Sample records for specific strength high

  1. Three-dimensional high-entropy alloy-polymer composite nanolattices that overcome the strength-recoverability trade-off.

    PubMed

    Zhang, Xuan; Yao, Jiahao; Liu, Bin; Yan, Jun; Lu, Lei; Li, Yi; Gao, Huajian; Li, Xiaoyan

    2018-06-14

    Mechanical metamaterials with three-dimensional micro- and nano-architectures exhibit unique mechanical properties, such as high specific modulus, specific strength and energy absorption. However, a conflict exists between strength and recoverability in nearly all the mechanical metamaterials reported recently, in particular the architected micro-/nanolattices, which restricts the applications of these materials in energy storage/absorption and mechanical actuation. Here, we demonstrated the fabrication of three-dimensional architected composite nanolattices that overcome the strength-recoverability trade-off. The nanolattices under study are made up of a high entropy alloy coated (14.2-126.1 nm in thickness) polymer strut (approximately 260 nm in the characteristic size) fabricated via two-photon lithography and magnetron sputtering deposition. In situ uniaxial compression inside a scanning electron microscope showed that these composite nanolattices exhibit a high specific strength of 0.027 MPa/kg m3, an ultra-high energy absorption per unit volume of 4.0 MJ/m3, and nearly complete recovery after compression under strains exceeding 50%, thus overcoming the traditional strength-recoverability trade-off. During multiple compression cycles, the composite nanolattices exhibit a high energy loss coefficient (converged value after multiple cycles) of 0.5-0.6 at a compressive strain beyond 50%, surpassing the coefficients of all the micro-/nanolattices fabricated recently. Our experiments also revealed that for a given unit cell size, the composite nanolattices coated with a high entropy alloy with thickness in the range of 14-50 nm have the optimal specific modulus, specific strength and energy absorption per unit volume, which is related to a transition of the dominant deformation mechanism from local buckling to brittle fracture of the struts.

  2. Beneficial use of off-specification fly ashes to increase the shear strength and stiffness of expansive soil-rubber (ESR) mixtures.

    DOT National Transportation Integrated Search

    2011-07-01

    The use of off-specification fly ashes to increase the shear strength and stiffness of an expansive soil-rubber (ESR) mixture is investigated systematically in this study. The off-specification fly ashes used include a high-sulfur content and a high-...

  3. High Strength Reinforcing Steel Bars : Concrete Shear Friction Interface : final report : Part A.

    DOT National Transportation Integrated Search

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  4. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    DOT National Transportation Integrated Search

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  5. High strength reinforcing steel bars : low cycle fatigue behavior : final report - part B.

    DOT National Transportation Integrated Search

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  6. High strength reinforcing steel bars : low-cycle fatigue behavior : final report - part B.

    DOT National Transportation Integrated Search

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  7. How prepared are college freshmen athletes for the rigors of college strength and conditioning? A survey of college strength and conditioning coaches.

    PubMed

    Wade, Susan M; Pope, Zachary C; Simonson, Shawn R

    2014-10-01

    Training programs for high school athletes have changed over the last 20 years. High school physical education classes have transformed into sport-specific conditioning classes with intensities matching college or professional athlete programming. In addition, involvement in private, sport-specific, training increased; but despite these advanced training methods, are high school athletes prepared for collegiate sport competition? An anonymous survey was sent to 195 Division I strength and conditioning coaches (SCC) to discern incoming college freshman athletes' physical and psychological preparedness for the rigors of collegiate training and sport competition. Fifty-seven (29%) responses were received. Strength and conditioning coaches stated that incoming college freshman athletes lack lower extremity strength, overall flexibility, and core strength as well as proper Olympic lifting technique. Strength and conditioning coaches also stated that athletes lacked the mental toughness to endure collegiate sport training in addition to claiming incoming athletes lacked knowledge of correct nutrition and recovery principles. These results suggest a lack of collegiate training/sport preparedness of high school athletes. High school strength and conditioning specialist's goal is to produce better athletes and doing so requires the strength and conditioning coach/trainer to have knowledge of how to train high school athletes. One way to assure adequate knowledge of strength and conditioning training principles is for high school coaches/trainers to be certified in the field. Strength and conditioning certifications among high school strength and conditioning coaches/trainers would encourage developmentally appropriate training and would provide universities with athletes who are prepared for the rigors of collegiate sport training/competition.

  8. Assessment of high early strength limestone blended cement for next generation transportation structures : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    This research on Type IL cements for high early strength concretes demonstrated that Type IL cements satisfying AASHTO M 240 specifications may be used in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transpo...

  9. High-load strength training improves outcome in patients with plantar fasciitis: A randomized controlled trial with 12-month follow-up.

    PubMed

    Rathleff, M S; Mølgaard, C M; Fredberg, U; Kaalund, S; Andersen, K B; Jensen, T T; Aaskov, S; Olesen, J L

    2015-06-01

    The aim of this study was to investigate the effectiveness of shoe inserts and plantar fascia-specific stretching vs shoe inserts and high-load strength training in patients with plantar fasciitis. Forty-eight patients with ultrasonography-verified plantar fasciitis were randomized to shoe inserts and daily plantar-specific stretching (the stretch group) or shoe inserts and high-load progressive strength training (the strength group) performed every second day. High-load strength training consisted of unilateral heel raises with a towel inserted under the toes. Primary outcome was the foot function index (FFI) at 3 months. Additional follow-ups were performed at 1, 6, and 12 months. At the primary endpoint, at 3 months, the strength group had a FFI that was 29 points lower [95% confidence interval (CI): 6-52, P = 0.016] compared with the stretch group. At 1, 6, and 12 months, there were no differences between groups (P > 0.34). At 12 months, the FFI was 22 points (95% CI: 9-36) in the strength group and 16 points (95% CI: 0-32) in the stretch group. There were no differences in any of the secondary outcomes. A simple progressive exercise protocol, performed every second day, resulted in superior self-reported outcome after 3 months compared with plantar-specific stretching. High-load strength training may aid in a quicker reduction in pain and improvements in function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effects of dry-land vs. in-water specific strength training on professional male water polo players' performance.

    PubMed

    de Villarreal, Eduardo Sáez; Suarez-Arrones, Luis; Requena, Bernardo; Haff, G Gregory; Ramos-Veliz, Rafael

    2014-11-01

    We compared the effects of 6-week dry-land and in-water specific strength training combined with a water polo (WP) program on 7 sport-specific performance parameters. Nineteen professional players were randomly assigned to 2 groups: in-water strength group (WSG) (in-water training only) and dry-land strength group (LSG). The program included 3 weekly strength training sessions and 5 days of WP training per week for 6 weeks during the preseason. Ten-meter T-agility test, 20-m maximal sprint swim, maximal dynamic strength (1 repetition maximum), bench press (BP) and full squat (FS), in-water boost, countermovement jump (CMJ), and WP throwing speed were measured. Significant improvements (p ≤ 0.05) were found in the experimental groups in some variables: CMJ in the LSG and WSG (2.35 cm, 9.07%, effect size [ES] = 0.89; and 2.6 cm, 7.6%, ES = 0.83, respectively), in-water boost increased in the WSG group (4.1 cm; 11.48%; ES = 0.70), and FS and BP increased (p ≤ 0.05) only in the LSG group (12.1 kg; 11.27%; ES = 1.15 and 8.3 kg; 9.55%; ES = 1.30, respectively). There was a decrease of performance in agility test (-0.55 seconds; 5.60%; ES = 0.74). Both dry-land and in-water specific strength training and high-intensity training in these male WP players produced medial to large effects on most WP-specific performance parameters. Therefore, we propose modifications to current training methodology for WP players in preseason to include both the training programs (dry-land and in-water specific strength training and high-intensity training) for athlete preparation in this sport.

  11. Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity.

    PubMed

    Pang, Zhenqian; Gu, Xiaokun; Wei, Yujie; Yang, Ronggui; Dresselhaus, Mildred S

    2017-01-11

    Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp 2 bonding in the wall and sp 3 bonding in the triple junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, >100 W/mK along the axis of the hexagonal cell with a density only ∼0.4 g/cm 3 . Because of the low density and high thermal conductivity, the specific thermal conductivity of C-honeycombs is larger than most engineering materials, including metals and high thermal conductivity semiconductors, as well as lightweight CNT arrays and graphene-based nanocomposites. Such high specific strength, high thermal conductivity, and anomalous Poisson's effect in C-honeycomb render it appealing for the use in various engineering practices.

  12. Lighter and Stiffer Materials for Use in Space Vehicles

    NASA Astrophysics Data System (ADS)

    Rioja, R. J.; Denzer, D. K.; Mooy, D.; Venema, G.

    Materials for use in cryo-tanks need high specific strength, to reduce weight and high KIe fracture toughness, to avoid crack propagation through the thickness and prevent leakage. This paper presents the evolution of Aluminum alloys and products for use in rockets from the beginning of the space age to the Space Shuttle. The specific strength of alloys used in Juno, Saturn, Delta rockets and the external tank of the Space Shuttle are discussed. The microstructure and properties of 2195 plate and 2090 sheet products are reviewed. Finally, based on improved specific strength, use of 2099 and next generation upper wing 2055 Al-Li plate products is proposed for next generation rockets.

  13. Mechanical properties of direct core build-up materials.

    PubMed

    Combe, E C; Shaglouf, A M; Watts, D C; Wilson, N H

    1999-05-01

    This work was undertaken to measure mechanical properties of a diverse group of materials used for direct core build-ups, including a high copper amalgam, a silver cermet cement, a VLC resin composite and two composites specifically developed for this application. Compressive strength, elastic modulus, diametral tensile strength and flexural strength and modulus were measured for each material as a function of time up to 3 months, using standard specification tests designed for the materials. All the materials were found to meet the minimum specification requirements except in terms of flexural strength for the amalgam after 1 h and the silver cermet at all time intervals. There proved to be no obvious superior material in all respects for core build-ups, and the need exists for a specification to be established specifically for this application.

  14. Molecular-Level Study of the Effect of Prior Axial Compression/Torsion on the Axial-Tensile Strength of PPTA Fibers

    DTIC Science & Technology

    2013-07-16

    Twaron, etc., which are characterized by high specific strength and high specific stiffness. Fibers of this type are often referred to as ‘‘ballistic... high level of penetration resistance against large kinetic energy projectiles, such as bullets, detonated-mine-induced soil ejecta, improvised...increasingly being designed and developed through an extensive use of computer-aided engineering ( CAE ) methods and tools. The utility of these

  15. New high-strength steels

    NASA Astrophysics Data System (ADS)

    Belyakov, L. N.; Petrakov, A. F.; Pokrovskaya, N. G.; Shal'kevich, A. B.

    1998-08-01

    Steels have found wide application in modern aircraft and are the profile materials in some structures. They are used when a high specific strength, rigidity, fatigue limit, and high-temperature strength are required, for example, in the production of wing bars, longerons, ribs, landing gear parts, and gear transmission mechanisms. Steels used in the aircraft industry should possess high parameters of fracture toughness, crack resistance under static and cyclic loads, and corrosion resistance (for the all-climatic variant) with preservation of a high adaptability to manufacturing (weldability, forgeability, processability).

  16. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  17. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  18. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  19. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  20. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  1. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  2. Effects of 18-week in-season heavy-resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players.

    PubMed

    Ramos Veliz, Rafael; Requena, Bernardo; Suarez-Arrones, Luis; Newton, Robert U; Sáez de Villarreal, Eduardo

    2014-04-01

    We examined the effects of 18 weeks of strength and high-intensity training on key sport performance measures of elite male water polo (WP) players. Twenty-seven players were randomly assigned to 2 groups, control (in-water training only) and strength group, (strength training sessions [twice per week] + in-water training). In-water training was conducted 5 d·wk. Twenty-meter maximal sprint swim, maximal dynamic strength 1-repetition maximum (1RM) for upper bench press (BP) and lower full squat (FS) body, countermovement jump (CMJ), and throwing velocity were measured before and after the training. The training program included upper and lower body strength and high-intensity exercises (BP, FS, military press, pull-ups, CMJ loaded, and abs). Baseline-training results showed no significant differences between the groups in any of the variables tested. No improvement was found in the control group; however, meaningful improvement was found in all variables in the experimental group: CMJ (2.38 cm, 6.9%, effect size [ES] = 0.48), BP (9.06 kg, 10.53%, ES = 0.66), FS (11.06 kg, 14.21%, ES = 0.67), throwing velocity (1.76 km·h(-1), 2.76%, ES = 0.25), and 20-m maximal sprint swim (-0.26 seconds, 2.25%, ES = 0.29). Specific strength and high-intensity training in male WP players for 18 weeks produced a positive effect on performance qualities highly specific to WP. Therefore, we propose modifications to the current training methodology for WP players to include strength and high-intensity training for athlete preparation in this sport.

  3. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  4. High performance sapphire windows

    NASA Astrophysics Data System (ADS)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  5. Discussion on Influence of High Strength Bolt’s Parameters on the Weld Reinforced Combined Connection with Bolts and Welds

    NASA Astrophysics Data System (ADS)

    Ma, Jiansuo; Wang, Yuanqing; Li, Mingfeng; Bai, Runshan; Ban, Huiyong

    2018-03-01

    In the process of existing steel structure operation, in order to prevent the bolted joints from being damaged by insufficient carrying capacity, welds can be used for reinforcement. Weld reinforced combined connection with bolts and weld consists with high strength bolts and side fillet weld composition. The parameters and properties of high strength bolts and fillet welds have a direct effect on the connection. Based on the test results, We explore the influence that welding seam reinforcement and the performance of the connection between the number of high strength bolts and specifications changes in this paper. It will provide a theoretical reference for the design of connection nodes of steel structure reinforcement project.

  6. Product Design and Production Practice of 700MPa High Strength Hot Rolled Strip for Auto Axle Tube

    NASA Astrophysics Data System (ADS)

    Hui, Pan; Zhao-dong, Wang; Ya-jun, Hui; Yang, Cui; Xiang-tao, Deng; Chun-lin, Bao

    According to the technical specifications of 700MPa high strength automotive axle tube steel, a low cost of 0.07%C+1.5%Mn+0.05%Nb+0.10%Ti was designed. The high strength mainly relies on grain refinement strengthening and precipitation strengthening. The recrystallization, precipitation, and CCT curves of the 700MPa grade axle tube steel were studied in order to determine a reasonable TMCP process. By controlling the low level segregation band, low level of C and N content, 700MPa grade high strength automotive axle tube steel is successfully developed with excellent mechanical property, welding property, flattening and flaring property, torsion fatigue property, static torsional property and surface quality.

  7. A comparative study of the mechanical performance of Glass and Glass/Carbon hybrid polymer composites at different temperature environments

    NASA Astrophysics Data System (ADS)

    Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.

    2015-02-01

    Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.

  8. Leaving No American Indian/Alaska Native Behind: Identifying Reading Strengths and Needs

    ERIC Educational Resources Information Center

    Buly, Marsha Riddle

    2005-01-01

    American Indian/Alaska Native (AI/AN) students are often labeled as struggling readers based on the results of large-scale standardized tests yet little empirical data about specific strengths and needs exists. In the present study we looked beyond high-stakes assessment to highlight reading strengths and needs for a group of fourth grade American…

  9. Production and mechanical properties of Al-SiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.

    2016-11-01

    The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.

  10. 49 CFR 179.200-7 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... 30 1 Maximum stresses to be used in calculations. 2 High alloy steel materials used to fabricate tank... specifications with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon...

  11. 49 CFR 179.200-7 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... 30 1 Maximum stresses to be used in calculations. 2 High alloy steel materials used to fabricate tank... specifications with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon...

  12. 49 CFR 179.200-7 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... 30 1 Maximum stresses to be used in calculations. 2 High alloy steel materials used to fabricate tank... specifications with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon...

  13. 49 CFR 179.200-7 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... 30 1 Maximum stresses to be used in calculations. 2 High alloy steel materials used to fabricate tank... specifications with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon...

  14. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  15. Possibilities for specific utilization of material properties for an optimal part design

    NASA Astrophysics Data System (ADS)

    Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.

    2017-09-01

    High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.

  16. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode.

    PubMed

    Evanoff, Kara; Benson, Jim; Schauer, Mark; Kovalenko, Igor; Lashmore, David; Ready, W Jud; Yushin, Gleb

    2012-11-27

    Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.

  17. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... and with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The maximum allowable carbon content must be 0.31 percent when the individual specification...

  18. Strength and balance training for adults with peripheral neuropathy and high risk of fall: current evidence and implications for future research.

    PubMed

    Tofthagen, Cindy; Visovsky, Constance; Berry, Donna L

    2012-09-01

    To evaluate the evidence for strength- and balance-training programs in patients at high risk for falls, discuss how results of existing studies might guide clinical practice, and discuss directions for additional research. A search of PubMed and CINAHL® databases was conducted in June 2011 using the terms strength, balance training, falls, elderly, and neuropathy. Only clinical trials conducted using specific strength- or balance-training exercises that included community-dwelling adults and examined falls, fall risk, balance, and/or strength as outcome measures were included in this review. One matched case-control study and two randomized, controlled studies evaluating strength and balance training in patients with diabetes-related peripheral neuropathy were identified. Eleven studies evaluating strength and balance programs in community-dwelling adults at high risk for falls were identified. The findings from the reviewed studies provide substantial evidence to support the use of strength and balance training for older adults at risk for falls, and detail early evidence to support strength and balance training for individuals with peripheral neuropathy. The evidence demonstrates that strength and balance training is safe and effective at reducing falls and improving lower extremity strength and balance in adults aged 50 years and older at high risk for falls, including patients with diabetic peripheral neuropathy. Future studies should evaluate the effects of strength and balance training in patients with cancer, particularly individuals with chemotherapy-induced peripheral neuropathy.

  19. Nutritional aspects of women strength athletes.

    PubMed

    Volek, J S; Forsythe, C E; Kraemer, W J

    2006-09-01

    Strength training elicits sports related and health benefits for both men and women. Although sexual dimorphism is observed in exercise metabolism, there is little information outlining the specific nutritional needs of women strength athletes. Many women athletes restrict energy intake, specifically fat consumption, in order to modify body composition, but this nutritional practice is often counter-productive. Compared to men, women appear to be less reliant on glycogen during exercise and less responsive to carbohydrate mediated glycogen synthesis during recovery. Female strength athletes may require more protein than their sedentary and endurance training counterparts to attain positive nitrogen balance and promote protein synthesis. Therefore, women strength athletes should put less emphasis on a very high carbohydrate intake and more emphasis on quality protein and fat consumption in the context of energy balance to enhance adaptations to training and improve general health. Attention to timing of nutrient ingestion, macronutrient quality, and dietary supplementation (for example, creatine) are briefly discussed as important components of a nutritionally adequate and effective strength training diet for women.

  20. Determination of high-strength materials diamond grinding rational modes

    NASA Astrophysics Data System (ADS)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  1. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  2. Does a bout of strength training affect 2,000 m rowing ergometer performance and rowing-specific maximal power 24 h later?

    PubMed

    Gee, Thomas I; French, Duncan N; Howatson, Glyn; Payton, Stephen J; Berger, Nicolas J; Thompson, Kevin G

    2011-11-01

    Rowers regularly undertake rowing training within 24 h of performing bouts of strength training; however, the effect of this practice has not been investigated. This study evaluated the impact of a bout of high-intensity strength training on 2,000 m rowing ergometer performance and rowing-specific maximal power. Eight highly trained male club rowers performed baseline measures of five separate, static squat jumps (SSJ) and countermovement jumps (CMJ), maximal rowing ergometer power strokes (PS) and a single 2,000 m rowing ergometer test (2,000 m). Subsequently, participants performed a high-intensity strength training session consisting of various multi-joint barbell exercises. The 2,000 m test was repeated at 24 and 48 h post-ST, in addition SSJ, CMJ and PS tests were performed at these time points and also at 2 h post-ST. Muscle soreness, serum creatine kinase (CK) and lactate dehydrogenase (LDH) were assessed pre-ST and 2, 24 and 48 h post-ST. Following the ST, there were significant elevations in muscle soreness (2 and 24 h, P < 0.01), CK (2, 24 and 48 h, P < 0.01), and LDH (2 h, P < 0.05) in comparison to baseline values. There were significant decrements across all time points for SSJ, CMJ and PS, which ranged between 3 and 10% (P < 0.05). However, 2,000 m performance and related measurements of heart rate and blood lactate were not significantly affected by ST. In summary, a bout of high-intensity strength training resulted in symptoms of muscle damage and decrements in rowing-specific maximal power, but this did not affect 2,000 m rowing ergometer performance in highly trained rowers.

  3. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  4. Wood-Based Nanocomposite Derived by in Situ Formation of Organic-Inorganic Hybrid Polymer within Wood via a Sol-Gel Method.

    PubMed

    Dong, Xiaoying; Zhuo, Xiao; Wei, Jie; Zhang, Gang; Li, Yongfeng

    2017-03-15

    Solid wood materials and wood-plastic composites as two kinds of lightweight materials are attracting great interest from academia and industry due to their green and recycling nature. However, the relatively lower specific strength limits their wider applications. In particular, solid wood is vulnerable to moisture and decay fungi in nature, resulting in its poor durability for effectively long-term utilization. Inspired from the porous structure of wood, we propose a new design to build a wood-based nanocomposite with higher specific strength and satisfactory durability by in situ generation of organic-inorganic hybrid polymer within wood via a sol-gel method. The derived composite has 50-1200% improvement of impact toughness, 56-192% improvement of tensile strength, and 110-291% improvement of flexural strength over those of typical wood-plastic composites, respectively; and even 34% improvement of specific tensile strength than that of 36A steel; 208% enhancement of hardness; and 156% enhancement of compression strength than those of compared solid wood, respectively; as well as significantly improved dimensional stability and decay resistance over those of untreated natural wood. Such materials could be potentially utilized as lightweight and high-strength materials for applications in construction and automotive industries. This method could be extended to constitute other inorganic nanomaterials for novel organic-inorganic hybrid polymer within wood.

  5. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-05

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  6. Effect of Temperature and Dynamic Loading on the Mechanical Properties of Copper-Alloyed High-Strength Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Rana, R.; Singh, S. B.; Bleck, W.; Mohanty, O. N.

    2009-04-01

    Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10-4 to 200 s-1) and temperature (-100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s-1).

  7. The development of high strength corrosion resistant precipitation hardening cast steels

    NASA Astrophysics Data System (ADS)

    Abrahams, Rachel A.

    Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels, give poor estimates of secondary phases in PHCSS. No measureable retained austenite was observed in any of the CB7Cu-1 steels studied, in spite of the fact that austenite is predicted by the constitution diagrams. A designed experiment using computationally derived phase equilibrium diagrams and actual experimental tests on CB7Cu of different compositions suggests that the ferrite phase is less stable than the constitution diagrams for austenitic stainless steels suggest. Delta ferrite was also more stable in slower-cooled sand cast material as compared to thin, fast-cooled investment cast material. High temperature solutionizing treatments were effective in dissolving delta ferrite at temperatures above 1900°F (˜1040°C). Delta ferrite dissolution was found to proceed at high rates during initial dissolution, and then was found to slow after 1 hour. Diffusion during the later stages is well-predicted by classical diffusion models. Repeated solution treatments were found to modestly increase both ductility and strength, likely due to subgrain refinement through austenite regrowth. Multistaged aging provided superior strength and toughness increases over similarly peak-aged and near peak-aged material aged at a single temperature. Peak-aged material fractography suggested that low energy quasi-cleavage fracture was likely due to age precipitate embrittlement along with some nucleation of MnS particulates at prior austenite grain boundaries. Yield strengths approaching 190 ksi (1310MPa) can be achieved in CB7Cu-1 if appropriate best-practices "+" processing techniques are used. This includes hot isostatic processing to reduce solidification segregation and heal microporosity, high temperature homogenization for effective age hardening and ferrite reduction, double-cycle solutionizing for structure refinement, and multistaged age strengthening for finer precipitate control. The experimental prototype 11-11PH (Fe-Ni-Cr-Ti-Mo) casting alloys was cast and was found to be delta-ferrite free in the as-cast condition. In this material, proper quench processing to eliminate excessive retained austenite was found to be most influential in terms of high strengths. It was also found that cooling below 0°C provided the best combination of strength and toughness, with the specific strength of the material exceeding that of cast Ti-6Al-4V material. Fractography studies suggest that titanium carbonitride and titanium carbon-nitride-sulfide inclusions limit the toughness of cast materials due to long exposures to ideal growth conditions during initial cooling. OIM studies also suggest that the retained austenite in properly processed 11-11PH alloy takes on an interlath structure, which likely contributes to toughness of the alloy, even at high-strength, peak aged conditions. Yield strengths approaching 235 ksi (1620 MPa) were achieved during initial heat treatment trials. It is expected that further improvements in properties can be achieved with continued improvement of processing for this new cast alloy system.

  8. Comparative study of the physical properties of core materials.

    PubMed

    Saygili, Gülbin; Mahmali, Sevil M

    2002-08-01

    This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.

  9. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    NASA Astrophysics Data System (ADS)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.

  10. Analytical Modeling for Mechanical Strength Prediction with Raman Spectroscopy and Fractured Surface Morphology of Novel Coconut Shell Powder Reinforced: Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Singh, Savita; Singh, Alok; Sharma, Sudhir Kumar

    2017-06-01

    In this paper, an analytical modeling and prediction of tensile and flexural strength of three dimensional micro-scaled novel coconut shell powder (CSP) reinforced epoxy polymer composites have been reported. The novel CSP has a specific mixing ratio of different coconut shell particle size. A comparison is made between obtained experimental strength and modified Guth model. The result shows a strong evidence for non-validation of modified Guth model for strength prediction. Consequently, a constitutive modeled equation named Singh model has been developed to predict the tensile and flexural strength of this novel CSP reinforced epoxy composite. Moreover, high resolution Raman spectrum shows that 40 % CSP reinforced epoxy composite has high dielectric constant to become an alternative material for capacitance whereas fractured surface morphology revealed that a strong bonding between novel CSP and epoxy polymer for the application as light weight composite materials in engineering.

  11. Prospects of increasing the strength of aluminum by reinforcing it with stainless steel wire (a review)

    NASA Technical Reports Server (NTRS)

    Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.

    1982-01-01

    The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.

  12. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials

    PubMed Central

    Pippan, R.; Hohenwarter, A.

    2016-01-01

    ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712

  13. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys

    PubMed Central

    Hamad, Kotiba; Ko, Young Gun

    2016-01-01

    Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685

  14. Evaluation of Alternative Refractory Materials for the Main Flame Deflectors at KSC Launch Complexes

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Trejo, David; Rutkowsky, Justin

    2006-01-01

    The deterioration of the refractory materials used to protect the KSC launch complex steel base structures from the high temperatures during launches results in frequent and costly repairs and safety hazards. KSC-SPEC-P-0012, Specification for Refractory Concrete, is ineffective in qualifying refractory materials. This study of the specification and of alternative refractory materials recommends a complete revision of the specification and further investigation of materials that were found to withstand the environment of the Solid Rocket Booster main flame deflector better than the refractory materials in current use in terms of compressive strength, tensile strength, modulus of rupture, shrinkage, and abrasion.

  15. Are anthropometric, flexibility, muscular strength, and endurance variables related to clubhead velocity in low- and high-handicap golfers?

    PubMed

    Keogh, Justin W L; Marnewick, Michel C; Maulder, Peter S; Nortje, Jacques P; Hume, Patria A; Bradshaw, Elizabeth J

    2009-09-01

    The present study assessed the anthropometric profile (International Society for the Advancement of Kinanthropometry protocol), flexibility, muscular strength, and endurance of 20 male golfers. These data were collected in order to determine: a) the relationship between these kinanthropometric measures and clubhead velocity; and b) if these measures could distinguish low-handicap (LHG) and high-handicap (HHG) golfers. Ten LHG (handicap of 0.3 +/- 0.5) and 10 HHG (handicap of 20.3 +/- 2.4) performed 10 swings for maximum velocity and accuracy with their own 5-iron golf club at a wall-mounted target. LHG hit the target significantly more (115%) and had a 12% faster clubhead velocity than HHG (p < 0.01). The LHG also had significantly (28%) greater golf swing-specific cable woodchop (GSCWC) strength (p < 0.01) and tendencies for greater (30%) bench press strength and longer (5%) upper am and total arm (4%) length and less (24%) right hip internal rotation than HHG (0.01 < p < 0.05). GSCWC strength was significantly correlated to clubhead velocity (p < 0.01), with bench press and hack squat strength as well as upper arm and total arm length also approaching significance (0.01 < p < 0.05). Golfers with high GSCWC strength and perhaps greater bench press strength and longer arms may therefore be at a competitive advantage, as these characteristics allow the production of greater clubhead velocity and resulting ball displacement. Such results have implications for golf talent identification programs and for the prescription and monitoring of golf conditioning programs. While golf conditioning programs may have many aims, specific trunk rotation exercises need to be included if increased clubhead velocity is the goal. Muscular hypertrophy development may not need to be emphasized as it could reduce golf performance by limiting range of motion and/or increasing moment of inertia.

  16. The Combined Effect of High Hydrostatic Pressure and Calcium Salts on the Stability, Solubility and Gel Formation of β-Lactoglobulin

    PubMed Central

    Saalfeld, Daniel; Riegel, Ina; Kulozik, Ulrich; Gebhardt, Ronald

    2015-01-01

    Stability, aggregation and gelation of β-Lactoglobulin are affected by high pressure and salts of the Hofmeister series. Little is known about their combined effects on structure formation processes of β-Lactoglobulin, mainly because many salts of the series are not suitable for use in food. Here, we investigate the effect of calcium salts on the strength of pressure-induced gels, inspired by the fact that high pressure and salts change the water structure in a similar way. We find that the larger the applied pressures, the higher the strength of the gels. In addition to pressure, there is a significant influence by the type of anions and the amount of added calcium salts. Gel strength increases in the order CaCl2 < Ca (NO3)2 < CaI2. This trend correlates with the position of the salts in the Hofmeister series. The results are explained by analogy with the thermal aggregate formation by taking reaction rates for unfolding and aggregation, as well as specific/non-specific salts effect into consideration. PMID:28231200

  17. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  18. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effects of high resistance-few repetitions and low resistance-high repetitions resistance training on climbing performance.

    PubMed

    Hermans, Espen; Andersen, Vidar; Saeterbakken, Atle Hole

    2017-05-01

    The aim of the study was to compare the effects of different strength training intensities on climbing performance, climbing-specific tests and a general strength test. Thirty lower grade and intermediate-level climbers participated in a 10-week training programme. The participants were randomized into three groups: high resistance-few repetitions training groups (HR-FR), low resistance-high repetitions training groups (LR-HR) and a control group (CON) which continued climbing/training as usual. Post-testing results demonstrated statistical tendencies for climbing performance improvements in the HR-FR and LR-HR (p = 0.088-0.090, effect size = 0.55-0.73), but no differences were observed between the groups (p = 0.950). For the climbing-specific tests, no differences were observed between the groups (p = 0.507-1.000), but the HR-FR and LR-HR improved their time in both Dead-hang (p = 0.004-0.026) and Bent-arm hang (p < 0.001-0.002). The HR-FR and LR-HR improved their 12RM strength in pull-down (p ≤ 0.001), but not the CON group (p = 0.250). No differences were observed in the CON group in any of the tests (p = 0.190-0.596) with the exception of improvement in Bent-arm Hang (p = 0.018). The training groups reduced their climbing sessions during the intervention compared to the CON group (p = 0.057-0.074). In conclusion, HR-FR and LR-HR training programmes demonstrated an 11% and 12% non-significant improvement in climbing performance despite a 50% reduction in climbing sessions, but improved the results in strength and climbing-specific tests. None of the training intensities was superior compared to the others.

  20. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  1. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.

    PubMed

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-07

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe 2 O 3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  2. High temperature cyclic oxidation data. Part 1: Turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.

    1989-01-01

    Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  3. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    NASA Astrophysics Data System (ADS)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine shield due to higher values of impact strength and specific perforation energy as highlighted by the test results.

  4. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  5. 46 CFR 164.018-5 - Specifications and standards incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specification MIL-C-43006 E (March 24, 1978), entitled “Cloth and Strip Laminated, Vinyl Nylon High Strength... amended by Amendment 2 of December 2, 1976. (2) Federal Specification L-S-300 B (July 12, 1974), entitled...” as amended May 1, 1974). (6) Federal Test Method Standard 370 (March 1, 1977), entitled “Instrumental...

  6. Egg shell quality in Japanese quail: characteristics, heritabilities and genetic and phenotypic relationships.

    PubMed

    Narinc, D; Aygun, A; Karaman, E; Aksoy, T

    2015-07-01

    The objective of the present study was to estimate heritabilities as well as genetic and phenotypic correlations for egg weight, specific gravity, shape index, shell ratio, egg shell strength, egg length, egg width and shell weight in Japanese quail eggs. External egg quality traits were measured on 5864 eggs of 934 female quails from a dam line selected for two generations. Within the Bayesian framework, using Gibbs Sampling algorithm, a multivariate animal model was applied to estimate heritabilities and genetic correlations for external egg quality traits. The heritability estimates for external egg quality traits were moderate to high and ranged from 0.29 to 0.81. The heritability estimates for egg and shell weight of 0.81 and 0.76 were fairly high. The genetic and phenotypic correlations between egg shell strength with specific gravity, shell ratio and shell weight ranging from 0.55 to 0.79 were relatively high. It can be concluded that it is possible to determine egg shell quality using the egg specific gravity values utilizing its high heritability and fairly high positive correlation with most of the egg shell quality traits. As a result, egg specific gravity may be the choice of selection criterion rather than other external egg traits for genetic improvement of egg shell quality in Japanese quails.

  7. School district wellness policy quality and weight-related outcomes among high school students in Minnesota

    PubMed Central

    Hoffman, Pamela K.; Davey, Cynthia S.; Larson, Nicole; Grannon, Katherine Y.; Hanson, Carlie; Nanney, Marilyn S.

    2016-01-01

    Weight-related outcomes were examined among high school students in Minnesota public school districts according to the quality of district wellness policies. Wellness policy strength and comprehensiveness were scored using the Wellness School Assessment Tool (WellSAT) for 325 Minnesota public school districts in 2013. The associations between WellSAT scores and district-level means of high school student responses to a statewide survey of health behaviors were examined in this ecologic study. WellSAT Total Strength and Total Comprehensiveness scores were positively associated with both student mean Body Mass Index (BMI) percentile (Strength: P = 0.018, Comprehensiveness: P = 0.031) and mean percent overweight or obese (Strength: P = 0.008, Comprehensiveness: P = 0.026), but only in districts with >50% of students eligible for Free or Reduced-Price Lunches (FRPLs), or ‘high FRPL districts’. WellSAT Physical Education and Physical Activity subscale scores were also positively associated with the mean days per week students engaged in physical activity for ≥ 60 min in high FRPL districts (Strength: P = 0.008, Comprehensiveness: P = 0.003) and in low FRPL districts (<35% eligible) for Strength score: (P = 0.027). In medium FRPL districts (35–50% eligible), Nutrition Education and Wellness Promotion Strength and Comprehensiveness subscale scores were positively associated with, respectively, daily servings of vegetables (P = 0.037) and fruit (P = 0.027); and WellSAT Total scores were positively associated with daily vegetable servings (Strength: P = 0.037, Comprehensiveness: P = 0.012). Administrators of economically disadvantaged school districts with a higher percentage of overweight students may be recognizing the need for stronger wellness policies and the specific importance of implementing policies pertaining to physical activity as a means to improve student health. PMID:26850060

  8. Personality Typology in Relation to Muscle Strength

    PubMed Central

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  9. Pressure vessel with improved impact resistance and method of making the same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor); Patterson, James E. (Inventor); Olson, Michael A. (Inventor)

    2010-01-01

    A composite overwrapped pressure vessel is provided which includes a composite overwrapping material including fibers disposed in a resin matrix. At least first and second kinds of fibers are used. These fibers typically have characteristics of high strength and high toughness to provide impact resistance with increased pressure handling capability and low weight. The fibers are applied to form a pressure vessel using wrapping or winding techniques with winding angles varied for specific performance characteristics. The fibers of different kinds are dispersed in a single layer of winding or wound in distinct separate layers. Layers of fabric comprised of such fibers are interspersed between windings for added strength or impact resistance. The weight percentages of the high toughness and high strength materials are varied to provide specified impact resistance characteristics. The resin matrix is formed with prepregnated fibers or through wet winding. The vessels are formed with or without liners.

  10. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  11. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    NASA Astrophysics Data System (ADS)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  12. Gross wood characteristics affecting properties of handsheets made from loblolly pine refiner groundwood

    Treesearch

    Charles W. McMillin

    1968-01-01

    Specific refining energy and gross wood properties accounted for as much as 90% of the total variation in strength of handsheets made from 96 pulps disk-refined from chips of varying characteristics. Burst, tear, and breaking length were increased by applying high specific refining energy and using fast-grown wood of high latewood content but of relatively low density...

  13. An examination of current practices and gender differences in strength and conditioning in a sample of varsity high school athletic programs.

    PubMed

    Reynolds, Monica L; Ransdell, Lynda B; Lucas, Shelley M; Petlichkoff, Linda M; Gao, Yong

    2012-01-01

    Currently, little is known about strength and conditioning programs at the high school level. Therefore, the purpose of this research was to explore current practices in strength and conditioning for varsity high school athletes in selected sports. The following were specifically examined: who administers programs for these athletes, what kinds of training activities are done, and whether the responsible party or emphasis changes depending on the gender of the athletes. Coaches of varsity soccer, basketball, softball, and baseball in 3 large Idaho school districts were asked to complete an online survey. Sixty-seven percent (32/48) of the questionnaires were completed and used for the study. The majority of coaches (84%) provided strength and conditioning opportunities for their athletes, although only 37% required participation. Strength training programs were designed and implemented primarily by either physical education teachers or head coaches. Compared with coaches of male athletes, coaches of female athletes were less likely to know the credentials of their strength coaches, and they were less likely to use certified coaches to plan and implement their strength and conditioning programs. Most programs included dynamic warm-ups and cool-downs, plyometrics, agility training, speed training, and conditioning, and most programs were conducted 3 d·wk(-1) (76%) for sessions lasting between 30 and 59 minutes (63%). Compared with their female counterparts, male athletes were more likely to have required training, participate in strength training year round, and train using more sessions per week. This study provides additional information related to the practice of strength and conditioning in a sample of high school athletic teams.

  14. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    PubMed Central

    Stigliano, Robert; Baker, Ian

    2015-01-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545

  15. Structural optimization of 3D-printed synthetic spider webs for high strength

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  16. Structural optimization of 3D-printed synthetic spider webs for high strength.

    PubMed

    Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J

    2015-05-15

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  17. High-Temperature Cyclic Oxidation Data, Volume 1

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Garlick, R. G.; Lowell, C. E.

    1984-01-01

    This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  18. Research and Development of High-Strength of Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Vakhromov, R. O.; Antipov, V. V.; Tkachenko, E. A.

    The paper is focused on high-strength alloys (UTS=600-650 MPa, specific strength (UTS/density) 220-230 kN•m/kg) which will allow one to retain aluminum's predominant position during the next 15-20 years as applied in advanced aircraft primary structures. Parameters of microstructure (dispersoids, precipitates, degree of recrystallisation, grain size) and properties of semiproducts were studied in dependence on content of base alloying elements in chemical compositions of alloys (total sum of Zn+Mg+Cu — higher than 10 % mass). Contribution of minor additions (Zr, Sc, Ag) to strengthening and creation of improved combination of service properties was investigated. Evolution of phase composition and properties was studied as a dependence of different aging treatments.

  19. Muscular strength and incident hypertension in normotensive and prehypertensive men.

    PubMed

    Maslow, Andréa L; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N

    2010-02-01

    The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. This study evaluated the strength-HTN association with and without accounting for CRF. Participants were 4147 men (age = 20-82 yr) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a one-repetition maximal leg and a one-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HR) and 95% confidence intervals of incident HTN events according to exposure categories. During a mean follow-up of 19 yr, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HR of HTN in normotensive men comparing middle- and high-strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HR of HTN in baseline prehypertensive men comparing middle- and high-strength thirds to the lowest third were significant at 0.73 and 0.72 (P = 0.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (P = 0.26). The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF.

  20. Adenovirus 36, Adiposity, and Bone Strength in Late-Adolescent Females

    PubMed Central

    Laing, Emma M; Tripp, Ralph A; Pollock, Norman K; Baile, Clifton A; Della-Fera, Mary Anne; Rayalam, Srujana; Tompkins, Stephen M; Keys, Deborah A; Lewis, Richard D

    2017-01-01

    Adenovirus 36 (Ad36) is the only adenovirus to date that has been linked with obesity in humans. Our previous studies in late-adolescent females suggest that excess weight in the form of fat mass is associated with lower cortical bone strength. The purpose of this study was to assess the relationship between Ad36-specific antibodies, adiposity, and bone strength in our sample of late-adolescent females. A cross-sectional study of 115 females aged 18 to 19 years was performed. Participants were classified according to adiposity by dual-energy X-ray absorptiometry (body fat percentage as normal-fat [<32% body fat; n=93] or high-fat [≥ 32% body fat; n=22]), and according to the presence of Ad36-specific neutralizing antibodies. Peripheral quantitative computed tomography measured bone parameters at the 4% (trabecular bone) and 20% (cortical bone) site, and muscle cross-sectional area (MCSA) at the 66% site, from the distal metaphyses of the radius and the tibia. Bone strength was determined from volumetric bone mineral density and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength–strain index (SSI; cortical site). After adjustment for MCSA and limb length, radial SSI was lower in Ad36+ versus Ad36− subjects from the high-fat group (p<0.03), but not the normal-fat group. No significant differences were observed between groups in tibial SSI or BSI. These data support an association of adiposity and cortical bone strength at the radius with the presence of neutralizing antibodies to Ad36 in late-adolescent females. PMID:23296755

  1. Axial-Compressive Behavior, Including Kink-Band Formation and Propagation, of Single p-Phenylene Terephthalamide (PPTA) Fibers

    DTIC Science & Technology

    2013-01-01

    material models to describe the behavior of fibers and structures under high -rate loading conditions. With the utility of the CAE methods and tools largely...phenylene terephthalamide (PPTA), available commercially as Kevlar, Twaron, Technora, and so forth, are characterized by high specific axial stiffness...and high specific tensile strength. These fibers are often referred to as “ballistic fibers” since they are commonly used in different ballistic- and

  2. A method to determine shear adhesive strength of fibrin sealants.

    PubMed

    Sierra, D H; Feldman, D S; Saltz, R; Huang, S

    1992-01-01

    The adhesive strength of fibrin sealants has not been rigorously evaluated to date. The adhesive strength of six different concentrations of cryoprecipitated fibrinogen as well as the commercially available fibrin tissue adhesive Tissucol was tested under controlled conditions utilizing split-thickness skin grafts as the test adherand. This test configuration permitted the modeling of bonding strength for attachment of skin grafts as well as incorporate established engineering test standards for adhesives. An increase in fibrin concentration corresponded with an increase in shear adhesive strength. No significant increases in adhesive strength were attained after 5 min of bonding for all tested concentrations, except for the commercial adhesive, which attained the adhesive strength of an equivalent concentration of cryoprecipitated adhesive after 90 min. The adhesive strength, however, was an order of magnitude less than reported values of the tensile strength of fibrin material for similar concentrations. Therefore, it is important that the surgeon use a sufficiently high fibrinogen concentration for the specific clinical indication. The method of fibrin sealant preparation and/or the compounding adjuncts appear to have an effect on the development of adhesive strength.

  3. Mono and Multivalency In Tethered Protein-Carbohydrate Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratto, T V; Langry, K C; Rudd, R E

    2004-01-29

    Molecular recognition in biological systems typically involves large numbers of interactions simultaneously. By using a multivalent approach, weak interactions with fairly low specificity can become strong highly specific interactions. Additionally, this allows an organism to control the strength and specificity of an interaction simply by controlling the number of binding molecules (or binding sites), which in turn can be controlled through transcriptional regulation.

  4. Fitness Testing Athletes

    PubMed Central

    Cumming, Gordon R.

    1970-01-01

    Fitness testing of athletes can be subdivided into tests of body build, strength, aerobic power, and tests specific to the athletic event. World class athletes seem to fall into specific body types for the individual events. The top athlete usually has very little of the endomorphic characteristics and should be lean. Strength testing should be used more frequently as weight and isometric training techniques are used by many athletes and coaches without specific goals. The aerobic power of many national class athletes may be only 10-30 percent above that of the general population, and high values were found only in cyclists and distance runners. It is emphasized that the scores of fitness tests are specific for each test and do not necessarily correlate at all with athletic performance which is also specific. Despite this limitation, fitness tests do have a place in athletics and should be utilized more fully and with more understanding by coaches and athletes. Imagesp48-a PMID:20468546

  5. Effect of polymer properties and adherend surfaces on adhesion

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1976-01-01

    High temperature polymer surface characteristics associated with joint strength were evaluated. Selected samples represented composite adherends, aluminum filler and fiber glass carrier cloth. Detailed analysis of fractured joint surfaces revealed unique characteristics typical of the specific adhesive formulations and test conditions. A fracture mechanism model was developed for correlating macroscopic shear strength and microstructure of fracture surfaces. Applications were made to unpublished data on polyimides and fluoropolymers.

  6. Soy Flour Adhesive Strength Compared with That of Purified Soy Proteins*

    Treesearch

    Linda Lorenz; Michael Birkeland; Chera Daurio; Charles R. Frihart

    2015-01-01

    Except for the substitution of soy flour in phenolic resins (Frihart et al. 2013) and the use of soy flour at high pHs (Lambuth 2003), the literature on soy protein properties for adhesives has mainly focused on soy protein isolate and specific protein fractions (Sun 2005b). The assumption is that proteins are the main portion of soy flour giving bond strength and the...

  7. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis.

    PubMed

    Sabag, Angelo; Najafi, Abdolrahman; Michael, Scott; Esgin, Tuguy; Halaki, Mark; Hackett, Daniel

    2018-04-16

    The purpose of this systematic review and meta-analysis is to assess the effect of concurrent high intensity interval training (HIIT) and resistance training (RT) on strength and hypertrophy. Five electronic databases were searched using terms related to HIIT, RT, and concurrent training. Effect size (ES), calculated as standardised differences in the means, were used to examine the effect of concurrent HIIT and RT compared to RT alone on muscle strength and hypertrophy. Sub-analyses were performed to assess region-specific strength and hypertrophy, HIIT modality (cycling versus running), and inter-modal rest responses. Compared to RT alone, concurrent HIIT and RT led to similar changes in muscle hypertrophy and upper body strength. Concurrent HIIT and RT resulted in a lower increase in lower body strength compared to RT alone (ES = -0.248, p = 0.049). Sub analyses showed a trend for lower body strength to be negatively affected by cycling HIIT (ES = -0.377, p = 0.074) and not running (ES = -0.176, p = 0.261). Data suggests concurrent HIIT and RT does not negatively impact hypertrophy or upper body strength, and that any possible negative effect on lower body strength may be ameliorated by incorporating running based HIIT and longer inter-modal rest periods.

  8. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  9. Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.

    PubMed

    Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J

    2018-01-01

    Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.

  10. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    PubMed

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  11. Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers.

    PubMed

    Wang, Sha; Jiang, Feng; Xu, Xu; Kuang, Yudi; Fu, Kun; Hitz, Emily; Hu, Liangbing

    2017-09-01

    With their impressive properties such as remarkable unit tensile strength, modulus, and resistance to heat, flame, and chemical agents that normally degrade conventional macrofibers, high-performance macrofibers are now widely used in various fields including aerospace, biomedical, civil engineering, construction, protective apparel, geotextile, and electronic areas. Those macrofibers with a diameter of tens to hundreds of micrometers are typically derived from polymers, gel spun fibers, modified carbon fibers, carbon-nanotube fibers, ceramic fibers, and synthetic vitreous fibers. Cellulose nanofibers are promising building blocks for future high-performance biomaterials and textiles due to their high ultimate strength and stiffness resulting from a highly ordered orientation along the fiber axis. For the first time, an effective fabrication method is successfully applied for high-performance macrofibers involving a wet-drawing and wet-twisting process of ultralong bacterial cellulose nanofibers. The resulting bacterial cellulose macrofibers yield record high tensile strength (826 MPa) and Young's modulus (65.7 GPa) owing to the large length and the alignment of nanofibers along fiber axis. When normalized by weight, the specific tensile strength of the macrofiber is as high as 598 MPa g -1 cm 3 , which is even substantially stronger than the novel lightweight steel (227 MPa g -1 cm 3 ). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multilaboratory study of the shifts in the IEP of anatase at high ionic strengths.

    PubMed

    Kosmulski, Marek; Dukhin, Andrei S; Priester, Torsten; Rosenholm, Jarl B

    2003-07-01

    The zeta-potentials of anatase at pH 2-11 in 0.1, 0.3, 0.5, and 1 moldm(-3) NaI were studied using the DT 1200 in three laboratories. At [NaI]=1 moldm(-3) the zeta-potentials were positive over the entire pH range. The previously observed tendency of the isoelectric point of anatase to shift to high pH at high ionic strength (M. Kosmulski, J.B. Rosenholm, J. Phys. Chem. 100 (1996) 11681) and the salt specificity of this effect were confirmed. The zeta-potentials obtained in different laboratories using DT 1200 are consistent within 3 mV.

  13. Nutrition guidelines for strength sports: sprinting, weightlifting, throwing events, and bodybuilding.

    PubMed

    Slater, Gary; Phillips, Stuart M

    2011-01-01

    Strength and power athletes are primarily interested in enhancing power relative to body weight and thus almost all undertake some form of resistance training. While athletes may periodically attempt to promote skeletal muscle hypertrophy, key nutritional issues are broader than those pertinent to hypertrophy and include an appreciation of the sports supplement industry, the strategic timing of nutrient intake to maximize fuelling and recovery objectives, plus achievement of pre-competition body mass requirements. Total energy and macronutrient intakes of strength-power athletes are generally high but intakes tend to be unremarkable when expressed relative to body mass. Greater insight into optimization of dietary intake to achieve nutrition-related goals would be achieved from assessment of nutrient distribution over the day, especially intake before, during, and after exercise. This information is not readily available on strength-power athletes and research is warranted. There is a general void of scientific investigation relating specifically to this unique group of athletes. Until this is resolved, sports nutrition recommendations for strength-power athletes should be directed at the individual athlete, focusing on their specific nutrition-related goals, with an emphasis on the nutritional support of training.

  14. Media Exchange.

    ERIC Educational Resources Information Center

    Friedstein, Harriet G., Ed.

    1983-01-01

    Reviews filmstrip/cassette recording materials titled "Reaction Rates: Molecules in Motion." Also reviews six college-level textbooks, addressing major strengths/weaknesses of texts under consideration with regard to their specific usefulness to high school chemistry teachers. (JN)

  15. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers

    DOE PAGES

    Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...

    2016-11-14

    Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less

  16. Flexural properties of structural lumber products after long-term exposure to high temperatures

    Treesearch

    Bruce A. Craig; David W. Green; David S. Gromala

    2006-01-01

    When wood fiber is exposed to significant heat, its strength decreases. It has long been known that prolonged heating at temperatures over 66°C (150°F) can cause a permanent loss in strength. The National Design Specification (NDS) provides factors (Ct) for adjusting allowable properties when structural wood members are exposed to temperatures between 38°C (100°F) and...

  17. Uncertainties in obtaining high reliability from stress-strength models

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Matthews, William T.; Vangel, Mark G.

    1992-01-01

    There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.

  18. Muscular Strength and Incident Hypertension in Normotensive and Prehypertensive Men

    PubMed Central

    Maslow, Andréa L.; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N.

    2009-01-01

    The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. Purpose This study evaluated the strength-HTN association with and without accounting for CRF. Methods Participants were 4147 men (20–82 years) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a 1-repetition maximal leg and a 1-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HRs) and 95% confidence intervals of incident HTN events according to exposure categories. Results During a mean follow-up of 19 years, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HRs of hypertension in normotensive men comparing middle and high strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HRs of hypertension in baseline prehypertensive men comparing middle and high strength thirds to the lowest third were significant at 0.73 and 0.72 (p=.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (p=.26). Conclusions The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF. PMID:19927030

  19. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlock, David K; Thomas, Larrin S; Taylor, Mark D

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. Inmore » response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.« less

  20. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood

    PubMed Central

    2011-01-01

    The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609

  1. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    NASA Astrophysics Data System (ADS)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  2. The effect of curing conditions on the durability of high performance concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  3. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  4. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    PubMed

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  5. School district wellness policy quality and weight-related outcomes among high school students in Minnesota.

    PubMed

    Hoffman, Pamela K; Davey, Cynthia S; Larson, Nicole; Grannon, Katherine Y; Hanson, Carlie; Nanney, Marilyn S

    2016-04-01

    Weight-related outcomes were examined among high school students in Minnesota public school districts according to the quality of district wellness policies. Wellness policy strength and comprehensiveness were scored using the Wellness School Assessment Tool (WellSAT) for 325 Minnesota public school districts in 2013. The associations between WellSAT scores and district-level means of high school student responses to a statewide survey of health behaviors were examined in this ecologic study. WellSAT Total Strength and Total Comprehensiveness scores were positively associated with both student mean Body Mass Index (BMI) percentile (Strength: P = 0.018, Comprehensiveness: P = 0.031) and mean percent overweight or obese (Strength: P = 0.008, Comprehensiveness: P = 0.026), but only in districts with > 50% of students eligible for Free or Reduced-Price Lunches (FRPLs), or 'high FRPL districts'. WellSAT Physical Education and Physical Activity subscale scores were also positively associated with the mean days per week students engaged in physical activity for ≥ 60 min in high FRPL districts (Strength: P = 0.008, Comprehensiveness: P = 0.003) and in low FRPL districts (< 35% eligible) for Strength score: (P = 0.027). In medium FRPL districts (35-50% eligible), Nutrition Education and Wellness Promotion Strength and Comprehensiveness subscale scores were positively associated with, respectively, daily servings of vegetables (P = 0.037) and fruit (P = 0.027); and WellSAT Total scores were positively associated with daily vegetable servings (Strength: P = 0.037, Comprehensiveness: P = 0.012). Administrators of economically disadvantaged school districts with a higher percentage of overweight students may be recognizing the need for stronger wellness policies and the specific importance of implementing policies pertaining to physical activity as a means to improve student health. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Influences on the formability and mechanical properties of 7000-aluminum alloys in hot and warm forming

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Nürnberger, F.; Bonk, C.; Hübner, S.; Behrens, S.; Vogt, H.

    2017-09-01

    Aluminum alloys of the 7000 series possess high lightweight potential due to their high specific tensile strength combined with a good ultimate elongation. For this reason, hot-formed boron-manganese-steel parts can be substituted by these alloys. Therefore, the application of these aluminum alloys for structural car body components is desired to decrease the weight of the body in white and consequently CO2 emissions during vehicle operation. These days, the limited formability at room temperature limits an application in the automobile industry. By increasing the deformation temperature, formability can be improved. In this study, two different approaches to increase the formability of these alloys by means of higher temperatures were investigated. The first approach is a warm forming route to form sheets in T6 temper state with high tensile strength at temperatures between 150 °C and 300 °C. The second approach is a hot forming route. Here, the material is annealed at solution heat treatment temperature and formed directly after the annealing step. Additionally, a quench step is included in the forming stage. After the forming and quenching step, the sheets have to be artificially aged to achieve the high specific tensile strength. In this study, several parameters in the presented process routes, which influence the formability and the mechanical properties, have been investigated for the aluminum alloys EN AW7022 and EN AW7075.

  7. Structural optimization of 3D-printed synthetic spider webs for high strength

    PubMed Central

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-01-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372

  8. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  9. Integrally rigidized acoustic interior spacecraft panel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  10. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults.

    PubMed

    Granacher, Urs; Muehlbauer, Thomas; Zahner, Lukas; Gollhofer, Albert; Kressig, Reto W

    2011-05-01

    Demographic change in industrialized countries produced an increase in the proportion of elderly people in our society, resulting in specific healthcare challenges. One such challenge is how to effectively deal with the increased risk of sustaining a fall and fall-related injuries in old age. Deficits in postural control and muscle strength represent important intrinsic fall risk factors. Thus, adequate training regimens need to be designed and applied that have the potential to reduce the rate of falling in older adults by countering these factors. Therefore, the purpose of this review is to compare traditional and recent approaches in the promotion of balance and strength in older adults. Traditionally, balance and resistance training programmes proved to be effective in improving balance and strength, and in reducing the number of falls. Yet, it was argued that these training protocols are not specific enough to induce adaptations in neuromuscular capacities that are specifically needed in actual balance-threatening situations (e.g. abilities to recover balance and to produce force explosively). Recent studies indicated that perturbation-based or multitask balance training and power/high-velocity resistance training have the potential to improve these specific capacities because they comply with the principle of training specificity. In fact, there is evidence that these specifically tailored training programmes are more effective in improving balance recovery mechanisms and muscle power than traditional training protocols. A few pilot studies have even shown that these recently designed training protocols have an impact on the reduction of fall incidence rate in older adults. Further research is needed to confirm these results and to elucidate the underlying mechanisms responsible for the adaptive processes.

  11. Analysis of Tests Evaluating Sport Climbers’ Strength and Isometric Endurance

    PubMed Central

    Ozimek, Mariusz; Staszkiewicz, Robert; Rokowski, Robert

    2016-01-01

    Abstract The present study was designed to determine which types of specific tests provide an effective evaluation of strength and endurance in highly trained competitive sport climbers. The research process consisted of three basic components: the measurement of selected somatic characteristics of the climbers, the assessment of their physical conditioning, and a search for correlations between the anthropometric and “conditioning” variables on the one hand, and climber’s performance on the other. The sample of subjects consisted of 14 experienced volunteer climbers capable of handling 7a- 8a+/b on-sight rock climbing grades. The strongest correlations (Spearman’s rank) were found between climber’s competence and the relative results of the finger strength test (r = 0.7); much lower, but still statistically significant coefficients were found between the level of competence and the results of the muscle endurance tests (r = 0.53 – 0.57). Climbers aspiring to attain an elite level must have strong finger and forearm muscles, but most of all, they must be capable of releasing their potential during specific motor capability tests engaging these parts of the body. The forearm muscles of elite climbers must also be very resistant to fatigue. Since highly trained athletes vary only slightly in body mass, this variable does not have a major effect on their performance during strength and endurance tests. PMID:28149428

  12. Specific Physical Training in Elite Male Team Handball.

    PubMed

    Wagner, Herbert; Gierlinger, Manuel; Adzamija, Nermin; Ajayi, Samuel; Bacharach, David W; von Duvillard, Serge P

    2017-11-01

    Wagner, H, Gierlinger, M, Adzamija, N, Ajayi, S, Bacharach, DW, and von Duvillard, SP. Specific physical training in elite male team handball. J Strength Cond Res 31(11): 3083-3093, 2017-Specific physical training in elite team handball is essential for optimal player's performance; however, scientific knowledge is generally based on temporary training studies with subelite athletes. Therefore, the aim of the study was to analyze the effects of specific physical training in an elite male handball team over the entire season. Twelve players of a male handball team from the First Austrian Handball League conducted a 1-year specific physical training program in addition to their normal (team handball techniques and tactics) weekly training. Performance was measured with 5 general and 4 specific tests as well as game statistics during competition. Repeated measures analysis of variances and paired sample t-test were used to analyze differences in performance during training. We found a significant increase in oxygen uptake, offense time, defense time, fast break time, and jump height in the specific tests. Game performance statistics revealed a lower throwing percentage in the hosting team (59%) compared with the rival teams (63%). Our results indicated that specific endurance and agility are an acceptable modality in elite male team handball. However, performance in competition is strongly influenced by specific techniques and tactics. We recommend to strength and conditioning professionals that they tailor strength and power training, coordination and endurance as specific as possible, using free weights, agility exercises that include change in direction and jumps as well as short (10-15 seconds) high-intensity intervals.

  13. Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.

    2012-06-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  14. Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury

    2011-01-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  15. Association between Race, Household Income and Grip Strength in Middle- and Older-Aged Adults.

    PubMed

    Thorpe, Roland J Jr; Simonsick, Eleanor; Zonderman, Alan; Evans, Michelle K

    2016-10-20

    Poor grip strength is an indicator of frailty and a precursor to functional limitations. Although poor grip strength is more prevalent in older disabled African American women, little is known about the association between race and poverty-related disparities and grip strength in middle-aged men and women. We examined the cross-sectional relationship between race, socioeconomic status as assessed by household income, and hand grip strength in men and women in the Healthy Aging in Neighborhoods of Diversity across the Life Span study. General linear models examined grip strength (maximum of two trials on both sides) by race and household income adjusted for age, weight, height, hand pain, education, insurance status, family income, and two or more chronic conditions. Of 2,091 adults, 422(45.4%) were male, 509(54.8%) were African American, and 320 (34.5%) were living in households with incomes below 125% of the federal poverty level (low SES). In adjusted models, African American women had greater grip strength than White women independent of SES (low income household: 29.3 vs 26.9 kg and high income household: 30.5 vs. 28.3kg; P<.05 for both); whereas in men, only African Americans in the high income household group had better grip strength than Whites (46.3 vs. 43.2; P<.05). The relationship between grip strength, race and SES as assessed by household income varied in this cohort. Efforts to develop grip strength norms and cut points that indicate frailty and sarcopenia may need to be race- and income-specific.

  16. Specific binding of (/sup 3/H-Tyr8)physalaemin to rat submaxillary gland substance P receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Lazaro, D.M.; Brundish, D.E.

    1985-01-01

    (/sup 3/H)Physalaemin ((/sup 3/H)PHY) binds to a single class of noninteracting sites on rat submaxillary gland membranes suspended in high ionic strength media with a KD of 2.7 nM, a Bmax of 240 fmol/mg of protein, and low nonspecific binding. The relative potencies of substance P (SP) and its fragments in competing with (/sup 3/H)PHY correlate with their relative salivation potencies. This indicates that (/sup 3/H)PHY interacts with a physiologically relevant SP receptor. In low ionic strength media, the KD of (/sup 3/H)PHY does not change, but SP and some of its fragments are more potent than PHY in competingmore » with (/sup 3/H) PHY. Computer-assisted analysis of (/sup 3/H)PHY and (/sup 3/H)SP binding in high and low ionic strength media demonstrated that both peptides are equipotent in high ionic strength but that the affinity of SP increases by 70-fold in low ionic strength. The SP fragments that contain a basic residue in positions 1 and/or 3 also display an increased affinity in low ionic strength. These findings document that (/sup 3/H)PHY binding in high ionic strength (mu . 0.6) accurately reflects the pharmacological potencies of agonists on the SP-P receptor. The binding of (/sup 3/H)PHY, like that of (/sup 3/H)SP, increases by the addition of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+). Guanine nucleotides decrease (/sup 3/H)PHY binding by decreasing the Bmax to the same level (160 fmol/mg of protein), in the presence or absence of Mg2+.« less

  17. A high-specific-strength and corrosion-resistant magnesium alloy

    NASA Astrophysics Data System (ADS)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  18. A high-specific-strength and corrosion-resistant magnesium alloy.

    PubMed

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  19. Microsample Characterization of Coatings for GRCop-84 for High Temperature High Heat Flux Application

    NASA Technical Reports Server (NTRS)

    Jain, Piyush; Hemker, Kevin J.; Raj, Sai V.

    2004-01-01

    NASA's Glenn Research Center has developed GRCop-84 (Cu-8at.%Cr-4% Nb), a high conductivity, high strength copper alloy for use as liners in rocket engine combustion chambers, nozzle ramps and other actively-cooled components subject to high heat fluxes. Two metallic coatings, NiCrAlY and Cu-26%Cr, are being considered for preventing blanching, reducing 'dog- house' failures and providing better environmental resistance to the GRCop-84 liners. This presentation will outline a study of coating-substrate interactions that occur as a result of thermal cycling and coating specific properties at different temperatures. A furnace has been built to thermally cycle the samples under argon. The microsample testing approach is being used to measure the coating-substrate interfacial strength. Cu-26Cr/GRCop-84 samples did not show any obvious interdiffusion after 300 thermal cycles. Interfacial strength tests of these samples were affected by porosity present in the samples. A complete set of observations and results for Cu-26Cr and NiCrAlY coatings will be presented.

  20. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  1. The Kinetic Specificity of Plyometric Training: Verbal Cues Revisited

    PubMed Central

    Louder, Talin; Bressel, Megan; Bressel, Eadric

    2015-01-01

    Plyometric training is a popular method utilized by strength and conditioning professionals to improve aspects of functional strength. The purpose of this study was to explore the influence of extrinsic verbal cueing on the specificity of jumping movements. Thirteen participants (age: 23.4 ± 1.9 yr, body height: 170.3 ± 15.1 cm, body mass: 70.3 ± 23.8 kg,) performed four types of jumps: a depth jump “as quickly as possible” (DJT), a depth jump “as high as possible” (DJH), a countermovement jump (CMJ), and a squat jump (SJ). Dependent measures, which included measurement of strength and power, were acquired using a force platform. From the results, differences in body-weight normalized peak force (BW) (DJH: 4.3, DJT: 5.6, CMJ: 2.5, SJ: 2.2), time in upward propulsion (s) (DJH: 0.34, DJT: 0.20, CMJ: 0.40, SJ: 0.51), and mean acceleration (m·s-2) (DJH: 26.7, DJT: 36.2, CMJ: 19.8, SJ: 17.3) were observed across all comparisons (p = 0.001 – 0.033). Differences in the body-weight normalized propulsive impulse (BW·s) (DJH: 0.55, DJT: 0.52, CMJ: 0.39, SJ: 0.39) and propulsive power (kW) (DJH: 13.7, DJT: 16.5, CMJ: 11.5, SJ: 12.1) were observed across all comparisons (p = 0.001 – 0.050) except between the CMJ and SJ (p = 0.128 – 0.929). The results highlight key kinetic differences influencing the specificity of plyometric movements and suggest that verbal cues may be used to emphasize the development of reactive strength (e.g. DJT) or high-velocity concentric power (e.g. DJH). PMID:26839620

  2. Hierarchical Nafion enhanced carbon aerogels for sensing applications

    NASA Astrophysics Data System (ADS)

    Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun

    2016-02-01

    This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08631k

  3. Material selection indices for design of surgical instruments with long tubular shafts.

    PubMed

    Nelson, Carl A

    2013-02-01

    In any medical device design process, material selection plays an important role. For devices which sustain mechanical loading, strength and stiffness requirements can be significant drivers of the design. This paper examines the specific case of minimally invasive surgical instruments, including robotic instruments, having long, tubular shafts. Material properties-based selection indices are derived for achieving high performance of these devices in terms of strength and stiffness, and the use of these indices for informing the medical device design problem is illustrated.

  4. 46 CFR 160.135-5 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Polyester, High Strength, Flexible, (May 13, 1997), IBR approved for §§ 160.135-7 and 160.135-15. (“A-A... Specification for Carbon Structural Steel, (approved May 15, 2008), IBR approved for §§ 160.135-7 and 160.135-15 (“ASTM A 36”). (2) ASTM A 276-08a, Standard Specification for Stainless Steel Bars and Shapes, (approved...

  5. 46 CFR 160.135-5 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Polyester, High Strength, Flexible, (May 13, 1997), IBR approved for §§ 160.135-7 and 160.135-15. (“A-A... Specification for Carbon Structural Steel, (approved May 15, 2008), IBR approved for §§ 160.135-7 and 160.135-15 (“ASTM A 36”). (2) ASTM A 276-08a, Standard Specification for Stainless Steel Bars and Shapes, (approved...

  6. Identification and management of filament-wound case stiffness parameters

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Rheinfurth, M.

    1983-01-01

    The high specific strength and the high specific modules made graphite epoxy laminate an expedient material substitute for the Shuttle Solid Rocket Motor steel case to substantially increase the payload performance without increasing the composite case axial growth during thrust build up which was constrained to minimize liftoff excitation effects on existing structural elements and interfaces. Parameters associated with axial growth were identified for quality and manufacturing controls. Included is an innovative method for experimentally verifying extensional elastic properties on a laminate pressurized test bottle.

  7. Correcting the use of the term "power" in the strength and conditioning literature.

    PubMed

    Knudson, Duane V

    2009-09-01

    Many strength and conditioning papers have incorrectly adopted the colloquial use of the term "power" as a measure of short-term, high-intensity muscular performance despite a long history of research and editorials critical of this practice. This has lead to confusion, incorrect interpretations, and conflicting results in the literature. This paper summarizes the scientific evidence on external mechanical power as a short-term, high-intensity neuromuscular (anaerobic) performance or training variable. Many problems in the measurement and use of power in strength and conditioning research were identified, as well as problems in the use of the vertical jump as a field test of power. A critical review of the biomechanics, measurement, and training research does not support this colloquial use of the term "power." More research is needed that improves our understanding of the domains of muscular strength or neuromuscular performance, as well as partial correlation and multiple regression analyses to document the unique associations between these domains, biomechanical variables, training effects, and sport performance. Strength and conditioning research should limit the use of the term power to the true mechanical definition and provide several specific and measurement details on this measurement.

  8. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCTstudy

    PubMed Central

    Määttä, M.; Macdonald, H. M.; Mulpuri, K.

    2016-01-01

    Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041

  9. Graded High-Strength Spring-Steels by a Special Inductive Heat T reatment

    NASA Astrophysics Data System (ADS)

    Tump, A.; Brandt, R.

    2016-03-01

    A method for effective lightweight design is the use of materials with high specific strength. As materials e.g. titanium are very expensive, steel is still the most important material for manufacturing automotive components. Steel is cost efficient, easy to recycle and its tensile strength easily exceeds 2,000 MPa by means of modern QT-technology (Quenched and Tempered). Therefore, lightweight design is still feasible in spite of the high density of steel. However, a further increase of tensile strength is limited, especially due to an increasing notch sensitivity and exposure to a corrosive environment. One solution is a special QT-process for steel, which creates a hardness gradient from the surface to the core of the material. This type of tailored material possesses a softer layer, which improves material properties such as fracture toughness and notch sensitivity. This leads to a better resistance to stress corrosion cracking and corrosion fatigue. Due to this optimization, a weight reduction is feasible without the use of expensive alloying elements. To understand the damage mechanism a comprehensive testing procedure was performed on homogeneous and gradient steels. Some results regarding the fracture mechanic behavior of such steels will be discussed.

  10. Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2018-03-01

    Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.

  11. Mechanical Properties of Steel Encapsulated Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying

    This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.

  12. High-voltage electrical burn injuries: functional upper extremity assessment.

    PubMed

    Mazzetto-Betti, K C; Amâncio, A C G; Farina, J A; Barros, M E P M; Fonseca, M C R

    2009-08-01

    High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients' records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p<0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p<0.001) as well as the relationship between the three pinch types (p

  13. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study.

    PubMed

    Andersen, Kasper; Rasmussen, Finn; Held, Claes; Neovius, Martin; Tynelius, Per; Sundström, Johan

    2015-09-16

    To investigate the associations of exercise capacity and muscle strength in late adolescence with risk of vascular disease and arrhythmia. Cohort study. General population in Sweden. 1.1 million men who participated in mandatory military conscription between 1 August 1972 and 31 December 1995, at a median age of 18.2 years. Participants were followed until 31 December 2010. Associations between exercise capacity and muscle strength with risk of vascular disease and subgroups (ischaemic heart disease, heart failure, stroke, and cardiovascular death) and risk of arrhythmia and subgroups (atrial fibrillation or flutter, bradyarrhythmia, supraventricular tachycardia, and ventricular arrhythmia or sudden cardiac death). Maximum exercise capacity was estimated by the ergometer bicycle test, and muscle strength was measured as handgrip strength by a hand dynamometer. High exercise capacity or muscle strength was deemed as above the median level. During a median follow-up of 26.3 years, 26 088 vascular disease events and 17 312 arrhythmia events were recorded. Exercise capacity was inversely associated with risk of vascular disease and its subgroups. Muscle strength was also inversely associated with vascular disease risk, driven by associations of higher muscle strength with lower risk of heart failure and cardiovascular death. Exercise capacity had a U shaped association with risk of arrhythmia, driven by a direct association with risk of atrial fibrillation and a U shaped association with bradyarrhythmia. Higher muscle strength was associated with lower risk of arrhythmia (specifically, lower risk of bradyarrhythmia and ventricular arrhythmia). The combination of high exercise capacity and high muscle strength was associated with a hazard ratio of 0.67 (95% confidence interval 0.65 to 0.70) for vascular events and 0.92 (0.88 to 0.97) for arrhythmia compared with the combination of low exercise capacity and low muscle strength. Exercise capacity and muscle strength in late adolescence are independently and jointly associated with long term risk of vascular disease and arrhythmia. The health benefit of lower risk of vascular events with higher exercise capacity was not outweighed by higher risk of arrhythmia. © Andersen et al 2015.

  14. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    PubMed

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  15. Sex differences in response to maximal eccentric exercise.

    PubMed

    Sewright, Kimberly A; Hubal, Monica J; Kearns, Amy; Holbrook, Mariko T; Clarkson, Priscilla M

    2008-02-01

    This study examined sex differences in strength loss, muscle soreness, and serum creatine kinase (CK) and myoglobin (Mb) after high-intensity eccentric exercise of the elbow flexors in a large group of men and women. One hundred participants (58 women, 42 men) performed 50 maximal eccentric contractions of the elbow flexor muscles of their nondominant arm. Maximum isometric voluntary contraction (MVC) was recorded at baseline, immediately after exercise, and at 0.5 (12-14 h), 3, 4, 7, and 10 d after exercise. Blood samples for serum CK activity and Mb were taken at baseline and at 4, 7, and 10 d after exercise. Soreness was evaluated at baseline and at 0.5, 3, 4, 7, and 10 d after exercise. Women experienced significantly greater relative strength loss immediately after exercise (-57.8% +/- 19.1) than men (-50.4% +/- 16.9%) (independent t-test; P < or = 0.05), and a greater percentage of women experienced more than 70% strength loss immediately after exercise compared with men (34.4% of women; 7.1% of men). Men exhibited a larger CK response compared with women (ANCOVA; P < or = 0.05), partly because there were more men who were high responders. There were no significant differences between the sexes for serum Mb or soreness measures. Generally, stronger relationships among CK, soreness, and strength-loss measures were found in men compared with women (r = 0.55-0.59 for men; r = 0.12-0.49 for women). In response to eccentric exercise, women experienced greater immediate strength loss than men and were more likely to be high responders for immediate strength loss; men experienced greater serum CK activity than women and were more likely to be high responders for increased serum CK. Although the explanation for high responders to eccentric exercise remains unknown, we have shown that there are sex-specific differences in CK and strength-loss response after eccentric exercise.

  16. Analysis of Clinicians' Perceptual Cough Evaluation.

    PubMed

    Laciuga, Helena; Brandimore, Alexandra E; Troche, Michelle S; Hegland, Karen W

    2016-08-01

    This study examined the relationships between subjective descriptors and objective airflow measures of cough. We hypothesized that coughs with specific airflow characteristics would share common subjective perceptual descriptions. Thirty clinicians (speech-language pathologists, otolaryngologists, and neurologists) perceptually evaluated ten cough audio samples with specific airflow characteristics determined by peak expiratory flow rate, cough expired volume, cough duration, and number of coughs in the cough epoch. Participants rated coughs by strength, duration, quality, quantity, and overall potential effectiveness for airway protection. Perception of cough strength and effectiveness was determined by the combination of presence of pre-expulsive compression phase, short peak expiratory airflow rate rise time, high peak expiratory flow rates, and high cough volume acceleration. Perception of cough abnormality was defined predominantly by descriptors of breathiness and strain. Breathiness was characteristic for coughs with either absent compression phases and relatively high expiratory airflow rates or coughs with significantly low expired volumes and reduced peak flow rates. In contrast, excessive strain was associated with prolonged compression phases and low expiratory airflow rates or the absence of compression phase with high peak expiratory rates. The study participants reached greatest agreement in distinguishing between single and multiple coughs. Their assessment of cough strength and effectiveness was less consistent. Finally, the least agreement was shown in determining the quality categories. Modifications of cough airflow can influence perceptual cough evaluation outcomes. However, the inconsistency of cough ratings among our participants suggests that a uniform cough rating system is required.

  17. Children's exercise behavior: the moderating role of habit processes within the theory of planned behavior.

    PubMed

    Hashim, H A; Jawis, M N; Wahat, A; Grove, J R

    2014-01-01

    The moderating effect of exercise habit strength and specific habit processes within the theory of planned behavior (TPB) was tested in children. Participants were primary school students (N = 380, mean age = 10.46 ± .52). The data were collected using self-report measures followed by one-mile run test performance. Data were analyzed using structural equation modeling. The findings revealed that 34, 57, and 9% of students could be classified as low, moderate, and high in PA, respectively. Path analysis for the overall model revealed significant path loadings (p = < .05), except for the attitude-intention path. Moderating effects results revealed that strong habit strength extinguished the effects of intention on PA. Habit strength has the potential to minimize the deliberate processes associated with intention to exercise, thereby increasing the probability of intention-behavior translation. For specific habit processes, only negative affect appears to moderate the relationships between the TPB variables.

  18. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    NASA Astrophysics Data System (ADS)

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22-0.58 MPa tensile strength, 1.02-7.62 MPa compressive strength, and 817-1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials.

  19. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    DOE PAGES

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; ...

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less

  20. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    PubMed Central

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-01-01

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼1 GPa, excellent ductility (∼60–70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip. PMID:26647978

  1. The strain-rate sensitivity of high-strength high-toughness steels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate.more » Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.« less

  2. Development of Specifications for Engineered Cementitious Composites for Use in Bridge Deck Overlays

    DOT National Transportation Integrated Search

    2016-02-01

    Engineered cementitious composite (ECC) material is a high strength, fiber-reinforced, ductile mortar mixture that can exhibit tensile strains of up to 5%. ECC has a dense matrix, giving the material exceptional durability characteristics. The durabi...

  3. The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players

    PubMed Central

    Deivert, Richard G.; Hagerman, Frederick; Gilders, Roger

    2001-01-01

    Objective: To compare the effects of low doses of creatine and creatine loading on strength, urinary creatinine concentration, and percentage of body fat. Design and Setting: Division IA collegiate football players took creatine monohydrate for 10 weeks during a sport-specific, periodized, off-season strength and conditioning program. One-repetition maximum (1-RM) squat, urinary creatinine concentrations, and percentage of body fat were analyzed. Subjects: Twenty-five highly trained, Division IA collegiate football players with at least 1 year of college playing experience. Measurements: We tested strength with a 1-RM squat exercise before, during, and after creatine supplementation. Percentage of body fat was measured by hydrostatic weighing before and after supplementation. Urinary creatinine concentration was measured via light spectrophotometer at 0, 1, 3, 7, 14, 21, 28, 35, 42, 48, 56, and 63 days. An analysis of variance with repeated measures was computed to compare means for all variables. Results: Creatine supplementation had no significant group, time, or interaction effects on strength, urinary creatinine concentration, or percentage of body fat. However, significant time effects were found for 1-RM squat and fat-free mass in all groups. Conclusions: Our data suggest that creatine monohydrate in any amount does not have any beneficial ergogenic effects in highly trained collegiate football players. However, a proper resistance training stimulus for 10 weeks can increase strength and fat-free mass in highly trained athletes. PMID:12937451

  4. Morphology and properties of low-carbon bainite

    NASA Astrophysics Data System (ADS)

    Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y.

    1990-03-01

    Morphology of low-carbon bainite in commercial-grade high-tensile-strength steels in both isothermal transformation and continuous cooling transformation is lathlike ferrite elongated in the <11l>b direction. Based on carbide distribution, three types of bainites are classified: Type I, is carbide-free, Type II has fine carbide platelets lying between laths, and Type III has carbides parallel to a specific ferrite plane. At the initial stage of transformation, upper bainitic ferrite forms a subunit elongated in the [-101]f which is nearly parallel to the [lll]b direction with the cross section a parallelogram shape. Coalescence of the subunit yields the lathlike bainite with the [-101]f growth direction and the habit plane between (232)f and (lll)f. Cementite particles precipitate on the sidewise growth tips of the Type II bainitic ferrite subunit. This results in the cementite platelet aligning parallel to a specific ferrite plane in the laths after coalescence. These morphologies of bainites are the same in various kinds of low-carbon high-strength steels. The lowest brittle-ductile transition temperature and the highest strength were obtained either by Type III bainite or bainite/martensite duplex structure because of the crack path limited by fine unit microstructure. It should also be noted that the tempered duplex structure has higher strength than the tempered martensite in the tempering temperature range between 200 °C and 500 °C. In the case of controlled rolling, the accelerated cooling afterward produces a complex structure comprised of ferrite, cementite, and martensite as well as BI-type bainite. Type I bainite in this structure is refined by controlled rolling and plays a very important role in improving the strength and toughness of low-carbon steels.

  5. An overview of very high level software design methods

    NASA Technical Reports Server (NTRS)

    Asdjodi, Maryam; Hooper, James W.

    1988-01-01

    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.

  6. Evaluation and construction of diagnostic criteria for inclusion body myositis

    PubMed Central

    Mammen, Andrew L.; Amato, Anthony A.; Weiss, Michael D.; Needham, Merrilee

    2014-01-01

    Objective: To use patient data to evaluate and construct diagnostic criteria for inclusion body myositis (IBM), a progressive disease of skeletal muscle. Methods: The literature was reviewed to identify all previously proposed IBM diagnostic criteria. These criteria were applied through medical records review to 200 patients diagnosed as having IBM and 171 patients diagnosed as having a muscle disease other than IBM by neuromuscular specialists at 2 institutions, and to a validating set of 66 additional patients with IBM from 2 other institutions. Machine learning techniques were used for unbiased construction of diagnostic criteria. Results: Twenty-four previously proposed IBM diagnostic categories were identified. Twelve categories all performed with high (≥97%) specificity but varied substantially in their sensitivities (11%–84%). The best performing category was European Neuromuscular Centre 2013 probable (sensitivity of 84%). Specialized pathologic features and newly introduced strength criteria (comparative knee extension/hip flexion strength) performed poorly. Unbiased data-directed analysis of 20 features in 371 patients resulted in construction of higher-performing data-derived diagnostic criteria (90% sensitivity and 96% specificity). Conclusions: Published expert consensus–derived IBM diagnostic categories have uniformly high specificity but wide-ranging sensitivities. High-performing IBM diagnostic category criteria can be developed directly from principled unbiased analysis of patient data. Classification of evidence: This study provides Class II evidence that published expert consensus–derived IBM diagnostic categories accurately distinguish IBM from other muscle disease with high specificity but wide-ranging sensitivities. PMID:24975859

  7. UHPC for Blast and Ballistic Protection, Explosion Testing and Composition Optimization

    NASA Astrophysics Data System (ADS)

    Bibora, P.; Drdlová, M.; Prachař, V.; Sviták, O.

    2017-10-01

    The realization of high performance concrete resistant to detonation is the aim and expected outcome of the presented project, which is oriented to development of construction materials for larger objects as protective walls and bunkers. Use of high-strength concrete (HSC / HPC - “high strength / performance concrete”) and high-fiber reinforced concrete (UHPC / UHPFC -“Ultra High Performance Fiber Reinforced Concrete”) seems to be optimal for this purpose of research. The paper describes the research phase of the project, in which we focused on the selection of specific raw materials and chemical additives, including determining the most suitable type and amount of distributed fiber reinforcement. Composition of UHPC was optimized during laboratory manufacture of test specimens to obtain the best desired physical- mechanical properties of developed high performance concretes. In connection with laboratory testing, explosion field tests of UHPC specimens were performed and explosion resistance of laboratory produced UHPC testing boards was investigated.

  8. Environment-friendly wood fibre composite with high bonding strength and water resistance

    PubMed Central

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi

    2018-01-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications. PMID:29765653

  9. Environment-friendly wood fibre composite with high bonding strength and water resistance

    NASA Astrophysics Data System (ADS)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  10. Associations of physical activity duration, frequency, and load with volumetric BMD, geometry, and bone strength in young girls

    PubMed Central

    Farr, Joshua N.; Blew, Robert M.; Lee, Vinson R.; Lohman, Timothy G.; Going, Scott B.

    2011-01-01

    Purpose This study evaluated the associations of physical activity (PA) duration, frequency, load, and their interaction (total PA score = duration × frequency × load) with volumetric bone mineral density, geometry, and indices of bone strength in young girls. Methods 465 girls (aged 8–13 years) completed a past year physical activity questionnaire (PYPAQ) which inquires about the frequency (days/week) and duration (average minutes/session) of leisure-time PA and sports. Load (peak strain score) values were assigned to each activity based on ground reaction forces. Peripheral quantitative computed tomography was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia of the non-dominant leg. Results Correlations across all skeletal sites between PA duration, frequency, load and periosteal circumference (PC), bone strength index (BSI), and strength-strain index (SSI) were significant (p ≤ 0.05), although low (0.10–0.17). A 2.7–3.7% greater PC across all skeletal sites was associated with a high compared to a low PYPAQ score. Also, a high PYPAQ score was associated with greater BSI (6.5–8.7%) at metaphyseal sites and SSI (7.5–8.1%) at diaphyseal sites of the femur and tibia. The effect of a low PYPAQ score on bone geometric parameters and strength was greater than a high PYPAQ score. Conclusions PA duration, frequency, and load were all associated with bone geometry and strength, although their independent influences were modest and site specific. Low levels of PA may compromise bone development whereas high levels have only a small benefit over more average levels. PMID:20694457

  11. Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA.

    PubMed

    Comas-Garcia, Mauricio; Datta, Siddhartha Ak; Baker, Laura; Varma, Rajat; Gudla, Prabhakar R; Rein, Alan

    2017-07-20

    Selective packaging of HIV-1 genomic RNA (gRNA) requires the presence of a cis -acting RNA element called the 'packaging signal' (Ψ). However, the mechanism by which Ψ promotes selective packaging of the gRNA is not well understood. We used fluorescence correlation spectroscopy and quenching data to monitor the binding of recombinant HIV-1 Gag protein to Cy5-tagged 190-base RNAs. At physiological ionic strength, Gag binds with very similar, nanomolar affinities to both Ψ-containing and control RNAs. We challenged these interactions by adding excess competing tRNA; introducing mutations in Gag; or raising the ionic strength. These modifications all revealed high specificity for Ψ. This specificity is evidently obscured in physiological salt by non-specific, predominantly electrostatic interactions. This nonspecific activity was attenuated by mutations in the MA, CA, and NC domains, including CA mutations disrupting Gag-Gag interaction. We propose that gRNA is selectively packaged because binding to Ψ nucleates virion assembly with particular efficiency.

  12. Progress study of Micro Carbon Coils

    NASA Astrophysics Data System (ADS)

    Wang, Haiquan; Yang, Shaoming; Chen, Xiuqin

    2017-12-01

    As a kind of novel bio-mimetic carbon fibers, with diversities of high functions, carbon microcoils (CMC) have the outstanding properties of high specific strength, low-density, large specific surface area, heat resistance, corrosion resistance, chemical stability, conductive ability and thermal conductivity. Due to their special three-dimensional spiral structure, they have the chiral characteristics and a high flexibility. Carbon microcoils has become a research hotspot, especially the preparation of polymer-based carbon microcoils composite materials and they have wide more application such as flexible sensors, electromagnetic shielding materials, hydrogen storage materials, health care products and so on.

  13. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    PubMed

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively) than that of the spike-jump (39% and 34% of the explained variance for validation and cross-validation subsample, respectively). Differences between prediction models calculated for males and females are mostly explained by gender-specific biomechanics of jumping. Study defined importance of knee-isokinetic-strength in volleyball jumping performance in female athletes. Further studies should evaluate association between ankle-isokinetic-strength and volleyball-specific jumping performances. Results reinforce the need for the cross-validation of the prediction-models in sport and exercise sciences.

  14. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART).

    PubMed

    Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  15. Strength Gains by Motor Imagery with Different Ratios of Physical to Mental Practice

    PubMed Central

    Reiser, Mathias; Büsch, Dirk; Munzert, Jörn

    2011-01-01

    The purpose of this training study was to determine the magnitude of strength gains following a high-intensity resistance training (i.e., improvement of neuromuscular coordination) that can be achieved by imagery of the respective muscle contraction imagined maximal isometric contraction (IMC training). Prior to the experimental intervention, subjects completed a 4-week standardized strength training program. 3 groups with different combinations of real maximum voluntary contraction (MVC) and mental (IMC) strength training (M75, M50, M25; numbers indicate percentages of mental trials) were compared to a MVC-only training group (M0) and a control condition without strength training (CO). Training sessions (altogether 12) consisted of four sets of two maximal 5-s isometric contractions with 10 s rest between sets of either MVC or IMC training. Task-specific effects of IMC training were tested in four strength exercises commonly used in practical settings (bench pressing, leg pressing, triceps extension, and calf raising). Maximum isometric voluntary contraction force (MVC) was measured before and after the experimental training intervention and again 1 week after cessation of the program. IMC groups (M25, M50, M75) showed slightly smaller increases in MVC (3.0% to 4.2%) than M0 (5.1%), but significantly stronger improvements than CO (−0.2%). Compared to further strength gains in M0 after 1 week (9.4% altogether), IMC groups showed no “delayed” improvement, but the attained training effects remained stable. It is concluded that high-intensity strength training sessions can be partly replaced by IMC training sessions without any considerable reduction of strength gains. PMID:21897826

  16. Aspergers--different, not less: occupational strengths and job interests of individuals with Asperger's Syndrome.

    PubMed

    Lorenz, Timo; Heinitz, Kathrin

    2014-01-01

    Rooted in the neurodiversity approach, this study provides an overview of the strengths and interests of individuals with Asperger's Syndrome. We interviewed 136 individuals with Asperger's Syndrome and 155 neurotypical individuals via an online survey with regards to (a) demography, (b) occupational strengths, (c) general self-efficacy, (d) occupational self-efficacy, and (e) the job interest profile according to Holland. The vocational and educational fields of the individuals with Asperger's in the sample are more diverse than and surpass those classical fields stated in research and biographical literature. The comparison of both groups in cross-tables showed that the indicated strengths differ in several areas (ΦCramer = .02-.47), which means that a specific strength profile can be derived, and this profile goes beyond the clinical view of the diagnostic criteria. Individuals with Asperger's indicate lower self-efficacy, both general and occupational. Furthermore, a high concentration of individuals with Asperger's can be found in the areas I (Investigative) and C (Conventional) of Holland's RIASEC model.

  17. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  18. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, T g, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, T ref, by the same amount as the T g depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive T g depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  19. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGES

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; ...

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, T g, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, T ref, by the same amount as the T g depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive T g depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  20. Preparation of graphene foam with high performance by modified self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing

    2016-03-01

    Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

  1. Titanium alloy 5111 brings intermediate strength, excellent toughness, and corrosion resistance to naval operating environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Been, J.

    1999-07-01

    Ti-5Al-1Sn-1Zr-1V-O.8M0 is a near alpha titanium alloy of intermediate strength, designed for high toughness, good weldability, stress-corrosion cracking resistance, and room temperature creep resistance. Ideally suited for marine environments, Ti 5111 offers the means to aid the navy in fulfilling their goals of reducing maintenance and life cycle costs, reducing topside and overall weight, improve survivability and increase reliability. The alloy was recently included in the ASTM bar and plate specifications as ASTM Grade 32.

  2. Relationships between self-reported lifetime physical activity, estimates of current physical fitness, and aBMD in adult premenopausal women.

    PubMed

    Greenway, Kathleen G; Walkley, Jeff W; Rich, Peter A

    2015-01-01

    Osteoporosis is common, and physical activity is important in its prevention and treatment. Of the categories of historical physical activity (PA) examined, we found that weight-bearing and very hard physical activity had the strongest relationships with areal bone mineral density (aBMD) throughout growth and into adulthood, while for measures of strength, only grip strength proved to be an independent predictor of aBMD. To examine relationships between aBMD (total body, lumbar spine, proximal femur, tibial shaft, distal radius) and estimates of historical PA, current strength, and cardiovascular fitness in adult premenopausal women. One hundred fifty-two adult premenopausal women (40 ± 9.6 years) undertook aBMD (dual-energy X-ray absorptiometry (DXA)) and completed surveys to estimate historical physical activity representative of three decades (Kriska et al. [1]), while subsets underwent functional tests of isokinetic strength (hamstrings and quadriceps), grip strength (hand dynamometer), and maximum oxygen uptake (MaxV02; cycle ergometer). Historical PA was characterized by demand (metabolic equivalents, PA > 3 METS; PA > 7 METS) and type (weight-bearing; high impact). Significant positive independent predictors varied by decade and site, with weight-bearing exercise and PA > 3 METS significant for the tibial shaft (10-19 decade) and only PA > 7 METS significant for the final two decades (20-29 and 30-39 years; total body and total hip). A significant negative correlation between high impact activity and tibial shaft aBMD appeared for the final decade. For strength measures, only grip strength was an independent predictor (total body, total hip), while MaxV02 provided a significant independent prediction for the tibial shaft. Past PA > 7 METS was positively associated with aBMD, and such activity should probably constitute a relatively high proportion of all weekly PA to positively affect aBMD. The findings warrant more detailed investigations in a prospective study, specifically also investigating the potentially negative effects of high impact PA on tibial aBMD.

  3. Thrust chamber life prediction. Volume 1: Mechanical and physical properties of high performance rocket nozzle materials

    NASA Technical Reports Server (NTRS)

    Esposito, J. J.; Zabora, R. F.

    1975-01-01

    Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).

  4. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.

  5. The monitoring results of electromagnetic radiation of 110-kV high-voltage lines in one urban location in Chongqing P.R. China.

    PubMed

    Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao

    2012-03-01

    To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.

  6. An overview of strength training injuries: acute and chronic.

    PubMed

    Lavallee, Mark E; Balam, Tucker

    2010-01-01

    This article introduces the history of strength training, explains the many different styles of strength training, and discusses common injuries specific to each style. Strength training is broken down into five disciplines: basic strength or resistance training, bodybuilding, power lifting, style-dependant strength sports (e.g., strongman competitions, Highland games, field events such as shot put, discus, hammer throw, and javelin), and Olympic-style weightlifting. Each style has its own principal injuries, both acute and chronic, related to the individual technique. Acute injuries should be further categorized as emergent or nonemergent. Specific age-related populations (i.e., the very young and the aging athlete) carry additional considerations.

  7. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players.

    PubMed

    Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Franco-Márquez, Felipe; Yáñez-García, Juan M; González-Badillo, Juan J

    2017-01-01

    Rodríguez-Rosell, D, Mora-Custodio, R, Franco-Márquez, F, Yáñez-García, JM, González-Badillo, JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 31(1): 196-206, 2017-The vertical jump is considered an essential motor skill in many team sports. Many protocols have been used to assess vertical jump ability. However, controversy regarding test selection still exists based on the reliability and specificity of the tests. The main aim of this study was to analyze the reliability and validity of 2 standardized (countermovement jump [CMJ] and Abalakov jump [AJ]) and 2 sport-specific (run-up with 2 [2-LEGS] or 1 leg [1-LEG] take-off jump) vertical jump tests, and their usefulness as predictors of sprint and strength performance for soccer (n = 127) and basketball (n = 59) players in 3 different categories (Under-15, Under-18, and Adults). Three attempts for each of the 4 jump tests were recorded. Twenty-meter sprint time and estimated 1 repetition maximum in full squat were also evaluated. All jump tests showed high intraclass correlation coefficients (0.969-0.995) and low coefficients of variation (1.54-4.82%), although 1-LEG was the jump test with the lowest absolute and relative reliability. All selected jump tests were significantly correlated (r = 0.580-0.983). Factor analysis resulted in the extraction of one principal component, which explained 82.90-95.79% of the variance of all jump tests. The 1-LEG test showed the lowest associations with sprint and strength performance. The results of this study suggest that CMJ and AJ are the most reliable tests for the estimation of explosive force in soccer and basketball players in different age categories.

  8. More Cyclic-Oxidation Data For Turbine Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.

    1993-01-01

    Document presents data on cyclic oxidation of high-temperature, high-strength, nickel-base and cobalt-base alloys for turbines. Completes presentation of data begun in NASA Technical Memorandum 83665 (Revised 1989), "High-Temperature Cyclic Oxidation Data, Turbine Alloys, Part 1." Data consist of plots and tabulations of changes in specific weight as function of time, and lists of surface and spalled material phases identified by x-ray diffraction measurements.

  9. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  10. Investigating Ta strength across multiple platforms, strain rates, and pressures

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas; Flicker, Dawn G.; Benage, John F.; Battaile, Corbett; Brown, Justin L.; Lane, J. Matthew D.; Lim, Hojun; Arsenlis, Thomas A.; Barton, Nathan R.; Park, Hye-Sook; Swift, Damian C.; Prisbrey, Shon T.; Austin, Ryan; McNabb, Dennis P.; Remington, Bruce A.; Prime, Michael B.; Gray, George T., III; Bronkhorst, Curt A.; Chen, Shuh-Rong; Luscher, D. J.; Scharff, Robert J.; Fensin, Sayu J.; Schraad, Mark W.; Dattelbaum, Dana M.; Brown, Staci L.

    2017-10-01

    Ta is a metal with high density and strength. We are collaborating to understand the behavior across an unprecedented range of conditions comparing strength data from Hopkinson bar, Taylor cylinder, guns, Z, Omega and the NIF using Ta from a single lot up to 380 GPa and strain rates of 107. Experiments are ongoing to give more overlap between the platforms and are being simulated with models to determine the importance of specific physical processes. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  11. High-Intensity Strength Training Improves Function of Chronically Painful Muscles: Case-Control and RCT Studies

    PubMed Central

    Andersen, Christoffer H.; Skotte, Jørgen H.; Suetta, Charlotte; Søgaard, Karen; Saltin, Bengt; Sjøgaard, Gisela

    2014-01-01

    Aim. This study investigates consequences of chronic neck pain on muscle function and the rehabilitating effects of contrasting interventions. Methods. Women with trapezius myalgia (MYA, n = 42) and healthy controls (CON, n = 20) participated in a case-control study. Subsequently MYA were randomized to 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 16), or a reference group without physical training (REF, n = 8). Participants performed tests of 100 consecutive cycles of 2 s isometric maximal voluntary contractions (MVC) of shoulder elevation followed by 2 s relaxation at baseline and 10-week follow-up. Results. In the case-control study, peak force, rate of force development, and rate of force relaxation as well as EMG amplitude were lower in MYA than CON throughout all 100 MVC. Muscle fiber capillarization was not significantly different between MYA and CON. In the intervention study, SST improved all force parameters significantly more than the two other groups, to levels comparable to that of CON. This was seen along with muscle fiber hypertrophy and increased capillarization. Conclusion. Women with trapezius myalgia have lower strength capacity during repetitive MVC of the trapezius muscle than healthy controls. High-intensity strength training effectively improves strength capacity during repetitive MVC of the painful trapezius muscle. PMID:24707475

  12. Argument Strength and the Persuasiveness of Stories

    PubMed Central

    Schreiner, Constanze; Appel, Markus; Isberner, Maj-Britt; Richter, Tobias

    2017-01-01

    ABSTRACT Stories are a powerful means to change people’s attitudes and beliefs. The aim of the current work was to shed light on the role of argument strength (argument quality) in narrative persuasion. The present study examined the influence of strong versus weak arguments on attitudes in a low or high narrative context. Moreover, baseline attitudes, interindividual differences in working memory capacity, and recipients’ transportation were examined. Stories with strong arguments were more persuasive than stories with weak arguments. This main effect was qualified by a two-way interaction with baseline attitude, revealing that argument strength had a greater impact on individuals who initially were particularly doubtful toward the story claim. Furthermore, we identified a three-way interaction showing that argument strength mattered most for recipients who were deeply transported into the story world in stories that followed a typical narrative structure. These findings provide an important specification of narrative persuasion theory. PMID:29805322

  13. 46 CFR 160.049-3 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Cotton fabrics and coated upholstery cloth meeting the minimum requirements set forth in paragraphs (c... Type I, Class 3 material. (2) Coated upholstery cloth. Coated upholstery cloth shall comply with the..., class I, laminated vinyl-nylon high strength cloth in accordance with the requirements of Specification...

  14. 46 CFR 160.049-3 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Cotton fabrics and coated upholstery cloth meeting the minimum requirements set forth in paragraphs (c... Type I, Class 3 material. (2) Coated upholstery cloth. Coated upholstery cloth shall comply with the..., class I, laminated vinyl-nylon high strength cloth in accordance with the requirements of Specification...

  15. 46 CFR 160.049-3 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Cotton fabrics and coated upholstery cloth meeting the minimum requirements set forth in paragraphs (c... Type I, Class 3 material. (2) Coated upholstery cloth. Coated upholstery cloth shall comply with the..., class I, laminated vinyl-nylon high strength cloth in accordance with the requirements of Specification...

  16. Effect of cervical vs. thoracic spinal manipulation on peripheral neural features and grip strength in subjects with chronic mechanical neck pain: a randomized controlled trial.

    PubMed

    Bautista-Aguirre, Francisco; Oliva-Pascual-Vaca, Ángel; Heredia-Rizo, Alberto M; Boscá-Gandía, Juan J; Ricard, François; Rodriguez-Blanco, Cleofás

    2017-06-01

    Cervical and thoracic spinal manipulative therapy has shown positive impact for relief of pain and improve function in non-specific mechanical neck pain. Several attempts have been made to compare their effectiveness although previous studies lacked a control group, assessed acute neck pain or combined thrust and non-thrust techniques. To compare the immediate effects of cervical and thoracic spinal thrust manipulations on mechanosensitivity of upper limb nerve trunks and grip strength in patients with chronic non-specific mechanical neck pain. Randomized, single-blinded, controlled clinical trial. Private physiotherapy clinical consultancy. Eighty-eight subjects (32.09±6.05 years; 72.7% females) suffering neck pain (grades I or II) of at least 12 weeks of duration. Participants were distributed into three groups: 1) cervical group (N.=28); 2) thoracic group (N.=30); and 3) control group (N.=30). One treatment session consisting of applying a high-velocity low-amplitude spinal thrust technique over the lower cervical spine (C7) or the upper thoracic spine (T3) was performed, while the control group received a sham-manual contact. Measurements were taken at baseline and after intervention of the pressure pain threshold over the median, ulnar and radial nerves. Secondary measures included assessing free-pain grip strength with a hydraulic dynamometer. No statistically significant differences were observed when comparing between-groups in any of the outcome measures (P>0.05). Those who received thrust techniques, regardless of the manipulated area, reported an immediate increase in mechanosensitivity over the radial (both sides) and left ulnar nerve trunks (P<0.05), and grip strength (P<0.001). For those in the control group, right hand grip strength and pain perception over the radial nerve also improved (P≤0.025). Low-cervical and upper-thoracic thrust manipulation is no more effective than placebo to induce immediate changes on mechanosensitivity of upper limb nerve trunks and grip strength in patients with chronic non-specific mechanical neck pain. A single treatment session using cervical or thoracic thrust techniques is not enough to achieve clinically relevant changes on neural mechanosensitivity and grip strength in chronic non-specific mechanical neck pain.

  17. 49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... constructed of mild steel or high-strength, low-alloy steel, that create air cavities adjacent to the tank...) Equipment must consist of: (A) A high frequency spark tester capable of producing sufficient voltage to...; and (C) A steel calibration coupon 30.5 cm × 30.5 cm (12 inches × 12 inches) covered with the same...

  18. 49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... constructed of mild steel or high-strength, low-alloy steel, that create air cavities adjacent to the tank...) Equipment must consist of: (A) A high frequency spark tester capable of producing sufficient voltage to...; and (C) A steel calibration coupon 30.5 cm × 30.5 cm (12 inches × 12 inches) covered with the same...

  19. 49 CFR 180.407 - Requirements for test and inspection of specification cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... constructed of mild steel or high-strength, low-alloy steel, that create air cavities adjacent to the tank...) Equipment must consist of: (A) A high frequency spark tester capable of producing sufficient voltage to...; and (C) A steel calibration coupon 30.5 cm × 30.5 cm (12 inches × 12 inches) covered with the same...

  20. WWW Motivation Mining: Finding Treasures for Teaching Evaluation Skills, Grades 7-12. Professional Growth Series.

    ERIC Educational Resources Information Center

    Small, Ruth V.; Arnone, Marilyn P.

    Intended for use by middle or high school teachers and library media specialists, this book describes a World Wide Web evaluation tool developed specifically for use by high school students and designed to provide hands-on experience in critically evaluating the strengths and weaknesses of Web sites. The book uses a workbook format and is…

  1. Specific Features of the Response of Cerium to Pulsed Actions

    NASA Astrophysics Data System (ADS)

    Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.

    2018-02-01

    Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.

  2. Biosilica-Immobilized Enzymes for Biocatalysis (Preprint)

    DTIC Science & Technology

    2007-08-01

    strengthening of dough Lipases, Proteases Accelerates cheese ripening Glucose Isomerase Production of high fructose corn syrup Pectinases Fruit juice...Manufacture of glucose syrups and starch modification Maltogenic alpha-amylase Improves shelf life of bread Lipoxygenase Used for bleaching and...such as pH, ionic strength or temperature. In any approach to immobilize enzymes, the goal is to achieve a high specific activity without

  3. Computational Analysis and Experimental Validation of the Friction-Stir Welding Behavior of Ti-6Al-4V

    DTIC Science & Technology

    2011-01-01

    tempera- ture and high-strength workpiece materials like tita - nium. Specifically, it was shown that due to high attendant temperatures these tools...relative amounts of the two phases and are typically classified as a-type, aþb-type, and b-type alloys. Among tita - nium alloys, aþb-type are of

  4. Burn-Resistant, Strong Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Tayal, Moti J.

    2003-01-01

    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses.

  5. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  6. What Are Strength Training Activities?

    Cancer.gov

    Strength training is any practice or exercise specifically designed to increase muscle tone, strength, and fitness. Concerned that strength training will make you bulky and too muscle-y? You are not alone.

  7. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    NASA Technical Reports Server (NTRS)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  8. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing

    ERIC Educational Resources Information Center

    Michailov, Michail Lubomirov; Baláš, Jirí; Tanev, Stoyan Kolev; Andonov, Hristo Stoyanov; Kodejška, Jan; Brown, Lee

    2018-01-01

    Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the…

  9. Cancer-Specific Mortality Relative to Engagement in Muscle-Strengthening Activities and Lower Extremity Strength.

    PubMed

    Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D

    2018-02-01

    Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.

  10. Resistance training performed at distinct angular velocities elicits velocity-specific alterations in muscle strength and mobility status in older adults.

    PubMed

    Englund, Davis A; Sharp, Rick L; Selsby, Joshua T; Ganesan, Shanthi S; Franke, Warren D

    2017-05-01

    The purpose of this study was to compare the effects of high and low velocity knee extension training on changes in muscle strength and mobility status in high-functioning older adults. Twenty-six (16 female, 10 male) older adults (mean age of 65) were randomized to either 6weeks of low velocity resistance training (LVRT) performed at 75°/s or high velocity resistance training (HVRT) performed at 240°/s. Both groups performed 3 sets of knee extension exercises at maximal effort, 3 times a week. Muscle strength was assessed through a range of testing velocities on an isokinetic dynamometer. Mobility status was assessed with the short physical performance battery (SPPB) and myosin heavy chain (MyHC) transcript levels were quantified via qRT-PCR. From baseline to post-training, there were several significant (P<0.05) differences in muscle strength and functional characteristics in LVRT (n=13) and HVRT (n=13) groups. From baseline to post-training, MyHC-α mRNA and MyHC-IIa mRNA showed a significant (P<0.05) increase within HVRT but MyHC-IIx mRNA did not change significantly. Our results demonstrate HVRT provides a greater number of muscular enhancements when compared to LVRT, particularly under conditions of high velocity muscle contraction. HVRT is emerging as the optimal training stimulus for the older adult. The present study demonstrates, in addition to increased strength and functional outcomes, HVRT elicits a potentially therapeutic (i.e., slow to fast) transcriptional response in MyHC. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mechanisms for training security inspectors to enhance human performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhalter, H.E.; Sessions, J.C.

    The Department of Energy (DOE) has established qualification standards for protective force personnel employed at nuclear facilities (10 CFR Part 1046 (Federal Register)). Training mechanisms used at Los Alamos to enhance human performance in meeting DOE standards include, but are not limited to, the following: for cardio-respiratory training, they utilize distance running, interval training, sprint training, pacing, indoor aerobics and circuit training; for muscular strength, free weights, weight machines, light hand weights, grip strength conditioners, and calistenics are employed; for muscular endurance, participants do high repetitions (15 - 40) using dumbbells, flex weights, resistive rubber bands, benches, and calisthenics; formore » flexibility, each training session devotes specific times to stretch the muscles involved for a particular activity. These training mechanisms with specific protocols can enhance human performance.« less

  12. Influence of frequency and duration of strength training for effective management of neck and shoulder pain: a randomised controlled trial.

    PubMed

    Andersen, Christoffer H; Andersen, Lars L; Gram, Bibi; Pedersen, Mogens Theisen; Mortensen, Ole Steen; Zebis, Mette Kreutzfeldt; Sjøgaard, Gisela

    2012-11-01

    Specific strength training can reduce neck and shoulder pain in office workers, but the optimal combination of exercise frequency and duration remains unknown. This study investigates how one weekly hour of strength training for the neck and shoulder muscles is most effectively distributed. A total of 447 office workers with and without neck and/or shoulder pain were randomly allocated at the cluster-level to one of four groups; 1×60 (1WS), 3×20 (3WS) or 9×7 (9WS) min a week of supervised high-intensity strength training for 20 weeks, or to a reference group without training (REF). Primary outcome was self-reported neck and shoulder pain (scale 0-9) and secondary outcome work disability (Disability in Arms, Shoulders and Hands (DASH)). The intention-to-treat analysis showed reduced neck and right shoulder pain in the training groups after 20 weeks compared with REF. Among those with pain ≥3 at baseline (n=256), all three training groups achieved significant reduction in neck pain compared with REF (p<0.01). From a baseline pain rating of 3.2 (SD 2.3) in the neck among neck cases, 1WS experienced a reduction of 1.14 (95% CI 0.17 to 2.10), 3WS 1.88 (0.90 to 2.87) and 9WS 1.35 (0.24 to 2.46) which is considered clinically significant. DASH was reduced in 1WS and 3WS only. One hour of specific strength training effectively reduced neck and shoulder pain in office workers. Although the three contrasting training groups showed no statistical differences in neck pain reduction, only 1WS and 3WS reduced DASH. This study suggests some flexibility regarding time-wise distribution when implementing specific strength training at the workplace.

  13. Geometry and gravity influences on strength capability

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.

    1994-01-01

    Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.

  14. Analysis of the association between isokinetic knee strength with offensive and defensive jumping capacity in high-level female volleyball athletes.

    PubMed

    Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran

    2015-09-01

    Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity.

    PubMed

    Windhager, Sonja; Schaefer, Katrin; Fink, Bernhard

    2011-01-01

    Evolutionary psychologists claim that women have adaptive preferences for specific male physical traits. Physical strength may be one of those traits, because recent research suggests that women rate faces of physically strong men as more masculine, dominant, and attractive. Yet, previous research has been limited in its ability to statistically map specific male facial shapes and features to corresponding physical measures (e.g., strength) and ratings (e.g., attractiveness). The association of handgrip strength (together with measures of shoulder width, body height, and body fat) and women's ratings of male faces (concerning dominance, masculinity, and attractiveness) were studied in a sample of 26 Caucasian men (aged 18-32 years). Geometric morphometrics was used to statistically assess the covariation of male facial shape with these measures. Statistical results were visualized with thin-plate spline deformation grids along with image unwarping and image averaging. Handgrip strength together with shoulder width, body fat, dominance, and masculinity loaded positively on the first dimension of covariation with facial shape (explaining 72.6%, P < 0.05). These measures were related to rounder faces with wider eyebrows and a prominent jaw outline while highly attractive and taller men had longer, narrower jaws and wider/fuller lips. Male physical strength was more strongly associated with changes in face shape that relate to perceived masculinity and dominance than to attractiveness. Our study adds to the growing evidence that attractiveness and dominance/masculinity may reflect different aspects of male mate quality. Copyright © 2011 Wiley-Liss, Inc.

  16. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    NASA Astrophysics Data System (ADS)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  17. Surface pretreatments for medical application of adhesion

    PubMed Central

    Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C

    2003-01-01

    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228

  18. β-Catenin Serves as a Clutch between Low and High Intercellular E-Cadherin Bond Strengths

    PubMed Central

    Bajpai, Saumendra; Feng, Yunfeng; Wirtz, Denis; Longmore, Gregory D.

    2013-01-01

    A wide range of invasive pathological outcomes originate from the loss of epithelial phenotype and involve either loss of function or downregulation of transmembrane adhesive receptor complexes, including Ecadherin (Ecad) and binding partners β-catenin and α-catenin at adherens junctions. Cellular pathways regulating wild-type β-catenin level, or direct mutations in β-catenin that affect the turnover of the protein have been shown to contribute to cancer development, through induction of uncontrolled proliferation of transformed tumor cells, particularly in colon cancer. Using single-molecule force spectroscopy, we show that depletion of β-catenin or the prominent cancer-related S45 deletion mutation in β-catenin present in human colon cancers both weaken tumor intercellular Ecad/Ecad bond strength and diminishes the capacity of specific extracellular matrix proteins—including collagen I, collagen IV, and laminin V—to modulate intercellular Ecad/Ecad bond strength through α-catenin and the kinase activity of glycogen synthase kinase 3 (GSK-3β). Thus, in addition to regulating tumor cell proliferation, cancer-related mutations in β-catenin can influence tumor progression by weakening the adhesion of tumor cells to one another through reduced individual Ecad/Ecad bond strength and cellular adhesion to specific components of the extracellular matrix and the basement membrane. PMID:24268141

  19. Creep Strength of Nb-1Zr for SP-100 Applications

    NASA Astrophysics Data System (ADS)

    Horak, James A.; Egner, Larry K.

    1994-07-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  20. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.

    PubMed

    Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo

    2013-01-11

    Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.

  1. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability

    PubMed Central

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang

    2017-01-01

    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22–0.58 MPa tensile strength, 1.02–7.62 MPa compressive strength, and 817–1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials. PMID:28134283

  2. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.

    PubMed

    Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M

    2016-12-20

    Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high-ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare.

  3. Environmental Studies on Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  4. The mechanical behavior of GLARE laminates for aircraft structures

    NASA Astrophysics Data System (ADS)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  5. Parallel Force Assay for Protein-Protein Interactions

    PubMed Central

    Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146

  6. Parallel force assay for protein-protein interactions.

    PubMed

    Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  7. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  8. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART)

    PubMed Central

    MOLINA, Gustavo Fabián; CABRAL, Ricardo Juan; MAZZOLA, Ignacio; BRAIN LASCANO, Laura; FRENCKEN, Jo. E.

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. Objective: To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Material and Methods: Specimens for testing flexural (n=240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. Results: The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). Conclusion: The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers. PMID:23857657

  9. Peat soils stabilization using Effective Microorganisms (EM)

    NASA Astrophysics Data System (ADS)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  10. Cut points of muscle strength associated with metabolic syndrome in men.

    PubMed

    Sénéchal, Martin; McGavock, Jonathan M; Church, Timothy S; Lee, Duck-Chul; Earnest, Conrad P; Sui, Xuemei; Blair, Steven N

    2014-08-01

    The loss of muscle strength with age increases the likelihood of chronic conditions, including metabolic syndrome (MetS). However, the minimal threshold of muscle strength at which the risk for MetS increases has never been established. This study aimed to identify a threshold of muscle strength associated with MetS in men. We created receiver operating curves for muscle strength and the risk of MetS from a cross-sectional sample of 5685 men age <50 yr and 1541 men age ≥50 yr enrolled in the Aerobics Center Longitudinal Study. The primary outcome measure, the MetS, was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Upper and lower body muscle strength was treated as a composite measure of one-repetition maximum tests on bench and leg press and scaled to body weight. Low muscle strength was defined as the lowest age-specific 20th percentile, whereas high muscle strength was defined as composite muscle strength above the 20th percentile. In men aged <50 yr, the odds of MetS were 2.20-fold (95% confidence interval = 1.89-2.54) higher in those with low muscle strength, independent of age, smoking, and alcohol intake. The strength of this association was similar for men age ≥50 yr (odds ratio = 2.11, 95% confidence interval = 1.62-2.74). In men age < 50 yr, the composite strength threshold associated with MetS was 2.57 kg·kg body weight, whereas in men age ≥ 50 yr the threshold was 2.35 kg·kg body weight. This study is the first to identify a threshold of muscle strength associated with an increased likelihood of MetS in men. Measures of muscle strength may help identify men at risk of chronic disease.

  11. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  12. 46 CFR 160.049-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... documents: (1) Federal Specifications: CCC-C-700G-Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D-Cloth, Cotton Drill. (2) Federal standard: No. 751—Stitches, Seams, and Stitchings. (3) Coast...—Cloth, Laminated, Vinyl-Nylon, High Strength, Flexible. (b) Plan. The following plan, of the issue in...

  13. 46 CFR 160.049-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... documents: (1) Federal Specifications: CCC-C-700G-Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D-Cloth, Cotton Drill. (2) Federal standard: No. 751—Stitches, Seams, and Stitchings. (3) Coast...—Cloth, Laminated, Vinyl-Nylon, High Strength, Flexible. (b) Plan. The following plan, of the issue in...

  14. 46 CFR 160.049-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... documents: (1) Federal Specifications: CCC-C-700G-Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D-Cloth, Cotton Drill. (2) Federal standard: No. 751—Stitches, Seams, and Stitchings. (3) Coast...—Cloth, Laminated, Vinyl-Nylon, High Strength, Flexible. (b) Plan. The following plan, of the issue in...

  15. To Think, To Choose, To Act.

    ERIC Educational Resources Information Center

    Collins, LeRoy

    Social, political, and business moral issues that impede solving public problems, and the situation in higher education, specifically in Florida, are considered. Problems in society that have a moral impact include the high rate of crime and an ineffective rehabilitation system for convicted criminals, illicit drug traffic, and the strength of…

  16. Further development and characterization of VM-103, a NASA wrought cobalt base alloy

    NASA Technical Reports Server (NTRS)

    Harlow, R. A.; Ritchie, E. E.

    1972-01-01

    The data obtained during this and previous programs indicate that the VM-103 has useful strength at temperatures as high 2200 F (1204 C), and can be considered as an alternate for other wrought superalloys such as L-605. The addition of 10 percent nickel to the standard composition improves both the hot and cold fabricability, ductility, impact strength, and metallurgical stability, while it only slightly reduces strength properties. Electroslag re-melting was effective in significantly increasing the fabricability of vacuum induction method VM-103, both with and without the 10 percent nickel addition. A specification for wrought VM-103 was developed and is included. Although thermomechanical processing improves lower temperature properties, no improvement occurs at temperatures at or above 2000 F (1093 C).

  17. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  18. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis

    PubMed Central

    Behm, David G.; Young, James D.; Whitten, Joseph H. D.; Reid, Jonathan C.; Quigley, Patrick J.; Low, Jonathan; Li, Yimeng; Lima, Camila D.; Hodgson, Daniel D.; Chaouachi, Anis; Prieske, Olaf; Granacher, Urs

    2017-01-01

    Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities. PMID:28713281

  19. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis.

    PubMed

    Behm, David G; Young, James D; Whitten, Joseph H D; Reid, Jonathan C; Quigley, Patrick J; Low, Jonathan; Li, Yimeng; Lima, Camila D; Hodgson, Daniel D; Chaouachi, Anis; Prieske, Olaf; Granacher, Urs

    2017-01-01

    Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities.

  20. Effect of moisture content on dowel-bearing strength

    Treesearch

    Douglas R. Rammer; Steve G. Winistorfer

    2001-01-01

    Dowel bearing strength (embedment strength) is a critical component of wood connection design. Previous tests have concentrated on defining the relationship between dowel-bearing strength, specific gravity, and fastener characteristics such as diameter. However, because adoption of yield theory in defining connection strength is relatively new in the United States, few...

  1. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  2. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  3. Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.

    PubMed

    Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce

    2008-03-01

    This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.

  4. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.

    PubMed

    Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey

    2016-09-01

    Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  5. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, N.Yu.

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The densitymore » of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.« less

  6. Aspergers – Different, Not Less: Occupational Strengths and Job Interests of Individuals with Asperger's Syndrome

    PubMed Central

    Lorenz, Timo; Heinitz, Kathrin

    2014-01-01

    Rooted in the neurodiversity approach, this study provides an overview of the strengths and interests of individuals with Asperger's Syndrome. We interviewed136 individuals with Asperger's Syndrome and 155 neurotypical individuals via an online survey with regards to (a) demography, (b) occupational strengths, (c) general self-efficacy, (d) occupational self-efficacy, and (e) the job interest profile according to Holland. The vocational and educational fields of the individuals with Asperger's in the sample are more diverse than and surpass those classical fields stated in research and biographical literature. The comparison of both groups in cross-tables showed that the indicated strengths differ in several areas (ΦCramer = .02–.47), which means that a specific strength profile can be derived, and this profile goes beyond the clinical view of the diagnostic criteria. Individuals with Asperger's indicate lower self-efficacy, both general and occupational. Furthermore, a high concentration of individuals with Asperger's can be found in the areas I (Investigative) and C (Conventional) of Holland's RIASEC model. PMID:24950060

  7. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-04-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  8. Short-Term High Intensity Plyometric Training Program Improves Strength, Power and Agility in Male Soccer Players

    PubMed Central

    Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István

    2013-01-01

    The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 – 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer. PMID:23717351

  9. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players.

    PubMed

    Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István

    2013-03-01

    The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 - 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer.

  10. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-06-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  11. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete

    PubMed Central

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-01-01

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration. PMID:28788223

  12. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete.

    PubMed

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng

    2014-10-10

    With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.

  13. Sociodemographic factors related to handgrip strength in children and adolescents in a middle income country: The SALUS study.

    PubMed

    Otero, Johanna; Cohen, Daniel Dylan; Herrera, Victor Mauricio; Camacho, Paul Anthony; Bernal, Oscar; López-Jaramillo, Patricio

    2017-01-01

    To determine sociodemographic factors associated with handgrip (HG) strength in a representative sample of children and adolescents from a middle income country. We evaluated youth between the ages of 8 and 17 from a representative sample of individuals from the Department of Santander, Colombia. Anthropometric measures, HG strength, and self-reported physical activity were assessed, and parents/guardians completed sociodemographic questionnairres. Multinomial logistic regression models were used to estimate the association between sociodemographic and anthropometric characteristics and tertiles of relative HG strength. We also produced centile data for raw HG strength using quantile regression. 1,691 young people were evaluated. HG strength increased with age, and was higher in males than females in all age groups. Lower HG strength was associated with indicators of higher socioeconomic status, such as living in an urban area, residence in higher social strata neighborhoods, parent/guardian with secondary education or higher, higher household income, and membership in health insurance schemes. In addition, low HG strength was associated with lower physical activity levels and higher waist-to-hip ratio. In a fully adjusted regression model, all factors remained significant except for health insurance, household income, and physical activity level. While age and gender specific HG strength values were substantially lower than contemporary data from high income countries, we found that within this middle income population indicators of higher socioeconomic status were associated with lower HG strength. This analysis also suggests that in countries undergoing rapid nutrition transition, improvements in socioeconomic conditions may be accompanied by reduction in muscle strength. © 2016 Wiley Periodicals, Inc.

  14. BAIAP2 is related to emotional modulation of human memory strength.

    PubMed

    Luksys, Gediminas; Ackermann, Sandra; Coynel, David; Fastenrath, Matthias; Gschwind, Leo; Heck, Angela; Rasch, Bjoern; Spalek, Klara; Vogler, Christian; Papassotiropoulos, Andreas; de Quervain, Dominique

    2014-01-01

    Memory performance is the result of many distinct mental processes, such as memory encoding, forgetting, and modulation of memory strength by emotional arousal. These processes, which are subserved by partly distinct molecular profiles, are not always amenable to direct observation. Therefore, computational models can be used to make inferences about specific mental processes and to study their genetic underpinnings. Here we combined a computational model-based analysis of memory-related processes with high density genetic information derived from a genome-wide study in healthy young adults. After identifying the best-fitting model for a verbal memory task and estimating the best-fitting individual cognitive parameters, we found a common variant in the gene encoding the brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) that was related to the model parameter reflecting modulation of verbal memory strength by negative valence. We also observed an association between the same genetic variant and a similar emotional modulation phenotype in a different population performing a picture memory task. Furthermore, using functional neuroimaging we found robust genotype-dependent differences in activity of the parahippocampal cortex that were specifically related to successful memory encoding of negative versus neutral information. Finally, we analyzed cortical gene expression data of 193 deceased subjects and detected significant BAIAP2 genotype-dependent differences in BAIAP2 mRNA levels. Our findings suggest that model-based dissociation of specific cognitive parameters can improve the understanding of genetic underpinnings of human learning and memory.

  15. Tension in Skinned Frog Muscle Fibers in Solutions of Varying Ionic Strength and Neutral Salt Composition

    PubMed Central

    Gordon, A. M.; Godt, R. E.; Donaldson, S. K. B.; Harris, C. E.

    1973-01-01

    The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate- ≃ SO4 -- < Cl- < Br-. The order of increasing inhibition of calcium-activated tension for cations is K+ ≃ Na+ ≃ TMA+ < TEA+ < TPrA+ < TBuA+. The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14–0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA+ < TMA+ < K+ ≃ Na+. Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero. PMID:4543066

  16. Recycled newspaper fibers as reinforcing fillers in thermoplastics. Part I, Analysis of tensile and impact properties in polypropylene

    Treesearch

    A. R. Sanadi; R. A. Young; C. Clemons; R. M. Rowell

    1994-01-01

    Recycled newspaper fibers (ONP) are potentially outstanding nonabrasive reinforcing fibers with high specific properties. In this study, a high energy thermokinetic mixer was used to mix these fibers in a polypropylene (PP) matrix, and the blends were then injection molded in order to observe the tensile and impact strengths of the composites. A 40% (weight) of ONP in...

  17. Comparing Three Patterns of Strengths and Weaknesses Models for the Identification of Specific Learning Disabilities

    ERIC Educational Resources Information Center

    Miller, Daniel C.; Maricle, Denise E.; Jones, Alicia M.

    2016-01-01

    Processing Strengths and Weaknesses (PSW) models have been proposed as a method for identifying specific learning disabilities. Three PSW models were examined for their ability to predict expert identified specific learning disabilities cases. The Dual Discrepancy/Consistency Model (DD/C; Flanagan, Ortiz, & Alfonso, 2013) as operationalized by…

  18. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai

    2016-07-01

    Polyaniline (PANI) and its composite hydrogels have been considered as a unique supercapacitor electrode material due to their three dimensional (3D) porous structures, formed conducting networks, high specific surface areas and fast electron/ion transfer. Herein, dendritic and long fibrous PANI nanostructure hydrogels (PDH and PFH), dendritic PNAI nanofiber/graphene and long PANI nanofibers/Nitrogen-doped graphene composite hydrogels (PGH and PNGH) were prepared by integration polymerization of aniline and hydrothermal process. It was found that the addition of p-Phenylenediamine (PPD) not only controlled the morphologies of PANI from dendritic to long fibrous, but also facilitated the graphene oxide (GO) into nitrogen-doped graphene. Furthermore, after freeze-drying, PDH and PGH exhibited a max compressive strength of 9.5 and 9.6 KPa, respectively; while the max compressive strength of PFH and PNGH constructed with long PANI nanofiber is 79.9 and 75.8 KPa, respectively. Directly using these prepared hydrogels as electrodes for supercapacitors, it was found that PDH, PFH, PGH and PNGH exhibited high specific capacitances of 448.6, 470, 540.9 and 610 F g-1, respectively, at the current density of 1 A g-1. It is expected that the prepared PDH, PFH, PGH and PNGH can be directly applied in the field of high performance energy storage devices.

  19. Shape memory alloys: a state of art review

    NASA Astrophysics Data System (ADS)

    Naresh, C.; Bose, P. S. C.; Rao, C. S. P.

    2016-09-01

    Shape memory alloys (SMAs) are the special materials that have the ability to return to a predetermined shape when heated. When this alloy is in below transformation temperature it undergoes low yield strength and will deform easily into any new shape which it will retain, if this alloy is heated above its transformation temperature it changes its crystal lattice structure which returns to its real shape. SMAs are remarkably different from other materials are primarily due to shape memory effect (SME) and pseudoelasticity which are related with the specific way the phase transformation occurs, biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. SMA are used in many applications such as aerospace, medical, automobile, tubes, controllers for hot water valves in showers, petroleum industry, vibration dampers, ball bearings, sensors, actuators, miniature grippers, micro valves, pumps, landing gears, eye glass frames, Material for helicopter blades, sprinklers in fine alarm systems packaging devices for electronic materials, dental materials, etc. This paper focuses on introducing shape memory alloy and their applications in past, present and in future, also revealed the concept and mechanism of shape memory materials for a particular requirement. Properties of SMAs, behaviour and characteristics of SMA, summary of recent advances and new application opportunities are also discussed.

  20. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  1. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  2. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  3. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  4. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... properties, construction specifications, quality control, design references, and other information related to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Seal strengths, design applications, and... Seal strengths, design applications, and installation. (a) Seal strengths. Seals constructed on or...

  5. Modified Daily Undulating Periodization Model Produces Greater Performance Than a Traditional Configuration in Powerlifters.

    PubMed

    Zourdos, Michael C; Jo, Edward; Khamoui, Andy V; Lee, Sang-Rok; Park, Bong-Sup; Ormsbee, Michael J; Panton, Lynn B; Contreras, Robert J; Kim, Jeong-Su

    2016-03-01

    The primary aim of this study was to compare 2 daily undulating periodization (DUP) models on one-repetition maximum (1RM) strength in the squat, bench press, deadlift, total volume (TV) lifted, and temporal hormone response. Eighteen male, college-aged (21.1 ± 1.9 years) powerlifters participated in this study and were assigned to one of 2 groups: (a) traditional DUP training with a weekly training order: hypertrophy-specific, strength-specific, and power-specific training (HSP, n = 9) or (b) modified DUP training with a weekly training order: hypertrophy-specific, power-specific, and strength-specific training (HPS, n = 9). Both groups trained 3 nonconsecutive days per week for 6 weeks and performed the squat, bench press, and deadlift exercises. During hypertrophy and power sessions, subjects performed a fixed number of sets and repetitions but performed repetitions until failure at a given percentage during strength sessions to compare TV. Testosterone and cortisol were measured at pretesting and posttesting and before each strength-specific day. Hypertrophy, power, and strength produced greater TV in squat and bench press (p ≤ 0.05) than HSP, but not for deadlift (p > 0.05). For squat and deadlift, there was no difference between groups for 1RM (p > 0.05); however, HPS exhibited greater increases in 1RM bench press than HSP (p ≤ 0.05). Effect sizes (ES) showed meaningful differences (ES > 0.50) in favor of HPS for squat and bench press 1RM. Testosterone decreased (p ≤ 0.05) at weeks 5 and 6 and cortisol decline at weeks 3 and 4. However, neither hormone was different at posttesting compared with pretesting (p > 0.05). Our findings suggest that an HPS configuration of DUP has enhanced performance benefits compared with HSP.

  6. Yacht type and crew-specific differences in anthropometric, aerobic capacity, and muscle strength parameters among international Olympic class sailors.

    PubMed

    Bojsen-Møller, Jens; Larsson, Benny; Magnusson, S Peter; Aagaard, Per

    2007-08-01

    Physical fitness and muscular strength are important performance factors for Olympic class sailors, but the physical demands vary greatly between yacht classes, and limited information is available regarding the physical demands for the different crew positions. In the present paper, strength and aerobic capacity data from elite Olympic sailors are presented and compared with previous findings. Furthermore, a system for classification of Olympic class sailors is suggested. Peak aerobic capacity (peak oxygen uptake, VO(2peak)) and maximal isometric and isokinetic muscle strength of the knee extensors and flexors were assessed, together with the hamstring/quadriceps strength ratio (H/Q ratio). Peak aerobic capacity (ml O(2) . min(-1) . kg(-2/3)) was as follows: males - static hikers (n = 5) 215, s = 7; dynamic hikers (n = 8) 252, s = 17; trapezing helmsmen (n = 6) 234, s = 15; trapezing crew (n = 10) 239, s = 16; females - dynamic hikers (n = 6) 194, s = 16; trapezing crew (n = 2) 200, s = 13. Strength data for hikers, presented as peak moments (normalized to body weight) obtained during eccentric, isometric, and concentric contraction (Nm . kg(-1)) respectively were as follows: males - quadriceps: 3.66 (s = 0.68), 3.97 (s = 0.66), 1.82 (s = 0.34); hamstrings: 1.93 (s = 0.22), 1.38 (s = 0.41), 1.05 (s = 0.21); females - quadriceps: 3.84 (s = 0.71), 3.81 (s = 0.58), 1.60 (s = 0.28); hamstrings: 1.75 (s = 0.23), 1.10 (s = 0.16), 0.84 (s = 0.13). The peak moment based H/Q ratios for slow eccentric and concentric contractions were 0.42 (s = 0.11) and 0.39 (s = 0.04) for males and 0.43 (s = 0.06) and 0.39 (s = 0.04) for females respectively. Elite Olympic class sailors demonstrated high VO(2peak) values comparable to those observed in other non-endurance sports. The strength data revealed very high quadriceps strength for hikers, which is likely a result of the high muscle forces encountered during sailing, and a low H/Q ratio. To ensure optimal knee joint stabilization during sailing and other training activities, it is suggested that hikers should counter this strength imbalance by performing additional strength training for the hamstrings muscle group.

  7. Determining and analyzing the strength and impact resistance of high modulus glass

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1972-01-01

    A number of new glass compositions have been prepared with increased emphasis on compositions without beryllia. Glass preparations have been much more broadly based and have included the eutectic glass fields, and the mullite-rare earth glass systems. Of the new glasses, the best non-toxic composition is UARL 472 with a bulk modulus of only 18.20 million psi. A second experimental glass, UARL 417, was chosen for research in making large quantities of fiber in monofilament form. Tests of these UARL 417 epoxy resin samples in comparison to similar composites made with the DuPont organic fiber, PRD-49-1, show that the UARL composites have a compressive strength 41/2 times higher and a specific compressive strength at least 21/2 times greater. Much of the research effort attempted to answer the question of why a given glass should have an impact strength superior to other glasses. No definitive answer to the question was found.

  8. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  9. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  10. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  11. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  12. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  13. Theories in Developing Oral Communication for Specific Learner Group

    ERIC Educational Resources Information Center

    Hadi, Marham Jupri

    2016-01-01

    The current article presents some key theories most relevant to the development of oral communication skills in an Indonesian senior high school. Critical analysis on the learners' background is employed to figure out their strengths and weaknesses. The brief overview of the learning context and learners' characteristic are used to identify which…

  14. The angle-torque-relationship of the subtalar pronators and supinators in male athletes: A comparative study of soccer and handball players.

    PubMed

    Hagen, Marco; Asholt, Johannes; Lemke, Martin; Lahner, Matthias

    2016-05-18

    It is currently unclear how participation in different sports affects the angle-specific subtalar pronator and supinator muscle strength and pronator-to-supinator strength ratio (PSR). Based on the hypothesis that both differences sport-related patterns of play and foot-ground interaction may lead to sport-specific muscle adaptations, this study compared the angle specific pronator and supinator strength capacity of handball and soccer players. Eighteen healthy male handball and 19 soccer players performed maximum isometric voluntary isometric contractions using a custom-made testing apparatus. Peak pronator (PPT) and supinator torques (PST), pronator and supinator strength curves (normalised to the peak torque across all joint angles) and PSR were measured in five anatomical joint angles across the active subtalar range of motion (ROM). All analysed parameters were dependent on the subtalar joint angle. The ANOVA revealed significant `joint angle' × `group' interactions on PPT, pronator strength curves and PSR. No group differences were found for active subtalar ROM. In previously uninjured handball and soccer athletes, there were intrinsic differences in angle-specific subtalar pronator muscle strength. The lower PSR, which was found in the most supinated angle, can be seen as a risk factor for sustaining an ankle sprain.

  15. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-05-29

    The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.

  16. Direct-write 3D printing of composite materials with magnetically aligned discontinuous reinforcement

    NASA Astrophysics Data System (ADS)

    Martin, Joshua J.; Caunter, Andrew; Dendulk, Amy; Goodrich, Scott; Pembroke, Ryan; Shores, Dan; Erb, Randall M.

    2017-05-01

    Three-dimensional (3D) printing of fiber reinforced composites represents an enabling technology that may bring toughness and specific strength to complex parts. Recently, direct-write 3D printing has been offered as a promising route to manufacturing fiber reinforced composites that show high specific strength. These approaches primarily rely on the use of shear-alignment during the extrusion process to align fibers along the printing direction. Shear alignment prevents fibers from being oriented along principle stress directions of the final designed part. This paper describes a new direct-write style 3D printing system that incorporates magnetic fields to actively control the orientation of reinforcing fibers during the printing of fiber reinforced composites. Such a manufacturing system is fraught with complications from the high shear dominated alignment experienced by the fibers during extrusion to the slow magnetic alignment dynamics of fibers in viscous media. Here we characterize these issues and suggest effective operating windows in which magnetic alignment is a viable approach to orienting reinforcing particles during direct-write 3D printing.

  17. Reactions to psychological contract breaches and organizational citizenship behaviours: An experimental manipulation of severity.

    PubMed

    Atkinson, Theresa P; Matthews, Russell A; Henderson, Alexandra A; Spitzmueller, Christiane

    2018-01-30

    Grounded in affective events theory, we investigated the effects of experimentally manipulated psychological contract breaches on participants' feelings of violation, subsequent perceptions of psychological contract strength, and organizational citizenship behaviours in a sample of working adults. Results support previous findings that pre-existing relational psychological contract strength interacts with severity of unmet promises or expectations. Specifically, individuals with high relational contracts who experience low severity of unmet promises/expectations have the lowest breach perceptions, whereas individuals with high relational contracts who experience more severe levels unmet promises/expectations experience the highest level of breach perceptions. Results also support the concept of a breach spiral in that prior perceptions of breach led to an increased likelihood of subsequent perceptions of breach following the experimental manipulation. Furthermore, consistent with affective events theory, results support the argument that a psychological contract breach's effect on specific organizational citizenship behaviours is mediated by feelings of violation and the reassessment of relational contracts. These effects were present even after controlling for the direct effects of the manipulated severity of unmet promises/expectations. Copyright © 2018 John Wiley & Sons, Ltd.

  18. An evaluation of the effects of bed rest, sleep deprivation and discontinuance of training on the physical fitness of highly trained young men

    NASA Technical Reports Server (NTRS)

    Olree, H. D.; Corbin, B.; Dugger, G.; Smith, C.

    1973-01-01

    This experiment was conducted to determine what physiological effects result when highly trained subjects are confined to bed, deprived of sleep, or allowed to discontinue training. Results indicated: (1) There was a moderate increase in strength variables due to the training in this experiment but the stress which the subjects received caused a negligible change in strength variables. (2) The training program resulted in highly significant changes in specific bicycle ergometer variables indicating good increases in cardiopulmonary fitness. Five days of bed rest or fifty hours of sleep deprivation caused comparable drastic decreases in cardiopulmonary fitness. Post stress the subjects reverted to a normal daily schedule and after two weeks they had recovered about half of what they lost. (3) Cardiac output remains relatively constant at a constant work load, but stroke volume increases with conditioning and decreases with deconditioning due to stress.

  19. β-Catenin serves as a clutch between low and high intercellular E-cadherin bond strengths.

    PubMed

    Bajpai, Saumendra; Feng, Yunfeng; Wirtz, Denis; Longmore, Gregory D

    2013-11-19

    A wide range of invasive pathological outcomes originate from the loss of epithelial phenotype and involve either loss of function or downregulation of transmembrane adhesive receptor complexes, including Ecadherin (Ecad) and binding partners β-catenin and α-catenin at adherens junctions. Cellular pathways regulating wild-type β-catenin level, or direct mutations in β-catenin that affect the turnover of the protein have been shown to contribute to cancer development, through induction of uncontrolled proliferation of transformed tumor cells, particularly in colon cancer. Using single-molecule force spectroscopy, we show that depletion of β-catenin or the prominent cancer-related S45 deletion mutation in β-catenin present in human colon cancers both weaken tumor intercellular Ecad/Ecad bond strength and diminishes the capacity of specific extracellular matrix proteins-including collagen I, collagen IV, and laminin V-to modulate intercellular Ecad/Ecad bond strength through α-catenin and the kinase activity of glycogen synthase kinase 3 (GSK-3β). Thus, in addition to regulating tumor cell proliferation, cancer-related mutations in β-catenin can influence tumor progression by weakening the adhesion of tumor cells to one another through reduced individual Ecad/Ecad bond strength and cellular adhesion to specific components of the extracellular matrix and the basement membrane. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    PubMed

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  1. Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng

    2018-04-01

    Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.

  2. [Muscle strength of the cervical and lumbar spine in triathletes].

    PubMed

    Miltner, O; Siebert, C H; Müller-Rath, R; Kieffer, O

    2010-12-01

    The goal of this study was to analyse the muscle strength of the cervical and lumbar spine in ironman triathletes. The values were compared to the results obtained from a reference group. The test of the triathletes was carried out in an attempt to define a specific strength profile for these athletes. In this study, 20 long-distance triathletes (∅ 37.3 ± 7.6 years of age, ∅ 1.80 ± 0.1 m, ∅ 73.7 ± 6.0 kg) were evaluated with regard to their individual and sport-specific strengths of the cervical spine in 2 planes and of the trunk strengths in all 3 planes of motion. The trunk strength profile of the triathletes revealed good average results in the trunk extensors and the lateral flexors of the left trunk. The reference group is the data base of the company Proxomed®, Alzenau. It is based on results of 1045 untrained, symptom-free subjects of different ages. Lumbar extension: The extension of the force values shows no significant difference from the reference group. Lumbar flexion: The flexion tests show highly significantly lower force values (5.025 ± 0.81 N/kg vs. 6.67 ± 0.6 N/kg) than the reference group. Flexion/extension: In the sagittal plane values for the triathletes demonstrate an imbalance in muscle strength ratios. The abdominal muscles turn in relation to the back extensor muscles too weakly to be very significant. Lumbar rotation: The force values of the athletes in both directions (right: 6.185 ± 1.46 N/kg, left: 7.1 ± 1.57 N/kg vs. 10.05 ± 0.34 N/kg) are highly significantly (p ≤ 0.001) lower than the reference values. Ratio of rotation left/right: The ratio of left/right rotation in the reference group is set at 1 and thus shows an equally strong force level between the two sides. Lumbar lateral flexion: The triathletes do not show any significant differences between the force values. Compared to the reference group there is no significant difference to the left side flexion. In the lateral bending the athletes have significantly better values than the reference group. Ratio of lateral left/right: In the reference group the ratio is set at 1. For triathletes, it shows an average value of 0.93. This difference is not significant. Cervical extension: The extension of the force values (1.96 ± 0.59 N/kg vs. 3.03 ± 0.24 N/kg) shows a highly significant difference from the reference group. Cervical flexion: In flexion (1.3 ± 0.42 N/kg vs. 2.17 ± 0.22 N/kg) triathletes have highly significantly lower strength values than the reference group. Flexion/extension: The triathletes did not differ significantly from the reference values (0.69 ± 0.23 and 0.72 ± 0.08). Lateral cervical spine: In comparison to the reference group (left: 1.67 ± 0.48 N/kg, right: 1.55 ± 0.46 N/kg vs. 2.36 ± 0.15 N/kg) in which there is left/right lateral flexion, there is a highly significant difference. Right lateral flexion is weaker than the left. Ratio of lateral left/right: The triathletes have a significant imbalance in the lateral flexion of the cervical spine compared to the reference group (1.07 ± 0.15 to 1). In conclusion, in the triathlon there is a specific stress that is obviously not an adequate stimulus for the muscles of the cervical spine in order to achieve a balanced musculature and the athletes should be advised to practice a preventive approach with regard to these areas. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Effects of 8 Weeks’ Specific Physical Training on the Rotator Cuff Muscle Strength and Technique of Javelin Throwers

    PubMed Central

    Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon

    2014-01-01

    [Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111

  4. Effects of 8 weeks' specific physical training on the rotator cuff muscle strength and technique of javelin throwers.

    PubMed

    Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon

    2014-10-01

    [Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.

  5. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  6. Anthropometric, biomechanical, and isokinetic strength predictors of ball release speed in high-performance cricket fast bowlers.

    PubMed

    Wormgoor, Shohn; Harden, Lois; Mckinon, Warrick

    2010-07-01

    Fast bowling is fundamental to all forms of cricket. The purpose of this study was to identify parameters that contribute to high ball release speeds in cricket fast bowlers. We assessed anthropometric dimensions, concentric and eccentric isokinetic strength of selected knee and shoulder muscle groups, and specific aspects of technique from a single delivery in 28 high-performance fast bowlers (age 22.0 +/- 3.0 years, ball release speed 34.0 +/- 1.3 m s(-1)). Six 50-Hz cameras and the Ariel Performance Analysis System software were used to analyse the fast and accurate deliveries. Using Pearson's correlation, parameters that showed significant associations with ball release speed were identified. The findings suggest that greater front leg knee extension at ball release (r=0.52), shoulder alignment in the transverse plane rotated further away from the batsman at front foot strike (r=0.47), greater ankle height during the delivery stride (r=0.44), and greater shoulder extension strength (r=0.39) contribute significantly to higher ball release speeds. Predictor variables failed to allow their incorporation into a multivariate model, which is known to exist in less accomplished bowlers, suggesting that factors that determine ball release speed found in other groups may not apply to high-performance fast bowlers.

  7. Correlates of meeting the combined and independent aerobic and strength exercise guidelines in hematologic cancer survivors.

    PubMed

    Vallerand, James R; Rhodes, Ryan E; Walker, Gordon J; Courneya, Kerry S

    2017-03-28

    Most previous research on the correlates of physical activity has examined the aerobic or strength exercise guidelines separately. Such an approach does not allow an examination of the correlates of meeting the combined guidelines versus a single guideline, or one guideline versus the other. Here, we report the prevalence and correlates of meeting the combined and independent exercise guidelines in hematologic cancer survivors (HCS). In a population-based, cross-sectional survey of 606 HCS from Alberta, Canada using a mailed questionnaire, we obtained separate assessments of aerobic and strength exercise behaviors, as well as separate assessments for motivations, regulations, and reflective processes using the multi-process action control framework (M-PAC). Overall, 22% of HCS met the combined exercise guideline, 22% met aerobic-only, 10% met strength-only, and 46% met neither exercise guideline. HCS were more likely to meet the combined guideline over the aerobic-only guideline if they had no children living at home, and over both the aerobic and strength-only guidelines if they had completed university. As hypothesized, those meeting the combined guideline also had a more favorable strength-specific M-PAC profile (i.e., motivations, regulations, and reflective processes) than those meeting the aerobic-only guideline, and a more favorable aerobic-specific M-PAC profile than those meeting the strength-only guideline. Interestingly and unexpectedly, HCS meeting the combined guidelines also reported significantly greater aerobic-specific perceived control, planning, and obligation/regret than those meeting the aerobic-only guideline, and greater strength-specific perceived control, planning, and obligation/regret than those meeting the strength-only guideline. Few HCS are meeting the combined exercise guidelines. M-PAC based variables are strong correlates of meeting the combined guidelines compared to aerobic or strength only guidelines. Strategies to help HCS meet the combined guidelines may need to promote more favorable behavioral regulations and reflective processes for both types of exercise rather than just the type of exercise in which HCS are deficient.

  8. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area.

    PubMed

    Tong, Hui; Tanaka, Carina B; Kaizer, Marina R; Zhang, Yu

    2016-01-01

    Developing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with high strength and translucency could significantly widen the clinical indications of monolithic zirconia restorations. This study investigates the mechanical and optical properties of three Y-TZP ceramics: High-Translucency, High-Strength and High-Surface Area. The four-point bending strengths (mean ± standard error) for the three Y-TZP ceramics ( n = 10) were 990 ± 39, 1416 ± 33 and 1076 ± 32 MPa for High-Translucency, High-Strength and High-Surface Area, respectively. The fracture toughness values (mean ± standard error) for the three zirconias ( n = 10) were 3.24 ± 0.10, 3.63 ± 0.12 and 3.21 ± 0.14 MPa m 1/2 for High-Translucency, High-Strength and High-Surface Area, respectively. Both strength and toughness values of High-Strength zirconia were significantly higher than High-Surface Area and High-Translucency zirconias. Translucency parameter values of High-Translucency zirconia were considerably higher than High-Strength and High-Surface Area zirconias. However, all three zirconias became essentially opaque when their thickness reached 1 mm or greater. Our findings suggest that there exists a delicate balance between mechanical and optical properties of the current commercial Y-TZP ceramics.

  9. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and therapeutics on bone quality will be discussed.

  10. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  11. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players.

    PubMed

    Wagner, Herbert; Fuchs, Philip X; von Duvillard, Serge P

    2018-01-01

    Team handball is a dynamic sport game that is played professionally in numerous countries. However, knowledge about training and competition is based mostly on practical experience due to limited scientific studies. Consequently, the aims of our study were to compare specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. Thirty-six elite, sub-elite and non-elite male team handball players performed a game based performance test, upper-body and lower-body strength tests, 30-m sprint test, counter movement jump test and an incremental treadmill running test. Significant differences (P<0.05) were found for the peak oxygen uptake, heart rate, offense and defense time, jump height and ball velocity during the jump throw in the game based performance test, maximal oxygen uptake in the incremental treadmill running test as well as in maximal leg strength and leg explosive strength in the isometric strength test. Elite male players have an enhanced specific agility, a better throwing performance, a higher team handball specific oxygen uptake and higher leg strength compared to sub-elite and non-elite players. Based on these results we recommend that training in team handball should focus on game based training methods to improve performance in specific agility, endurance and technique.

  12. Strength Training. Rationale for Current Guidelines for Adult Fitness Programs.

    ERIC Educational Resources Information Center

    Feigenbaum, Matthew S.; Pollock, Michael L.

    1997-01-01

    Strength training is an effective method of developing musculoskeletal strength and is often prescribed for fitness, health, and for prevention and rehabilitation of orthopedic injuries. This paper describes and presents a rationale for the population-specific strength training guidelines established by major health organizations. (SM)

  13. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  14. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    NASA Astrophysics Data System (ADS)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  15. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    NASA Astrophysics Data System (ADS)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  16. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  17. Fundamental Study of the Development and Evaluation of Biodegradable Mg-Y-Ca-Zr Alloys as Novel Implant Materials

    NASA Astrophysics Data System (ADS)

    Da-Tren Chou

    Degradable metals hold considerable promise as materials which exhibit higher mechanical properties than degradable polymers while corroding over time to alleviate complications such as stress-shielding and infection that is inherent to permanent, bioinert metallic biomaterials. Specifically, degradable magnesium (Mg) alloys have emerged as a promising alternative for orthopedic and craniofacial applications due to their positive bone remodeling behavior, good biocompatibility, and relatively high strength compared to polymers while exhibiting similar stiffness to natural bone. Increasing the strength to maintain device integrity during degradation while simultaneously controlling the rapid corrosion of Mg to reduce the risk of hydrogen gas accumulation and toxicity are ongoing paramount goals for optimizing Mg alloys for musculoskeletal applications. In order to address these goals, novel Mg-Y-Ca-Zr based alloys were developed with alloying elements judiciously selected to impart favorable properties. Processing techniques including solution heat treatment combined with hot extrusion were employed to further enhance the desired properties of the material namely, controlled corrosion, high strength and ductility, and minimal toxic response. Increasing the Y content contributed to improved corrosion resistance yielding corrosion rates similar to commercial Mg alloys. Hot extrusion was employed to reduce the grain size, thereby improving mechanical properties through the Hall-Petch relation. Extrusion yielded extremely high strength relative to other Mg alloys, values approaching that of iron-based alloys, due to the presence of Mg12YZn, a long period stacking order phase that served to impede dislocation propagation. Both as-cast and extruded Mg-Y-Ca-Zr alloys demonstrated excellent in vitro cytocompatibility eliciting high viability and proliferation of MC3T3 pre-osteoblast cells and human mesenchymal stem cells. Alloying elements Y and Zr were specifically shown to improve cell proliferation. Finally, implantation of Mg-Y-Ca-Zr based alloys into the mouse subcutaneous tissue and intramedullary cavities of fractured rat femurs resulted in a normal host response and fracture healing, without eliciting any local or systemic toxicity. Thus, the alloys investigated in this work demonstrated great potential for applications as orthopedic and craniofacial implant biomaterials, warranting additional pre-clinical safety and efficacy trials that will be conducted in the near future.

  18. [Retinotopic mapping of the human visual cortex with functional magnetic resonance imaging - basic principles, current developments and ophthalmological perspectives].

    PubMed

    Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B

    2011-07-01

    Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Clinical inquiries. What test is the best for diagnosing infectious mononucleosis?

    PubMed

    Bell, Amy Trelease; Fortune, Barbara; Sheeler, Robert

    2006-09-01

    Tests for antibodies to Epstein-Barr viral capsid antigen or Epstein-Barr nuclear antigen are the most sensitive, are highly specific, and are also the most expensive for diagnosing infectious mononucleosis (strength of recommendation [SOR]: C, based on validating cohort study). Heterophile antibody tests have similar specificity and are cheaper, but are less sensitive in children or in adults during the early days of the illness (SOR: C, based on validating cohort study). The polymerase chain reaction assay for Epstein-Barr virus DNA is more sensitive than the heterophile antibody test in children, is highly specific, but is also expensive (SOR: C, based on validating cohort study). The percentages of atypical lymphocytes and total lymphocytes on a complete blood count provide another specific and moderately sensitive, yet inexpensive, test (SOR: C, based on validating cohort study).

  20. High-Throughput Combinatorial Development of High-Entropy Alloys For Light-Weight Structural Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Duren, Jeroen K; Koch, Carl; Luo, Alan

    The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true especially at a cost lower than 5dollars/kg (typical value for magnesium alloys). Recently, high-entropy alloys (HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions complex and time-consuming. Over the course of this 2-year project we started from 150 billion compositions and reduced the number of potential low-density (<5g/cc), low-cost (<5dollars/kg) high-entropy alloy (LDHEA) candidates that are single-phase, disordered, solid-solution (SPSS) to amore » few thousand compositions. This was accomplished by means of machine learning to guide design for SPSS LDHEA based on a combination of recursive partitioning, an extensive, experimental HEA database compiled from 24 literature sources, and 91 calculated parameters serving as phenomenological selection rules. Machine learning shows an accuracy of 82% in identifying which compositions of a separate, smaller, experimental HEA database are SPSS HEA. Calculation of Phase Diagrams (CALPHAD) shows an accuracy of 71-77% for the alloys supported by the CALPHAD database, where 30% of the compiled HEA database is not supported by CALPHAD. In addition to machine learning, and CALPHAD, a third tool was developed to aid design of SPSS LDHEA. Phase diagrams were calculated by constructing the Gibbs-free energy convex hull based on easily accessible enthalpy and entropy terms. Surprisingly, accuracy was 78%. Pursuing these LDHEA candidates by high-throughput experimental methods resulted in SPSS LDHEA composed of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al, yet the high concentration of Al, necessary to bring the mass density below 5.0g/cc, makes these materials hard and brittle, body-centered-cubic (BCC) alloys. A related, yet multi-phase BCC alloy, based on Al-Cr-Fe-Ni, shows compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g, yet does not show ductility in tensile tests due to cleavage. When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA with Mn, hardness drops 2x. Combined with compression test results, including those on the ternaries Al-Cr-Fe and Al-Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. These initial results only represent one compressive stress-strain curve per composition without any property optimization. As such, reproducibility needs to be followed by optimization to show their full potential. When including Li, Mg, and Zn, single-phase Li-Mg-Al-Ti-Zn LDHEA has been found with a specific ultimate compressive strength of 289MPa x cc/g. Al-Ti-Mn-Zn showed a specific ultimate compressive strength of 73MPa x cc/g. These initial results after hot isostatic pressing (HIP) of the ball-milled powders represent the lower end of what is possible, since no secondary processing (e.g. extrusion) has been performed to optimize strength and ductility. Compositions for multi-phase (e.g. dual-phase) LDHEA were identified largely by automated searches through CALPHAD databases, while screening for large face-centered-cubic (FCC) volume fractions, followed by experimental verification. This resulted in several new alloys. Li-Mg-Al-Mn-Fe and Mg-Mn-Fe-Co ball-milled powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and 45MPa x cc/g, respectively. Several malleable quarternary Al-Zn-based alloys have been found upon arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial results are all without any optimization for strength and/or ductility. High-throughput experimentation allowed us to triple the existing experimental HEA database as published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous methods. Furthermore, we showed that high-throughput thin-film combinatorial methods can be used to get insight in isothermal phase diagram slices. Although it is straightforward to map hardness as a function of composition for sputtered, thin-film, compositional gradients by nano-indentation and compare the results to micro-indentation on bulk samples, the simultaneous impact of composition, roughness, film density, and microstructure on hardness requires monitoring all these properties as a function of location on the compositional gradient, including dissecting the impact of these 4 factors on the hardness map. These additional efforts impact throughput significantly. This work shows that a lot of progress has been made over the years in predicting phase formation that aids the discovery of new alloys, yet that a lot of work needs to be done to predict phases more accurately for LDHEA, whether done by CALPHAD or by other means. More importantly, more work needs to be done to predict mechanical properties of novel alloys, like yield strength, and ductility. Furthermore, this work shows that there is a need for the generation of an empirical alloy database covering strategic points in a multi-dimensional composition space to allow for faster and more accurate predictive interpolations to identify the oasis in the dessert more quickly. Finally, this work suggests that it is worth pursuing a ductile alloy with a SYS > 300 MPa x cc/g in a mass density range of 6-7 g/cc, since the chances for a single-phase or majority-phase FCC increase significantly. Today’s lightweight steels are in this density range.« less

  1. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

  2. Fitness characteristics of a suburban special weapons and tactics team.

    PubMed

    Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J

    2012-03-01

    Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.

  3. Strength characteristics of lightly solidified dredged marine clay admixed with bentonite

    NASA Astrophysics Data System (ADS)

    Ariffin, Syazwana Tajul; Chan, Chee-Ming

    2017-11-01

    Strength characteristic is a significant parameter in measuring the effect of soil improvement and effective composition of solidification. In this study, the dredged marine sediment (DMS) collected from Kuala Perlis (Malaysia) was examined to determine its strength characteristics under light cement solidification with bentonite. Dredged marine clay generally has the low shear strength and high void ratio, and consists mainly of soil particles of the fine-grained type. As a discarded geo-waste, it can be potentially treated to for reuse as a backfill material instead of being disposed of, hence reducing the negative impact on the environment. Physico-chemical parameters of the dredged sample were first determined, then solidification was carried out to improve the engineering properties by admixing ordinary Portland cement (OPC) as the binder and bentonite as a volume enhancer to the soil. The DMS was treated with the addition of 3 % and 6 % cement and bentonite within the range of 0-30 %. The specimens were cured at room temperature for 3, 7 and 14 days. The strength gain was measured by unconfined compression test and vane shear test. The laboratory test results were analyzed to establish the relationship between strength properties and solidification specifications. In summary, the strength of specimens increased with the increase of the quantity of bentonite and cement to get the effective composition of the specimen.

  4. [Muscular trunk stability in professional and amateur volleyball players].

    PubMed

    Miltner, O; Siebert, C; Tschaepe, R; Maus, U; Kieffer, O

    2010-03-01

    The aim of this study was to analyse the efficiency of muscular activity in the trunk stabilisation of professional volleyball players compared to a group of amateur hobby players. The results were compared amongst the groups as well as with a reference group consisting of asymptomatic individuals. The question to be answered was whether or not professional volleyball players possess a characteristic strength profile in their trunk musculature and if differences exist with regard to the individuals' competitive playing level. In this comparative study 12 professional volleyball players (German Bundesliga) and 18 non-professional volleyball players were analysed with regard to their isometric strength profile in all three planes. The reference group was provided by the Proxomed company, which had previously analysed healthy untrained individuals (n = 1045) of various age groups. A sports-specific profile for the musculature of volleyball players revealed a significant reduction in the flexion and rotation strength as well as a well-developed lateral flexion strength (highly significant when compared to the reference group). With reference to the level played, better strength values in flexion and lateral flexion were found among the professional athletes. Professional volleyball players present with a characteristic trunk musculature strength profile. A detailed analysis of the muscle strength of the spine as part of a sports medicine work-up could prove helpful in preventing injuries and overuse problems in professional and hobby volleyball players.

  5. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fe-Mn(Al, Si) TWIP steel - strengthening characteristics and weldability

    NASA Astrophysics Data System (ADS)

    Podany, P.; Koukolikova, M.; Kubina, T.; Prochazka, R.; Franc, A.

    2017-02-01

    Twinning Induced Plasticity steel, or TWIP steel, has had increased interest in recent years from various industry sectors. This is due to it being lightweight, strong, and ductile; which are all properties that are useful in the automotive and aerospace industries. These steels potentially can offer lighter weight vehicles and parts with increased strength and other mechanical properties. This combination could offer greater fuel efficiency and performance while at the same time improving the safety features of the vehicle. This steel is characterised by being a high alloy steel, specifically having a high manganese content. It also has a fully austenitic microstructure at room temperature, which is a unique characteristic. But, for TWIP steel to be useful in various industrial sectors, it must have good weldability. This paper deals with the description of the strengthening due to the cold rolling on experimental heats of manganese steel with TRIP/TWIP effect. Impacts on microstructure, yield strength and tensile strength are described. Also, the weldability of experimental TWIP steel by studying the properties of weld joints after laser welding is described.

  7. Influence of triallyl cyanurate as co-agent on gamma irradiation cured high density polyethylene/reclaimed tire rubber blend

    NASA Astrophysics Data System (ADS)

    Mali, Manoj N.; Arakh, Amar A.; Dubey, K. A.; Mhaske, S. T.

    2017-02-01

    Utilization of waste from tire industry as reclaimed tire rubber (RTR) by formation of blends with high density polyethylene (HDPE) is great area to be focused. Enhancement of properties by the addition of triallyl cyanurate (TAC) as a co-agent with 1%, 3% and 5% to blend of HDPE 50 wt% and RTR 50 wt% in presence of gamma irradiation curing were investigated. Specifically, mechanical and thermal properties were studied as a function of amount of TAC and gamma irradiation dose in range of 50-200 kGy. The resultant blends were evaluated for the values of impact strength, gel content, thermal stability, tensile properties, rheological properties and morphological properties with increasing irradiation dosage and TAC loading. The mechanical properties tensile strength, hardness, impact strength of blend containing 3% of TAC were substantially increased with increasing irradiation dosage up to 150 KGy. Rheological analysis has shown increase in viscosity with increase in TAC loading up to 3% and 150 KGy irradiation dosages. 3% loading of TAC lead to better set of properties with150 KGy gamma irradiation dosage.

  8. Production of fibers by a floating zone fiber drawing technique

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1972-01-01

    A CO2 laser heated, floating zone fiber growth process was developed. The resulting Al2O3 fibers exhibited the high room temperature strengths for large diameter fibers as well as high specific creep rupture strengths observed at 1093 C and 1316 C (2000 F and 2400 F). Single crystal fibers of TiC and Y2O3 were also grown. An optical system was developed to focus four CO2 laser beams onto the surface of a feed rod permitting the formation of highly controllable molten zones. The optical system permitted energy densities and angle of incidence of the beams to be adjusted over wide ranges. This optical system was incorporated into a controlled atmosphere, fiber growth furnace. The two principal advantages of a CO2 laser heat source are that ambient atmospheres may be freely selected to optimize fiber properties and the laser has no inherent temperature limit, so extremely high melting point materials can be melted. Both advantages were demonstrated.

  9. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  10. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue.

    PubMed

    Ophoff, Jill; Van Proeyen, Karen; Callewaert, Filip; De Gendt, Karel; De Bock, Katrien; Vanden Bosch, An; Verhoeven, Guido; Hespel, Peter; Vanderschueren, Dirk

    2009-08-01

    Muscle frailty is considered a major cause of disability in the elderly and chronically ill. However, the exact role of androgen receptor (AR) signaling in muscle remains unclear. Therefore, a postmitotic myocyte-specific AR knockout (mARKO) mouse model was created and investigated together with a mouse model with ubiquitous AR deletion. Muscles from mARKO mice displayed a marked reduction in AR protein (60-88%). Interestingly, body weights and lean body mass were lower in mARKO vs. control mice (-8%). The weight of the highly androgen-sensitive musculus levator ani was significantly reduced (-46%), whereas the weights of other peripheral skeletal muscles were not or only slightly reduced. mARKO mice had lower intra-abdominal fat but did not demonstrate a cortical or trabecular bone phenotype, indicating that selective ablation of the AR in myocytes affected male body composition but not skeletal homeostasis. Furthermore, muscle contractile performance in mARKO mice did not differ from their controls. Myocyte-specific AR ablation resulted in a conversion of fast toward slow fibers, without affecting muscle strength or fatigue. Similar results were obtained in ubiquitous AR deletion, showing lower body weight, whereas some but not all muscle weights were reduced. The percent slow fibers was increased, but no changes in muscle strength or fatigue could be detected. Together, our findings show that myocyte AR signaling contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. The levator ani weight remains the most sensitive and specific marker of AR-mediated anabolic action on muscle.

  11. Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study

    PubMed Central

    Patel, Kushang V.; Fried, Linda F.; Robinson-Cohen, Cassianne; de Boer, Ian H.; Harris, Tamara; Murphy, Rachel A.; Satterfield, Suzanne; Goodpaster, Bret H.; Shlipak, Michael; Newman, Anne B.; Kestenbaum, Bryan

    2017-01-01

    Background: Mobility limitation is highly prevalent among older adults and is central to the loss of functional independence. Dynamic isokinetic muscle fatigue testing may reveal increased vulnerability to disability and mortality beyond strength testing. Methods: We studied community-dwelling older adults enrolled in the Health Aging and Body Composition study (age range: 71–82) free of mobility disability and who underwent isokinetic muscle fatigue testing in 1999–2000 (n = 1,963). Isokinetic quadriceps work and fatigue index was determined over 30 repetitions and compared with isometric quadriceps maximum torque. Work was normalized to leg lean mass accounting for gender-specific differences (specific work). The primary outcome was incident persistent severe lower extremity limitation (PSLL), defined as two consecutive reports of either having a lot of difficulty or being unable to walk 1/4 mile or climb 10 steps without resting. The secondary outcome was all-cause mortality. Results: There were 608 (31%) occurrences of incident PSLL and 488 (25%) deaths during median follow-up of 9.3 years. After adjustment, lower isokinetic work was associated with significantly greater risks of PSLL and mortality across the full measured range. Hazard ratios per standard deviation lower specific isokinetic work were 1.22 (95% CI 1.12, 1.33) for PSLL and 1.21 (95% CI 1.13, 1.30) for mortality, respectively. Lower isometric strength was associated with PSLL, but not mortality. Fatigue index was not associated with PSLL or mortality. Conclusions: Muscle endurance, estimated by isokinetic work, is an indicator of muscle health associated with mobility limitation and mortality providing important insight beyond strength testing. PMID:27907890

  12. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  13. A Systematic Review of the Effect of Cognitive Strategies on Strength Performance.

    PubMed

    Tod, David; Edwards, Christian; McGuigan, Mike; Lovell, Geoff

    2015-11-01

    Researchers have tested the beliefs of sportspeople and sports medicine specialists that cognitive strategies influence strength performance. Few investigators have synthesised the literature. The specific objectives were to review evidence regarding (a) the cognitive strategy-strength performance relationship; (b) participant skill level as a moderator; and (c) cognitive, motivational, biomechanical/physiological, and emotional mediators. Studies were sourced via electronic databases, reference lists of retrieved articles, and manual searches of relevant journals. Studies had to be randomised or counterbalanced experiments with a control group or condition, repeated measures, and a quality control score above 0.5 (out of 1). Cognitive strategies included goal setting, imagery, self-talk, preparatory arousal, and free choice. Dependent variables included maximal strength, local muscular endurance, or muscular power. Globally, cognitive strategies were reliability associated with increased strength performance (results ranged from 61 to 65 %). Results were mixed when examining the effects of specific strategies on particular dependent variables, although no intervention had an overall negative influence. Indeterminate relationships emerged regarding hypothesised mediators (except cognitive variables) and participant skill level as a moderator. Although cognitive strategies influence strength performance, there are knowledge gaps regarding specific types of strength, especially muscular power. Cognitive variables, such as concentration, show promise as possible mediators.

  14. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.

    PubMed

    Lau, Michael; Young, Paul M; Traini, Daniela

    2017-08-01

    The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.

  15. Mechanical properties of cement concrete composites containing nano-metakaolin

    NASA Astrophysics Data System (ADS)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  16. Morphological, motor and situation-motor characteristics of elite female handball players according to playing performance and position.

    PubMed

    Cavala, Marijana; Katić, Ratko

    2010-12-01

    The aim of the study was to define biomotor characteristics that determine playing performance and position in female handball. A battery of 13 variables consisting of somatotype components (3 variables), basic motor abilities (5 variables) and specific motor abilities (5 variables) were applied in a sample of 52 elite female handball players. Differences in biomotor characteristics according to playing performance and position of female handball players were determined by use of the analysis of variance (ANOVA) and discriminative analysis. Study results showed the high-quality female handball players to predominantly differ from the less successful ones in the specific factor of throw strength and basic dash factor, followed by the specific abilities of movement without and with ball, basic coordination/agility and specific ability of ball manipulation, and a more pronounced mesomorphic component. Results also revealed the wing players to be superior in the speed of movement frequency (psychomotor speed), run (explosive strength) and speed of movement with ball as compared with players at other playing positions. Also, endomorphic component was less pronounced in players at the wing and back player positions as compared with goalkeeper and pivot positions, where endomorphic component was considerably more pronounced.

  17. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  18. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue.

    PubMed

    Matthews, Martyn J; Heron, Kate; Todd, Stefanie; Tomlinson, Andrew; Jones, Paul; Delextrat, Anne; Cohen, Daniel D

    2017-05-01

    To investigate the effect of two hamstring training protocols on eccentric peak torque before and after soccer specific fatigue. Twenty-two university male soccer players. Isokinetic strength tests were performed at 60°/s pre and post fatigue, before and after 2 different training interventions. A 45-min soccer specific fatigue modified BEAST protocol (M-BEAST) was used to induce fatigue. Players were randomly assigned to a 4 week hamstrings conditioning intervention with either a maximum strength (STR) or a muscle endurance (END) emphasis. The following parameters were evaluated: Eccentric peak torque (EccPT), angle of peak torque (APT), and angle specific torques at knee joint angles of 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° and 90°. There was a significant effect of the M-BEAST on the Eccentric torque angle profile before training as well as significant improvements in post-fatigue torque angle profile following the effects of both strength and muscle endurance interventions. Forty-five minutes of simulated soccer activity leads to reduced eccentric hamstring torque at longer muscle lengths. Short-term conditioning programs (4-weeks) with either a maximum strength or a muscular endurance emphasis can equally reduce fatigue induced loss of strength over this time period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels (replaces UCS...

  20. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels (replaces UCS...

  1. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels (replaces UCS...

  2. A Comparison of Increment Core Sampling for Estimating Tree Specific Gravity

    Treesearch

    Michael A. Taras; Harold E. Wadlgren

    1963-01-01

    Increment cores have been used to evaluate such tree characteristics as age, rate of growth, percentage of various types of tissue, chemical composition, and density. Of the wood characteristics listed, density has come to be of considerable interest to numerous researchers, since it is highly correlated with the strength properties, workability, and weight of wood....

  3. Sucrose Treated Carbon Nanotube and Graphene Yarns and Sheets

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey (Inventor); Kim, Jae-Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor)

    2017-01-01

    Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.

  4. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloymore » systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.« less

  5. Development of High Toughness Sheet and Extruded Products for Airplane Fuselage Structures

    NASA Astrophysics Data System (ADS)

    Magnusen, P. E.; Mooy, D. C.; Yocum, L. A.; Rioja, R. J.

    High specific ultimate strength and high plane stress fracture toughness are primary requirements of aircraft fuselage skins. The performance of alloys/products used in high performance fuselage applications is first reviewed. The specific fracture toughness for products such as 2017-T3, 2024-T3, 2524-T3 and 6013-T6, is discussed as a function of their composition and microstructure. Then the performance of modern Al-Li alloys/products such as 2199 and 2060 sheet and 2099 and 2055 extrusions is examined. It is concluded that the performance of Li containing alloys/products offer significant improvements over non-Li containing conventional fuselage products because of the optimization of strengthening precipitates and grain microstructures. The role of chemical composition on resulting microstructures is discussed.

  6. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  7. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  8. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  9. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  10. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    PubMed Central

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  11. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-03-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.

  12. Action potential amplitude as a noninvasive indicator of motor unit-specific hypertrophy.

    PubMed

    Pope, Zachary K; Hester, Garrett M; Benik, Franklin M; DeFreitas, Jason M

    2016-05-01

    Skeletal muscle fibers hypertrophy in response to strength training, with type II fibers generally demonstrating the greatest plasticity in regards to cross-sectional area (CSA). However, assessing fiber type-specific CSA in humans requires invasive muscle biopsies. With advancements in the decomposition of surface electromyographic (sEMG) signals recorded using multichannel electrode arrays, the firing properties of individual motor units (MUs) can now be detected noninvasively. Since action potential amplitude (APSIZE) has a documented relationship with muscle fiber size, as well as with its parent MU's recruitment threshold (RT) force, our purpose was to examine if MU APSIZE, as a function of its RT (i.e., the size principle), could potentially be used as a longitudinal indicator of MU-specific hypertrophy. By decomposing the sEMG signals from the vastus lateralis muscle of 10 subjects during maximal voluntary knee extensions, we noninvasively assessed the relationship between MU APSIZE and RT before and immediately after an 8-wk strength training intervention. In addition to significant increases in muscle size and strength (P < 0.02), our data show that training elicited an increase in MU APSIZE of high-threshold MUs. Additionally, a large portion of the variance (83.6%) in the change in each individual's relationship between MU APSIZE and RT was explained by training-induced changes in whole muscle CSA (obtained via ultrasonography). Our findings suggest that the noninvasive, electrophysiological assessment of longitudinal changes to MU APSIZE appears to reflect hypertrophy specific to MUs across the RT continuum. Copyright © 2016 the American Physiological Society.

  13. Psychophysiological Response and Fine Motor Skills in High-Altitude Parachute Jumps.

    PubMed

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Herrera-Mendoza, Ketty; Herrera-Tapias, Beliña; Fernández-Lucas, Jesús

    2017-12-01

    Clemente-Suárez, Vicente Javier, José Juan Robles-Pérez, Ketty Herrera-Mendoza, Beliña Herrera-Tapias, and Jesús Fernández-Lucas. Psychophysiological response and fine motor skills in high-altitude parachute jumps. High Alt Med Biol 18:392-399, 2017.-We analyzed the psychophysiological response and specific fine motor skill of an experienced jumper in HALO (high altitude low opening) and HAHO (high altitude high opening) parachute jumps. Eight HALO and eight HAHO jumpers were analyzed. They jumped at 5500 m, HALO jumpers opened the parachute at 500 m and HAHO jumpers at 4300 m of altitude. Before and after the jumps, parameters of muscle strength, cortical arousal, blood creatine kinase (CK) and glucose, blood oxygen saturation, rate of perceived exertion (RPE), and specific fine motor skills of an experienced jumper were assessed; during the jump, heart rate (HR), HR variability, and speed were evaluated. HALO and HAHO jumps produced a significant increase in CK, lactate, and RPE, and a decrease in glucose. HAHO decreased cortical arousal, presented a higher sympathetic modulation, and a higher HR during the jump than HALO. HALO and HAHO produced an increase in the physiological, sympathetic modulation and muscle destruction, and a decrease in cortical arousal and a higher blood lactate concentration only in the HAHO jump. Also, somatic and cognitive anxiety correlated with higher strength manifestation and muscle destruction. This novel research could be used to improve actual training systems in both civil and military parachute jumpers.

  14. Strengths-Based Education: Probing Its Limits. The Cutting Edge

    ERIC Educational Resources Information Center

    Clabaugh, Gary K.

    2005-01-01

    Except for Timothy Hodges and James Harter's restrained research summary, the feature articles in this issue are evangelical in their praise of strengths-based education. It is, they assure us, a major innovation. English teacher Alexis Onishi writes that StrengthsQuest, a specific strengths-based approach, will have "a lifelong impact on how…

  15. Muscular coordination and strength training. Implications for injury rehabilitation.

    PubMed

    Rutherford, O M

    1988-03-01

    Strength training is commonly used in the rehabilitation of muscles atrophied as a result of injury and/or disuse. Studies on the effects of conventional leg extension training in healthy subjects have shown the changes to be very task-specific to the training manoeuvre itself. After conventional leg extension training for the quadriceps muscle the major improvement was in weightlifting ability with only small increases in isometric strength. The maximum dynamic force and power output during sprint cycling showed no improvement. These results suggest that the major benefit of this type of training is learning to coordinate the different muscle groups involved in the training movement rather than intrinsic increases in strength of the muscle group being trained. Other studies have shown changes in strength to be specific to the length and speed at which the muscle has been trained. The implication for rehabilitation is that strength training for isolated muscle groups may not be the most effective way of increasing functional ability. As the major changes are task-specific it may be better to incorporate the training into task-related practice. This would have the advantage of strengthening the muscle groups affected whilst increasing performance in those activities which are required in daily life.

  16. Upper-body strength gains from different modes of resistance training in women who are underweight and women who are obese.

    PubMed

    Mayhew, Jerry L; Smith, Abbie E; Arabas, Jana L; Roberts, B Scott

    2010-10-01

    The purpose of this study was to determine the degree of upper-body strength gained by college women who are underweight and those who are obese using different modes of resistance training. Women who were underweight (UWW, n = 93, weight = 49.3 ± 4.5 kg) and women who were obese (OBW, n = 73, weight = 94.0 ± 15.1 kg) were selected from a larger cohort based on body mass index (UWW ≤ 18.5 kg·m⁻²; OBW ≥ 30 kg·m⁻²). Subjects elected to train with either free weights (FW, n = 38), supine vertical bench press machine (n = 52) or seated horizontal bench press machine (n = 76) using similar linear periodization resistance training programs 3× per week for 12 weeks. Each participant was assessed for upper-body strength using FWs (general) and machine weight (specific) 1 repetition maximum bench press before and after training. Increases in general and mode-specific strength were significantly greater for OBW (5.2 ± 5.1 and 9.6 ± 5.1 kg, respectively) than for UWW (3.5 ± 4.1 and 7.2 ± 5.2 kg, respectively). General strength gains were not significantly different among the training modes. Mode-specific gains were significantly greater (p < 0.05) than general strength gains for all groups. In conclusion, various resistance training modes may produce comparable increases in general strength but will register greater gains if measured using the specific mode employed for training, regardless of the weight category of the individual.

  17. Association between V̇O2max, handgrip strength, and musculoskeletal pain among construction and health care workers.

    PubMed

    Moberg, Lene Lehmann; Lunde, Lars-Kristian; Koch, Markus; Tveter, Anne Therese; Veiersted, Kaj Bo

    2017-03-21

    Construction and health care workers have a high prevalence of musculoskeletal disorders, and they are assumed to have physically demanding jobs. Profession- and gender-specific associations between individual capacity and musculoskeletal pain have not been sufficiently investigated. The main aim of this study was to examine the association between individual capacity (maximal oxygen uptake (V̇O 2max ) and handgrip strength) and musculoskeletal pain among construction and health care workers. This cross-sectional study examined 137 construction and health care workers (58 women and 79 men) with a mean age of 41.8 years (standard deviation 12). Aerobic capacity was indirectly assessed by the Åstrand cycle test, and strength was assessed by a handgrip test. Musculoskeletal pain was described by total pain, divided into neck, shoulder, and low back pain, during the last 12 months, and it was dichotomized in below or above 30 days. Logistic regression was used to analyse the associations between V̇O 2max , strength, and musculoskeletal pain in the total study sample and separately for construction and health care workers. Analyses were adjusted for age, gender, body mass index (BMI), and selected mechanical and psychosocial factors. Every second participant (51.8%) reported pain in either neck, shoulders or low back for more than 30 days during the last 12 months. Among the health care workers, a small but significant association was found between a high V̇O 2max , high handgrip strength, and a low level of musculoskeletal pain. No association was found for the construction workers. An association between V̇O 2max, handgrip strength, and musculoskeletal pain was found for health care workers but not for construction workers. These results indicate that activities promoting individual capacity may reduce musculoskeletal pain for health care workers.

  18. Level, Strength, and Facet-Specific Self-Efficacy in Mathematics Test Performance

    ERIC Educational Resources Information Center

    Street, Karin Elisabeth Sørlie; Malmberg, Lars-Erik; Stylianides, Gabriel J.

    2017-01-01

    Students' self-efficacy expectations (SEE) in mathematics are associated with their engagement and learning experiences. Going beyond previous operationalisations of SEE we propose a new instrument that takes into account not only "facet-specificity" (expectations related to particular competences or skills) and "strength"…

  19. THIGH MUSCLE CROSS-SECTIONAL AREAS AND STRENGTH IN KNEES WITH EARLY VS KNEES WITHOUT RADIOGRAPHIC KNEE OSTEOARTHRITIS: A BETWEEN-KNEE, WITHIN-PERSON COMPARISON

    PubMed Central

    Ruhdorfer, AS; Dannhauer, T; Wirth, W; Cotofana, S; Roemer, F; Nevitt, M; Eckstein, F

    2014-01-01

    Objective To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs. knees without radiographic knee osteoarthritis (RKOA), in the same person. Design 55 (of 4796) Osteoarthritis Initiative participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs. no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and two-year changes of quadriceps ACSAs the secondary focus. Results No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs. contralateral limbs without RKOA (p≥0.44), neither in men nor in women. The two-year reduction in quadriceps ACSA in limbs with early RKOA was −0.9±6% (mean ± standard deviation) vs. −0.5±6% in limbs without RKOA (statistical difference p=0.85). Conclusion Our results do not provide evidence that early unilateral radiographic changes, i.e. presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees. PMID:25278072

  20. The influence of lay-up and thickness on composite impact damage and compression strength

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  1. [Clinical MR at 3 Tesla: current status].

    PubMed

    Baudendistel, K T; Heverhagen, J T; Knopp, M V

    2004-01-01

    Clinical MRI is mostly performed at field strengths up to 1.5 Tesla (T). Recently, approved clinical whole-body MR-systems with a field strength of 3 T became available. Its installation base is more rapidly growing than anticipated. While site requirements and operation of these systems do not differ substantially from systems with lower field strength, there are differences in practical applications. Imaging applications can use the gain in signal-to-noise for increased spatial resolution or gain in speed. This comes at a trade off in increased sensitivity to field inhomogeneities and changes in relaxation times, which lead to changes in image contrast. The benefit of high field for spectroscopy consists in increased signal-to-noise-ratio and improvement in frequency resolution. The increase in energy deposition necessitates the use of special strategies to reduce the specific absorption rate (SAR). This paper summarizes the current state of MR at 3 T.

  2. When giving feels good. The intrinsic benefits of sacrifice in romantic relationships for the communally motivated.

    PubMed

    Kogan, Aleksandr; Impett, Emily A; Oveis, Christopher; Hui, Bryant; Gordon, Amie M; Keltner, Dacher

    2010-12-01

    Who benefits most from making sacrifices for others? The current study provides one answer to this question by demonstrating the intrinsic benefits of sacrifice for people who are highly motivated to respond to a specific romantic partner's needs noncontingently, a phenomenon termed communal strength. In a 14-day daily-experience study of 69 romantic couples, communal strength was positively associated with positive emotions during the sacrifice itself, with feeling appreciated by the partner for the sacrifice, and with feelings of relationship satisfaction on the day of the sacrifice. Furthermore, feelings of authenticity for the sacrifice mediated these associations. Several alternative hypotheses were ruled out: The effects were not due to individuals higher in communal strength making qualitatively different kinds of sacrifices, being more positive in general, or being involved in happier relationships. Implications for research and theory on communal relationships and positive emotions are discussed.

  3. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.

  4. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.

  5. The Bonding Behavior of co-extruded Aluminum-Titanium-Compounds

    NASA Astrophysics Data System (ADS)

    Striewe, Barbara; Hunkel, Martin; von Hehl, Axel; Grittner, Norbert

    The combination of aluminum and titanium enables the design of lightweight structures with tailor-made properties at global as well as local scale. In this context the co-extrusion process offers a great potential for advanced solutions for long products especially being applied in the aircraft and automobile sector. While titanium alloys show particular high mechanical strength and good corrosion resistance, aluminum alloys provide a considerable high specific bending stiffness along with lower materials costs.

  6. Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders.

    PubMed

    Arndt, Oscar-Rupert; Kleinebudde, Peter

    2018-04-23

    Metformin has a poor tabletability and flowability. Therefore, metformin is typically wet granulated with a binder before tableting. To save production costs, it would be desirable to implement a roll compaction/dry granulation (RCDG) process for metformin instead of using wet granulation. In order to implement RCDG, the efficiency of dry binders is crucial to ensure a high drug load and suitable properties of dry granules and tablets. This study evaluates dry granules manufactured by RCDG and subsequently tableting of high metformin content formulations (≥ 87.5%). Based on previous results, fine particle grades of hydroxypropylcellulose and copovidone in different fractions were compared as dry binders. The formulations are suitable for RCDG and tableting. Furthermore, results can be connected to in-die and out-of-die compressibility analysis. The addition of 7% of dry binder is a good compromise to generate sufficient mechanical properties on the one hand, but also to save resources and ensure a high metformin content on the other hand. Hydroxypropylcellulose was more efficient in terms of granule size, tensile strength and friability. Three percent croscarmellose was added to reach the specifications of the US Pharmacopeia regarding dissolution. The final formulation has a metformin content of 87.5%. A loss in tabletability does not occur for granules compressed at different specific compaction forces, which displays a robust tensile strength of tablets independent of the granulation process.

  7. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study.

    PubMed

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-06-28

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  8. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study

    PubMed Central

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-01-01

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content. PMID:25114739

  9. Bone architecture and strength in the growing skeleton: the role of sedentary time.

    PubMed

    Gabel, Leigh; McKay, Heather A; Nettlefold, Lindsay; Race, Douglas; Macdonald, Heather M

    2015-02-01

    Today's youths spend close to 60% of their waking hours in sedentary activities; however, we know little about the potentially deleterious effects of sedentary time on bone health during this key period of growth and development. Thus, our objective was to determine whether sedentary time is associated with bone architecture, mineral density, and strength in children, adolescents, and young adults. We used high-resolution peripheral quantitative computed tomography (Scanco Medical) to measure bone architecture (trabecular and cortical microstructure and bone macrostructure) and cortical and total bone mineral density (BMD) at the distal tibia (8% site) in 154 males and 174 females (9-20 yr) who were participants in the University of British Columbia Healthy Bones III study. We applied finite element analysis to high-resolution peripheral quantitative computed tomography scans to estimate bone strength. We assessed self-reported screen time in all participants using a questionnaire and sedentary time (volume and patterns) in a subsample of participants with valid accelerometry data (89 males and 117 females; ActiGraph GT1M). We fit sex-specific univariate multivariable regression models, controlling for muscle cross-sectional area, limb length, maturity, ethnicity, dietary calcium, and physical activity. We did not observe independent effect of screen time on bone architecture, BMD, or strength in either sex (P > 0.05). Likewise, when adjusted for muscle cross-sectional area, limb length, maturity, ethnicity, dietary calcium, and physical activity, accelerometry-derived volume of sedentary time and breaks in bouts of sedentary time were not a determinant of bone architecture, BMD, or strength in either sex (P > 0.05). Further study is warranted to determine whether the lack of association between sedentary time and bone architecture, BMD, and strength at the distal tibia is also present at other skeletal sites.

  10. Cross-sex genetic correlation does not extend to sexual size dimorphism in spiders

    NASA Astrophysics Data System (ADS)

    Turk, Eva; Kuntner, Matjaž; Kralj-Fišer, Simona

    2018-02-01

    Males and females are often subjected to different selection pressures for homologous traits, resulting in sex-specific optima. Because organismal attributes usually share their genetic architectures, sex-specific selection may lead to intralocus sexual conflict. Evolution of sexual dimorphism may resolve this conflict, depending on the degree of cross-sex genetic correlation ( r MF) and the strength of sex-specific selection. In theory, high r MF implies that sexes largely share the genetic base for a given trait and are consequently sexually monomorphic, while low r MF indicates a sex-specific genetic base and sexual dimorphism. Here, we broadly test this hypothesis on three spider species with varying degrees of female-biased sexual size dimorphism, Larinioides sclopetarius (sexual dimorphism index, SDI = 0.85), Nuctenea umbratica (SDI = 0.60), and Zygiella x-notata (SDI = 0.46). We assess r MF via same-sex and opposite-sex heritability estimates. We find moderate body mass heritability but no obvious patterns in sex-specific heritability. Against the prediction, the degree of sexual size dimorphism is unrelated to the relative strength of same-sex versus opposite-sex heritability. Our results do not support the hypothesis that sexual size dimorphism is negatively associated with r MF. We conclude that sex-specific genetic architecture may not be necessary for the evolution of a sexually dimorphic trait.

  11. Perspectives on Aerobic and Strength Influences on Military Physical Readiness: Report of an International Military Physiology Roundtable.

    PubMed

    Friedl, Karl E; Knapik, Joseph J; Häkkinen, Keijo; Baumgartner, Neal; Groeller, Herbert; Taylor, Nigel A S; Duarte, Antonio F A; Kyröläinen, Heikki; Jones, Bruce H; Kraemer, William J; Nindl, Bradley C

    2015-11-01

    Physical fitness training of military recruits is an enduring focus of armies. This is important for safe and effective performance of general tasks that anyone may have to perform in a military setting as well as preparation for more specialized training in specific job specialties. Decades of studies on occupationally specific physical requirements have characterized the dual aerobic and strength demands of typical military tasks; however, scientifically founded strategies to prepare recruits with a good mix of these 2 physiologically opposing capabilities have not been well established. High levels of aerobic training can compromise resistance training gains and increase injury rates. Resistance training requires a greater commitment of time and resources as well as a greater understanding of the science to produce true strength gains that may be beneficial to military performance. These are critical issues for modern armies with increased demands for well-prepared soldiers and fewer injury losses. The actual physical requirements tied to metrics of success in military jobs are also under renewed examination as women are increasingly integrated into military jobs previously performed only by men. At the third International Congress on Soldiers' Physical Performance, a roundtable of 10 physiologists with military expertise presented comparative perspectives on aerobic and strength training. These topics included the physiological basis of training benefits, how to train effectively, how to measure training effectiveness, considerations for the integration of women, and the big perspective. Key discussion points centered on (a) the significance of findings from research on integrated training, (b) strategies for effective strength development, and (c) injury reduction in training as well as the benefits of improved fitness to injury reduction across the force.

  12. High-speed imaging on static tensile test for unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

    2008-11-01

    The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

  13. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  14. Handgrip Strength as a Darwinian Fitness Indicator in Men.

    PubMed

    Gallup, Andrew C; Fink, Bernhard

    2018-01-01

    Handgrip strength (HGS) is a robust measure of overall muscular strength and function, and has long been predictive of a multitude of health factors and physical outcomes for both men and women. The fact that HGS represents such a ubiquitous measure of health and vitality may reflect the significance of this trait during human evolution. This trait is also highly sexually dimorphic due to influences of androgenic hormones and fat-free body mass, suggesting that it has been further elaborated through sexual selection. Consistent with this view, research within evolutionary psychology and related fields has documented distinct relationships between HGS and measures of social and sexual behavior, especially in men. Here, we review studies across different societies and cultural contexts showing that male HGS predicts measures of aggression and social dominance, perceived formidability, male-typical body morphology and movement, courtship display, physical attractiveness, and sexual behavior and reproductive fitness. These findings underscore the value of including HGS as an independent measure within studies examining human sexual selection, and corroborate existing research suggesting that specific features of physical strength have and continue to be under positive directional selection in men.

  15. Relationship between performance variables and baseball ability in youth baseball players.

    PubMed

    Nakata, Hiroki; Nagami, Tomoyuki; Higuchi, Takatoshi; Sakamoto, Kiwako; Kanosue, Kazuyuki

    2013-10-01

    The present study investigated the relationship of performance variables and anthropometric measurements on baseball ability in 164 youth baseball players (age: 6.4-15.7 years). To evaluate their baseball performance, ball speeds in pitching and batting were recorded and kinetic energies of the pitched and hit balls were calculated. To record anthropometric and physical fitness characteristics, height and weight were measured and a battery of physical fitness tests covering standing long jump, side steps, sit-ups, 10-m sprint, trunk flexion, back strength, and grip strengths of both hands were conducted. The results of a multiple regression analysis revealed several significant predictors: age, body mass index (BMI), standing long jump, 10-m sprint, and grip strength for pitched ball kinetic energy and age, BMI, standing long jump, and back strength for hit ball kinetic energy. This study provides scientific evidence that relates certain specific physical performance tests and body characteristics with high achievement in the actual performance of pitching and batting. Youth players, their parents, coaches, and trainers would benefit by addressing these characteristics when planning training programs to improve the baseball performance of youth players.

  16. Unravel the key genes potentially related to high strength of cotton fiber by comparative phenotypic and genomic analyses

    USDA-ARS?s Scientific Manuscript database

    The demand of high strength of cotton fibers has been increased dramatically with the advent of modern high speed spinning technology for producing yarn. Bundle fiber strength is affected by fiber-to-fiber interactions in addition to the individual fiber strength. The bundle fiber strength is not al...

  17. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.

    PubMed

    Yilmazer, H; Niinomi, M; Nakai, M; Cho, K; Hieda, J; Todaka, Y; Miyazaki, T

    2013-07-01

    The effect of high-pressure torsion (HPT) processing on the microstructure and mechanical biocompatibility includes Young's modulus, tensile strength, ductility, fatigue life, fretting fatigue, wear properties and other functionalities such as super elasticity and shape memory effect, etc. at levels suitable for structural biomaterials used in implants that replace hard tissue in the broad sense (Sumitomo et al., 2008 [4]). In particular, in this study, the mechanical biocompatibility implies a combination of great hardness and high strength with an adequate ductility while keeping low Young's modulus of a novel Ti-29Nb-13Ta-4.6Zr (TNTZ) for biomedical applications at rotation numbers (N) ranging from 1 to 60 under a pressure of 1.25 GPa at room temperature was systematically investigated in order to increase its mechanical strength with maintaining low Young's modulus and an adequate ductility. TNTZ subjected to HPT processing (TNTZHPT) at low N exhibits a heterogeneous microstructure in micro-scale and nano-scale consisting of a matrix and a non-etched band, which has nanosized equiaxed and elongated single β grains, along its cross section. The grains exhibit high dislocation densities, consequently non-equilibrium grain boundaries, and non-uniform subgrains distorted by severe deformation. At high N which is N>20, TNTZHPT has a more homogeneous microstructure in nano-scale with increasing equivalent strain, εeq. Therefore, TNTZHPT at high N exhibits a more homogenous hardness distribution. The tensile strength and 0.2% proof stress of TNTZHPT increase significantly with N over the range of 0≤N≤5, and then become saturated at around 1100 MPa and 800 MPa at N≥10. However, the ductility of TNTZHPT shows a reverse trend and a low-level elongation, at around 7%. And, Young's modulus of TNTZHPT decreases slightly to 60 GPa with increasing N and then becomes saturated at N≥10. These obtained results confirm that the mechanical strength of TNTZ can be improved while maintaining a low Young's modulus in single β grain structures through severe plastic deformation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials.

    PubMed

    Piwowarczyk, Andree; Lauer, Hans-Christoph; Sorensen, John A

    2004-09-01

    Durable bonding to fixed prosthodontic restorations is desirable; however, little information is available on the strength of the bond between different cements and fixed prosthodontic restorative materials. This study determined the shear-bond strength of cementing agents to high-gold-content alloy castings and different dental ceramics: high-strength aluminum oxide (Procera AllCeram), leucite-reinforced (IPS Empress), and lithium disilicate glass-ceramic (IPS Empress 2). Prepolymerized resin composite cylinders (5.5 mm internal diameter, n=20) were bonded to the pretreated surfaces of prosthodontic materials. High-gold-content alloy and high-strength aluminum oxide surfaces were airborne-particle-abraded, and pressable ceramics were hydrofluoric acid-etched and silanized prior to cementing. The cementing agents tested were a zinc-phosphate cement (Fleck's zinc cement), glass ionomer cements (Fuji I, Ketac-Cem), resin-modified glass ionomer cements (Fuji Plus, Fuji Cem, RelyX Luting), resin cements (RelyX ARC, Panavia F, Variolink II, Compolute), and a self-adhesive universal resin cement (RelyX Unicem). Half the specimens (n=10) were tested after 30 minutes; the other half (n=10) were stored in distilled water at 37 degrees C for 14 days and then thermal cycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear-bond strength tests were performed using a universal testing machine at a constant crosshead speed of 0.5 mm/min. Statistical analysis was performed by multifactorial analysis of variance taking interactions between effects into account. For multiple paired comparisons, the Tukey method was used (alpha=.05). In a 3-way ANOVA model, the main factors substrate, cement, time, and all corresponding interactions were statistically significant (all P <.0001). In subsequent separate 1-way or 2-way ANOVA models for each substrate type, significant differences between cement types and polymerizing modes were found (all P <.001). None of the cement types provided the highest bonding values with all substrate types. After 14 days of water storage followed by thermal cycling, only the self-adhesive universal resin cement (RelyX Unicem) and 2 of the resin cements (Panavia F and Compolute) exhibited strong bond strengths to specific prosthodontic materials. In contrast, zinc-phosphate, glass ionomer, and resin-modified glass ionomer cements showed the lowest values of all tested cementing agents after 14 days of water storage followed by thermal cycling.

  19. Thermal analysis on Al7075/Al2O3 metal matrix composites fabricated by stir casting process

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Shajin, S.; Gnanavel, C.

    2017-03-01

    Metal matrix Composites (MMC’s) have evoked a keen interest in recent times for various applications in aerospace, renewable energy and automotive industries due to their superior strength, low cost, easy availability and high temperature resistance [1]. The crack and propagation occurs in conventional materials without any appreciable indication in a short span. Hence composite materials are preferred nowadays to overcome this problem [2]. The process of metal matrix composites (MMC’s) is to unite the enviable attributes of metals and ceramics. The Stir casting method is used for producing aluminium metal matrix composites (AMC’s). A key challenge of the process is to spread the ceramic particles to achieve a defect free microstructure [2]. By carefully selecting stir casting processing specification, such as stirring time, temperature of the melt and blade angle, the desired microstructure can be obtained. The focus of this work is to develop a high strength particulate strengthen aluminium metal matrix composites, and Al7075 was selected which can offer high strength without much disturbing ductility of metal matrix [4]. The composites will be examined using standard metallurgical and mechanical tests. The cast composites are analysed to Laser flash analysis (LFA) to determine Thermal conductivity [5]. Also changes in microstructure are determined by using SEM analysis.

  20. Effects of using blended binder of RHA and GGBS on the properties of concrete: A review

    NASA Astrophysics Data System (ADS)

    Ishak, Nuril Izzeaty; Johari, Megat Azmi Megat; Hashim, Syed Fuad Saiyid

    2017-10-01

    Concern about protecting and preserving the environment has driven many researchers to innovate the concrete materials in pursuing better mechanical and physical properties of the fresh and hardened concrete. This paper presents an overview of the microstructural properties, workability, and strength performance of concrete incorporated with mineral admixtures from rice husk ash (RHA) and ground granulated blast-furnace slag (GGBS). The substitution of these supplementary cementitious materials as a ternary blended binder concrete has also been included. It was found that, the average of RHA replacement in concrete is about 10%, while for GGBS is in the range of 40 to 50 % replacement of Portland cement. The results from previous studies yield to a better strength and could potentially be used as high performance concrete, but the high replacement with RHA decreased workability and required more water demand due to the micro porous character, high specific surface area and higher in carbon content of the material. Thus, the necessity of using superlasticizer is crucial to improve the workability and strength. The collection of comprehensive literatures elaborated that the usage of RHA and GGBS enhanced the properties of concrete while gives a better solution for the plenteous of waste produced from the agricultural and industrial sectors.

  1. High Temperature Polymeric Materials for Space Transportation Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Campbell, Sandi G.; Chuang, Kathy C.; Scheimann, Daniel A.; Mintz, Eric; Hylton, Donald; Veazie, David; Criss, James; Kollmansberg, Ron; Tsotsis, Tom

    2003-01-01

    High temperature polymer matrix composites are attractive materials for space transporation propulsion systems because of their low density and high specific strength. However, the relatively poor stability and processability of these materials can render them unsuitable for many of these applications. New polymeric materials have been developed under the Propulsion Research and Technology Program through the use of novel resin chemistry and nanotechnology. These new materials can significantly enhance the durability and weight and improve the processability and affordability of propulsion components for advanced space transportation systems.

  2. Evaluating arguments during instigations of defence motivation and accuracy motivation.

    PubMed

    Liu, Cheng-Hong

    2017-05-01

    When people evaluate the strength of an argument, their motivations are likely to influence the evaluation. However, few studies have specifically investigated the influences of motivational factors on argument evaluation. This study examined the effects of defence and accuracy motivations on argument evaluation. According to the compatibility between the advocated positions of arguments and participants' prior beliefs and the objective strength of arguments, participants evaluated four types of arguments: compatible-strong, compatible-weak, incompatible-strong, and incompatible-weak arguments. Experiment 1 revealed that participants possessing a high defence motivation rated compatible-weak arguments as stronger and incompatible-strong ones as weaker than participants possessing a low defence motivation. However, the strength ratings between the high and low defence groups regarding both compatible-strong and incompatible-weak arguments were similar. Experiment 2 revealed that when participants possessed a high accuracy motivation, they rated compatible-weak arguments as weaker and incompatible-strong ones as stronger than when they possessed a low accuracy motivation. However, participants' ratings on both compatible-strong and incompatible-weak arguments were similar when comparing high and low accuracy conditions. The results suggest that defence and accuracy motivations are two major motives influencing argument evaluation. However, they primarily influence the evaluation results for compatible-weak and incompatible-strong arguments, but not for compatible-strong and incompatible-weak arguments. © 2016 The British Psychological Society.

  3. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  4. 46 CFR 160.135-5 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Vinyl Nylon Or Polyester, High Strength, Flexible, (May 13, 1997), IBR approved for §§ 160.135-7 and 160... for Carbon Structural Steel, (approved May 15, 2008), IBR approved for §§ 160.135-7 and 160.135-15 (“ASTM A 36”). (2) ASTM A 276-08a, Standard Specification for Stainless Steel Bars and Shapes, (approved...

  5. Properties of flakeboards from hardwoods growing on southern pine sites

    Treesearch

    C. -Y. Hse

    1975-01-01

    Boards 0.5 inch thick were made from 3-inch-long flakes of 9 species of southern hardwoods commonly found on pine sites. The main effects of species were due to variation in wood density; low-density species compacted readily when pressed, and the resulting good flake contact improved bonding and gave boards of high strength. With species having specific gravities...

  6. Development and testing of CMC components for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1991-01-01

    Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.

  7. Properties of flakeboards from hardwoods growing on southern pine sites

    Treesearch

    Chung-Yun Hse

    1975-01-01

    Boards 0.5 inch thick were made from 3-inch-long flakes of 9 species of southern hardwoods commonly found on pine sites. The main effects of species were doe to variation in wood density; low-density species compacted readily when pressed, and the resulting good flake contact improved bonding and gave boards of high strength. With species having specific gravities...

  8. A feedback system in residency to evaluate CanMEDS roles and provide high-quality feedback: Exploring its application.

    PubMed

    Renting, Nienke; Gans, Rijk O B; Borleffs, Jan C C; Van Der Wal, Martha A; Jaarsma, A Debbie C; Cohen-Schotanus, Janke

    2016-07-01

    Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed whether feedback was provided on the intended roles and explored differences in quality of written feedback. In the feedback system, CanMEDS roles were assigned to five authentic situations: Patient Encounter, Morning Report, On-call, CAT, and Oral Presentation. Quality of feedback was operationalized as specificity and inclusion of strengths and improvement points. Differences in specificity between roles were tested with Mann-Whitney U tests with a Bonferroni correction (α = 0.003). Supervisors (n = 126) provided residents (n = 120) with feedback (591 times). Feedback was provided on the intended roles, most frequently on Scholar (78%) and Communicator (71%); least on Manager (47%), and Collaborator (56%). Strengths (78%) were mentioned more frequently than improvement points (52%), which were lacking in 40% of the feedback on Manager, Professional, and Collaborator. Feedback on Scholar was more frequently (p = 0.000) and on Reflective Professional was less frequently (p = 0.003) specific. Assigning roles to authentic situations guides supervisors in providing feedback on different CanMEDS roles. We recommend additional supervisor training on how to observe and evaluate the roles.

  9. Magnetic resonance tomography of the knee joint.

    PubMed

    Puig, Stefan; Kuruvilla, Yojena Chittazhathu Kurian; Ebner, Lukas; Endel, Gottfried

    2015-10-01

    To compare the diagnostic performance of magnetic resonance imaging (MRI) in terms of sensitivity and specificity using a field strength of <1.0 T (T) versus ≥1.5 T for diagnosing or ruling out knee injuries or knee pathologies. The systematic literature research revealed more than 10,000 references, of which 1598 abstracts were reviewed and 87 full-text articles were retrieved. The further selection process resulted in the inclusion of four systematic reviews and six primary studies. No differences could be identified in the diagnostic performance of low- versus high-field MRI for the detection or exclusion of meniscal or cruciate ligament tears. Regarding the detection or grading of cartilage defects and osteoarthritis of the knee, the existing evidence suggests that high-field MRI is tolerably specific but not very sensitive, while there is literally no evidence for low-field MRI because only a few studies with small sample sizes and equivocal findings have been performed. We can recommend the use of low-field strength MRI systems in suspected meniscal or cruciate ligament injuries. This does, however, not apply to the diagnosis and grading of knee cartilage defects and osteoarthritis because of insufficient evidence.

  10. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  11. Introducing electron capture into the unitary-convolution-approximation energy-loss theory at low velocities

    NASA Astrophysics Data System (ADS)

    Schiwietz, G.; Grande, P. L.

    2011-11-01

    Recent developments in the theoretical treatment of electronic energy losses of bare and screened ions in gases are presented. Specifically, the unitary-convolution-approximation (UCA) stopping-power model has proven its strengths for the determination of nonequilibrium effects for light as well as heavy projectiles at intermediate to high projectile velocities. The focus of this contribution will be on the UCA and its extension to specific projectile energies far below 100 keV/u, by considering electron-capture contributions at charge-equilibrium conditions.

  12. Some Mechanical and Ballistic Properties of Titanium and Titanium Alloys

    DTIC Science & Technology

    1950-03-07

    treated alloy steel armor, Justifies high expectations that titanium alloys may make excellent armor meterials . The corrosion resistant properties of...Fur* Metal Beat Treated -7-4 - -I-re Tensile Strength in pot 13,000 5 0,oo 230,000 203400 speifict Gravity 2.71 7.87 4.54 2.9 7.9 4.6 Stroe4cth-Vleight...solution of HCI: 50 parts by volume ECl-specific gravity 1.19 (37.6%) 50 parts by volume H2 0 2. Concentrated RIP: Hl-specific gravity 1.15 (14%) 3. 5

  13. Handgrip Strength Cutoff Points to Identify Mobility Limitation in Community-dwelling Older People and Associated Factors.

    PubMed

    Vasconcelos, K S de Souza; Dias, J M Domingues; Bastone, A de Carvalho; Vieira, R Alvarenga; Andrade, A C de Souza; Perracini, M Rodrigues; Guerra, R Oliveira; Dias, R Corrêa

    2016-03-01

    Sarcopenia is defined as a progressive and generalized loss of skeletal muscle mass and strength. The specific threshold of muscle weakness that leads to mobility limitations has not been identified. To determine the best cutoff point of handgrip strength for identifying mobility limitation and to investigate the factors associated with muscle weakness and mobility limitation in community-dwelling older people. Transversal study. Cities of Belo Horizonte, Barueri and Santa Cruz in Brazil. 1374 community-dwelling older people from the Frailty study in Brazilian older people (FIBRA Study). Outcomes included muscle weakness determined according to gender-specific handgrip strength cutoff points generated by Receiver Operating Characteristic curves, mobility limitation defined as a gait speed ≤ 0.8 m/s; and a combination of both muscle weakness and mobility limitation. Associated factors included socio-demographic variables, lifestyle, anthropometrics, health conditions, use of health services and disability. The cutoff points of handgrip strength with the best balancing between sensitivity and specificity for mobility limitation were 25.8 kgf for men (sensitivity 69%, specificity 73%) and 17.4 kgf (sensitivity 60%, specificity 66%) for women. Age and disability in instrumental activities of daily living were associated with all outcomes. Women had greater odds of mobility limitation than men. Physical inactivity, body fat, diabetes, depression, sleeping disturbances, number of medications and occurrence of falls remained as significant associated factors in the final model. Handgrip strength can be a useful tool to identify mobility limitation in clinical practice. Interventions to prevent or minimize impacts of sarcopenia should stimulate physical activity and improvement of body composition in addition to the management of chronic diseases and disabilities.

  14. Estimating apparent maximum muscle stress of trunk extensor muscles in older adults using subject-specific musculoskeletal models.

    PubMed

    Burkhart, Katelyn A; Bruno, Alexander G; Bouxsein, Mary L; Bean, Jonathan F; Anderson, Dennis E

    2018-01-01

    Maximum muscle stress (MMS) is a critical parameter in musculoskeletal modeling, defining the maximum force that a muscle of given size can produce. However, a wide range of MMS values have been reported in literature, and few studies have estimated MMS in trunk muscles. Due to widespread use of musculoskeletal models in studies of the spine and trunk, there is a need to determine reasonable magnitude and range of trunk MMS. We measured trunk extension strength in 49 participants over 65 years of age, surveyed participants about low back pain, and acquired quantitative computed tomography (QCT) scans of their lumbar spines. Trunk muscle morphology was assessed from QCT scans and used to create a subject-specific musculoskeletal model for each participant. Model-predicted extension strength was computed using a trunk muscle MMS of 100 N/cm 2 . The MMS of each subject-specific model was then adjusted until the measured strength matched the model-predicted strength (±20 N). We found that measured trunk extension strength was significantly higher in men. With the initial constant MMS value, the musculoskeletal model generally over-predicted trunk extension strength. By adjusting MMS on a subject-specific basis, we found apparent MMS values ranging from 40 to 130 N/cm 2 , with an average of 75.5 N/cm 2 for both men and women. Subjects with low back pain had lower apparent MMS than subjects with no back pain. This work incorporates a unique approach to estimate subject-specific trunk MMS values via musculoskeletal modeling and provides a useful insight into MMS variation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:498-505, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Knee strength ratios in competitive female athletes

    PubMed Central

    Murawa, Michal; Mackala, Krzysztof; Dworak, Lechoslaw Bogdan

    2018-01-01

    Knee strength ratios are related to the movement patterns, sport-specific training and knee injuries in athletes. The purpose of this study was to determine the ratios in the concentric isokinetic strength of the hamstrings and quadriceps and the isometric strength of the knee extensors. In female basketball players (n = 14) and female volleyball players (n = 12) were evaluated: the hamstrings to quadriceps peak torque ratio (H/Q) and side-to-side peak torque ratio (TR) for hamstrings and quadriceps; the ratio of the maximal bilateral strength to the summed maximal unilateral strength (B/U) and side-to-side maximal strength ratio (SR) for knee extensors. For the H/Q values, a 2 × 2 × 3 mixed-factorial analysis of variance and Bonferroni post hoc test were computed. The H/Q values increased from 48.0 (3.9)% at 60°/s to 70.4 (7.9)% at 300°/s. Furthermore, there were significant differences in the H/Q values between 300°/s and 180°/s, 300°/s and 60°/s in basketball and volleyball athletes, and between 180°/s and 60°/s only in basketball athletes (p < .05). Significantly higher H/Q results at 60°/s demonstrated basketball players than volleyball players (p < .05). Differences in the TR and SR mean values ranged from 4.4% to 8.6% and indicated no significant side-to-side strength deficits (p > .05). In both groups, greater isometric strength developed bilaterally was found (B/U > 100%). The findings revealed the magnitude of knee strength ratios in female athletes determined by sport-specific movements in basketball and volleyball. This study highlighted the importance of the bilateral strength deficit and muscular balance between the hamstrings and quadriceps in basketball and volleyball athletes in activities related to their movement patterns and specific training. PMID:29315348

  16. Review on fatigue behavior of high-strength concrete after high temperature

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  17. Design Concept for a Reusable/Propellantless MXER Tether Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCandless, B., II; Kustas, F. m.; Marshall, L. S.; Lytle, W. B.; Hansen, N. P.

    2005-01-01

    The Momentum Exchange/Electrodynamic Reboost (MXER) tether facility is a transformational concept that significantly reduces the fuel requirements (and associated costs) in transferring payloads above low earth orbit (LEO). Facility reboost is accomplished without propellant by driving current against a voltage created by a conducting tether's interaction with the Earth's magnetic field (electrodynamic reboost). This system can be used for transferring a variety of payloads (scientific, cargo, and human space vehicles) to multiple destinations including geosynchronous transfer orbit, the Moon or Mars. MXER technology advancement requires development in two key areas: survivable, high tensile strength non-conducting tethers and reliable, lightweight payload catch/release mechanisms. Fundamental requirements associated with the MXER non-conducting strength tether and catch mechanism designs will be presented. Key requirements for the tether design include high specific-strength (tensile strength/material density), material survivability to the space environment (atomic oxygen and ultraviolet radiation), and structural survivability to micrometeoroid/orbital debris (MM/OD) impacts. The driving mechanism key,gequirements include low mass-to-capture-volume ratio, positional and velocity error tolerance, and operational reliability. Preliminary tether and catch mechanism design criteria are presented, which have been used as guidelines to "screen" and down-select initial concepts. Candidate tether materials and protective coatings are summarized along with their performance in simulated space environments (e.g., oxygen plasma, thermal cycling). A candidate catch mechanism design concept is presented along with examples of demonstration hardware.

  18. Anomalous scaling law of strength and toughness of cellulose nanopaper

    PubMed Central

    Zhu, Hongli; Zhu, Shuze; Jia, Zheng; Parvinian, Sepideh; Li, Yuanyuan; Vaaland, Oeyvind; Hu, Liangbing; Li, Teng

    2015-01-01

    The quest for both strength and toughness is perpetual in advanced material design; unfortunately, these two mechanical properties are generally mutually exclusive. So far there exists only limited success of attaining both strength and toughness, which often needs material-specific, complicated, or expensive synthesis processes and thus can hardly be applicable to other materials. A general mechanism to address the conflict between strength and toughness still remains elusive. Here we report a first-of-its-kind study of the dependence of strength and toughness of cellulose nanopaper on the size of the constituent cellulose fibers. Surprisingly, we find that both the strength and toughness of cellulose nanopaper increase simultaneously (40 and 130 times, respectively) as the size of the constituent cellulose fibers decreases (from a mean diameter of 27 μm to 11 nm), revealing an anomalous but highly desirable scaling law of the mechanical properties of cellulose nanopaper: the smaller, the stronger and the tougher. Further fundamental mechanistic studies reveal that reduced intrinsic defect size and facile (re)formation of strong hydrogen bonding among cellulose molecular chains is the underlying key to this new scaling law of mechanical properties. These mechanistic findings are generally applicable to other material building blocks, and therefore open up abundant opportunities to use the fundamental bottom-up strategy to design a new class of functional materials that are both strong and tough. PMID:26150482

  19. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    NASA Astrophysics Data System (ADS)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  20. [Comparative assessment of MR-semiotics of acutest intracerebral hematomas in low- and extra high-field frequency magnetic resonance tomography].

    PubMed

    Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A

    2009-01-01

    An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.

  1. Epoxy asphalt concrete is a perspective material for the construction of roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Kopynets, Ivan; Kischynskyi, Sergii; Bidnenko, Nataliia

    2017-09-01

    An effective way to increase the durability of asphalt concrete pavements that are subject to high traffic loads and adverse weather and climatic factors is the use of polymer additives which drastically improve the rheological and physical-mechanical properties of bitumen. The use of thermosetting polymers including epoxy resins for asphalt and bitumen modification is seen as a perspective solution for this issue. Conducted at DerzhdorNDI SE studies have proved high riding qualities of asphalt pavements that contain epoxy resins. When replacing 20-35% of bitumen with epoxy component, a significant improvement in strength characteristics of asphalt pavement is noted, especially at elevated temperatures. Specific feature of epoxy asphalt concrete is its ability to gain strength over a long-term operation. Thus, despite the increased cost of epoxy asphalt concrete, long service life of pavements on its basis (up to 30 years as predicted) ensures a high profitability of using this material, especially on the roads with heavy traffic and severe traffic conditions.

  2. Phase relations in Ti-Al-Nb alloys at 1200 degrees C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, C.; Lee, D.S.

    1992-03-15

    This paper reports that titanium aluminides based on both Ti{sub 3}Al ({alpha}{sub 2}) and TiAl ({gamma}) have received considerable attention during the past few years as potential candidates for high temperature structural applications in the aerospace industry. This has been due to the attractive combination of properties such as low density, high specific strength, elevated temperature strength and modulus retention, excellent creep resistance and high resistance to oxidation. A serious handicap in using these alloys has been their vary poor ductility. Refinement of grain size, addition of ternary and quaternary alloying elements (e.g., Nb, Mn and Ta) and microstructural refinementsmore » through either innovative heat treatments or by production of nanometer-sized grains through mechanical alloying or magnetron sputtering methods have been explored to increase the ductility. Amongst these approaches, addition of alloying elements, especially of niobium, has proven extremely beneficial. Thus, there have been several investigations in recent years on the constitution, microstructure and properties of ternary Ti-Al-Nb alloys.« less

  3. Progress on Developing Sonic Infrared Imaging for Defect Detection in Composite Structures

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; He, Qi; Li, Wei; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2010-02-01

    At last year's QNDE conference, we presented our development of Sonic IR imaging technology in metal structures, with results from both experimental studies and theoretical computing. In the latest aircraft designs, such as the B787 from Boeing, composites have become the major materials in structures such as the fuselage and wings. This is in contrast to composites' use only in auxiliary components such as flaps and spoilers in the past. With today's advanced technology of fabrication, it is expected the new materials can be put in use in even more aircraft structures due to its light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, with increases in fuel cost, reducing the aircraft's body weight becomes more and more appealing. In this presentation, we describe the progress on our development of Sonic IR imaging for aircraft composite structures. In particular, we describe the some unexpected results discovered while modeling delaminations. These results were later experimentally verified with an engineered delamination.

  4. Wearable woven supercapacitor fabrics with high energy density and load-bearing capability.

    PubMed

    Shen, Caiwei; Xie, Yingxi; Zhu, Bingquan; Sanghadasa, Mohan; Tang, Yong; Lin, Liwei

    2017-10-30

    Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g -1 or 3.6 mWh cm -3 , high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.

  5. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.

    PubMed

    Lay, Makara; Méndez, J Alberto; Delgado-Aguilar, Marc; Bun, Kim Ngun; Vilaseca, Fabiola

    2016-11-05

    In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  7. Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?

    PubMed

    Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H

    2010-02-01

    The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from < 6 repetitions) was predicted in the seated shoulder dumbbell press performed in unstable (Swiss ball[SB]) and stable (back-support bench) environments. Three CS muscle endurance tests were performed, with 4 CS ratios also calculated. The degree of strength decrement, referred to as the instability strength level (ISL), was calculated by dividing the predicted 1RM Unstable score by the 1RM Stable score. All subjects were categorized as high (ISL > 0.90), moderate (0.85 < or = ISL < or = 0.90), or low (ISL < 0.85). Between-group differences for the high- and low-ISL groups were assessed using analysis of variance and effect sizes. Pearson product moment correlations were then performed to examine the relationships between the CS measures and the ISL for the entire group. No significant between-group differences (p = 0.132-0.999) or large effect sizes were observed for any of the CS measures. Trunk flexion endurance was the only CS measure significantly correlated to the ISL (r = 0.477). In line with muscular strength research, these results suggest that CS exhibits relatively high levels of task specificity and that CS performance in static single-joint exercises may not be highly related to that in more dynamic multijoint activities. Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.

  8. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  9. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review.

    PubMed

    Liberman, Keliane; Forti, Louis N; Beyer, Ingo; Bautmans, Ivan

    2017-01-01

    This systematic review reports the most recent literature regarding the effects of physical exercise on muscle strength, body composition, physical functioning and inflammation in older adults. All articles were assessed for methodological quality and where possible effect size was calculated. Thirty-four articles were included - four involving frail, 24 healthy and five older adults with a specific disease. One reported on both frail and nonfrail patients. Several types of exercise were used: resistance training, aerobic training, combined resistance training and aerobic training and others. In frail older persons, moderate-to-large beneficial exercise effects were noted on inflammation, muscle strength and physical functioning. In healthy older persons, effects of resistance training (most frequently investigated) on inflammation or muscle strength can be influenced by the exercise modalities (intensity and rest interval between sets). Muscle strength seemed the most frequently used outcome measure, with moderate-to-large effects obtained regardless the exercise intervention studied. Similar effects were found in patients with specific diseases. Exercise has moderate-to-large effects on muscle strength, body composition, physical functioning and inflammation in older adults. Future studies should focus on the influence of specific exercise modalities and target the frail population more.

  10. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    NASA Astrophysics Data System (ADS)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  11. The Processing and Mechanical Properties of High Temperature/High Performance Composites. Book 5. Processing and Miscellaneous Properties

    DTIC Science & Technology

    1993-04-01

    tensile fiber stress of 150-300 MPa, too little compared to measured fiber strengths of 3-4 GPa. A final possibility is that of nonuniform inelastic...flow of the matrix as a result of a spatially nonuniform distribution of porosity; this leads to a nonuniform distribution of forces along the fiber...the damage with the specific mechanism being fiber bending. The effects due to nonuniform inelastic flow (i.e., fiber bending) can be thought to occur

  12. Quantitative measures of walking and strength provide insight into brain corticospinal tract pathology in multiple sclerosis.

    PubMed

    Fritz, Nora E; Keller, Jennifer; Calabresi, Peter A; Zackowski, Kathleen M

    2017-01-01

    At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were significantly related to corticospinal tract fractional anisotropy (r > 0.26; p < 0.04) and magnetization transfer ratio (r > 0.29; p < 0.03) measures. Although the Expanded Disability Status Scale was highly correlated with walking measures, it was not significantly related to either corticospinal tract fractional anisotropy or magnetization transfer ratio (p > 0.05). Walk velocity was a significant contributor to magnetization transfer ratio (p = 0.006) and fractional anisotropy (p = 0.011) in regression modeling that included both quantitative measures of function and basic clinical information. Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.

  13. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    PubMed

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  14. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Sut, Tun Naw; Cho, Nam-Joon

    2018-04-22

    Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.

  15. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    PubMed

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  16. Low cost tooling material and process for graphite and Kevlar composites

    NASA Technical Reports Server (NTRS)

    Childs, William I.

    1987-01-01

    An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.

  17. A Net of Friends: Investigating Friendship by Integrating Attachment Theory and Social Network Analysis.

    PubMed

    Gillath, Omri; Karantzas, Gery C; Selcuk, Emre

    2017-11-01

    The current article focuses on attachment style-an individual difference widely studied in the field of close relationships-and its application to the study of social networks. Specifically, we investigated whether attachment style predicts perception and management of social networks. In Study 1, we examined the associations of attachment style with perceptions of network tie strength and multiplexity. In Studies 2a and 2b, we investigated the association between attachment style and network management skills (initiating, maintaining, and dissolving ties) and whether network management skills mediated the associations of attachment style with network tie strength and multiplexity. In Study 3, experimentally enhancing attachment security made people more likely to initiate and less likely to dissolve social ties (for the latter, especially among those high on avoidance or anxiety). As for maintenance, security priming also increased maintenance; however, mainly among people high on attachment anxiety or low on attachment avoidance.

  18. Shock response of 7068 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Proud, William

    2013-06-01

    Aluminium alloys are widely employed throughout the aerospace and defence industries due to their high specific strength. Aluminium alloy 7068, often described as the ultimate aluminium alloy was developed by Kasier Aluminium in the mid-1990s and is the strongest aluminium commercially produced. There remains little published data on the response of this micro-structurally anisotropic alloy to dynamic loading. As part of an investigation of the high-rate mechanical properties of Al 7068, a series of plate-impact experiments using a novel meso-scale planar impact facility and a more conventional large bore gas gun were undertaken. The evolution of the elastic-plastic shock wave and spall strength as a function of sample thickness and specimen orientation were investigated using optical velocimetry (line-VISAR, PDV) techniques. Planar shock wave experiments were conducted on specimens several 100 microns to several millimetres thick cut from either parallel or perpendicular to the extrusion direction.

  19. Beryllium-aluminum alloys for investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investmentmore » casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.« less

  20. Geotechnical characterization of some Indian fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less

  1. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    DOEpatents

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  2. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    DOEpatents

    Shen, Tengming

    2018-01-02

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  3. 46 CFR 160.017-17 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Strength. 160.017-17 Section 160.017-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Chain Ladder § 160.017-17 Strength. (a) Each chain ladder must...

  4. 46 CFR 163.003-17 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Strength. 163.003-17 Section 163.003-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-17 Strength. (a) Each pilot ladder must be...

  5. 46 CFR 160.017-17 - Strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Strength. 160.017-17 Section 160.017-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Chain Ladder § 160.017-17 Strength. (a) Each chain ladder must...

  6. 46 CFR 163.003-17 - Strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Strength. 163.003-17 Section 163.003-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-17 Strength. (a) Each pilot ladder must be...

  7. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting.

    PubMed

    Cheng, X Y; Li, S J; Murr, L E; Zhang, Z B; Hao, Y L; Yang, R; Medina, F; Wicker, R B

    2012-12-01

    Ti-6Al-4V alloy with two kinds of open cellular structures of stochastic foam and reticulated mesh was fabricated by additive manufacturing (AM) using electron beam melting (EBM), and microstructure and mechanical properties of these samples with high porosity in the range of 62%∼92% were investigated. Optical observations found that the cell struts and ligaments consist of primary α' martensite. These cellular structures have comparable compressive strength (4∼113 MPa) and elastic modulus (0.2∼6.3 GPa) to those of trabecular and cortical bone. The regular mesh structures exhibit higher specific strength than other reported metallic foams under the condition of identical specific stiffness. During the compression, these EBM samples have a brittle response and undergo catastrophic failure after forming crush band at their peak loading. These bands have identical angle of ∼45° with compression axis for the regular reticulated meshes and such failure phenomenon was explained by considering the cell structure. Relative strength and density follow a linear relation as described by the well-known Gibson-Ashby model but its exponential factor is ∼2.2, which is relative higher than the idea value of 1.5 derived from the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Morphology and the Strength of Intermolecular Contact in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Matsuura, Yoshiki; Chernov, Alexander A.

    2002-01-01

    The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.

  9. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    PubMed

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair strength compared with high-tensile strength suture at time-zero simulated testing. Published by Elsevier Inc.

  10. Neck strength recovery after a single bout of specific strengthening exercise.

    PubMed

    Netto, Kevin; Carstairs, Greg; Kidgell, Dawson; Aisbett, Brad

    2010-08-01

    To determine the level of neck strength decrement and the rate of strength recovery of the neck muscles after a single bout of specific neck conditioning exercise in both males and females. A decrement in neck strength may be evident after a bout of strengthening exercise. Intervention study with pre-and-post design. Biomechanics laboratory. Twenty healthy participants (10 male and 10 female, mean +/- standard deviation age 22 +/- 1.2 years). Participants performed a single bout of neck strengthening exercise. Neck strength testing using an isokinetic dynamometer was performed pre and at five time points (1 h, one, three, five and seven days) post-exercise to assess the level of neck strength decrement and neck strength recovery rate from pre-exercise levels. Statistically significant (p > or = 0.036) decreases in neck extension strength were recorded in all participants 1 h and one day post-exercise. The level of neck extension strength returned to pre-exercise levels three days post-exercise and surpassed pre-exercise levels five and seven days post-exercise. The male participants' neck flexion strength decrement and recovery followed a similar pattern to that displayed in neck extension but more variability in neck flexion strength recovery rates were recorded in the female participants in this study. The consistent strength recovery times for the male participants recorded in this study idealise the prescription of neck strengthening exercises in a periodised fashion. More investigation needs to be instigated for the female neck musculature as consistent strength recovery rates were not identified in this study. 2010 Elsevier Ltd. All rights reserved.

  11. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    NASA Astrophysics Data System (ADS)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  12. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy: study protocol for a randomised controlled trial.

    PubMed

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli; Jørgensen, Hans Ri; Jensen, Steen Lund; Rasmussen, Sten; Søgaard, Karen; Juul-Kristensen, Birgit

    2015-01-27

    Shoulder pain is the third most common musculoskeletal disorder, often affecting people's daily living and work capacity. The most common shoulder disorder is the subacromial impingement syndrome (SIS) which, among other pathophysiological changes, is often characterised by rotator cuff tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform home-based exercises three times a week. The primary outcome measure will be change from baseline to 12 weeks in the patient-reported outcome Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Previous studies of exercise treatment for SIS have not differentiated between subgroups of SIS and have often had methodological flaws, making it difficult to specifically design target treatment for patients diagnosed with SIS. Therefore, it was considered important to focus on a subgroup such as tendinopathy, with a specific tailored intervention strategy based on evidence from other regions of the body, and to clearly describe the intervention in a methodologically strong study. The trial was registered with Clinicaltrials.gov ( NCT01984203 ) on 31 October 2013.

  13. Sorption of Metal Ions on Clay Minerals.

    PubMed

    Schlegel; Charlet; Manceau

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites. Copyright 1999 Academic Press.

  14. The Effect on Final Bond Strength of Bracket Manipulation Subsequent To Initial Positioning

    NASA Astrophysics Data System (ADS)

    Beebe, David A.

    The shear bond strength of light activated orthodontic adhesives varies according to the composition of the material, placement protocol, and time prior to light curing. Manipulating brackets after their initial placement on a tooth can disrupt the adhesive's polymerization and compromise final bond strength. No previous research has investigated how a specific degree of manipulation, and the amount of time elapsed prior to curing, under specific lighting conditions, affects the orthodontic adhesives shear bond strength. Victory SeriesRTM, MBT prescription, premolar (3M Unitek, Monrovia, CA) orthodontic brackets were bonded using three different adhesives to sixty (60) bicuspids and varying the time after bracket manipulation before curing. The shear bond strength was calculated for each specimen. The brackets were debonded and the same teeth were rebonded with new, identical brackets, using the same protocol and under the same conditions. The results showed a statistically significant difference between the shear bond strength of Transbond XT and Grengloo, with Transbond XT having the highest strength. There was also a statistically significance difference in bond strength between the group cured 30 seconds after manipulation and the groups manipulated at different intervals prior to curing, with the 30 second group having the highest bond strength. This study confirms that various orthodontic adhesives have different bond strengths depending on manipulation and varying times prior to curing each adhesive.

  15. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials.

    PubMed

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H

    2017-07-01

    Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ 50 , p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach

    PubMed Central

    Morgan, Hugh P.; Estibeiro, Peter; Wear, Martin A.; Max, Klaas E.A.; Heinemann, Udo; Cubeddu, Liza; Gallagher, Maurice P.; Sadler, Peter J.; Walkinshaw, Malcolm D.

    2007-01-01

    We have developed a novel DNA microarray-based approach for identification of the sequence-specificity of single-stranded nucleic-acid-binding proteins (SNABPs). For verification, we have shown that the major cold shock protein (CspB) from Bacillus subtilis binds with high affinity to pyrimidine-rich sequences, with a binding preference for the consensus sequence, 5′-GTCTTTG/T-3′. The sequence was modelled onto the known structure of CspB and a cytosine-binding pocket was identified, which explains the strong preference for a cytosine base at position 3. This microarray method offers a rapid high-throughput approach for determining the specificity and strength of ss DNA–protein interactions. Further screening of this newly emerging family of transcription factors will help provide an insight into their cellular function. PMID:17488853

  17. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    NASA Astrophysics Data System (ADS)

    Arel, Hasan Şahan

    The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.

  18. Bone mineral density in elite junior Olympic weightlifters.

    PubMed

    Conroy, B P; Kraemer, W J; Maresh, C M; Fleck, S J; Stone, M H; Fry, A C; Miller, P D; Dalsky, G P

    1993-10-01

    The purpose of this study was to examine the relationship of bone mineral density (BMD) to muscular strength in highly trained young male athletes in order to gain insights concerning the influence of heavy resistance training on BMD. Twenty-five elite junior weightlifters (age, 17.4 +/- 1.4 yr) and 11 age-matched controls (16.9 +/- 1.1 yr) volunteered for this investigation. Measurements of BMD (g.cm-2) utilizing dual energy x-ray absorptiometry were obtained for the lumbar spine (L2-4) and the proximal femur (neck; trochanter, Ward's triangle). The BMD values for the junior lifters were found to be significantly greater at all sites for the junior weightlifters compared with their age-matched control group. The BMD values of the spine and femoral neck of the junior weightlifters when compared with adult reference data (i.e., 20-39 yr old men) were found to be significantly greater. Both simple and multiple regression analyses demonstrated significant relationships of BMD with strength accounting for 30-65% of the variance. These data suggest that in elite junior weightlifters, muscle strength, highly specific to the sport of weightlifting, has a major influence on BMD due to the influence of the chronic overloads experienced in training.

  19. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.

    2008-11-01

    The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.

  20. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems.

    PubMed

    Suresh, R; Senthilkumar, D V; Lakshmanan, M; Kurths, J

    2012-07-01

    We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.

  1. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel

    NASA Astrophysics Data System (ADS)

    Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek

    2013-10-01

    Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.

  2. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  3. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  4. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    DOT National Transportation Integrated Search

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  5. Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1974-01-01

    Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.

  6. The research on delayed fracture behavior of high-strength bolts in steel structure

    NASA Astrophysics Data System (ADS)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  7. Handgrip Strength Predicts Functional Decline at Discharge in Hospitalized Male Elderly: A Hospital Cohort Study

    PubMed Central

    García-Peña, Carmen; García-Fabela, Luis C.; Gutiérrez-Robledo, Luis M.; García-González, Jose J.; Arango-Lopera, Victoria E.; Pérez-Zepeda, Mario U.

    2013-01-01

    Functional decline after hospitalization is a common adverse outcome in elderly. An easy to use, reproducible and accurate tool to identify those at risk would aid focusing interventions in those at higher risk. Handgrip strength has been shown to predict adverse outcomes in other settings. The aim of this study was to determine if handgrip strength measured upon admission to an acute care facility would predict functional decline (either incident or worsening of preexisting) at discharge among older Mexican, stratified by gender. In addition, cutoff points as a function of specificity would be determined. A cohort study was conducted in two hospitals in Mexico City. The primary endpoint was functional decline on discharge, defined as a 30-point reduction in the Barthel Index score from that of the baseline score. Handgrip strength along with other variables was measured at initial assessment, including: instrumental activities of daily living, cognition, depressive symptoms, delirium, hospitalization length and quality of life. All analyses were stratified by gender. Logistic regression to test independent association between handgrip strength and functional decline was performed, along with estimation of handgrip strength test values (specificity, sensitivity, area under the curve, etc.). A total of 223 patients admitted to an acute care facility between 2007 and 2009 were recruited. A total of 55 patients (24.7%) had functional decline, 23.46% in male and 25.6% in women. Multivariate analysis showed that only males with low handgrip strength had an increased risk of functional decline at discharge (OR 0.88, 95% CI 0.79–0.98, p = 0.01), with a specificity of 91.3% and a cutoff point of 20.65 kg for handgrip strength. Females had not a significant association between handgrip strength and functional decline. Measurement of handgrip strength on admission to acute care facilities may identify male elderly patients at risk of having functional decline, and intervene consequently. PMID:23936113

  8. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  9. A New Construction Material-Titanium

    DTIC Science & Technology

    1974-01-01

    results of studying the electrochemical behavior of titanium and its alloys in aggressive media, and also the oxidizability of the most important...are the following properties of titanium and especially its alloys: low specific weight, high strength, corrosion resistance in many agressive media...resistance or complete immunity of titanium to a number of agressive media. 3. Operational directions: a) lengthening the service life of the articles, b

  10. An Investigation of Crystalline Intensity of the Wood of Poplar Clones Grown in Jiangsu Province, China

    Treesearch

    Bernard R. Parresol; Fuliang Cao

    1998-01-01

    To establish manmade poplar (Populus spp.) clonal forests for industrial uses, two requirements must be met. First, forests must have high yield;and second, wood fibers must have specific mechanical properties. For example, both fiberboard and plywood require fibers with a certain stiffness and strength. In fact, fiber characteristics are closely related to the fiber?s...

  11. Tests of Rock Cores Scott Study Area, Missouri

    DTIC Science & Technology

    1970-05-01

    porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark gray volcanic breccia. Specific gravity, * Schmidt...petrographically identified as predominantly rhyolite and dacite porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark...exhibit- ing little, if any, hysteresis. 9. Direct and indirect tensile strengths exhibited by tne rhyro- lite and dacite porphyry and granite are very high

  12. Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation

    DTIC Science & Technology

    1989-12-01

    low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions

  13. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gapsmore » still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in the unique system conditions which will be examined (i.e. elevated temperature and ionic strength) and the manner in which the surface complexation model will be developed in terms of specific surface species identified using XAS. These experiments will thus provide a fundamental understanding of the chemical and physical processes occurring at the solid-solution interface under expected repository conditions. Additionally, the focus on thermodynamic treatment of actinide ion interactions with minerals as proposed will provide information on the driving forces involved and contribute to the overall understanding of the high affinity many actinide ions have for oxide surfaces. The utility of this model will be demonstrated in this work through a series of advective and diffusive flow experiments.« less

  14. The added value of measuring thumb and finger strength when comparing strength measurements in hypoplastic thumb patients.

    PubMed

    Molenaar, H M Ties; Selles, Ruud W; de Kraker, Marjolein; Stam, Henk J; Hovius, Steven E R

    2013-10-01

    When interventions to the hand are aimed at improving function of specific fingers or the thumb, the RIHM (Rotterdam Intrinsic Hand Myometer) is a validated tool and offers more detailed information to assess strength of the involved joints besides grip and pinch measurements. In this study, strength was measured in 65 thumbs in 40 patients diagnosed with thumb hypoplasia. These 65 thumbs were classified according to Blauth. Longitudinal radial deficiencies were also classified. The strength measurements comprised of grip, tip, tripod and key pinch. Furthermore palmar abduction and opposition of the thumb as well as abduction of the index and little finger were measured with the RIHM. For all longitudinal radial deficiency patients, grip and pinch strength as well as palmar abduction and thumb opposition were significantly lower than reference values (P<0.001). However, strength in the index finger abduction and the little finger abduction was maintained or decreased to a lesser extent according to the degree of longitudinal radial deficiency. All strength values decreased with increasing Blauth-type. Blauth-type II hands (n=15) with flexor digitorum superficialis 4 opposition transfer including stabilization of the metacarpophalangeal joint showed a trend toward a higher opposition strength without reaching statistical significance (P=0.094),however compared to non-operated Blauth-type II hands (n=6) they showed a lower grip strength (P=0.019). The RIHM is comparable in accuracy to other strength dynamometers. Using the RIHM, we were able to illustrate strength patterns on finger-specific level, showing added value when evaluating outcome in patients with hand related problems. © 2013.

  15. 49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications... systems to ensure their proper location and strength for the effective securing of child restraints, to... manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength...

  16. 49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications... systems to ensure their proper location and strength for the effective securing of child restraints, to... manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength...

  17. 49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications... systems to ensure their proper location and strength for the effective securing of child restraints, to... manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength...

  18. The Ways Character Strengths Support K-8 Mathematics and the Common Core State Standards

    ERIC Educational Resources Information Center

    Bier, Melinda C.; Sherblom, Stephen A.; Berkowitz, Marvin W.; Coulter, Bob

    2016-01-01

    Character strengths support academic learning and can and should be incorporated into all content areas. This article articulates ways character strengths, including self-efficacy, positive-attitude, perseverance, growth-mindset, intrinsic motivation, intellectual carefulness, and courage specifically support mathematics education (K-8) and can…

  19. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    NASA Astrophysics Data System (ADS)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  20. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  1. Application of C/C composites to the combustion chamber of rocket engines. Part 1: Heating tests of C/C composites with high temperature combustion gases

    NASA Astrophysics Data System (ADS)

    Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-04-01

    Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.

  2. pH-adjustment strategy for volatile fatty acid production from high-strength wastewater for biological nutrient removal.

    PubMed

    Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi

    2014-01-01

    Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.

  3. USEFULNESS OF Β-HYDROXY-Β-METHYLBUTYRATE (HMB) SUPPLEMENTATION IN DIFFERENT SPORTS: AN UPDATE AND PRACTICAL IMPLICATIONS.

    PubMed

    Albert, Francisco J; Morente-Sánchez, Jaime; Ortega, Francisco B; Castillo, Manuel J; Gutiérrez, Ángel

    2015-07-01

    although -hydroxy--methylbutyrate (HMB) is generally marketed as a supplement for increasing muscle mass and strength, it is still not fully understood how and in which particular sports and conditions HMB can be more effective. the primary purpose of this review is to update and summarize the current knowledge about the usefulness of HMB and to organize this information by different sports with specific reference to sports with high wear and tear phenomena as soccer, rugby or football. a search was performed in PubMed database. This review presents the results about HMB use in sport. the articles identified in this review support the notion that HMB could help to attenuate tissue catabolism and initiate muscle anabolism particularly in untrained individuals exposed to strenuous exercise or when trained individual are exposed to periods of high physical stress. HMB could therefore be applied in some specific periods of athlete's season where there are high-intensity training periods, high density of competitions and little recovery time between them, starting recovery phases from an injury period and/or any other different situation where performance or recovery could be affected by a great catabolic environment. this update contributes to clarify and define possible mechanisms and/or effectiveness of HMB supplementation related to endurance sports (i.e. cycling and athletics), strength-power sports (i.e. resistance training, football, rugby, soccer, judo, waterpolo and rowing) and recreational activities. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  5. Factors affecting the work productivity of Oraon agricultural laborers of Jalpaiguri district, West Bengal.

    PubMed

    Roy, Subrata K

    2002-03-01

    In developing countries like India, where the incidence of protein-calorie malnutrition is high and mechanization is at a minimum, human labor provides much of the power for physical activity. This study presents anthropometric measurements, somatotypes, food intakes, energy expenditures, and work outputs of Oraon agricultural laborers of the Jalpaiguri district, West Bengal, in an attempt to identify the factors that predict high work productivity. Specifically, this study investigates 1) the relationship between morphological variation (anthropometric measurements and somatotype) and work productivity, 2) the nature and extent of the relationship between nutritional status and work productivity, and 3) the best predictor variables of work output. Classification of groups on the basis of median values of work output show that in the aggregate, the high productive groups are significantly younger than low-productive groups in both sexes. Before age-adjustment, the high productive groups show higher mean values of a few body dimensions, though these differ by sex, and both males and females exhibit a normal range of blood pressure and pulse rate values. Mean values of grip strength and back strength are higher in high-output men and women. Mean values of both food intake and energy expenditure are also higher among men in high-output groups, with only food intake higher in high-output women. However, after eliminating the effects of age, the differences between low-productive groups and high-productive groups in most of the variables are not significant. Productivity predictors in males consist of age, food intake and chest girth (inhalation). Females, on the other hand, show age and grip strength (left) as work output predictors. Copyright 2002 Wiley-Liss, Inc.

  6. Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials.

    PubMed

    Salis, Andrea; Medda, Luca; Cugia, Francesca; Monduzzi, Maura

    2016-01-01

    This short review highlights the effect of electrolytes on the performance of proteins-mesoporous silica conjugates which can open interesting perspectives in biotechnological fields, particularly nanomedicine and biocatalysis. Indeed therapeutic proteins and peptides represent a challenging innovation for several kinds of diseases, but since their self-life in biological fluids is very short, they need a stealth protective carrier. Similarly, enzymes need a solid support to improve thermal stability and to allow for recycling. Ordered mesoporous silica materials represent a valid choice as widely demonstrated. Both proteins and silica mesoporous materials possess charged surfaces, and here, the crucial role of pH, buffer, ionic strength and electrolyte type is posed in relation with loading/release of proteins onto/from the silica support through the analysis of adsorption and release processes. A delicate interplay of electrostatic and van der Waals interactions arises from considering electrolytes' effects on the two different charged surfaces. Clear outcomes concern the effect of pH and ionic strength. Protein loading onto the silica matrix is favored by an adsorbing solution having a pH close to the protein pI, and by a high ionic strength that reduces the Debye length. Release is instead favored by an adsorbing solution characterized by an intermediate ionic strength, close to the physiological values. Significant specific ions effects are shown to affect both proteins and silica matrices, as well as protein adsorption onto silica matrices. Further work is needed to quantify specific ion effects on the preservation of the biological activity, and on the release performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Jong-Pil, E-mail: jpwon@konkuk.ac.kr; Hwang, Un-Jong; Lee, Su-Jin

    This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyzemore » long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.« less

  9. Role of Heavy Meromyosin in Heat-Induced Gelation in Low Ionic Strength Solution Containing L-Histidine.

    PubMed

    Hayakawa, Toru; Yoshida, Yuri; Yasui, Masanori; Ito, Toshiaki; Wakamatsu, Jun-ichi; Hattori, Akihito; Nishimura, Takanori

    2015-08-01

    The gelation of myosin has a very important role in meat products. We have already shown that myosin in low ionic strength solution containing L-histidine forms a transparent gel after heating. To clarify the mechanism of this unique gelation, we investigated the changes in the nature of myosin subfragments during heating in solutions with low and high ionic strengths with and without L-histidine. The hydrophobicity of myosin and heavy meromyosin (HMM) in low ionic strength solution containing L-histidine was lower than in high ionic strength solution. The SH contents of myosin and HMM in low ionic strength solution containing l-histidine did not change during the heating process, whereas in high ionic strength solution they decreased slightly. The heat-induced globular masses of HMM in low ionic strength solution containing L-histidine were smaller than those in high ionic strength solution. These findings suggested that the polymerization of HMM molecules by heating was suppressed in low ionic strength solution containing L-histidine, resulting in formation of the unique gel. © 2015 Institute of Food Technologists®

  10. Shear capacity of high-strength concrete pre-stressed girders.

    DOT National Transportation Integrated Search

    1998-05-01

    As part of a project at the University of Minnesota to investigate the application of high-strength concrete in prestressed girders, four shear tests were performed on high-strength concrete prestressed girders.

  11. Onion-shell model of cosmic ray acceleration in supernova remnants

    NASA Technical Reports Server (NTRS)

    Bogdan, T. J.; Volk, H. J.

    1983-01-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.

  12. Modelling and assessment of the electric field strength caused by mobile phone to the human head.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas

    2016-06-01

    Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.

  13. Origin of tensile strength of a woven sample cut in bias directions

    PubMed Central

    Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li

    2015-01-01

    Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn–yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655

  14. Influence of V-N Microalloying on the High-Temperature Mechanical Behavior and Net Crack Defect of High Strength Weathering Steel

    NASA Astrophysics Data System (ADS)

    Qing, Jiasheng; Wang, Lei; Dou, Kun; Wang, Bao; Liu, Qing

    2016-06-01

    The influence of V-N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10-3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800-900°, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.

  15. Grain-refining heat treatments to improve cryogenic toughness of high-strength steels

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1984-01-01

    The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.

  16. Evaluation of CVI SiC/SiC Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Kiser, D.; Almansour, A.; Smith, C.; Gorican, D.; Phillips, R.; Bhatt, R.; McCue, T.

    2017-01-01

    Silicon carbide fiber reinforced silicon carbide (SiC/SiC) composites are candidate materials for various high temperature turbine engine applications because of their high specific strength and good creep resistance at temperatures of 1400 C (2552 F) and higher. Chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composites (CMC) incorporating Sylramic-iBN SiC fiber were evaluated via fast fracture tensile tests (acoustic emission damage characterization to assess cracking behavior), tensile creep testing, and microscopy. The results of this testing and observed material behavior degradation mechanisms are reviewed.

  17. Resin Transfer Moldable Polyimides Developed for High-Temperature Applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann

    2000-01-01

    High-temperature polyimides, such as PMR 15 (which was developed at the NASA Glenn Research Center at Lewis Field), are becoming an increasingly important class of materials for a variety of aerospace applications, such as aircraft engine components and propulsion and airframe components for reusable launch vehicles (RLV s). Because of their high specific strength and low density, use of these materials in place of more traditional aerospace materials, such as titanium, can significantly reduce component and vehicle weight, leading to reductions in fuel consumption (and pollutants), increases in payload and passenger capacity, and improvements in vehicle performance.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulatedmore » Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.« less

  19. Fabrication and experimentation of FRP helical spring

    NASA Astrophysics Data System (ADS)

    Ekanthappa, J.; Shiva Shankar, G. S.; Amith, B. M.; Gagan, M.

    2016-09-01

    In present scenario, the automobile industry sector is showing increased interest in reducing the unsprung weight of the automobile & hence increasing the fuel Efficiency. One of the feasible sub systems of a vehicle where weight reduction may be attempted is vehicle- suspension system. Usage of composite material is a proven way to lower the component weight without any compromise in strength. The composite materials are having high specific strength, more elastic strain energy storage capacity in comparison with those of steel. Therefore, helical coil spring made of steel is replaceable by composite cylindrical helical coil spring. This research aims at preparing a re-usable mandrel (mould) of Mild steel, developing a setup for fabrication, fabrication of FRP helical spring using continuous glass fibers and Epoxy Resin (Polymer). Experimentation has been conducted on fabricated FRP helical spring to determine its strength parameters & for failure analysis. It is found that spring stiffness (K) of Glass/Epoxy helical-spring is greater than steel-coil spring with reduced weight.

  20. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars.

    PubMed

    Sun, Ke; Jin, Jie; Keiluweit, Marco; Kleber, Markus; Wang, Ziying; Pan, Zezhen; Xing, Baoshan

    2012-08-01

    Molecular variations among different biochar categories translate into differences in their ability to function as sorbents to three phthalic acid esters (PAEs) representing a gradient in hydrophobicity. The sorption capacity (K(OC)) for all three PAEs was the greatest for amorphous biochars (heat treatment temperature HTT=400 °C), followed by biochars produced at 300 °C, and was best explained by the hydrophobicity of the sorbate. Greater alkyl C content and higher polarity of grass chars versus wood chars prepared at similar temperatures explained both (a) the difference in sorbent strength between feedstocks and (b) the maximum in sorbent strength at relatively low HTTs (300-400 °C). Hydrophobic partitioning into 'soft' alkyl carbon and specific H-bonding involving char-bound O and N groups jointly account for high affinities of PAEs for low-HTT biochars. The results highlight the influence of feedstocks and HTTs on PAEs sorption strength and mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 2: The breaking load test method

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Bucci, R. J.; Ponchel, B. M.; Brazill, R. L.; Bretz, P. E.

    1984-01-01

    A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens.

  2. Cloaking data in optical networks

    NASA Astrophysics Data System (ADS)

    Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Fridman, Moti

    2018-01-01

    Modern networks implement multi-layer encryption architecture to increase network security, stability, and robustness. We developed a new paradigm for optical encryption based on the strengths of optics over electronics and according to temporal optics principles. We developed a highly efficient all-optical encryption scheme for modern networks. Our temporal encryption scheme exploits the strength of optics over electronics. Specifically, we utilize dispersion together with nonlinear interaction for mixing neighboring bits with a private key. Our system encrypts the entire network traffic without any latency, encrypt the signal itself, exploit only one non- linear interaction, it is energetically efficient with low ecologic footprint, and can be added to current networks without replacing the hardware such as the lasers, the transmitters, the routers, the amplifiers or the receivers. Our method can replace current slow encryption methods or can be added to increase the security of existing systems. In this paper, we elaborate on the theoretical models of the system and how we evaluate the encryption strength with this numerical tools.

  3. Rehabilitation of syndesmotic (high) ankle sprains.

    PubMed

    Williams, Glenn N; Allen, Eric J

    2010-11-01

    High ankle sprains are common in athletes who play contact sports. Most high ankle sprains are treated nonsurgically with a rehabilitation program. All years of PUBMED, Cochrane Database of Systematic Reviews, CINAHL PLUS, SPORTDiscuss, Google Scholar, and Web of Science were searched to August 2010, cross-referencing existing publications. Keywords included syndesmosis ankle sprain or high ankle sprain and the following terms: rehabilitation, treatment, cryotherapy, braces, orthosis, therapeutic modalities, joint mobilization, massage, pain, pain medications, TENS (ie, transcutaneous electric nerve stimulation), acupuncture, aquatic therapy, strength, neuromuscular training, perturbation training, and outcomes. Level of evidence, 5. A 3-phase rehabilitation program is described. The acute phase is directed at protecting the joint while minimizing pain, inflammation, muscle weakness, and loss of motion. Most patients are treated with some form of immobilization and have weightbearing restrictions. A range of therapeutic modalities are used to minimize pain and inflammation. Gentle mobilization and resistance exercises are used to gain mobility and maintain muscle size and strength. The subacute phase is directed at normalizing range of motion, strength, and function in activities of daily living. Progressive mobilization and strengthening are hallmarks of this phase. Neuromuscular training is begun and becomes the central component of rehabilitation. The advanced training phase focuses on preparing the patient for return to sports participation. Perturbation of support surfaces, agility drills, plyometrics, and sport-specific training are central components of this phase. The rehabilitation guidelines discussed may assist clinicians in managing syndesmotic ankle sprains.

  4. Contribution of knee flexor and extensor strength on sex-specific energy absorption and torsional joint stiffness during drop jumping.

    PubMed

    Schmitz, Randy J; Shultz, Sandra J

    2010-01-01

    Lower extremity injury often occurs during abrupt deceleration when attempting to change the body's direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns. To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength. Cross-sectional study. Laboratory environment. Recreationally active, college-aged students (41 women: age  =  22.1 ± 2.9 years, height  =  1.63 ± 0.07 m, mass  =  59.3 ± 8.0 kg; 40 men: age  =  22.4 ± 2.8 years, height  =  1.77 ± 0.1 m, mass  =  80.9 ± 14.1 kg). Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings. Lower extremity joint energetics (J × N(-1) × m(-1)) and torsional joint stiffnesses (Nm × N(-1) × m(-1) × degrees(-1)) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses. Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R(2)  =  0.11, P  =  .04), and greater knee flexor strength predicted greater hip torsional stiffness (R(2)  =  0.12, P  =  .03). Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences.

  5. Trabecular Bone Strength Predictions of HR-pQCT and Individual Trabeculae Segmentation (ITS)-Based Plate and Rod Finite Element Model Discriminate Postmenopausal Vertebral Fractures

    PubMed Central

    Liu, X. Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X. Edward

    2013-01-01

    While high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (μFE) prediction of yield strength by HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high resolution μCT voxel model of 19 trabecular sub-volumes from human cadaveric tibiae samples. Both Young’s modulus and yield strength of HR-pQCT PR models strongly correlated with those of μCT voxel models (r2=0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and CPU time (>1,200-fold). Then, we applied PR model μFE analysis to HR-pQCT images of 60 postmenopausal women with (n=30) and without (n=30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young’s modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for aBMD T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against μCT voxel models and demonstrated its ability to discriminate vertebral fracture status in postmenopausal women. This accurate nonlinear μFE prediction of HR-pQCT PR model, which requires only seconds of desktop computer time, has tremendous promise for clinical assessment of bone strength. PMID:23456922

  6. Leisure-time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study.

    PubMed

    Rosique-Esteban, Nuria; Babio, Nancy; Díaz-López, Andrés; Romaguera, Dora; Alfredo Martínez, J; Sanchez, Vicente Martin; Schröder, Helmut; Estruch, Ramón; Vidal, Josep; Buil-Cosiales, Pilar; Konieczna, Jadwiga; Abete, Itziar; Salas-Salvadó, Jordi

    2018-06-06

    We aimed to examine the associations of leisure-time physical activity (PA) and sedentary behavior (SB) with the prevalence of sarcopenia, body composition and muscle strength among older adults having overweight/obesity and metabolic syndrome, from the PREDIMED-Plus trial. Cross-sectional baseline analysis including 1539 men and women (65 ± 5 y). Sarcopenia was defined as low muscle mass (according to FNIH cut-offs) plus low muscle strength (lowest sex-specific tertile for 30-s chair-stand test). We applied multivariable-adjusted Cox regression with robust variance and constant time (given the cross-sectional design) for the associations of self-reported leisure-time PA and SB with sarcopenia; and multivariable-linear regression for the associations with dual-energy X-ray absorptiometry (DXA)-derived bone mass, fat mass, lean mass and lower-limb muscle strength. Inverse associations were observed between sarcopenia and each hourly increment in total [prevalence ratio 0.81 (95% confidence interval, 0.70, 0.93)], moderate [0.80 (0.66, 0.97)], vigorous [0.51 (0.32, 0.84)], and moderate-vigorous PA (MVPA) [0.74 (0.62, 0.89)]. Incrementing 1-h/day total-PA and MVPA was inversely associated with body-mass-index, waist circumference (WC), fat mass, and positively associated with bone mass and lower-limb muscle strength (all P <.05). One h/day increase in total SB, screen-based SB and TV-viewing was positively associated with body-mass-index, WC and fat mass. Light-PA was not significantly associated with any outcome. Total-PA and PA at moderate and high intensities may protect against the prevalence of sarcopenia, have a beneficial role on body composition and prevent loss of muscle strength. SB, particularly TV-viewing, may have detrimental effects on body composition in older adults at high cardiovascular risk. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Low temperature physical properties of Co-35Ni-20Cr-10Mo alloy MP35N®

    NASA Astrophysics Data System (ADS)

    Lu, J.; Toplosky, V. J.; Goddard, R. E.; Han, K.

    2017-09-01

    Multiphase Co-35Ni-20Cr-10Mo alloy MP35N® is a high strength alloy with excellent corrosion resistance. Its applications span chemical, medical, and food processing industries. Thanks to its high modulus and high strength, it found applications in reinforcement of ultra-high field pulsed magnets. Recently, it has also been considered for reinforcement in superconducting wires used in ultra-high field superconducting magnets. For these applications, accurate measurement of its physical properties at cryogenic temperatures is very important. In this paper, physical properties including electrical resistivity, specific heat, thermal conductivity, and magnetization of as-received and aged samples are measured from 2 to 300 K. The electrical resistivity of the aged sample is slightly higher than the as-received sample, both showing a weak linear temperature dependence in the entire range of 2-300 K. The measured specific heat Cp of 430 J/kg-K at 295 K agrees with a theoretical prediction, but is significantly smaller than the values in the literature. The thermal conductivity between 2 and 300 K is in good agreement with the literature which is only available above 77 K. Magnetic property of MP35N® changes significantly with aging. The as-received sample exhibits Curie paramagnetism with a Curie constant C = 0.175 K. While the aged sample contains small amounts of a ferromagnetic phase even at room temperature. The measured MP35N® properties will be useful for the engineering design of pulsed magnets and superconducting magnets using MP35N® as reinforcement.

  8. Alterations of bone microstructure and strength in end-stage renal failure.

    PubMed

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  9. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  10. Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.

    PubMed

    Um, Ho Yong; Park, Byung Ho; Ahn, Dong-Hyun; Abd El Aal, Mohamed Ibrahim; Park, Jaechan; Kim, Hyoung Seop

    2017-04-01

    Severe plastic deformation (SPD) has recently been advanced as the main process for fabricating bulk ultrafine grained or nanocrystalline metallic materials, which present much higher strength and better bio-compatibility than coarse-grained counterparts. Medical devices, such as aneurysm clips and dental implants, require high mechanical and biological performance (e.g., stiffness, yield strength, fatigue resistance, and bio-compatibility). These requirements match well the characteristics of SPD-processed materials. Typical aneurysm clips are made of a commercial Ti-6Al-4V alloy, which has higher yield strength than Ti. In this work, Ti and Ti-6Al-4V workpieces were processed by high-pressure torsion (HPT) to enhance their mechanical properties. Tensile tests and hardness tests were performed to evaluate their mechanical properties, and their microstructure was investigated. The hardness and yield stress of the HPT-processed Ti are comparable to those of the initial Ti-6Al-4V due to significantly refined microstructure. Finite element analyses for evaluating the opening performance of a specific geometry of the YASARGIL aneurysm clip were carried out using mechanical properties of the initial and HPT-processed Ti and Ti-6Al-4V. These results indicate that SPD-processed Ti could be a good candidate to substitute for Ti-6Al-4V in aneurysm clips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Handgrip Strength as a Darwinian Fitness Indicator in Men

    PubMed Central

    Gallup, Andrew C.; Fink, Bernhard

    2018-01-01

    Handgrip strength (HGS) is a robust measure of overall muscular strength and function, and has long been predictive of a multitude of health factors and physical outcomes for both men and women. The fact that HGS represents such a ubiquitous measure of health and vitality may reflect the significance of this trait during human evolution. This trait is also highly sexually dimorphic due to influences of androgenic hormones and fat-free body mass, suggesting that it has been further elaborated through sexual selection. Consistent with this view, research within evolutionary psychology and related fields has documented distinct relationships between HGS and measures of social and sexual behavior, especially in men. Here, we review studies across different societies and cultural contexts showing that male HGS predicts measures of aggression and social dominance, perceived formidability, male-typical body morphology and movement, courtship display, physical attractiveness, and sexual behavior and reproductive fitness. These findings underscore the value of including HGS as an independent measure within studies examining human sexual selection, and corroborate existing research suggesting that specific features of physical strength have and continue to be under positive directional selection in men. PMID:29681871

  12. Interfacial Shear Strength of Multilayer Graphene Oxide Films.

    PubMed

    Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer

    2016-02-23

    Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.

  13. Structure, processing, and properties of potatoes

    NASA Astrophysics Data System (ADS)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.

    1992-06-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  14. Structure, processing, and properties of potatoes

    NASA Technical Reports Server (NTRS)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.

    1992-01-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  15. Positive Psychological Strengths and School Engagement in Primary School Children

    ERIC Educational Resources Information Center

    Wilkins, Bronwyn; Boman, Peter; Mergler, Amanda

    2015-01-01

    A sizeable body of research has investigated the impact of specific character strengths or traits on significant outcomes. Some recent research is beginning to consider the effects of groups of strengths, combined as a higher order variable and termed covitality. This study investigated the combined influence of four positive character traits,…

  16. Assessing Youth Strengths in a Residential Juvenile Correctional Program

    ERIC Educational Resources Information Center

    Barton, William H.; Mackin, Juliette R.; Fields, Jerrold

    2006-01-01

    Assessments and case plans that identify and build upon the strengths of clients, their families and communities are increasingly being used in many fields of practice, but are only beginning to be introduced in juvenile justice settings. This article describes a strengths-based assessment tool developed specifically for use in juvenile justice…

  17. Of Mental Models, Assumptions and Heuristics: The Case of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha Michelle

    2010-01-01

    This study explored what cognitive resources (i.e., units of knowledge necessary to learn) first-semester organic chemistry students used to make decisions about acid strength and how those resources guided the prediction, explanation and justification of trends in acid strength. We were specifically interested in the identifying and…

  18. Effect of gap distance on tensile strength of preceramic base metal solder joints.

    PubMed

    Fattahi, Farnaz; Motamedi, Milad

    2011-01-01

    In order to fabricate prostheses with high accuracy and durability, soldering techniques have been introduced to clinical dentistry. However, these prostheses always fail at their solder joints. The purpose of this study was to evaluate the effect of gap distance on the tensile strength of base metal solder joints. Based on ADA/ISO 9693 specifications for tensile test, 40 specimens were fabricated from a Ni-Cr alloy and cut at the midpoint of 3-mm diameter bar and placed at desired positions by a specially designed device. The specimens were divided into four groups of 10 samples according to the desired solder gap distance: Group1: 0.1mm; Group2: 0.25mm; Group3: 0.5mm; and Group4: 0.75mm. After soldering, specimens were tested for tensile strength by a universal testing machine at a cross-head speed of 0.5mm/min with a preload of 10N. The mean tensile strength values of the groups were 162, 307.8, 206.1 and 336.7 MPa, respectively. The group with 0.75-mm gap had the highest and the group with 0.1-mm gap had the lowest tensile strength. Bonferroni test showed that Group1 and Group4 had statistically different values (P=0.023), but the differences between other groups were not sig-nificant at a significance level of 0.05. There was no direct relationship between increasing soldering gap distance and tensile strength of the solder joints.

  19. CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training.

    PubMed

    Harmon, Brennan T; Orkunoglu-Suer, E Funda; Adham, Kasra; Larkin, Justin S; Gordish-Dressman, Heather; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hubal, Monica J; Tosi, Laura L; Hoffman, Eric P; Devaney, Joseph M

    2010-12-01

    Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.

  20. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  1. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  2. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  3. An Analysis of Strengthening Mechanisms and Rate-Dependence in a High Strength Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cao, B.; Shaeffer, M.; Cadel, D.; Ramesh, K. T.; Prasad, S.

    2017-11-01

    We examine the strengthening mechanisms within a high-strength aluminum alloy with the objective of providing guidelines for increased strength. First, we measure the mechanical behavior of the age-hardenable Al-Cu-Mg-Ag alloy known as Al 2139 in the T8 condition, and observe strengths of 500 MPa at quasistatic strain rates and average strengths of up to 600 MPa at high strain rates. Next, we explore the reasons for the high strength of this alloy by considering the contributions of various strengthening mechanisms to the total strength of the material. Finally, we develop an analytical approach to estimating the strengthening developed through the mechanism of dislocation cutting of closely spaced plate-like semi-coherent precipitates. Our results suggest that dislocation cutting of the Ω phase is the primary strengthening mechanism in this alloy.

  4. Effects of strain variations on aging response and corrosion properties of third generation Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Wright, Ellen E.

    Due to their high specific strength (strength/density) and specific stiffness (elastic modulus/density), Al-Li alloys are attractive alloys for structural aircraft applications. To produce contoured aircraft components from Al-Li wrought products, stretch forming prior to aging is a common manufacturing technique. The effects of different amounts of tensile straining (0-9%) on the mechanical, microstructural, and corrosion properties of two third generation Al-Li alloys (2099 and 2196) were investigated. In addition to typical characterization techniques, electron backscatter diffraction (EBSD), 2D micro-digital image correlation (DIC), and scanning Kelvin probe force microscopy (SKPFM) were used to examine site-specific effects of orientation, micro-strain evolution during straining, and surface potential on corrosion, respectively. Tapping mode atomic force microscopy (AFM) was also performed to study galvanic corrosion in artificial seawater (3.5% NaCl) as it occurred in-situ. There was evidence of intergranular corrosion for 0% strain conditions, but the dominant form of corrosion was localized pitting for all specimens except Alloy 2196 strained 0%. Pitting initiated at grain boundaries and triple points. In many cases, pitting extended into particular grains and was elongated in the extrusion direction. Regions of high micro-strain preferentially corroded, and large, recrystallized grains in mostly unrecrystallized microstructures were detrimental to corrosion properties. Recommendations for improved thermomechanical processing and/or alloying to promote corrosion resistance of 2XXX series Al-Li alloys were investigated.

  5. Fabrication of High Strength Lightweight Metals for Armor and Structural Applications: Large Scale Equal Channel Angular Extrusion Processing of Aluminum 5083 Alloy

    DTIC Science & Technology

    2017-06-01

    ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for Armor and Structural...to the originator. ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for...Fabrication of High -Strength Lightweight Metals for Armor and Structural Applications: Large-Scale Equal Channel Angular Extrusion Processing of

  6. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  7. Prevalence and correlates of participation in fall prevention exercise/physical activity by older adults.

    PubMed

    Merom, Dafna; Pye, Victoria; Macniven, Rona; van der Ploeg, Hidde; Milat, Andrew; Sherrington, Catherine; Lord, Stephen; Bauman, Adrian

    2012-12-01

    To examine older people's participation in fall prevention exercise/physical activities. Participants comprised 5,681 randomly selected older people (≥ 65 years) who took part in the 2009 New South Wales (Australia) Fall Prevention telephone survey (61% response-rate). The instrument consisted of 11 prompted activities including two separate questions on participation in strength and balance training. Tai chi, dance, team sports, golf, bowls and specific balance training were classified as balance-challenging activities. Correlates of low participation were examined using multivariable logistic regression. One in eight older people (12.0%, 95% CI: 11.0-13.0) participated in strength training, 6.0% (95% CI: 5.2-6.7) participated in balance training and 21.8% (95% CI: 20.5-23.0) participated in balance-challenging activities. Adherence to public health recommendations (≥ 2 days/week) for strength or balance-challenging activities was reported by 21.0% (95% CI: 9.8-22.2) with 5.3% adhering to both forms. Engagements in strength or in balance-challenging activities were lower among those who had low education (

  8. Divergent dispersion behavior of ssDNA fragments during microchip electrophoresis in pDMA and LPA entangled polymer networks

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Barron, Annelise E.

    2015-01-01

    Resolution of DNA fragments separated by electrophoresis in polymer solutions (“matrices”) is determined by both the spacing between peaks and the width of the peaks. Prior research on the development of high-performance separation matrices has been focused primarily on optimizing DNA mobility and matrix selectivity, and gave less attention to peak broadening. Quantitative data are rare for peak broadening in systems in which high electric field strengths are used (> 150 V/cm), which is surprising since capillary and microchip-based systems commonly run at these field strengths. Here, we report results for a study of band broadening behavior for ssDNA fragments on a glass microfluidic chip, for electric field strengths up to 320 V/cm. We compare dispersion coefficients obtained in a poly(N,N-dimethylacrylamide) (pDMA) separation matrix that was developed for chip-based DNA sequencing with a commercially available linear polyacrylamide (LPA) matrix commonly used in capillaries. Much larger DNA dispersion coefficients were measured in the LPA matrix as compared to the pDMA matrix, and the dependences of dispersion coefficient on DNA size and electric field strength were found to differ quite starkly in the two matrices. These observations lead us to propose that DNA migration mechanisms differ substantially in our custom pDMA matrix compared to the commercially available LPA matrix. We discuss the implications of these results in terms of developing optimal matrices for specific separation (microchip or capillary) platforms. PMID:22648809

  9. Evaluation of capping systems for high-strength concrete cylinders.

    DOT National Transportation Integrated Search

    2006-03-01

    This study focused on the effects of capping systems on the compressive strength of high-strength concrete. The compressive strength levels ranged from 6,000 psi to 14,000 psi. The three systems investigated were ground ends, bonded caps, and unbonde...

  10. ACL deficient potential copers and non-copers reveal different isokinetic quadriceps strength profiles in the early stage after injury

    PubMed Central

    Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA

    2011-01-01

    Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps strength deficits after ACL injury compared to the commonly used peak torque values. PMID:20110458

  11. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  12. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  13. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    NASA Astrophysics Data System (ADS)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  14. Processing bulk natural wood into a high-performance structural material.

    PubMed

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H; Bruck, Hugh A; Zhu, J Y; Vellore, Azhar; Li, Heng; Minus, Marilyn L; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-07

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na 2 SO 3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  15. Processing bulk natural wood into a high-performance structural material

    NASA Astrophysics Data System (ADS)

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  16. Development of a Highly Stressed Bladed Rotor Made of a CFRP Using the Tailored Fiber Placement Technology

    NASA Astrophysics Data System (ADS)

    Uhlig, K.; Spickenheuer, A.; Bittrich, L.; Heinrich, G.

    2013-05-01

    Increasing the rotational frequency of bladed rotors used in turbomachinery leads to their increased efficiency and performance. Especially for turbomolecular pumps, this would allow either higher compression rates or smaller pump dimensions. The maximal rotational frequency is focused on the structural strength of the construction and the material used. Due to their high density, specific strength, and stiffness in the fiber direction, carbon-fiberreinforced plastics (CFRPs) seem to be ideal for such an application. The highly orthotropic material behavior of CFRPs demands new approaches in terms of their manufacturing and dimensioning. As a new approach, a rotor with 17 blades in a blade-integrated disk construction (BLISK) made of a CFRP, allowing a 35% higher burst speed than a bladed rotor made of a high-strength aluminum alloy, was developed. An appropriate fiber layout has to reflect the rotational symmetry, which demands either a radial or tangential fiber orientation. Therefore, the Tailored Fiber Placement (TFP) technology was used, which allows a high flexibility for the fiber layout. For consolidation, resin infiltration was performed using a modified vacuum-assisted process, and the final geometry was generated employing a milling machine. A radius-dependent layer setup of tangential and radial fibers was chosen to maximize the burst speed by using an adapted finite-element analysis. Additionally, a numerical modal analysis and a numerical failure analysis were performed. Finally, the theoretical results were verified on manufactured rotors by an experimental modal analysis and burst tests, where experimental data showed a good coincidence with numerical results.

  17. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  18. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  19. Research requirements to reduce empty weight of helicopters by use of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffstedt, D.J.

    1976-12-01

    Utilization of the new, lightweight, high-strength, aerospace structural-composite (filament/matrix) materials, when specifically designed into a new aircraft, promises reductions in structural empty weight of 12% at recurring costs competetive with metals. A program of basic and applied research and demonstration is identified with the objective of advancing the state of the art to the point where civil helicopters are confidently designed, produced, certified, and marketed by 1985. A structural empty-weight reduction of 12% was shown to significantly reduce energy consumption in modern high-performance helicopters.

  20. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    PubMed

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  1. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  2. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    DTIC Science & Technology

    1947-03-01

    FOR AERONAUTICS TECHNICAL NOTE No. 1100 ELASTIC PROPERTIES IN TENSION AND SHEAR OF HIGH STRENGTH NONFERROUS METALS AND STAINLESS STEEL - EFFECT...1100 ELASTIC PROPERTIES IN TENSION AND SHEAR OF HIGH STRENGTH NONFERROUS METALS AND STAINLESS STEEL -- EFFECT OF PREVIOUS DEFORMATION AND HEAT...temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The

  3. [Bone cement adhesion on ceramic surfaces - surface activation of retention surfaces of knee prostheses by atmospheric plasma versus thermal surface treatment].

    PubMed

    Marx, B; Marx, R; Reisgen, U; Wirtz, D

    2015-04-01

    CoCrMo alloys are contraindicated for allergy sufferers. For these patients, uncemented and cemented prostheses made of titanium alloy are indicated. Knee prostheses machined from that alloy, however, may have poor tribological behaviour, especially in relation to UHMWPE inlays. Therefore, for knee replacement cemented high-strength oxide ceramic prostheses are suitable for allergy sufferers and in cases of particle-induced aseptic loosening. For adhesion of bone cement, the ceramic surface, however, only exposes inefficient mechanical retention spots as compared with a textured metal surface. Undercuts generated by corundum blasting which in the short-term are highly efficient on a CoCrMo surface are not possible on a ceramic surface due to the brittleness of ceramics. Textures due to blasting may initiate cracks which will weaken the strength of a ceramic prosthesis. Due to the lack of textures mechanical retention is poor or even not existent. Micromotions are promoted and early aseptic loosening is predictable. Instead silicoating of the ceramic surface will allow specific adhesion and result in better hydrolytic stability of bonding thereby preventing early aseptic loosening. Silicoating, however, presupposes a clean and chemically active surface which can be achieved by atmospheric plasma or thermal surface treatment. In order to evaluate the effectiveness of silicoating the bond strengths of atmospheric plasma versus thermal surface treated and silicate layered ZPTA surfaces were compared with "as-fired" surfaces by utilising TiAlV probes (diameter 6 mm) for traction-adhesive strength tests. After preparing samples for traction-adhesive strength tests (sequence: ceramic substrate, silicate and silane, protective lacquer [PolyMA], bone cement, TiAlV probe) they were aged for up to 150 days at 37 °C in Ringer's solution. The bond strengths observed for all ageing intervals were well above 20 MPa and much higher and more hydrolytically stable for silicate layered compared with "as-fired" ZPTA samples. Silicoating may be effective for achieving high initial bond strength of bone cement on surfaces of oxide ceramics and also suitable to stabilise bond strength under hydrolytic conditions as present in the human body in the long-term. Activation by atmospheric plasma or thermal surface treatment seems to be effective for activation prior to silicoating. Due the proposed silicate layer migration, micromotions and debonding should be widely reduced or even eliminated. Georg Thieme Verlag KG Stuttgart · New York.

  4. Geomechanical rock properties of a basaltic volcano

    NASA Astrophysics Data System (ADS)

    Schaefer, Lauren; Kendrick, Jackie; Lavallée, Yan; Oommen, Thomas; Chigna, Gustavo

    2015-06-01

    In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  5. Limits on rock strength under high confinement

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in cm-scale sized samples of rocks rich in defects. Thus, non-frictional failure processes must be considered when interpreting rock deformation data collected under high confinement and low temperature. Further, even at higher temperatures the load-bearing ability of crustal rocks under high confinement may not be limited by a frictional process under typical geologic strain rates.

  6. [Research, design and application of model NSE-1 neck muscle training machine for pilots].

    PubMed

    Cheng, Haiping; Wang, Zhijie; Liu, Songyang; Yang, Yi; Zhao, Guang; Cong, Hong; Han, Xueping; Liu, Min; Yu, Mengsun

    2011-04-01

    Pain in the cervical region of air force pilots, who are exposed to high G-forces, is a specifically occupational health problem. To minimize neck problems, the cervical muscles need specific strength exercise. It is important that the training for the neck must be carried out with optimal resistance in exercises. The model NSE-1 neck training machine for pilots was designed for neck strengthening exercises under safe and effective conditions. In order to realize the functions of changeable velocity and resistant (CVR) training and neck isometric contractive exercises, the techniques of adaptive hydraulics, sensor, optic and auditory biological feedback, and signal processing were applied to this machine. The training system mainly consists of mechanical parts (including the chair of flexion and extension, the chair of right and left lateral flexion, the components of hydraulics and torque transformer, etc.), and the software of signal processing and biological feedback. Eleven volunteers were selected for the experiments of neck isometric contractive exercises, three times a week for 6 weeks, where CVR training (flexion, extension, right, left lateral flexion) one time a week. The increase in relative strength of the neck (flexion, extension, left and right lateral flexion) was 70.8%, 83.7%, 78.6% and 75.2%, respectively after training. Results show that the strength of the neck can be increased safely, effectively and rapidly with NSE-1 neck training machine to perform neck training.

  7. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    PubMed

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Slab replacement maturity guidelines.

    DOT National Transportation Integrated Search

    2014-04-01

    This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...

  9. Evaluation and comparison of transverse and impact strength of different high strength denture base resins.

    PubMed

    Gupta, Abhinav; Tewari, R K

    2016-01-01

    The present study was undertaken to evaluate and compare the impact strength and transverse strength of the high-impact denture base materials. A conventional heat polymerized acrylic resin was used as a control. The entire experiment was divided into four main groups with twenty specimens each according to denture base material selected Trevalon, Trevalon Hi, DPI Tuff and Metrocryl Hi. These groups were further subgrouped into the two parameters selected, impact strength and flexural strength with ten specimens each. These specimens were then subjected to transverse bend tests with the help of Lloyds instrument using a three point bend principle. Impact tests were undertaken using an Izod-Charpy digital impact tester. This study was analyzed with one-way analysis of variance using Fisher f-test and Bonferroni t-test. There was a significant improvement in the impact strength of high-impact denture base resins as compared to control (Trevalon). However, in terms of transverse bend tests, only DPI Tuff showed higher transverse strength in comparison to control. Trevalon Hi and Metrocryl Hi showed a decrease in transverse strength. Within the limits of this in vitro study, (1) There is a definite increase in impact strength due to the incorporation of butadiene styrene rubber in this high strength denture base materials as compared to Trevalon used as a control. (2) Further investigations are required to prevent the unduly decrease of transverse strength. (3) It was the limitation of the study that the exact composition of the high-impact resins was not disclosed by the manufacturer that would have helped in better understanding of their behavior.

  10. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    PubMed

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p < 0.05), whereas all strength measures correlated significantly with CMJ heights (p < 0.001). The associations between jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  11. Effect of official judo matches on handgrip strength and perceptual responses

    PubMed Central

    Kons, Rafael Lima; Pupo, Juliano Dal; Ache-Dias, Jonathan; Garcia, Thyago; da Silva, Romário Rodrigues; Katicips, Luiz Felipe Guarise; Detanico, Daniele

    2018-01-01

    This study aimed to verify the effect of judo matches on handgrip strength and perceptual responses during an official tournament in medalists and nonmedalists. Thirty-four male judo athletes participated in an official judo tournament. Before the first match and immediately after each match, maximum isometric handgrip strength and rate of perceived exertion overall and in specific areas were assessed. Analysis of variance for repeated measures was used to compare variables before the first match and after each match, and t-test was used to compare medalists and nonmedalists with the level of significance set at 5%. Also, effect size (ES) analysis was used. The results showed decrease in handgrip strength in both hands from the third match (P<0.05). The rate of perceived exertion (RPE) increased from the first match and remained high over the subsequent matches (P<0.001). A very large effect for nonmedalist group (ES=3.44) and large effect for medalist group (ES=1.94) was found in the third match compared to prematch. Forearm and fingers were the body regions most cited by athletes in both groups. We concluded that an official judo competition induced significant drop in handgrip strength from the third match and increased the RPE from first match. Medalists seem to have better recovery after the third match compared to nonmedalists. PMID:29511658

  12. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    NASA Astrophysics Data System (ADS)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  13. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    PubMed

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  14. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    PubMed

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  15. Effects of a Six-Week Strength Training Programme on Change of Direction Performance in Youth Team Sport Athletes

    PubMed Central

    Bourgeois, Frank A.; Gamble, Paul; Gill, Nic D.; McGuigan, Mike R.

    2017-01-01

    This study investigated the effects of eccentric phase-emphasis strength training (EPE) on unilateral strength and performance in 180- and 45-degree change of direction (COD) tasks in rugby union players. A 12-week cross-over design was used to compare the efficacy of resistance training executed with 3 s eccentric duration (EPE, n = 12) against conventional strength training, with no constraints on tempo (CON, n = 6). Players in each condition were categorised as ‘fast’ (FAST) or ‘slow’ (SLOW) using median trial times from baseline testing. Players recorded greater isometric strength improvements following EPE (ES = −0.54 to 1.80). Whilst these changes were not immediate, players improved in strength following cessation. Improvements in 180-degree COD performance was recorded at all test-points following EPE (ES = −1.32 to −0.15). Improvements in 45-degree COD performance were apparent for FAST following CON (ES = −0.96 to 0.10), but CON was deleterious for SLOW (ES = −0.60 to 1.53). Eccentric phase-emphasis strength training shows potential for sustained strength enhancement. Positive performance changes in COD tasks were category- and condition-specific. The data indicate the greatest improvement occurred at nine weeks following resistance training in these players. Performance benefits may also be specific to COD task, player category, and relative to emphasis on eccentric phase activity. PMID:29910443

  16. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    NASA Astrophysics Data System (ADS)

    Myriounis, Dimitrios

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.

  17. Strength of Structural and Functional Frontostriatal Connectivity Predicts Self-Control in the Healthy Elderly

    PubMed Central

    Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz

    2016-01-01

    Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern of correlations between structural or functional frontostriatal connectivity strength and self-control suggests that, in addition to the importance of the frontostriatal nodes itself, the structural and functional properties of different connections within the frontostriatal network are crucial for self-controlled behaviors in the healthy elderly. Because high DoG/low DD is a significant predictor of willpower and wellbeing in the elderly population, interventions aiming at strengthening frontostriatal connectivity to strengthen self-controlled behavior are needed in the future. PMID:28105013

  18. High-early-strength high-performance concrete for rapid pavement repair.

    DOT National Transportation Integrated Search

    2016-01-01

    In the construction industry, High Early-Age Strength (HES) concrete was : traditionally regarded as a concrete that achieves a loading strength in matter of days : rather than weeks. However, in the last 10-15 years, this time has been reduced down ...

  19. P/M Processing of Rare Earth Modified High Strength Steels.

    DTIC Science & Technology

    1980-12-01

    AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

  20. Evaluation of SF6-alternative gas C5-PFK based on arc extinguishing performance and electric strength

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Rong, Mingzhe; Murphy, Anthony Bruce; Li, Tianwei; Zhong, Jianying; Chen, Zhexin; Yang, Fei; Niu, Chunpin

    2017-09-01

    C5-PFK (C5-perfluoroketone, C5F10O) is under wide consideration as an environmentally-friendly alternative gas to SF6 in high-voltage applications, because of its superior insulation performance. The aim of this work is to study theoretically the arc extinguishing performance and electric strength of C5-PFK. The arc extinguishing performance of C5-PFK was evaluated by analyzing and comparing the thermophysical properties of C5-PFK, SF6, CF4, CO2 and N2 plasmas. It was difficult to obtain the species formed in C5-PFK plasmas because of the complex C5-PFK molecular decomposition process. In this work, the decomposition process of C5-PFK and the related species were analyzed by the bond energy analysis method. For the species for which parameters such as the partition function and the enthalpy of formation were not available, computational chemistry methods were used to obtain the required data. The collision integrals were calculated using the phenomenological potential model. Using these results, the local thermodynamic equilibrium composition at temperatures from 300 to 30 000 K at 1-10 atm of pure C5-PFK was calculated by the method of minimization of the Gibbs free energy, and the corresponding transport coefficients were calculated by Chapman-Enskog method. Through the comparison of the thermophysical properties, it was found that C5-PFK had similar characteristics to SF6, with large peaks in specific heat below 4500 K, indicating potentially good thermal interruption capability. However, the specific heat peak at 7000 K corresponding to CO decomposition may detract from the thermal interruption capability. Specific heat peaks at higher temperatures are associated with the breaking of double or triple bonds, and should be avoided if possible in the new alternative gases. The electric strength of C5-PFK was assessed using the molecular electrostatic potential, which can be accurately calculated or measured, and gives strong insights into important characteristics of the molecule. Based on the analysis of the molecular surface electrostatic potential and electric strength of C5-PFK, SF6, CF4, CO2, and N2, it is found that the positive potential area of the molecular surface has a strong correlation with the electric strength and is expected to be one of the predictors of electric strength. To verify this phenomenon, 36 kinds of particles were used for the correlation analysis. The correlation coefficient between the positive potential area and electric strength is up to 0.9 which means strong correlation.

Top