned with the centripetal acceleration along the interaural axis. There was a small but significant decrease (mean 10%) in the magnitude of OCR in space (5.1 degrees). The magnitude of OCR during postflight 1 g centrifugation was not significantly different from preflight OCR (5.9 degrees). Findings were similar for 0.5 g centrifugation, but the OCR magnitude was approximately 60% of that induced by centrifugation at 1 g. OCR during pre- and postflight static tilt was not significantly different and was always less than OCR elicited by centrifugation of Earth for an equivalent interaural linear acceleration. In contrast, there was no difference between the OCR generated by in-flight centrifugation and by static tilt on Earth at equivalent interaural linear accelerations. These data support the following conclusions: (1) OCR is generated predominantly in response to interaural linear acceleration; (2) the increased OCR during centrifugation on Earth is a response to the head dorsoventral 1 g linear acceleration component, which

  6. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  7. 27. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Ironworks, Honolulu Hawaii, 1879, 1881. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. With the inner basket of the centrifugal revolving at 1200 rpm molasses flew outward from the granulated sugar, through the holes in the brass lining, and into the stationary outer basket. The molasses drained through the spout at the right and into molasses storage pits below the floor. The centrifugals were underdriven with a belt connected to the pulley beneath the basket. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  8. Increased mitogenic response in lymphocytes from chronically centrifuged mice

    NASA Technical Reports Server (NTRS)

    Mueller, Otfried; Hunzinger, E.; Cogoli, Augusto; Bechler, B.; Lee, J.; Moore, J.; Duke, J.

    1990-01-01

    The effects upon the mitogenic response of splenic lymphocytes when exposing mice to prolonged hypergravity conditions (3.5 G for 1 year) were studied. Cultures of splenic lymphocytes isolated from both centrifuged and control (1 G) animals were stimulated with Concanavalin A and the response measured using both morphological and biochemical means. Lymphocytes obtained from centrifuged mice exhibited much higher activation rates (as measured by the incorporation of H-3 thymidine) and larger cell aggregates consisting of more lymphoblasts and mitotic figures than those observed in non centrifuged control animals. Isolated splenic lymphocytes thus appear to have been conditioned by hypergravity state.

  9. Estimation of left ventricular recovery level based on the motor current waveform analysis on circulatory support with centrifugal blood pump.

    PubMed

    Takahashi, K; Uemura, M; Watanabe, N; Ohuchi, K; Nakamura, M; Fukui, Y; Sakamoto, T; Takatani, S

    2001-09-01

    In a mock circulatory loop simulating the left heart bypass using a centrifugal blood pump, analysis of the motor current waveform of the centrifugal pump was performed to derive a useful parameter to evaluate the status of ventricular function. The relationship between the peak, amplitude, and the peak of the fundamental frequency of the power spectral density of the periodic motor current waveform (MCpsdP) that reflected the pulsatile ventricular pressure, and the peak of the left ventricular pressure (LVP) was examined. Although both peak and amplitude of the motor current waveform showed an excellent correlation with the peak LVP, they failed to predict the opening of the aortic valve. The MCpsdP that corresponds to the frequency of the heart rate showed an excellent correlation with the peak LVP throughout the LVP levels, but the slope between them changed with the opening of the aortic valve. Thus, it is possible to follow the change in the LVP and detect even the opening of the aortic valve, and, hence, the recovery of the left ventricle. However, the slope of the linear regression equation varied, depending on the pump speed. This result implies that the MCpsdP can be possibly used to follow the change of ventricular function during circulatory assistance with a centrifugal blood pump as well as to control the pump speed in response to varying ventricular function.

  10. Gas-liquid Two Phase Flow Modelling of Incompressible Fluid and Experimental Validation Studies in Vertical Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Shen, X.; Yin, Y. J.; Guo, Z.; Wang, H.

    2015-06-01

    In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC.

  11. A model for the selective amplification of spatially coherent waves in a centrifugal compressor on the verge of rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A simple model for the stability zones of a low speed centrifugal compressor is developed, with the goal of understanding the driving mechanism for the changes in stalling behavior predicted for, and observed in, the Purdue Low Speed Centrifugal Research Compressor Facility. To this end, earlier analyses of rotating stall suppression in centrifugal compressors are presented in a reduced form that preserves the essential parameters of the model that affect the stalling behavior of the compressor. The model is then used to illuminate the relationship between compressor geometry, expected mode shape, and regions of amplification for weak waves which are indicative of the susceptibility of the system to rotating stall. The results demonstrate that increasing the stagger angle of the diffuser vanes, and consequently the diffusion path length, results in the compressor moving towards a condition where higher-order spatial modes are excited during stall initiation. Similarly, flow acceleration in the diffuser section caused by an increase in the number of diffuser vanes also results in the excitation of higher modes.

  12. Enhancing radiolytic stability upon concentration of tritium-labeled pharmaceuticals utilizing centrifugal evaporation.

    PubMed

    Marques, Rosemary; Helmy, Roy; Waterhouse, David

    2015-05-30

    Tritium radiopharmaceuticals are often used in drug development because of their desirable specific activity. The inherent instability of these radioactive tracers often leads to a requirement to purify prior to use. Purification methodologies such as preparative chromatography and solid/liquid extractions often utilize water as a solvent, which is not suitable for long-term storage and necessitates removal. Rotary evaporation has traditionally been utilized for the removal of this unwanted solvent, however, this method has been shown to lead to decomposition of the tritium species in some cases. Centrifugal evaporation is a milder concentration method which has been demonstrated to effectively remove solvents. In this study, we show that centrifugal evaporation leads to effective concentration of tritium samples without the decomposition typically observed by rotary evaporation.

  13. Preparation of Giant Vesicles Encapsulating Microspheres by Centrifugation of a Water-in-oil Emulsion.

    PubMed

    Natsume, Yuno; Wen, Hsin-I; Zhu, Tong; Itoh, Kazumi; Sheng, Li; Kurihara, Kensuke

    2017-01-24

    The constructive biology and the synthetic biology approach to creating artificial life involve the bottom-up assembly of biological or nonbiological materials. Such approaches have received considerable attention in research on the boundary between living and nonliving matter and have been used to construct artificial cells over the past two decades. In particular, Giant Vesicles (GVs) have often been used as artificial cell membranes. In this paper, we describe the preparation of GVs encapsulating highly packed microspheres as a model of cells containing highly condensed biomolecules. The GVs were prepared by means of a simple water-in-oil emulsion centrifugation method. Specifically, a homogenizer was used to emulsify an aqueous solution containing the materials to be encapsulated and an oil containing dissolved phospholipids, and the resulting emulsion was layered carefully on the surface of another aqueous solution. The layered system was then centrifuged to generate the GVs. This powerful method was used to encapsulate materials ranging from small molecules to microspheres.

  14. Centrifugal float-sink testing of fine coal: An interlaboratory test program

    SciTech Connect

    Killmeyer, R.P.; Hucko, R.E.; Jacobsen, P.S.

    1991-10-01

    The Pittsburgh Energy Technology Center (PETC) recently completed an interlaboratory test program (ITP) involving eight laboratories that are currently performing washability analyses of coals finer than 500-microns top size using a centrifugal float-sink technique. With the current and future development of fine coal cleaning technology, there is a growing need to determine the washability of coals in extremely fine sizes, in some cases as fine as several microns by zero. However, much uncertainty exists about limitations relative to particle size and the viability of centrifugal float-sink procedures in achieving ``ideal`` specific gravity separations (i.e, the perfect separation of particles according to their density). The objective of this work was to develop an understanding regarding the variables affecting the procedure and initiate a process for obtaining a standard procedure. (VC)

  15. Centrifugal float-sink testing of fine coal: An interlaboratory test program

    SciTech Connect

    Killmeyer, R.P.; Hucko, R.E. . Coal Preparation Div.); Jacobsen, P.S. )

    1991-10-01

    The Pittsburgh Energy Technology Center (PETC) recently completed an interlaboratory test program (ITP) involving eight laboratories that are currently performing washability analyses of coals finer than 500-microns top size using a centrifugal float-sink technique. With the current and future development of fine coal cleaning technology, there is a growing need to determine the washability of coals in extremely fine sizes, in some cases as fine as several microns by zero. However, much uncertainty exists about limitations relative to particle size and the viability of centrifugal float-sink procedures in achieving ideal'' specific gravity separations (i.e, the perfect separation of particles according to their density). The objective of this work was to develop an understanding regarding the variables affecting the procedure and initiate a process for obtaining a standard procedure. (VC)

  16. Purification of intact chloroplasts from Arabidopsis and spinach leaves by isopycnic centrifugation.

    PubMed

    Seigneurin-Berny, Daphné; Salvi, Daniel; Joyard, Jacques; Rolland, Norbert

    2008-09-01

    Chloroplasts are plant-specific organelles. They are the site of photosynthesis but also of many other essential metabolic pathways, such as syntheses of amino acids, vitamins, lipids, and pigments. This unit describes the isolation and purification of chloroplasts from Arabidopsis and spinach leaves. Differential centrifugation is first used to obtain a suspension enriched in chloroplasts (crude chloroplasts extract). In a second step, Percoll density gradient centrifugation is used to recover pure and intact chloroplasts. The Basic Protocol describes the purification of chloroplasts from Arabidopsis leaves. This small flowering plant is now widely used as a model organism in plant biology as it offers important advantages for basic research in genetics and molecular biology. The Alternate Protocol describes the purification of chloroplasts from spinach leaves. Spinach, easily available all through the year, remains a model of choice for the large-scale preparation of pure chloroplasts with a high degree of intactness.

  17. Unshrouded Centrifugal Turbopump Impeller Design Methodology

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Williams, Morgan; Chen, Wei-Chung; Paris, John; Williams, Robert; Stewart, Eric

    2001-01-01

    Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.

  18. High speed cylindrical rolling element bearing analysis 'CYBEAN' - Analytic formulation

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.; Castelli, V.

    1979-01-01

    This paper documents the analytic foundation and software architecture for the computerized mathematical simulation of high speed cylindrical rolling element bearing behavior. The software, CYBEAN (CYlindrical BEaring ANalysis), considers a flexible, variable geometry outer ring, EHD films, roller centrifugal and quasidynamic loads, roller tilt and skew, mounting fits, cage and flange interactions. The representation includes both steady state and time transient simulation of thermal interactions internal to and coupled with the surroundings of the bearing. A sample problem illustrating program use is presented.

  19. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis

    PubMed Central

    Hassan, M. A.; Mahmoodian, Reza; Hamdi, M.

    2014-01-01

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration. PMID:24430621

  20. Investigation of Flow in a Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Fischer, Karl

    1946-01-01

    The investigation of the flow in a centrifugal pump indicated that the flow patterns in frictional fluid are fundamentally different from those in frictionless fluid. In particular, the dead air space adhering to the section side undoubtedly causes a reduction of the theoretically possible delivery head. The velocity distribution over a parallel circle is also subjected to a noticeable change as a result of the incomplete filling of the passages. The relative velocity on the pressure side of the vane, which for passages completely filled with active flow would differ little from zero even at comparatively lower than normal delivery volume, is increased, so that no rapid reverse flow occurs on the pressure side of the vane even for smaller delivery volume. It was established, further, that the flow ceases to be stationary for very small quantities of water. The inflow to the impeller can be regarded as radial for the operating range an question. The velocity triangles at the exit are subjected to a significant alteration in shape ae a result of the increased peripheral velocity, which may be of particular importance in the determination of the guide vane entrance angle.

  1. Fluid dynamic noise in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Tse, D. G.; Whitelaw, J. H.

    1993-08-01

    Pressure distributions and frequency spectra have been obtained in a centrifugal pump having flow rates between the design point and near shut-down. The pump was comprised of a radial flow impeller with four backswept blades and a single volute. Measurements were obtained at the design flow rate and at off-design conditions to advance understanding of noise generation, to quantify the contribution of tonal, narrowband and broadband components to the overall noise and to develop strategies for suppressing fluid dynamic noise by flow control and active control. Fluid dynamic noise was generated by the unsteady conditions encountered by the impeller blade. Unsteady conditions originated from non-uniformities at the inlet and the impeller outlet at design and off-design conditions. Inlet flow non-uniformity was induced by separation regions. Flow separations are inherent in turbomachinery because of growth of the boundary layer and the disturbance effect of the rotating impeller. Flow non-uniformity at the impeller outlet stemmed from inlet flow non-uniformities in the inlet, from propagation of pressure waves in a vaneless diffuser, and from scroll effects.

  2. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  3. Central centrifugal cicatricial alopecia: challenges and solutions

    PubMed Central

    Herskovitz, Ingrid; Miteva, Mariya

    2016-01-01

    Central centrifugal cicatricial alopecia (CCCA) is the most common scarring alopecia among African American women. Data about epidemiology, etiology, genetic inheritance, and management are scarce and come from individual reports or small series. CCCA has been associated with hot combing and traumatic hair styling for years; however, studies fail to confirm it as the sole etiologic factor. It has been shown in a small series that CCCA can be inherited in an autosomal dominant fashion, with a partial penetrance and a strong modifying effect of hairstyling and sex. CCCA presents clinically as a central area of progressive irreversible hair loss that expands to the periphery. A patchy form has also been described. Dermoscopy is helpful to identify the optimal site for the biopsy, which establishes the diagnosis. Well-designed randomized controlled trials are needed to discover the optimal management. At this point, patients are advised to avoid traction and chemical treatments; topical and intralesional steroids, calcineurin inhibitors, and minoxidil can be helpful in halting the progression. PMID:27574457

  4. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  5. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  6. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-06-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.

  7. 3. Interior view of centrifugal pump house showing pumps and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Interior view of centrifugal pump house showing pumps and engines, looking W. - Laurel Valley Sugar Plantation, Drainage Plant, 2 Miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  8. 2. View of centrifugal pump house sitting at edge of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of centrifugal pump house sitting at edge of drainage canal, looking E. - Laurel Valley Sugar Plantation, Drainage Plant, 2 Miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  9. 23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULICOPERATED VALVE FOR LATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULIC-OPERATED VALVE FOR LATER CONNECTION OF ENGINE PUMP ENG TO DISCHARGE HEADER. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  10. Manufacture of hollow ingots using centrifugal casting machines

    NASA Astrophysics Data System (ADS)

    Pomeshchikov, A. G.; Greneva, T. S.; Baidachenko, V. I.; Berezin, V. I.

    2010-12-01

    Centrifugal machines are proposed for the foundry created at the Almalyk Mining and Smelting Factory in order to produce hollow ingots of a liquid metal made by remelting of consumable electrodes in a refractory accumulating crucible.

  11. 25. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879, 1881. View: After sugar was granulated and cooled it had to be dried and drained, completely separating the sugar crystals from the molasses. Revolving at 1200 rpm the inner basket drove the molasses outward into the stationary outer basket leaving dried sugar behind. The steam engine counter-shaft at the left was belt driven and belts running from the counter-shaft pulleys to the centrifugals' base-pulleys provided the necessary power. Part of the clutch system which moved the belt from a moving to a stationary pulley, thus turning the centrifugals on and off, is seen in Between the counter-shaft and the centrifugals. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  12. 19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND OIL TANK, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  13. Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in Red Room within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  14. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    PubMed Central

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-01-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude. PMID:21721711

  15. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  16. 14. CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, NEW HAVEN YARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, NEW HAVEN YARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  17. 15. FRONT VIEW, DETAIL, CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FRONT VIEW, DETAIL, CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, NEW HAVEN YARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  18. 8. FLOOR 1: TENTERING GEAR FOR SOUTH STONES, CENTRIFUGAL GOVERNOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. FLOOR 1: TENTERING GEAR FOR SOUTH STONES, CENTRIFUGAL GOVERNOR MOUNTED ON STONE SPINDLE, VERY SHORT STEELYARD - Windmill at Water Mill, Montauk Highway & Halsey Lane, Water Mill, Suffolk County, NY

  19. A centrifuge CO2 pellet cleaning system

    NASA Technical Reports Server (NTRS)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  20. Centrifuge Facility for the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  1. A pseudo-cryptococcal artefact derived from leucocytes in wet India ink mounts of centrifuged cerebrospinal fluid.

    PubMed

    Thiruchelvan, N; Wuu, K Y; Arseculeratne, S N; Ashraful-Haq, J

    1998-03-01

    Wet India ink mounts of cerebrospinal fluid (CSF) are useful in the laboratory diagnosis of cryptococcal meningitis. Pseudo-cryptococcal artefacts in such mounts have been attributed to leucocytes in CSF but their mode of formation has not been explained. This report describes the reproduction of such an artefact in cryptococcus free CSF-leucocyte mixtures that had been subjected to high speed centrifugation. The viscosity of DNA that could provide a morphological pseudo-capsule, and the yellow-green fluorescence of the pseudo-capsular material on staining with acridine-orange, suggest that lymphocytic nuclear DNA, which possibly leaked out after damage to the lymphocyte membrane by centrifugation, was responsible for this artefact.

  2. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  3. Preferred orientation of BSCCO via centrifugal slip casting

    SciTech Connect

    Steinlage, G.; Roeder, R.; Trumble, K.; Bowman, K. ); Li, S.; McElfresh, M. )

    1994-04-01

    Due to the highly anisotropic properties of BSCCO superconductors, the bulk properties of these materials can be greatly affected by preferential orientation. Substantial [ital c]-axis orientation normal to the desired direction of current flow has been demonstrated by centrifugally slip casting lead-doped BSCCO-2223. The strong preferred orientation developed in the centrifugally slip-cast material demonstrates high critical current potential.

  4. Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [(3)H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.

  5. Improved g-level calculations for coil planet centrifuges.

    PubMed

    van den Heuvel, Remco N A M; König, Carola S

    2011-09-09

    Calculation of the g-level is often used to compare CCC centrifuges, either against each other or to allow for comparison with other centrifugal techniques. This study shows the limitations of calculating the g-level in the traditional way. Traditional g-level calculations produce a constant value which does not accurately reflect the dynamics of the coil planet centrifuge. This work has led to a new equation which can be used to determine the improved non-dimensional values. The new equations describe the fluctuating radial and tangential g-level associated with CCC centrifuges and the mean radial g-level value. The latter has been found to be significantly different than that determined by the traditional equation. This new equation will give a better understanding of forces experienced by sample components and allows for more accurate comparison between centrifuges. Although the new equation is far better than the traditional equation for comparing different types of centrifuges, other factors such as the mixing regime may need to be considered to improve the comparison further.

  6. Optimizing the separation performance of a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Wood, H. G.

    1997-11-01

    Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.

  7. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    NASA Technical Reports Server (NTRS)

    Greening, Gage J.

    2016-01-01

    meet our specifications and to understand what needs to be done in lab to the new centrifuge. Our modifications will provide a standard for readying centrifuges for future missions. Once the new modified centrifuge arrives by the vendor, it will need to undergo EMI testing again for validation. The centrifuge is also in the process of compatibility testing with a custom stowage drawer, which is an ongoing project in SF4. Both of these items will be payloads on future missions to the ISS for various research purposes. Ultrasound: ISS currently has an onboard ultrasound (Ultrasound 2 system) for research and medical purposes. Every piece of medical flight hardware has an equivalent ground-unit so instrumentation can be routinely evaluated and transported to the ISS if necessary. The ground-unit ultrasound equipment must be evaluated every six months using a task performance sheet (TPS). A TPS is a document, written by the appropriate scientists and engineers, which describes how to run equipment and is written in such a way that astronauts with unspecialized training can follow the tasks. I was responsible for performing six TPSs on a combination of three ultrasounds and two video power converters (VPCs). Performing a TPS involves checking out and computationally documenting each piece of equipment removed from storage locations, setting up hardware and software, performing tasks to verify functionality, returning equipment, and logging items back into the computerized system. My work revealed all ground-unit ultrasounds were functioning properly. Because of proper function, a discrepancy report (DR) did not have to be opened. The TPS was then passed along to the Quality Engineering (QE) for review and ultimately given to Quality Assurance (QA). Other projects: In addition to my main projects, I participated in other tasks including troubleshooting an EEG headband, volunteering for an ultrasound training research study, and conformal coating printed circuit boards. My

  8. Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.

    PubMed

    Murashige, Tomotaka; Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu

    2016-09-01

    Plasma skimming is a phenomenon in which discharge hematocrit is lower than feed hematocrit in microvessels. Plasma skimming has been investigated at a bearing gap in a spiral groove bearing (SGB), as this has the potential to prevent hemolysis in the SGB of a blood pump. However, it is not clear whether plasma skimming occurs in a blood pump with the SGB, because the hematocrit has not been obtained. The purpose of this study is to verify plasma skimming in an SGB of a centrifugal blood pump by developing a hematocrit measurement method in an SGB. Erythrocyte observation using a high-speed microscope and a bearing gap measurement using a laser confocal displacement meter was performed five times. In these tests, bovine blood as a working fluid was diluted with autologous plasma to adjust the hematocrit to 1.0%. A resistor was adjusted to achieve a pressure head of 100 mm Hg and a flow rate of 5.0 L/min at a rotational speed of 2800 rpm. Hematocrit on the ridge region in the SGB was measured using an image analysis based on motion image of erythrocytes, mean corpuscular volume, the measured bearing gap, and a cross-sectional area of erythrocyte. Mean hematocrit on the ridge region in the SGB was linearly reduced from 0.97 to 0.07% with the decreasing mean bearing gap from 38 to 21 μm when the rotational speed was changed from 2250 to 3000 rpm. A maximum plasma skimming efficiency of 93% was obtained with a gap of 21 μm. In conclusion, we succeeded in measuring the hematocrit on the ridge region in the SGB of the blood pump. Hematocrit decreased on the ridge region in the SGB and plasma skimming occurred with a bearing gap of less than 30 μm in the hydrodynamically levitated centrifugal blood pump.

  9. Bovine splenic nerve: characterization of noradrenaline-containing vesicles and other cell organelles by density gradient centrifugation

    PubMed Central

    Hörtnagl, H.; Hörtnagl, Heide; Winkler, H.

    1969-01-01

    1. Homogenates of bovine splenic nerves were subjected to differential and sucrose density gradient centrifugation. From the low-speed supernatant a high-speed sediment (mitochondria, lysosomes, microsomes and noradrenaline (NA) vesicles) was obtained. By density gradient centrifugation of this sediment it was shown that NA vesicles are slightly less dense than mitochondria, but denser than microsomes. 2. In further experiments a mitochondrial and a microsomal sediment were obtained. The mitochondrial sediment was fractionated with a short centrifugation time over a density gradient ranging from 0·6 to 1·2 M sucrose. Mitochondria (fumarase and succinate-dehydrogenase) and lysosomes (acid ribonuclease and deoxyribonuclease) sedimented to the bottom of the tube. The highest concentration of NA vesicles was found in a medium position. There was only a small amount of microsomes (glucose-6-phosphatase) present. 3. The microsomal sediment was centrifuged for 150 min over a density gradient ranging from 0·8 to 1·4 M sucrose. The microsomes remained on the top of the gradient. There were also some mitochondria and lysosomes present. The NA vesicles were found in highest concentration in the middle of the gradient (at about 1·2 M sucrose). 4. With the use of these two density gradients, the subcellular distribution of dopamine-β-hydroxylase, monoamine oxidase and ATPase was studied. Dopamine-β-hydroxylase was found to be localized in the NA vesicles. Monoamine oxidase was mainly recovered in mitochondria; a small part of the enzyme appeared to be microsomal. ATPase was present in microsomal elements. PMID:4310509

  10. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  11. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 2: Experiments

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    During centrifugal casting of copper alloys containing graphite particles, both particles and bubbles move under the influence of centrifugal forces and influence the final microstructure, including porosity and the distribution of graphite. The movement of graphite particles and bubbles in the melts of copper alloys, originally containing 7 and 13 vol pct graphite particles and centrifugally cast at 800 and 1900 rpm in horizontal rotating molds, has been examined. Microstructural observations of sections of these centrifugal castings show that the graphite particles are segregated near the inner periphery and the amount of porosity in the graphite-rich zone is higher than the porosity in the graphite-free and transition zones. The intimate association of porosity with graphite particles in the graphite-rich zone was explained on the basis of attachment of graphite particles to bubbles in the melt and the viscosity of the melt, which increases with increasing concentration of graphite particles near the inner periphery of the castings. It was found that the amount of the porosity in the graphite-rich zone increases with volume fraction of graphite particles used in this study; the size of the porosity in the graphite-rich zone also increases with increasing rotational speed of the mold. This suggests that the graphite particles and bubbles were attached to each other in the melt and they did not get separated during centrifugal casting conditions of the present study. The present experiments qualitatively confirm theoretical computations.

  12. Low speed airfoil study

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.

    1977-01-01

    Airfoil geometries were developed for low speed high lift applications, such as general aviation aircraft, propellers and helicopter rotors. The primary effort was to determine the extent to which the application of turbulent boundary layer separation criteria, plus manipulation of other input parameters, specifically trailing edging velocity ratio, could be utilized to achieve high C sub Lmax airfoils with relatively low drag at C sub Lmax. Both single-element and double-element airfoils were considered. Wind tunnel testing of some airfoils was included.

  13. Unwinding of a carbon nanoscroll due to high speed rotation

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Cai, Kun

    2015-10-01

    A carbon nanoscroll (CNS) can be formed easily by rolling a graphene sheet around a carbon nanotube (CNT) [Zhang and Li, 2010, APL, 97, 081909]. When the CNS is driven by the rotary CNT to rotate at a high speed, the attractive interaction within the CNS or between the CNS and CNT is crippled by the centrifugal force on the CNS. The unwinding of CNS is triggered when the kinetic energy increment approaches to the variation of interaction energy of the system during CNS formation. Numerical experiments also indicate that the unwinding of CNS happens earlier when the CNT has a higher rotational speed or the system is at a higher temperature.

  14. Miniature high speed compressor having embedded permanent magnet motor

    NASA Technical Reports Server (NTRS)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  15. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-03-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  16. Cerebral Hypoperfusion Precedes Nausea During Centrifugation

    NASA Technical Reports Server (NTRS)

    Serrador, Jorge M.; Schlegel, Todd T.; Black, F. Owen; Wood, Scott J.

    2004-01-01

    Nausea and motion sickness are important operational concerns for aviators and astronauts. Understanding underlying mechanisms associated with motion sickness may lead to new treatments. The goal of this work was to determine if cerebral blood flow changes precede the development of nausea in motion sick susceptible subjects. Cerebral flow velocity in the middle cerebral artery (transcranial Doppler), blood pressure (Finapres) and end-tidal CO2 were measured while subjects were rotated on a centrifuge (250 degrees/sec). Following 5 min of rotation, subjects were translated 0.504 m off-center, creating a +lGx centripetal acceleration in the nasal-occipital plane. Ten subjects completed the protocol without symptoms while 5 developed nausea (4 while 6ff-center and 1 while rotating on-center). Prior to nausea, subjects had significant increases in blood pressure (+13plus or minus 3 mmHg, P less than 0.05) and cerebrovascular resistance (+46 plus or minus 17%, P less than 0.05) and decreases in cerebral flow velocity both in the second (-13 plus or minus 4%) and last minute (-22 plus or minus 5%) before symptoms (P less than 0.05). In comparison, controls demonstrated no change in blood pressure or cerebrovascular resistance in the last minute of off-center rotation and only a 7 plus or minus 2% decrease in cerebral flow velocity. All subjects had significant hypocapnia (-3.8 plus or minus 0.4 mmHg, P less than 0.05), however this hypocapnia could not fully explain the cerebral hypoperfusion associated with the development of nausea. These data indicate that reductions in cerebral blood flow precede the development of nausea. Further work is necessary to determine what role cerebral hypoperfusion plays in motion sickness and whether cerebral hypoperfusion can be used to predict the development of nausea in susceptible individuals.

  17. Reliability of utricular function testing sinusoidal translation profile during unilateral centrifugation.

    PubMed

    Buytaert, K I; Vanspauwen, R; Van de Heyning, P H; Wuyts, F L

    2010-01-01

    The unilateral centrifugation test is one of the few vestibular tests that evaluate the utricles side by side. During this test, a subject is rotated about an earth vertical axis at high rotation speeds (e.g. 400 degrees/s) and translated sideways along the interaural axis to align the axis of rotation consecutively with the right and the left utricle. The combined rotation and translation induces ocular counter rolling (OCR), which is measured using three-dimensional video-oculography. Recently, a new model has been proposed to analyse the OCR. The model is based on contributions from both the semicircular canals and the utricles. Concomitant with the new model a new stimulation profile using a sinusoidal translation profile during the unilateral centrifugation has been introduced [1]. The current study presents the test-retest reliability as well as the robustness of the new stimulation method, based on data of 67 healthy subjects. Test-retest reliability was based on repeated measurements of a group of subjects. To test the robustness of the new sinusoidal translation paradigm, we investigated the effect of a different amplitude of the sinusoidal translation (6 cm instead of 4 cm) and of an offset in translation (from -3 to +5 cm, instead of from -4 to +4 cm) on the parameters. Several statistical measures were used to reflect the reliability: intraclass correlation coefficient (ICC), the "coefficient of variation of the method error" and the "minimal difference" (MD). All relevant variables from the physiological model for the OCR induced by unilateral centrifugation show a good to excellent reliability during the test-retest study and the relevant parameters remain unaffected by the changes applied to the translation profile (p > 0.05) as predicted by the model. Additionally, all observed differences are smaller than the MD values calculated in the test-retest part of the study.

  18. Design and evaluation of a single-pivot supported centrifugal blood pump.

    PubMed

    Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S

    2001-09-01

    In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.

  19. Rheological and physical characteristics of crustal-scaled materials for centrifuge analogue modelling

    NASA Astrophysics Data System (ADS)

    Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.

    2016-05-01

    We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates < 0.5 × 10-2 s-1, while other modelling clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.

  20. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Phillips, Jon R.

    2012-07-01

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to

  1. Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant

    SciTech Connect

    Jack D. Law; Troy G. Garn; David H. Meikrantz

    2009-09-01

    Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperature profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed

  2. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.

    PubMed

    Leme, Juliana; da Silva, Cibele; Fonseca, Jeison; da Silva, Bruno Utiyama; Uebelhart, Beatriz; Biscegli, José F; Andrade, Aron

    2013-11-01

    A new model of centrifugal blood pump for temporary ventricular assist devices has been developed and evaluated. The design of the device is based on centrifugal pumping principles and the usage of ceramic bearings, resulting in a pump with reduced priming (35 ± 2 mL) that can be applied for up to 30 days. Computational fluid dynamic (CFD) analysis is an efficient tool to optimize flow path geometry, maximize hydraulic performance, and minimize shear stress, consequently decreasing hemolysis. Initial studies were conducted by analyzing flow behavior with different impellers, aiming to determine the best impeller design. After CFD studies, rapid prototyping technology was used for production of pump prototypes with three different impellers. In vitro experiments were performed with those prototypes, using a mock loop system composed of Tygon tubes, oxygenator, digital flow meter, pressure monitor, electronic driver, and adjustable clamp for flow control, filled with a solution (1/3 water, 1/3 glycerin, 1/3 alcohol) simulating blood viscosity and density. Flow-versus-pressure curves were obtained for rotational speeds of 1000, 1500, 2000, 2500, and 3000 rpm. As the next step, the CFD analysis and hydrodynamic performance results will be compared with the results of flow visualization studies and hemolysis tests.

  3. The cast structure of a 7075 alloy produced by a water-cooling centrifugal casting method

    SciTech Connect

    Yeh, J.W. . Dept. of Materials Science and Engineering); Jong, S.H.

    1994-03-01

    A water-cooling centrifugal casting method was applied to cast the 7075 Al alloy to generate a much finer cast structure than that produced by conventional ingot casting methods. The effects of casting parameters, i.e., rotation speed, pouring temperature, water flow, and grain refiner, on casting structure were systematically studied so that the optimum casting condition and the solidification mechanism could be established. The typical cast structure along the thickness direction of a cast ring could be divided into four equiaxed zones, including the chill zone which is in contact with the mold wall. All zones have their characteristic grain size, morphology, and relative thickness, which are all dependent on the casting condition. The optimum casting condition yielding the finest structure available was found to be 3,000 rpm, 650 C, and sufficient water cooling. A uniform portion occupying 90 pct of the whole thickness and having a grain size of 17 [mu]m could be achieved under such a casting condition. When a grain refiner was added, the whole ring became further concentrated with grains of fine structure. A mechanism concerning the overall effects of rapid solidification, turbulent flow, and centrifugal force has been proposed for the present casting method and might explain the zone-structure formation and the effects of the casting parameters on microstructural features.

  4. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    SciTech Connect

    Miller, K.T.; Melant, R.M.; Zukoski, C.F.

    1996-10-01

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 {micro}m), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network.

  5. Computational Fluid Dynamics Ventilation Study for the Human Powered Centrifuge at the International Space Station

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2012-01-01

    The Human Powered Centrifuge (HPC) is a facility that is planned to be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a "bicycle" for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of about two times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin when HPC is operating. A full unsteady formulation is used for airflow and CO2 transport CFD-based modeling with the so-called sliding mesh concept when the HPC equipment with the adjacent Bay 4 cabin volume is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The rotating part of the computational domain includes also a human body model. Localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution detected is discussed.

  6. CFD Ventilation Study for the Human Powered Centrifuge at the International Space Station

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The Human Powered Centrifuge (HPC) is a hyper gravity facility that will be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a bicycle for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of several times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin. The 3D computational model included PMM cabin. The full unsteady formulation was used for airflow and CO2 transport modeling with the so-called sliding mesh concept is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution is detected and discussed.

  7. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    NASA Astrophysics Data System (ADS)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  8. High speed testing of the hollow roller bearing

    NASA Astrophysics Data System (ADS)

    Bowen, W. L.; Murphy, T. W., Jr.

    1980-08-01

    This bearing with its preloaded, hollow rollers has the qualities required for high speed operation. Roller hollowness improves cooling ability and its lighter weight reduces the centrifugal force against the raceway. Preloading between inner and outer races for 360 deg insures good roller guidance and minimizes roller skidding. However, the problems of operating a full complement of rollers at very high speeds were unknown. Also, limitations caused by roller bending fatigue needed investigation. To answer these questions, a high speed test machine was constructed and a hollow roller test bearing was designed for operation at 3 million DN. This paper describes the construction of a high speed test cell and subsequent testing of a full complement, preloaded, 115 mm hollow roller bearing. Testing culminated in a successful endurance test of 1000 hours at 26,100 RPM (3 million DN). The results verified several advantages regarding roller stability and antiskidding qualities as well as demonstrating a unique fail-safe condition.

  9. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  10. Development of a Feeder for Uninterrupted Centrifugation Studies

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Vasques, Marilyn F.; Gundo, Daniel P.; Griffith, Jon B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A specialized paste diet feeder was developed in support of a hypergravity (2G) centrifuge study. The centrifuge study was to be compared to a previously flown Russian Cosmos spaceflight so experimental parameters of the 14 day spaceflight had to be duplicated. In order to duplicate at hyper G an experiment that took place in weightlessness, all other conditions must be as identical as possible. Stopping the centrifuge to provide maintenance for the animals causes unacceptable changes in experimental research results. Thus the experimental protocol required the delivery of a designated amount of paste diet at regular intervals for a two week period without stopping the centrifuge. A centrifuge and a stationary control cage, each containing 10 laboratory rats, were fitted with feeders that were calibrated to provide 140 plus or minus 2g of paste diet every 6 hours. This paper describes development of the feeder design and results of its operation over the two week experiment. The design philosophy and details of the feeder system are provided with recommendations for future such devices.

  11. Centrifuges and Their Application for Biological Experiments in Space

    NASA Astrophysics Data System (ADS)

    Brinckmann, Enno

    2012-12-01

    The need for an in-orbit 1×g control originated from the fact that Space radiation or other environmental factors of Space flight could not be excluded as cause for the effects on biological systems that were mainly interpreted as effects of the weightlessness environment. Indeed, in many experiments the 1×g reference centrifuge on board revealed the same data as the 1×g controls on ground, proving the lack of gravity was causing the results. In other cases, the reference centrifuge data were intermediate or clearly different to the ground data which was either due to interrupted 1×g conditions on board or to other, sometimes not well understood factors. This triggered also the development of sophisticated hardware allowing the start, i.e. the transition from 1×g to 0×g, or the termination of the experiment without stopping the centrifuge. Recently developed facilities provide also a complete life support system on the centrifuge rotor. Besides the in-flight 1×g control, acceleration experiments required a centrifuge for determination of threshold values in orbit.

  12. Scaling up debris-flow experiments on a centrifuge

    NASA Astrophysics Data System (ADS)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  13. Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.

    2005-01-01

    We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.

  14. Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats

    NASA Astrophysics Data System (ADS)

    Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.

    2005-08-01

    We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.

  15. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    NASA Astrophysics Data System (ADS)

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  16. Application of Feedforward Adaptive Active-Noise Control for Reducing Blade Passing Noise in Centrifugal Fans

    NASA Astrophysics Data System (ADS)

    WU, J.-D.; BAI, M. R.

    2001-02-01

    This paper describes two configurations of feedforward adaptive active-noise control (ANC) technique for reducing blade passing noise in centrifugal fans. In one configuration, the control speaker is installed at the cut-off region of the fan, while in the other configuration at the exit duct. The proposed ANC system is based on the filtered-x least-mean-squares (FXLMS) algorithm with multi-sine synthesized reference signal and frequency counting and is implemented by using a digital signal processor (DSP). Experiments are carried out to evaluate the proposed system for reducing the noise at the blade passing frequency (BPF) and its harmonics at various flow speeds. The results of the experiment indicated that the ANC technique is effective in reducing the blade passing noise for two configurations by using the feedforward adaptive control.

  17. Measurement and numerical simulation of a small centrifugal compressor characteristics at small or negative flow rate

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2017-04-01

    For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.

  18. Computational modeling of structure of metal matrix composite in centrifugal casting process

    SciTech Connect

    Zagorski, Roman

    2007-04-07

    The structure of alumina matrix composite reinforced with crystalline particles obtained during centrifugal casting process are studied. Several parameters of cast process like pouring temperature, temperature, rotating speed and size of casting mould which influent on structure of composite are examined. Segregation of crystalline particles depended on other factors such as: the gradient of density of the liquid matrix and reinforcement, thermal processes connected with solidifying of the cast, processes leading to changes in physical and structural properties of liquid composite are also investigated. All simulation are carried out by CFD program Fluent. Numerical simulations are performed using the FLUENT two-phase free surface (air and matrix) unsteady flow model (volume of fluid model - VOF) and discrete phase model (DPM)

  19. Influence of Refiner in ZA-12 Alloys During Centrifugal Casting Process

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Shailesh, Rao A.; Jagath, M. C.; Channakeshavalu, K.

    2014-05-01

    The behavior of the molten melt plays a predominant role in determining the quality cast product. In continuous casting, addition of refiner 1% (Al+Ti+B2) onto the molten metal increases its mechanical properties as a result of the nucleation within the process. In this article, the effect of refiners in the centrifugal casting process was studied. Eutectic ZA-12 alloys were taken for our experiment and cast at various rotational speeds (400 rpm, 600 rpm, and 800 rpm) with and without the addition of refiners. Rather than increase in the solidification rate as in continuous casting, these refiners diminish the solidification rate, which in turn forms an irregular-shaped cast tube. The microstructure and hardness for the entire cast specimen were discussed finally.

  20. Boundary-value problem for plasma centrifuge at arbitrary magnetic Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    We solve in closed form the boundary-value problem for the partial differential equations which describe the (azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring electrodes of different radii and an external, axial magnetic field. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number R. For small Hall coefficients, the induced magnetic field does not affect the plasma rotation. As a result of the Lorentz forces, the plasma rotates with speeds as high as 100,000 cm/sec around its axis of symmetry at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of the discharge cylinder.