Sample records for specific structural characteristics

  1. How learning one category influences the learning of another: intercategory generalization based on analogy and specific stimulus information.

    PubMed

    Nahinsky, Irwin D; Lucas, Barbara A; Edgell, Stephen E; Overfelt, Joseph; Loeb, Richard

    2004-01-01

    We investigated the effect of learning one category structure on the learning of a related category structure. Photograph-name combinations, called identifiers, were associated with values of four demographic attributes. Two problems were related by analogous demographic attributes, common identifiers, or both to examine the impact of common identifier, related general characteristics, and the interaction of the two variables in mediating learning transfer from one category structure to another. Problems sharing the same identifier information prompted greater positive transfer than those not sharing the same identifier information. In contrast, analogous defining characteristics in the two problems did not facilitate transfer. We computed correlations between responses to first-problem stimuli and responses to analogous second-problem stimuli for each participant. The analogous characteristics produced a tendency to respond in the same way to corresponding stimuli in the two problems. The results support an alignment between category structures related by analogous defining characteristics, which is facilitated by specific identifier information shared by two category structures.

  2. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  3. High-frequency output characteristics of AlGaAs/GaAs heterojunction bipolar transistors for large-signal applications

    NASA Astrophysics Data System (ADS)

    Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.

    1991-11-01

    High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.

  4. Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy

    NASA Astrophysics Data System (ADS)

    Matveeva, Larisa; Belentsov, Yuri

    2017-10-01

    The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.

  5. The effect of aspen wood characteristics and properties on utilization

    Treesearch

    Kurt H. Mackes; Dennis L. Lynch

    2001-01-01

    This paper reviews characteristics and properties of aspen wood, including anatomical structure and characteristics, moisture and shrinkage properties, weight and specific gravity, mechanical properties, and processing characteristics. Uses of aspen are evaluated: sawn and veneer products, composite panels, pulp, excelsior, post and poles, animal bedding, animal food...

  6. Design of Learning Spaces: Emotional and Cognitive Effects of Learning Environments in Relation to Child Development

    ERIC Educational Resources Information Center

    Arndt, Petra A.

    2012-01-01

    The design of learning spaces is rightly gaining more and more pedagogical attention, as they influence the learning climate and learning results in multiple ways. General structural characteristics influence the willingness to learn through emotional well-being and a sense of security. Specific structural characteristics influence cognitive…

  7. Rotorcraft Weight Trends in Light of Structural Material Characteristics

    DTIC Science & Technology

    1987-04-26

    torsion W weight for tota We weight empty v tail rotor 0 mass ratio got ultimate to specific weight I wVater S specific gravity * twist, torsion...imagined meters. An alternate way of expressing the weight effectiveness of materials may be based on the specific gravity of the material. In this...specific weight of distilled water at 40C, and 6. is the specific gravity of the considered structural material. Since, obviously, 7,, - const, it may

  8. The Optimizer Topology Characteristics in Seismic Hazards

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2015-12-01

    The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.

  9. Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments

    DOE PAGES

    Field, Kevin G.; Yang, Ying; Busby, Jeremy T.; ...

    2015-03-09

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Furthermore, such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less

  10. Student Heterogeneity and Diversity at Catholic Colleges

    ERIC Educational Resources Information Center

    Elliott, Diane Cardenas

    2012-01-01

    The purpose of this study was to examine structural diversity at Catholic colleges; more specifically, the variation in the student body diversity characteristics of a sample of freshman students matriculated at Catholic colleges. For the purpose of this article, diversity characteristics include background characteristics associated with student…

  11. A model-based investigation of manipulator characteristics and pilot/vehicle performance

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1983-01-01

    Hess (1978, 1981) has introduced and discussed a structural model of the human pilot in which proprioceptive feedback plays a fundamental role in determining pilot equalization characteristics. It is pointed out that, on account of the feedback structure, this model may provide more insight into the effects of certain manipulator characteristics upon pilot equalization than would other modeling approaches. The model is briefly discussed, and an outline is presented concerning some of the implications of the model structure regarding the manipulator characteristics. Attention is given to some specific empirical examples of manipulator effects involving glide slope tracking in STOL aircraft, taking into account an employment of the model as a theoretical framework.

  12. Mission-oriented requirements for updating MIL-H-8501. Volume 1: STI proposed structure. [military rotorcraft

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Hoh, R. H.; Ferguson, S. W., III; Mitchell, D. G.; Ashkenas, I. L.; Mcruer, D. T.

    1985-01-01

    The structure of a new flying and ground handling qualities specification for military rotorcraft is presented. This preliminary specification structure is intended to evolve into a replacement for specification MIL-H-8501A. The new structure is designed to accommodate a variety of rotorcraft types, mission flight phases, flight envelopes, and flight environmental characteristics and to provide criteria for three levels of flying qualities, a systematic treatment of failures and reliability, both conventional and multiaxis controllers, and external vision aids which may also incorporate synthetic display content. Existing and new criteria were incorporated into the new structure wherever they could be substantiated.

  13. Students' Representations of the Atomic Structure--The Effect of Some Individual Differences in Particular Task Contexts

    ERIC Educational Resources Information Center

    Papageorgiou, George; Markos, Angelos; Zarkadis, Nikolaos

    2016-01-01

    The current study aims to investigate students' representations of the atomic structure in a number of student cohorts with specific characteristics concerning age, grade, class curriculum and some individual differences, such as formal reasoning and field dependence/independence. Two specific task contexts, which were designed in accordance with…

  14. Volume changes in unrestrained structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-08-01

    In this study a comparator-type measuring system was developed to accurately determine volume change characteristics of one structural lightweight concrete. The specific properties studied were the coefficient of linear thermal expansion and unrestra...

  15. The Mantis Project.

    ERIC Educational Resources Information Center

    Palopoli, Maria L.

    1998-01-01

    Explains an integrated insect unit in which students learn about the characteristics, life cycle, and environment of an organism; learn about specific body structures; and make inferences about the body structure and behaviors of the insects. (DDR)

  16. New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics.

    PubMed

    Ma, Ruoshui; Zhang, Xiumei; Wang, Yi; Zhang, Xiao

    2018-04-27

    The heterogeneous and complex structural characteristics of lignin present a significant challenge to predict its processability (e.g. depolymerization, modifications etc) to valuable products. This study provides a detailed characterization and comparison of structural properties of seven representative biorefinery lignin samples derived from forest and agricultural residues, which were subjected to representative pretreatment methods. A range of wet chemistry and spectroscopy methods were applied to determine specific lignin structural characteristics such as functional groups, inter-unit linkages and peak molecular weight. In parallel, oxidative depolymerization of these lignin samples to either monomeric phenolic compounds or dicarboxylic acids were conducted, and the product yields were quantified. Based on these results (lignin structural characteristics and monomer yields), we demonstrated for the first time to apply multiple-variable linear estimations (MVLE) approach using R statistics to gain insight toward a quantitative correlation between lignin structural properties and their conversion reactivity toward oxidative depolymerization to monomers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.

    2016-08-01

    Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.

  18. Breed-Specific Magnetic Resonance Imaging Characteristics of Necrotizing Encephalitis in Dogs

    PubMed Central

    Flegel, Thomas

    2017-01-01

    Diagnosing necrotizing encephalitis, with its subcategories of necrotizing leukoencephalitis and necrotizing meningoencephalitis, based on magnetic resonance imaging alone can be challenging. However, there are breed-specific imaging characteristics in both subcategories that allow establishing a clinical diagnosis with a relatively high degree of certainty. Typical breed specific imaging features, such as lesion distribution, signal intensity, contrast enhancement, and gross changes of brain structure (midline shift, ventriculomegaly, and brain herniation) are summarized here, using current literature, for the most commonly affected canine breeds: Yorkshire Terrier, French Bulldog, Pug, and Chihuahua. PMID:29255715

  19. Rurality and Patterns of Social Disruption.

    ERIC Educational Resources Information Center

    Wilkinson, Kenneth P.

    1984-01-01

    Argues that structural cleavages provoke social disruptions where opportunities are conducive. Thus, combinations of rurality with particular structural cleavages predict specific disruption patterns. Data from northeastern United States indicate that rurality, combined with other population characteristics (provocation, ascriptive inequality,…

  20. MUTAGENIC CHARACTERISTICS OF RIVER WATERS FLOWING THROUGH LARGE METROPOLITAN AREAS IN NORTH AMERICA

    EPA Science Inventory

    Mutagenic characteristics of river waters flowing through large metropolitan areas in North America

    The hanging technique using blue rayon, which specifically adsorbs mutagens with multicyclic planar structures, has the advantages over most conventional methods of not havi...

  1. Characteristics of High-Quality Teachers

    ERIC Educational Resources Information Center

    Jones, Jason E.; Gulek, James C.

    2010-01-01

    The purpose of this study was to examine the characteristics of high-quality teachers who used a structured mathematics program for teaching, namely the Math Achievement Program (MAP[superscript 2]D), which demonstrated significant gains on student achievement as measured by California's Standards Test (CST) in mathematics. Specifically, the…

  2. [The muzzle and biochemical genetic markers as supplementary breed characteristics in cattle].

    PubMed

    Tarasiuk, S I; Glazko, V I; Trofimenko, A L

    1997-01-01

    The comparative analysis of characteristics of three different cattle breeds (Brown Carpathian, Pinzgauer, Red Polish) on the 5 molecular-genetic markers and 5 muzzle dermatoglyphic types was carried out. It was indicated, that one characteristic can not be use as a breed-specific one but only their complex. The main aspect of search of this complex is the use of characteristics which mark different structure-functional systems of whole organism.

  3. Characteristics of Art Higher Education Institution Students' Social Competence

    ERIC Educational Resources Information Center

    Butova, Yelena Valeryevna; Khan, Natalya Nikolaevna; Illarionova, Ludmila Petrovna; Moldazhanova, Asemqul

    2015-01-01

    This paper represents a profound research of Kazakh and foreign scientific literature and tries to define the structure, the essence and meaningful characteristics of the art higher education institution students' competence as a set of professionally significant qualities of personality, which is determined by the nature and specifics of the…

  4. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching

    Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m 2 g -1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N 2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3-49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H 2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H 2SO 4 due to excellent reversibility and high specific capacitance (180 F g -1 measured at 10 mV s -1), which is obviously larger than 100 F g -1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m 2 g -1).

  5. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    PubMed Central

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  6. Water absorption characteristics and structural properties of rice for sake brewing.

    PubMed

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  7. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    NASA Astrophysics Data System (ADS)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  8. The Social Structural, Family, School, and Personal Characteristics of At-Risk Students: Policy Recommendations for School Personnel.

    ERIC Educational Resources Information Center

    Vacha, Edward F.; McLaughlin, T. F.

    1992-01-01

    Summarizes research concerning the characteristics of at-risk students. Available research clearly demonstrates that the single most consistent factor characterizing at-risk students is social class. Consequently, studies investigating the impact of social class on school success are also reviewed. Research leads to specific suggestions for…

  9. Molecular Structure of Photosynthetic Microbial Biofuels for Improved Engine Combustion and Emissions Characteristics

    PubMed Central

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673

  10. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics.

    PubMed

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.

  11. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides.

    PubMed

    Sickafus, Kurt E; Grimes, Robin W; Valdez, James A; Cleave, Antony; Tang, Ming; Ishimaru, Manabu; Corish, Siobhan M; Stanek, Christopher R; Uberuaga, Blas P

    2007-03-01

    Ceramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance. Here, we examine trends in radiation damage behaviour for families of compounds related by crystal structure. Specifically, we consider oxides with structures related to the fluorite crystal structure. We demonstrate that improved amorphization resistance characteristics are to be found in compounds that have a natural tendency to accommodate lattice disorder.

  12. The HCMM system: Development and performance

    NASA Technical Reports Server (NTRS)

    Stuart, L. M., Jr.

    1982-01-01

    The structure and history of the heat capacity mapping mission program is reviewed and the spacecraft is described including engineering specifications, instrument design, data handling, and image characteristics.

  13. Improved Electrochromic Characteristics of a Honeycomb-Structured Film Composed of NiO.

    PubMed

    Yang, Hyeeun; Lee, Yulhee; Kim, Dong In; Seo, Hyeon Jin; Yu, Jung-Hoon; Nam, Sang-Hun; Boo, Jin-Hyo

    2018-09-01

    Color changes controlled by electronic energies have been studied for many years in order to fabricate energy-efficient smart windows. Reduction and oxidization of nickel oxide under the appropriate voltage can change the color of a window. For a superior nickel oxide (NiO) electrochromic device (ECD), it is important to control the chemical and physical characteristics of the surface. In this study, we applied polystyrene bead templates to nickel oxide films to fabricate a honeycomb-structured electrochromic (EC) layer. We synthesized uniform polystyrene beads using the chemical wet method and placed them on substrates to create honeycomb-structured NiO films. Then, the EC characteristics of the nickel oxide films with a honeycomb structure were evaluated with UV-Visible and cyclic voltammetry. FE-SEM and AFM were used to measure the morphologies of the nanostructures and the efficiencies of the redox reactions related to the specific surface area.

  14. Predicting Homework Effort: Support for a Domain-Specific, Multilevel Homework Model

    ERIC Educational Resources Information Center

    Trautwein, Ulrich; Ludtke, Oliver; Schnyder, Inge; Niggli, Alois

    2006-01-01

    According to the domain-specific, multilevel homework model proposed in the present study, students' homework effort is influenced by expectancy and value beliefs, homework characteristics, parental homework behavior, and conscientiousness. The authors used structural equation modeling and hierarchical linear modeling analyses to test the model in…

  15. A Notation for Rapid Specification of Information Visualization

    ERIC Educational Resources Information Center

    Lee, Sang Yun

    2013-01-01

    This thesis describes a notation for rapid specification of information visualization, which can be used as a theoretical framework of integrating various types of information visualization, and its applications at a conceptual level. The notation is devised to codify the major characteristics of data/visual structures in conventionally-used…

  16. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.

    PubMed

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.

  17. On the estimation variance for the specific Euler-Poincaré characteristic of random networks.

    PubMed

    Tscheschel, A; Stoyan, D

    2003-07-01

    The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.

  18. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1973-01-01

    The development of structurally efficient, metal-lined, glass-fiber composite pressure vessels. Both the current state-of-the-art and current problems are discussed along with fracture mechanics considerations for the metal liner. The design concepts used for metal-lined, glass-fiber, composite pressure vessels are described and the structural characteristics of the composite designs are compared with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. Results of a current program to evaluate flaw growth and fracture characteristics of the metal liners are reviewed and the impact of these results on composite pressure vessel designs is discussed.

  19. The role of amenities and quality of life in rural economic growth

    Treesearch

    Steven C. Deller; Tsung-Hsiu (Sue) Tsai; David W. Marcouiller; Donald B.K. English

    2001-01-01

    A structural model of regional economic growth is estimated using data for 2243 rural US. counties. Five indices designed to capture specific amenity and quality of life characteristics are constructed using 54 separate indicators. Results suggest that amenity characteristics can be organized into consistent and meaningful empirical measures that move beyond ad hoc...

  20. Degradation of the electrical characteristics of MOS structures with erbium, gadolinium, and dysprosium oxides under the effect of an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.

    2015-08-15

    The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less

  1. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.

    PubMed

    Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2009-11-01

    Protein function prediction is one of the central problems in computational biology. We present a novel automated protein structure-based function prediction method using libraries of local residue packing patterns that are common to most proteins in a known functional family. Critical to this approach is the representation of a protein structure as a graph where residue vertices (residue name used as a vertex label) are connected by geometrical proximity edges. The approach employs two steps. First, it uses a fast subgraph mining algorithm to find all occurrences of family-specific labeled subgraphs for all well characterized protein structural and functional families. Second, it queries a new structure for occurrences of a set of motifs characteristic of a known family, using a graph index to speed up Ullman's subgraph isomorphism algorithm. The confidence of function inference from structure depends on the number of family-specific motifs found in the query structure compared with their distribution in a large non-redundant database of proteins. This method can assign a new structure to a specific functional family in cases where sequence alignments, sequence patterns, structural superposition and active site templates fail to provide accurate annotation.

  2. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  3. Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification

    NASA Technical Reports Server (NTRS)

    Miller, A. N.; Linden, A. W.

    1972-01-01

    The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.

  4. ePortfolios and Faculty Engagement: Measuring Change through Structured Experiences

    ERIC Educational Resources Information Center

    Ring, Gail; Ramirez, Barbara; Brackett, Bob

    2016-01-01

    In this paper we examine a faculty development structure that supports general education, specifically ePortfolio, assessment focusing on identifying the characteristics of engaged faculty. It is through this inquiry that we have developed an action plan that includes a system of best practices that can lead to increased faculty engagement.…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yang, Ying; Busby, Jeremy T.

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Furthermore, such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yang, Ying; Allen, Todd R.

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less

  7. Structural analysis consultation using artificial intelligence

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Marcal, P. V.; Berke, L.

    1978-01-01

    The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.

  8. A novel Arg H52/Tyr H33 conservative motif in antibodies: A correlation between sequence of antibodies and antigen binding.

    PubMed

    Petrov, Artem; Arzhanik, Vladimir; Makarov, Gennady; Koliasnikov, Oleg

    2016-08-01

    Antibodies are the family of proteins, which are responsible for antigen recognition. The computational modeling of interaction between an antigen and an antibody is very important when crystallographic structure is unavailable. In this research, we have discovered the correlation between the amino acid sequence of antibody and its specific binding characteristics on the example of the novel conservative binding motif, which consists of four residues: Arg H52, Tyr H33, Thr H59, and Glu H61. These residues are specifically oriented in the binding site and interact with each other in a specific manner. The residues of the binding motif are involved in interaction strictly with negatively charged groups of antigens, and form a binding complex. Mechanism of interaction and characteristics of the complex were also discovered. The results of this research can be used to increase the accuracy of computational antibody-antigen interaction modeling and for post-modeling quality control of the modeled structures.

  9. Long term pavement performance computed parameter : frost penetration

    DOT National Transportation Integrated Search

    2008-11-01

    As the pavement design process moves toward mechanistic-empirical techniques, knowledge of seasonal changes in pavement structural characteristics becomes critical. Specifically, frost penetration information is necessary for determining the effect o...

  10. A new concept for active bistable twisting structures

    NASA Astrophysics Data System (ADS)

    Schultz, Marc R.

    2005-05-01

    A novel type of morphing structure capable of a large change in shape with a small energy input is discussed in this paper. The considered structures consist of two curved shells that are joined in a specific manner to form a bistable airfoil-like structure. The two stable shapes have a difference in axial twist, and the structure may be transformed between the stable shapes by a simple snap-through action. The benefit of a bistable structure of this type is that, if the stable shapes are operational shapes, power is needed only to transform the structure from one shape to another. The discussed structures could be used in aerodynamic applications such as morphing wings, or as aerodynamic control surfaces. The investigation discussed in this paper considers both experiment and finite-element analysis. Several graphite-epoxy composite and one steel device were created as proof-of-concept models. To demonstrate active control of these structures, piezocomposite actuators were applied to one of the composite structures and used to transform the structure between stable shapes. The analysis was used to compare the predicted shapes with the experimental shapes, and to study how changes to the geometric input values affected the shape and operational characteristics of the structures. The predicted shapes showed excellent agreement with the experimental shapes, and the results of the parametric study suggest that the shapes and the snap-through characteristics can be easily tailored to meet specific needs.

  11. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  12. A specific pathway can be identified between genetic characteristics and behaviour profiles in Prader-Willi syndrome via cognitive, environmental and physiological mechanisms.

    PubMed

    Woodcock, K A; Oliver, C; Humphreys, G W

    2009-06-01

    Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences. However, relationships between different aspects of behavioural phenotypes have been less frequently researched and although recent interest in potential cognitive phenotypes or endophenotypes has increased, these are frequently studied independently of the behavioural phenotypes. Taking Prader-Willi syndrome (PWS) as an example, we discuss evidence suggesting specific relationships between apparently distinct aspects of the PWS behavioural phenotype and relate these to specific endophenotypic characteristics. The framework we describe progresses through biological, cognitive, physiological and behavioural levels to develop a pathway from genetic characteristics to behaviour with scope for interaction with the environment at any stage. We propose this multilevel approach as useful in setting out hypotheses in order to structure research that can more rapidly advance theory.

  13. Identification of plant megafossils in Pennsylvanian-age coal

    USGS Publications Warehouse

    Winston, R.B.

    1989-01-01

    Criteria are provided for identification of certain Pennsylvanian-age plant megafossils directly from coal based on their characteristic anatomical structures as documented from etched polished coal surfaces in comparison with other modes of preservation. Lepidophloios hallii periderm, Diaphorodendron periderm, an Alethopteris pinnule, and a Cordaites leaf were studied in material in continuity with adjacent permineralized peat (carbonate coal-ballas). Calamites wood in attachment to a pitch cast and a Psaronius stem in coal in attachment to a fusinitized Psaronius inner root mantle were studied. Sigillaria was identified in coal by comparison to its structure in permineralized peat. Other plant tissues with characteristic structures were found but could not be attributed to specific plants. ?? 1989.

  14. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.

    PubMed

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  16. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.

  17. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites. PMID:26442281

  18. Relationships between Structural and Acoustic Properties of Maternal Talk and Children's Early Word Recognition

    ERIC Educational Resources Information Center

    Suttora, Chiara; Salerni, Nicoletta; Zanchi, Paola; Zampini, Laura; Spinelli, Maria; Fasolo, Mirco

    2017-01-01

    This study aimed to investigate specific associations between structural and acoustic characteristics of infant-directed (ID) speech and word recognition. Thirty Italian-acquiring children and their mothers were tested when the children were 1;3. Children's word recognition was measured with the looking-while-listening task. Maternal ID speech was…

  19. Social Structure of the Contact Situation: Rural Appalachia and Urban America. Appalachian Center Information Report 1.

    ERIC Educational Resources Information Center

    Schwarzweller, Harry K.; Brown, James S.

    An investigation of the characteristic structuring of rural communities in Appalachia and the institutional channels for change which exist within such communities comprise this revised version of a paper read at the Extension Leaders Conference, Morgantown, West Virginia, 1968. Specifically, this essay discusses how education, the mass media,…

  20. Non-Conventional Carbon Nanotube Skeleton Reinforced Composites for Space Applications

    NASA Astrophysics Data System (ADS)

    Hepp, Felicitas; Pfeiffer, E. K.; Pereira, C.; Martins, M.; Liedtke, V.; Macho, C.; Aschenbrenner, O.; Forero, S.; Linke, S.; Masouras, A.; Vavouliotis, A.; Kostopoulos, V.; Wulz, H.-G.; Pambaguian, L.

    2014-06-01

    Carbon Nanotubes (CNT) embedded in composite materials like CFRP, polymers or ceramics, can improve specific performance characteristics such as e.g. electrical conductivity, mechanical fatigue and crack propagation, mechanical properties, alpha/epsilon values, PIM-reduction, EMC shielding, etc.CNT skeletons, also called Bucky papers and Bucky discs, are macroscopic aggregates of Carbon Nanotubes. These skeletons are used in composites with different matrices, namely metal, ceramic or polymer or directly used in CFRP composites.The aim is to increase the performance of composite space structures by increasing the material characteristics or provide composites with additional sensing abilities like structural health monitoring.

  1. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.

    2018-06-01

    The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  3. Crystal Structure of a UDP-glucose-specific Glycosyltransferase from a Mycobacterium Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, Zara; McAlister, Adrian; Wilce, Matthew C.J.

    2008-10-24

    Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn{sup 2+} ion. Atypical of most GTsmore » characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a 'retaining' enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.« less

  4. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  5. The track structure in condensed matter

    NASA Astrophysics Data System (ADS)

    Kaplan, I. G.

    1995-11-01

    The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.

  6. Sound production due to large-scale coherent structures. [and identification of noise mechanisms in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.

  7. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    PubMed Central

    Gričar, Jožica; Prislan, Peter; de Luis, Martin; Gryc, Vladimír; Hacurová, Jana; Vavrčík, Hanuš; Čufar, Katarina

    2015-01-01

    There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions. PMID:26442044

  8. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  9. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  10. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  11. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  12. Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin

    2018-05-01

    The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.

  13. Season-modulated responses of Neotropical bats to forest fragmentation.

    PubMed

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.

  14. Personal networks of women in residential and outpatient substance abuse treatment

    PubMed Central

    Kim, HyunSoo; Tracy, Elizabeth; Brown, Suzanne; Jun, MinKyoung; Park, Hyunyong; Min, Meeyoung; McCarty, Chris

    2015-01-01

    This study compared compositional, social support, and structural characteristics of personal networks among women in residential (RT) and intensive outpatient (IOP) substance abuse treatment. The study sample included 377 women from inner-city substance use disorder treatment facilities. Respondents were asked about 25 personal network members known within the past 6 months, characteristics of each (relationship, substance use, types of support), and relationships between each network member. Differences between RT women and IOP women in personal network characteristics were identified using Chi-square and t-tests. Compared to IOP women, RT women had more substance users in their networks, more network members with whom they had used substances and fewer network members who provided social support. These findings suggest that women in residential treatment have specific network characteristics, not experienced by women in IOP, which may make them more vulnerable to relapse; they may therefore require interventions that target these specific network characteristics in order to reduce their vulnerability to relapse. PMID:27011762

  15. Personal networks of women in residential and outpatient substance abuse treatment.

    PubMed

    Kim, HyunSoo; Tracy, Elizabeth; Brown, Suzanne; Jun, MinKyoung; Park, Hyunyong; Min, Meeyoung; McCarty, Chris

    This study compared compositional, social support, and structural characteristics of personal networks among women in residential (RT) and intensive outpatient (IOP) substance abuse treatment. The study sample included 377 women from inner-city substance use disorder treatment facilities. Respondents were asked about 25 personal network members known within the past 6 months, characteristics of each (relationship, substance use, types of support), and relationships between each network member. Differences between RT women and IOP women in personal network characteristics were identified using Chi-square and t -tests. Compared to IOP women, RT women had more substance users in their networks, more network members with whom they had used substances and fewer network members who provided social support. These findings suggest that women in residential treatment have specific network characteristics, not experienced by women in IOP, which may make them more vulnerable to relapse; they may therefore require interventions that target these specific network characteristics in order to reduce their vulnerability to relapse.

  16. Spatial characteristics of early successional habitat across the Upper Great Lakes states

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; James D. Garner; Charles H. (Hobie) Perry

    2016-01-01

    Creation and management of early successional forest (ESF) is needed to halt and reverse declines of bird species dependent on pioneering plant species or young forests. ESF-dependent bird species require specific structural forest classes and are sensitive to forest age (a surrogate for forest structure), patch size, proximity to patch edges, and the juxtaposition of...

  17. Scaled Tank Test Design and Results for the Aquantis 2.5 MW Ocean Current Generation Device

    DOE Data Explorer

    Swales, Henry; Kils, Ole; Coakley, David B.; Sites, Eric; Mayer, Tyler

    2015-06-03

    Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This dataset also includes specific information on drivetrain, roller bearing, blade fabrication, mooring, and rotor characteristics.

  18. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    PubMed

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  19. Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them.

    PubMed

    Atluri, Rambabu; Jensen, Keld Alstrup

    2017-01-01

    Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

  20. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    PubMed

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  1. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  2. Infrared study of structural characteristics of Frankfurters formulated with olive oil-in-water emulsions stabilized with casein as pork backfat replacer.

    PubMed

    Carmona, P; Ruiz-Capillas, C; Jiménez-Colmenero, F; Pintado, T; Herrero, A M

    2011-12-28

    This article reports an infrared spectroscopic (FT-IR) study on lipids and protein structural characteristics in frankfurters as affected by an emulsified olive oil stabilizing system used as a pork backfat replacer. The oil-in-water emulsions were stabilized with sodium caseinate, without (F/SC) and with microbial transglutaminase (F/SC+MTG). Proximate composition and textural characteristics were also evaluated. Frankfurters F/SC+MTG showed the highest (P < 0.05) hardness and lowest (P < 0.05) adhesiveness. These products also showed the lowest (P < 0.05) half-bandwidth of the 2922 cm(-1) band, which could be related to the fact that the lipid chain was more orderly than that in the frankfurters formulated with animal fat and F/SC. The spectral results revealed modifications in the amide I band profile when the olive oil-in-water emulsion replaced animal fat. This fact is indicative of a greater content of aggregated intermolecular β-sheets. Structural characteristics in both proteins and lipids could be associated with the specific textural properties of frankfurters.

  3. Influence of Microstructure on Micro-/Nano-Mechanical Measurements of Select Model Transparent Poly(urethane urea) Elastomers

    DTIC Science & Technology

    2012-12-17

    results. Furthermore, instrumented impact indentation is also utilized for elucidation of dynamic damping characteristics in these PUUs. REPORT... characteristics in these PUUs. Published by Elsevier Ltd. 1. Introduction Elastomers are versatile materials that are vital to a broad range of...industrial, medical, and military applications, particularly in the areas of coating, adhesives, foams , and composite structures [1]. More specifically, high

  4. Legume Lectins: Proteins with Diverse Applications

    PubMed Central

    Lagarda-Diaz, Irlanda; Guzman-Partida, Ana Maria; Vazquez-Moreno, Luz

    2017-01-01

    Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets. PMID:28604616

  5. Towards the discovery of drug-like RNA ligands?

    PubMed

    Foloppe, Nicolas; Matassova, Natalia; Aboul-Ela, Fareed

    2006-11-01

    Targeting RNA with small molecule drugs is an area of great potential for therapeutic treatment of infections and possibly genetic and autoimmune diseases. However, a mature set of precedents and established methodology is lacking. The physicochemical properties of RNA raise specific issues and obstacles to development, and contribute to explain the distinct characteristics of natural RNA ligands, including antibiotics. Yet, RNA-targeting strategies are being implemented to reinvigorate antibacterial discovery by using the ribosomal X-ray structures to modify known antibiotics. To exploit further these structures, we suggest the use of existing protein kinase-directed libraries of drug-like compounds to target the A-site of the bacterial ribosome, on the basis of a specific structural hypothesis.

  6. Association between tax structure and cigarette consumption: findings from the International Tobacco Control Policy Evaluation (ITC) Project.

    PubMed

    Shang, Ce; Lee, Hye Myung; Chaloupka, Frank J; Fong, Geoffrey T; Thompson, Mary; O'Connor, Richard J

    2018-05-24

    Recent studies show that greater price variability and more opportunities for tax avoidance are associated with tax structures that depart from a specific uniform one. These findings indicate that tax structures other than a specific uniform one may lead to more cigarette consumption. This paper aims to examine how cigarette tax structure is associated with cigarette consumption. We used survey data taken from the International Tobacco Control Policy Evaluation Project in 17 countries to conduct the analysis. Self-reported cigarette consumption was aggregated to average measures for each surveyed country and wave. The effect of tax structures on cigarette consumption was estimated using generalised estimating equations after adjusting for sociodemographic characteristics, average taxes and year fixed effects. Our study provides important empirical evidence of a relationship between tax structure and cigarette consumption. We find that a change from a specific to an ad valorem structure is associated with a 6%-11% higher cigarette consumption. In addition, a change from uniform to tiered structure is associated with a 34%-65% higher cigarette consumption. The results are consistent with existing evidence and suggest that a uniform and specific tax structure is the most effective tax structure for reducing tobacco consumption. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. To improve the flame resistance of spandex elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Strength characteristics of fibers were improved to pass the 70% oxygen/30% nitrogen specification. Spinning techniques and information about incorporating these fibers in fabric structures using wrapping materials of Beta Fiberglas, Nomex, and PBI were developed.

  8. The artificial satellite observation chronograph controlled by single chip microcomputer.

    NASA Astrophysics Data System (ADS)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  9. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.

    PubMed

    Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji

    2013-01-01

    Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.

  10. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    PubMed Central

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-01-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway. PMID:24089713

  11. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    NASA Astrophysics Data System (ADS)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.

  12. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth.

    PubMed

    Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-28

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.

  13. Structural modeling for multicell composite rotor blades

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  14. Characteristics of the transmission loss apparatus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1983-01-01

    A description of the Transmission Loss Apparatus at NASA Langley Research Center, which is specifically designed to accommodate general aviation type aircraft structures, is presented. The measurement methodology, referred to as the Plate Reference Method, is discussed and compared with the classical method as described in the Standard of the American Society for Testing and Materials. This measurement procedure enables reliable and accurate noise transmission loss measurements down to the 50 Hz one-third octave band. The transmission loss characteristics of add-on acoustical treatments, applied to the basic structure, can be established by inclusion of appropriate absorption corrections for the treatment.

  15. A site-specific approach for assessing the fire risk to structures at the wildland/urban interface

    Treesearch

    Jack Cohen

    1991-01-01

    The essence of the wildland/urban interface fire problem is the loss of homes. The problem is not new, but is becoming increasingly important as more homes with inadequate adherence to safety codes are built at the wildland/urban interface. Current regulatory codes are inflexible. Specifications for building and site characteristics cannot be adjusted to accommodate...

  16. Trunk structural traits explain habitat use of a tree-dwelling spider (Selenopidae) in a tropical forest

    NASA Astrophysics Data System (ADS)

    Villanueva-Bonilla, German Antonio; Salomão, Adriana Trevizoli; Vasconcellos-Neto, João

    2017-11-01

    Habitat selection by spiders may be strongly influenced by biotic, climatic, and physical factors. However, it has been shown that the selection of habitats by generalist predators (like spiders) is regulated more by the physical structure of the habitat than by prey availability. Yet, the preferences of spiders in relation to plants or plant traits remain poorly explored. In a remnant of the Atlantic forest in Brazil, the spider Selenops cocheleti is frequently detected on the trunks of plants from the Myrtaceae family. Here, we investigated quantitatively and experimentally whether the colonization of trees by S. cocheleti is related to plant species or the presence of specific structures on trunks. We found that S. cocheleti preferentially occurred on plants of the family Myrtaceae. This spider was also strongly associated with trees that have smooth trunks and/or exfoliating bark. Non-Myrtaceae plants that were occupied by this species have exfoliating bark (e.g., Piptadenia gonoacantha) or deep fissures on the trunk (e.g., the exotic species Pinus elliottii). Our results indicate that the selection of host plants by S. cocheleti is not species-specific, but based on the structural characteristics of plants. Trunks with exfoliating bark may benefit spiders by providing shelter against predators and harsh climatic conditions. Smooth surfaces might allow rapid movements, facilitating both attacks on preys and escape from predators. Our study emphasizes the importance of the physical structure of the habitat on spider's distribution. Future studies investigating how specific plant characteristics influence prey acquisition and predator avoidance would improve our understanding of habitat selection by these animals.

  17. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furushima, Yuho; Nakamura, Atsutomo, E-mail: nakamura@numse.nagoya-u.ac.jp; Toyoura, Kazuaki

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO{sub 3} bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tiltmore » angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO{sub 3} is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.« less

  18. Structure, specificity, and evolution of insect guilds related to cones of conifers in Western Europe

    Treesearch

    Alain Roques

    1991-01-01

    Patchy and ephemeral resources, such as the cones of conifers, can be very useful in the study of plant-insect relationships. Studies of such relationships in forest entomology are typically complicated by the spatial and temporal characteristics of the host plants, which occur over vast areas and have lifespans of decades or even centuries. The reproductive structures...

  19. Charge-coupled device image sensor study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design specifications and predicted performance characteristics of a Charge-Coupled Device Area Imager and a Charge-Coupled Device Linear Imager are presented. The Imagers recommended are intended for use in space-borne imaging systems and therefore would meet the requirements for the intended application. A unique overlapping metal electrode structure and a buried channel structure are described. Reasons for the particular imager designs are discussed.

  20. Embedded data collector (EDC) phase II load and resistance factor design (LRFD) : [summary].

    DOT National Transportation Integrated Search

    2015-07-01

    Piles that support bridge structures are designed for the specific site characteristics and loads : that the piles are expected to bear. In Florida, driven piles are monitored during installation : (dynamically tested) to assess resistance, com...

  1. How best to structure interdisciplinary primary care teams: the study protocol for a systematic review with narrative framework synthesis.

    PubMed

    Wranik, W Dominika; Hayden, Jill A; Price, Sheri; Parker, Robin M N; Haydt, Susan M; Edwards, Jeanette M; Suter, Esther; Katz, Alan; Gambold, Liesl L; Levy, Adrian R

    2016-10-04

    Western publicly funded health care systems increasingly rely on interdisciplinary teams to support primary care delivery and management of chronic conditions. This knowledge synthesis focuses on what is known in the academic and grey literature about optimal structural characteristics of teams. Its goal is to assess which factors contribute to the effective functioning of interdisciplinary primary care teams and improved health system outcomes, with specific focus on (i) team structure contribution to team process, (ii) team process contribution to primary care goals, and (iii) team structure contribution to primary care goals. The systematic search of academic literature focuses on four chronic conditions and co-morbidities. Within this scope, qualitative and quantitative studies that assess the effects of team characteristics (funding, governance, organization) on care process and patient outcomes will be searched. Electronic databases (Ovid MEDLINE, Embase, CINAHL, PAIS, Web of Science) will be searched systematically. Online web-based searches will be supported by the Grey Matters Tool. Studies will be included, if they report on interdisciplinary primary care in publicly funded Western health systems, and address the relationships between team structure, process, and/or patient outcomes. Studies will be selected in a three-stage screening process (title/abstract/full text) by two independent reviewers in each stage. Study quality will be assessed using the Mixed Methods Assessment Tool. An a priori framework will be applied to data extraction, and a narrative framework approach is used for the synthesis. Using an integrated knowledge translation approach, an electronic decision support tool will be developed for decision makers. It will be searchable along two axes of inquiry: (i) what primary care goals are supported by specific team characteristics and (ii) how should teams be structured to support specific primary care goals? The results of this evidence review will contribute directly to the design of interdisciplinary primary care teams. The optimized design will support the goals of primary care, contributing to the improved health of populations. PROSPERO CRD42016041884.

  2. Optimization of Training Sets for Neural-Net Processing of Characteristic Patterns from Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.

  3. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference

    PubMed Central

    Angart, Phillip A.; Carlson, Rebecca J.; Adu-Berchie, Kwasi

    2016-01-01

    Efficient short interfering RNA (siRNA)-mediated gene silencing requires selection of a sequence that is complementary to the intended target and possesses sequence and structural features that encourage favorable functional interactions with the RNA interference (RNAi) pathway proteins. In this study, we investigated how terminal sequence and structural characteristics of siRNAs contribute to siRNA strand loading and silencing activity and how these characteristics ultimately result in a functionally asymmetric duplex in cultured HeLa cells. Our results reiterate that the most important characteristic in determining siRNA activity is the 5′ terminal nucleotide identity. Our findings further suggest that siRNA loading is controlled principally by the hybridization stability of the 5′ terminus (Nucleotides: 1–2) of each siRNA strand, independent of the opposing terminus. Postloading, RNA-induced silencing complex (RISC)–specific activity was found to be improved by lower hybridization stability in the 5′ terminus (Nucleotides: 3–4) of the loaded siRNA strand and greater hybridization stability toward the 3′ terminus (Nucleotides: 17–18). Concomitantly, specific recognition of the 5′ terminal nucleotide sequence by human Argonaute 2 (Ago2) improves RISC half-life. These findings indicate that careful selection of siRNA sequences can maximize both the loading and the specific activity of the intended guide strand. PMID:27399870

  4. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

    PubMed

    Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R

    2016-01-01

    Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

  5. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

    PubMed Central

    Fagan, Matthew E.; Willig, Michael R.

    2016-01-01

    Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338

  6. Geocoded data structures and their applications to Earth science investigations

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1984-01-01

    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.

  7. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  8. Shadow Labor: Work and Wages among Immigrant Hispanic Women in Durham, North Carolina.

    PubMed

    Flippen, Chenoa A

    2016-07-01

    Drawing on data collected in Durham, NC, this paper examines the forces shaping the labor supply and wages of immigrant Hispanic women in new destinations. The analysis evaluates the role of human capital and immigration characteristics (including legal status), family structure, and immigrant-specific labor market conditions, such as subcontracting, in shaping labor market outcomes. Findings indicate that the main determinants of labor supply among immigrant Hispanic women in Durham relate to family structure, with human capital playing a relatively minor role. Important variation is observed, however, in the degree of work-family conflict across occupations. For wages, human capital and immigration characteristics (including documentation) are more determinant than family structure. Results highlight the extremely precarious position of immigrant Hispanic women in Durham's low wage labor market, and multiple, overlapping sources of disadvantage, particularly relating to legal status and family structure.

  9. Shadow Labor: Work and Wages among Immigrant Hispanic Women in Durham, North Carolina

    PubMed Central

    Flippen, Chenoa A.

    2017-01-01

    Drawing on data collected in Durham, NC, this paper examines the forces shaping the labor supply and wages of immigrant Hispanic women in new destinations. The analysis evaluates the role of human capital and immigration characteristics (including legal status), family structure, and immigrant-specific labor market conditions, such as subcontracting, in shaping labor market outcomes. Findings indicate that the main determinants of labor supply among immigrant Hispanic women in Durham relate to family structure, with human capital playing a relatively minor role. Important variation is observed, however, in the degree of work-family conflict across occupations. For wages, human capital and immigration characteristics (including documentation) are more determinant than family structure. Results highlight the extremely precarious position of immigrant Hispanic women in Durham’s low wage labor market, and multiple, overlapping sources of disadvantage, particularly relating to legal status and family structure. PMID:28603290

  10. Health Diagnosis of Major Transportation Infrastructures in Shanghai Metropolis Using High-Resolution Persistent Scatterer Interferometry

    PubMed Central

    Qin, Xiaoqiong; Yang, Tianliang; Yang, Mengshi; Zhang, Lu; Liao, Mingsheng

    2017-01-01

    Since the Persistent Scatterer Synthetic Aperture Radar (SAR) Interferometry (PSI) technology allows the detection of ground subsidence with millimeter accuracy, it is becoming one of the most powerful and economical means for health diagnosis of major transportation infrastructures. However, structures of different types may suffer from various levels of localized subsidence due to the different structural characteristics and subsidence mechanisms. Moreover, in the complex urban scenery, some segments of these infrastructures may be sheltered by surrounding buildings in SAR images, obscuring the desirable signals. Therefore, the subsidence characteristics on different types of structures should be discussed separately and the accuracy of persistent scatterers (PSs) should be optimized. In this study, the PSI-based subsidence mapping over the entire transportation network of Shanghai (more than 10,000 km) is illustrated, achieving the city-wide monitoring specifically along the elevated roads, ground highways and underground subways. The precise geolocation and structural characteristics of infrastructures were combined to effectively guide more accurate identification and separation of PSs along the structures. The experimental results from two neighboring TerraSAR-X stacks from 2013 to 2016 were integrated by joint estimating the measurements in the overlapping area, performing large-scale subsidence mapping and were validated by leveling data, showing highly consistent in terms of subsidence velocities and time-series displacements. Spatial-temporal subsidence patterns on each type of infrastructures are strongly dependent on the operational durations and structural characteristics, as well as the variation of the foundation soil layers. PMID:29186039

  11. Health Diagnosis of Major Transportation Infrastructures in Shanghai Metropolis Using High-Resolution Persistent Scatterer Interferometry.

    PubMed

    Qin, Xiaoqiong; Yang, Tianliang; Yang, Mengshi; Zhang, Lu; Liao, Mingsheng

    2017-11-29

    Since the Persistent Scatterer Synthetic Aperture Radar (SAR) Interferometry (PSI) technology allows the detection of ground subsidence with millimeter accuracy, it is becoming one of the most powerful and economical means for health diagnosis of major transportation infrastructures. However, structures of different types may suffer from various levels of localized subsidence due to the different structural characteristics and subsidence mechanisms. Moreover, in the complex urban scenery, some segments of these infrastructures may be sheltered by surrounding buildings in SAR images, obscuring the desirable signals. Therefore, the subsidence characteristics on different types of structures should be discussed separately and the accuracy of persistent scatterers (PSs) should be optimized. In this study, the PSI-based subsidence mapping over the entire transportation network of Shanghai (more than 10,000 km) is illustrated, achieving the city-wide monitoring specifically along the elevated roads, ground highways and underground subways. The precise geolocation and structural characteristics of infrastructures were combined to effectively guide more accurate identification and separation of PSs along the structures. The experimental results from two neighboring TerraSAR-X stacks from 2013 to 2016 were integrated by joint estimating the measurements in the overlapping area, performing large-scale subsidence mapping and were validated by leveling data, showing highly consistent in terms of subsidence velocities and time-series displacements. Spatial-temporal subsidence patterns on each type of infrastructures are strongly dependent on the operational durations and structural characteristics, as well as the variation of the foundation soil layers.

  12. The design and improvement of radial tire molding machine

    NASA Astrophysics Data System (ADS)

    Wang, Wenhao; Zhang, Tao

    2018-04-01

    This paper presented that the high accuracy semisteel meridian tire molding machine structure configurations, combining tyre high precision characteristics, the original structure and parameter optimization, technology improvement innovation design period of opening and closing machine rotary shaping drum institutions. This way out of the shaft from the structure to the push-pull type movable shaping drum of thinking limit, compared with the specifications and shaping drum can smaller contraction, is conducive to forming the tire and reduce the tire deformation.

  13. The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity.

    PubMed

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T P; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-11-23

    Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau proteinmore » structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.« less

  15. The Development and Testing of the Instructional Beliefs Model

    ERIC Educational Resources Information Center

    Weber, Keith; Martin, Matthew M.; Myers, Scott A.

    2011-01-01

    This article presents the Instructional Beliefs Model which forwards that teacher behaviors, student characteristics, and course-specific structural issues combine to influence students' instructional beliefs. Through these instructional beliefs, the first-order variables influence student learning outcomes. Three studies were conducted to…

  16. MultiLIS: A Description of the System Design and Operational Features.

    ERIC Educational Resources Information Center

    Kelly, Glen J.; And Others

    1988-01-01

    Describes development, hardware requirements, and features of the MultiLIS integrated library software package. A system profile provides pricing information, operational characteristics, and technical specifications. Sidebars discuss MultiLIS integration structure, incremental architecture, and NCR Tower Computers. (4 references) (MES)

  17. Lithium storage in structurally tunable carbon anode derived from sustainable source

    DOE PAGES

    Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...

    2017-09-01

    Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less

  18. Composite foods: from structure to sensory perception.

    PubMed

    Scholten, Elke

    2017-02-22

    An understanding of the effect of structural features of foods in terms of specific sensory attributes is necessary to design foods with specific functionalities, such as reduced fat or increased protein content, and increased feeling of satiety or liking. Although the bulk rheological properties of both liquid and solid foods can be related to textural attributes such as thickness and firmness, they do not always correlate to more complex sensory attributes, such as creamy and smooth. These attributes are often a result of different contributions, including lubrication aspects and interactions between food and components present in the oral cavity. In this review, the different contributions for a variety of composite foods, such as dispersions, emulsions and emulsion-filled gels, are discussed. The rheological properties are discussed in relation to specific structural characteristics of the foods, which are then linked to lubrication aspects and sensory perception.

  19. A new perspective on hospital financial ratio analysis.

    PubMed

    Zeller, T L; Stanko, B B; Cleverley, W O

    1997-11-01

    Using audit financial data in a study of 2,189 not-for-profit hospitals for the period 1989-1992, six financial characteristics of performance were defined. These characteristics are profitability factor, fixed-asset efficiency, capital structure, fixed-asset age, working capital efficiency, and liquidity. The statistical output also shows the specific sets of financial ratios that can be used to measure the six characteristics of hospital performance. The results of this study can be beneficial to healthcare financial managers, hospital boards, policy groups, and other relevant entities because it affords them a clear understanding of an institution's financial performance.

  20. Dynamical spin structure factors of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-03-01

    Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.

  1. Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.

    PubMed

    Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis

    2016-01-01

    Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. A domains-based taxonomy of supported accommodation for people with severe and persistent mental illness.

    PubMed

    Siskind, Dan; Harris, Meredith; Pirkis, Jane; Whiteford, Harvey

    2013-06-01

    A lack of definitional clarity in supported accommodation and the absence of a widely accepted system for classifying supported accommodation models creates barriers to service planning and evaluation. We undertook a systematic review of existing supported accommodation classification systems. Using a structured system for qualitative data analysis, we reviewed the stratification features in these classification systems, identified the key elements of supported accommodation and arranged them into domains and dimensions to create a new taxonomy. The existing classification systems were mapped onto the new taxonomy to verify the domains and dimensions. Existing classification systems used either a service-level characteristic or programmatic approach. We proposed a taxonomy based around four domains: duration of tenure; patient characteristics; housing characteristics; and service characteristics. All of the domains in the taxonomy were drawn from the existing classification structures; however, none of the existing classification structures covered all of the domains in the taxonomy. Existing classification systems are regionally based, limited in scope and lack flexibility. A domains-based taxonomy can allow more accurate description of supported accommodation services, aid in identifying the service elements likely to improve outcomes for specific patient populations, and assist in service planning.

  3. In silico insights into protein-protein interactions and folding dynamics of the saposin-like domain of Solanum tuberosum aspartic protease.

    PubMed

    De Moura, Dref C; Bryksa, Brian C; Yada, Rickey Y

    2014-01-01

    The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family.

  4. In Silico Insights into Protein-Protein Interactions and Folding Dynamics of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease

    PubMed Central

    De Moura, Dref C.; Bryksa, Brian C.; Yada, Rickey Y.

    2014-01-01

    The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family. PMID:25188221

  5. Effectiveness Using Circular Fibre Steel Flap Gate As a Control Structure Towards the Hydraulic Characteristics in Open Channel

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.

    2016-07-01

    Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.

  6. Study of LTPP laboratory resilient modulus test data and response characteristics.

    DOT National Transportation Integrated Search

    2002-10-01

    The resilient modulus of every unbound structural layer of the Long Term Pavement Performance (LTPP) Specific Pavement and : General Pavement Studies Test Sections is being measured in the laboratory using LTPP test protocol P46. A total of 2,014 : r...

  7. Il faut bien faire avec des bribes, hein! (You Have to Make Do with Scraps, Huh?)

    ERIC Educational Resources Information Center

    Malandain, Jean-Louis

    1983-01-01

    Suggestions are made for structuring taped listening exercises to promote careful attention to various elements of spontaneous speech (speaker, speaker characteristics, tone, etc.), and to sensitize students to the usage of "hein" or other specific expressions. (MSE)

  8. 3-D QSARS FOR RANKING AND PRIORITIZATION OF LARGE CHEMICAL DATASETS: AN EDC CASE STUDY

    EPA Science Inventory

    The COmmon REactivity Pattern (COREPA) approach is a three-dimensional structure activity (3-D QSAR) technique that permits identification and quantification of specific global and local steroelectronic characteristics associated with a chemical's biological activity. It goes bey...

  9. Polymer Nomenclature--or What's in a Name?

    ERIC Educational Resources Information Center

    Carraher, Charles, E., Jr.; And Others

    1987-01-01

    Discusses the diversity of names used for various types of polymeric materials. Concentrates on the naming of linear organic polymers. Delineates these polymers by discussing common names, source-based names, characteristic group names, and structure-based names. Introduces the specifications of tacticity and geometric isomerism. (TW)

  10. Video game characteristics, happiness and flow as predictors of addiction among video game players: A pilot study.

    PubMed

    Hull, Damien C; Williams, Glenn A; Griffiths, Mark D

    2013-09-01

    Video games provide opportunities for positive psychological experiences such as flow-like phenomena during play and general happiness that could be associated with gaming achievements. However, research has shown that specific features of game play may be associated with problematic behaviour associated with addiction-like experiences. The study was aimed at analysing whether certain structural characteristics of video games, flow, and global happiness could be predictive of video game addiction. A total of 110 video game players were surveyed about a game they had recently played by using a 24-item checklist of structural characteristics, an adapted Flow State Scale, the Oxford Happiness Questionnaire, and the Game Addiction Scale. The study revealed decreases in general happiness had the strongest role in predicting increases in gaming addiction. One of the nine factors of the flow experience was a significant predictor of gaming addiction - perceptions of time being altered during play. The structural characteristic that significantly predicted addiction was its social element with increased sociability being associated with higher levels of addictive-like experiences. Overall, the structural characteristics of video games, elements of the flow experience, and general happiness accounted for 49.2% of the total variance in Game Addiction Scale levels. Implications for interventions are discussed, particularly with regard to making players more aware of time passing and in capitalising on benefits of social features of video game play to guard against addictive-like tendencies among video game players.

  11. Video game characteristics, happiness and flow as predictors of addiction among video game players: A pilot study

    PubMed Central

    Hull, Damien C.; Williams, Glenn A.; Griffiths, Mark D.

    2013-01-01

    Aims: Video games provide opportunities for positive psychological experiences such as flow-like phenomena during play and general happiness that could be associated with gaming achievements. However, research has shown that specific features of game play may be associated with problematic behaviour associated with addiction-like experiences. The study was aimed at analysing whether certain structural characteristics of video games, flow, and global happiness could be predictive of video game addiction. Method: A total of 110 video game players were surveyed about a game they had recently played by using a 24-item checklist of structural characteristics, an adapted Flow State Scale, the Oxford Happiness Questionnaire, and the Game Addiction Scale. Results: The study revealed decreases in general happiness had the strongest role in predicting increases in gaming addiction. One of the nine factors of the flow experience was a significant predictor of gaming addiction – perceptions of time being altered during play. The structural characteristic that significantly predicted addiction was its social element with increased sociability being associated with higher levels of addictive-like experiences. Overall, the structural characteristics of video games, elements of the flow experience, and general happiness accounted for 49.2% of the total variance in Game Addiction Scale levels. Conclusions: Implications for interventions are discussed, particularly with regard to making players more aware of time passing and in capitalising on benefits of social features of video game play to guard against addictive-like tendencies among video game players. PMID:25215196

  12. Who will volunteer? Analysing individual and structural factors of volunteering in Swiss sports clubs.

    PubMed

    Schlesinger, Torsten; Nagel, Siegfried

    2013-01-01

    This article analyses the conditions influencing volunteering in sports clubs. It focuses not only on individual characteristics of volunteers but also on the corresponding structural conditions of sports clubs. It proposes a model of voluntary work in sports clubs based on economic behaviour theory. The influences of both the individual and context levels on the decision to engage in voluntary work are estimated in different multilevel models. Results of these multilevel analyses indicate that volunteering is not just an outcome of individual characteristics such as lower workloads, higher income, children belonging to the sports club, longer club memberships, or a strong commitment to the club. It is also influenced by club-specific structural conditions; volunteering is more probable in rural sports clubs whereas growth-oriented goals in clubs have a destabilising effect.

  13. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    PubMed

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  14. Hybrid CMS methods with model reduction for assembly of structures

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel

    1991-01-01

    Future on-orbit structures will be designed and built in several stages, each with specific control requirements. Therefore there must be a methodology which can predict the dynamic characteristics of the assembled structure, based on the dynamic characteristics of the subassemblies and their interfaces. The methodology developed by CSC to address this issue is Hybrid Component Mode Synthesis (HCMS). HCMS distinguishes itself from standard component mode synthesis algorithms in the following features: (1) it does not require the subcomponents to have displacement compatible models, which makes it ideal for analyzing the deployment of heterogeneous flexible multibody systems, (2) it incorporates a second-level model reduction scheme at the interface, which makes it much faster than other algorithms and therefore suitable for control purposes, and (3) it does answer specific questions such as 'how does the global fundamental frequency vary if I change the physical parameters of substructure k by a specified amount?'. Because it is based on an energy principle rather than displacement compatibility, this methodology can also help the designer to define an assembly process. Current and future efforts are devoted to applying the HCMS method to design and analyze docking and berthing procedures in orbital construction.

  15. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    PubMed

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  17. Children's Syntactic-Priming Magnitude: Lexical Factors and Participant Characteristics

    ERIC Educational Resources Information Center

    Foltz, Anouschka; Thiele, Kristina; Kahsnitz, Dunja; Stenneken, Prisca

    2015-01-01

    This study examines whether lexical repetition, syntactic skills, and working memory (WM) affect children's syntactic-priming behavior, i.e. their tendency to adopt previously encountered syntactic structures. Children with Specific Language Impairment (SLI) and typically developing (TD) children were primed with prenominal (e.g. "the yellow…

  18. The Relationship between User Expertise and Structural Ontology Characteristics

    ERIC Educational Resources Information Center

    Waldstein, Ilya Michael

    2014-01-01

    Ontologies are commonly used to support application tasks such as natural language processing, knowledge management, learning, browsing, and search. Literature recommends considering specific context during ontology design, and highlights that a different context is responsible for problems in ontology reuse. However, there is still no clear…

  19. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  20. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    PubMed

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

  1. Toward a Formal Evaluation of Refactorings

    NASA Technical Reports Server (NTRS)

    Paul, John; Kuzmina, Nadya; Gamboa, Ruben; Caldwell, James

    2008-01-01

    Refactoring is a software development strategy that characteristically alters the syntactic structure of a program without changing its external behavior [2]. In this talk we present a methodology for extracting formal models from programs in order to evaluate how incremental refactorings affect the verifiability of their structural specifications. We envision that this same technique may be applicable to other types of properties such as those that concern the design and maintenance of safety-critical systems.

  2. Active control of lateral leakage in thin-ridge SOI waveguide structures

    NASA Astrophysics Data System (ADS)

    Dalvand, Naser; Nguyen, Thach G.; Tummidi, Ravi S.; Koch, Thomas L.; Mitchell, Arnan

    2011-12-01

    We report on the design and simulation of a novel Silicon-On-Insulator waveguide structures which when excited with TM guided light, emit TE polarized radiation with controlled radiation characteristics[1]. The structures utilize parallel leaky waveguides of specific separations. The structures are simulated using a full-vector mode-matching approach which allows visualisation of the evolution of the propagating and radiating fields over the length of the waveguide structure. It is shown that radiation can be resonantly enhanced or suppressed in different directions depending on the choice of the phase of the excitation of the waveguide components. Steps toward practical demonstration are identified.

  3. Juniper wood structure under the microscope.

    PubMed

    Bogolitsyn, Konstantin G; Zubov, Ivan N; Gusakova, Maria A; Chukhchin, Dmitry G; Krasikova, Anna A

    2015-05-01

    The investigations confirm the physicochemical nature of the structure and self-assembly of wood substance and endorse its application in plant species. The characteristic morphological features, ultra-microstructure, and submolecular structure of coniferous wood matrix using junipers as the representative tree were investigated by scanning electron (SEM) and atomic-force microscopy (AFM). Novel results on the specific composition and cell wall structure features of the common juniper (Juniperus Communis L.) were obtained. These data confirm the possibility of considering the wood substance as a nanobiocomposite. The cellulose nanofibrils (20-50 nm) and globular-shaped lignin-carbohydrate structures (diameter of 5-60 nm) form the base of such a nanobiocomposite.

  4. Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.

    2013-07-01

    The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.

  5. Toxicity to Daphnia pulex and QSAR predictions for polycyclic hydrocarbons representative of Great Lakes contaminants

    USGS Publications Warehouse

    Passino-Reader, D.R.; Hickey, J.P.; Ogilvie, L.M.

    1997-01-01

    The objectives of this study were (1) to determine the toxicity of several types of polycyclic hydrocarbons characteristic of Great Lakes samples to Daphnia pulex, a Great Lakes zooplankter, (2) to investigate the influence of different structural characteristics on toxicity, and (3) to determine the linear solvation energy relationship (LSER) parameters and model that describe these compounds. These results will be related to comparative toxicity of other Great Lakes environmental compounds and to their application in site specific risk assessment.

  6. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  7. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGES

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; ...

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  8. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  9. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  10. Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation.

    PubMed

    Krasnov, A A; Starkov, V V; Legotin, S A; Rabinovich, O I; Didenko, S I; Murashev, V N; Cheverikin, V V; Yakimov, E B; Fedulova, N A; Rogozev, B I; Laryushkin, A S

    2017-03-01

    In the paper a manufacturing process of three-dimensional (3D) microchannel structure by silicon (Si) anodic etching was discussed. The possibility of microchannels formation allows to increase the active area more than 100 times. In this structure the p-n junction on the whole Si surface was formed. The obtained data allowed to evaluate the characteristics of the betavoltaic converter with a 3D structure by using isotope 63Ni with a specific activity of 10Ci/g. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural analysis of vibroacoustical processes

    NASA Technical Reports Server (NTRS)

    Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.

    1973-01-01

    The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.

  12. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure.

    PubMed

    George, Sunil K; Abolbashari, Mehran; Jackson, John D; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end-stage renal disease (ESRD).

  13. Establishment of key grid-connected performance index system for integrated PV-ES system

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  14. Fullerene C60 coated silicon nanowires as anode materials for lithium secondary batteries.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2012-04-01

    A Fullerene C60 film was introduced as a coating layer for silicon nanowires (Si NWs) by a plasma assisted thermal evaporation technique. The morphology and structural characteristics of the materials were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM observations showed that the shape of the nanowire structure was maintained after the C60 coating and the XPS analysis confirmed the presence of the carbon coating layer. The electrochemical characteristics of C60 coated Si NWs as anode materials were examined by charge-discharge tests and electrochemical impedance measurements. With the C60 film coating, Si NW electrodes exhibited a higher initial coulombic efficiency of 77% and a higher specific capacity of 2020 mA h g(-1) after the 30th cycle at a current density of 100 microA cm(-2) with cut-off voltage between 0-1.5 V. These improved electrochemical characteristics are attributed to the presence of the C60 coating layer which suppresses side reaction with the electrolyte and maintains the structural integrity of the Si NW electrodes during cycle tests.

  15. Fireplaces and Fireplace Fuels.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  16. Why Leadership Matters: Empowering Teachers to Implement Formative Assessment

    ERIC Educational Resources Information Center

    Hollingworth, Liz

    2012-01-01

    Purpose: The focus of this research is to understand the role of the district superintendent, the building principal, and the school leadership team of classroom teachers as catalysts for innovation in instruction and classroom assessment. School characteristics and structures designed to specifically support professional learning communities are…

  17. Preliminary Psychometric Data for the "Academic Coping Strategies Scale"

    ERIC Educational Resources Information Center

    Sullivan, Jeremy R.

    2010-01-01

    The purpose of this article is to describe the psychometric characteristics of the "Academic Coping Strategies Scale" (ACSS), which was designed to assess college students' coping strategies within the context of a specific academic stressor. This article will present results of analyses of factor structure, internal consistency, test-retest…

  18. The Incorporation of Animal-Assisted Interventions in Social Work Education

    ERIC Educational Resources Information Center

    Tedeschi, Philip; Fitchett, Jennifer; Molidor, Christian E.

    2005-01-01

    Successful social work practice requires orientation to diverse social and cultural characteristics which structure the framework for our communities and families. This paper explores the necessity of incorporating the connection between people and non-human relationships in our understanding of social support systems. Specifically, we examine our…

  19. Research on Higher Education: A U.S. Perspective.

    ERIC Educational Resources Information Center

    Toombs, William

    Characteristics of U.S. higher education are identified, along with the structural features that influence the nature of research, specific research topics, and the locations of research activities. This information was obtained from several sources, including the Educational Resources Information Center database for the years 1981 and 1982, the…

  20. Une Unite Discursive Restreinte: le Titre (A Restricted Discourse Unit: The Title).

    ERIC Educational Resources Information Center

    Vigner, Gerard

    1980-01-01

    Describes the functions, specific uses, syntactic structure, and typographical characteristics of titles, discussing examples from newspapers, books, films, and scientific journals. Analysis of the semantic relationship between title and text is followed by the description of various instructional techniques for the production of titles and the…

  1. Myths and Concerns Re: The Marathon.

    ERIC Educational Resources Information Center

    Betz, Robert, L.

    The marathon is a specific form of the psycho-process cluster which has its own identifiable characteristics, the basic one being intensity. The primary objective in structuring the marathon is to intensify physical and emotional contact in order to precipitate, encourage, and accelerate the process of behavior change. Myths which have evolved…

  2. Structural Elements Recognized by Abacavir-Induced T Cells.

    PubMed

    Yerly, Daniel; Pompeu, Yuri Andreiw; Schutte, Ryan J; Eriksson, Klara K; Strhyn, Anette; Bracey, Austin W; Buus, Soren; Ostrov, David A

    2017-07-07

    Adverse drug reactions are one of the leading causes of morbidity and mortality in health care worldwide. Human leukocyte antigen (HLA) alleles have been strongly associated with drug hypersensitivities, and the causative drugs have been shown to stimulate specific T cells at the sites of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context of small molecule drugs are not well studied. Using HLA-B*57:01 mediated hypersensitivity to abacavir as a model system, this study examines structural similarities of HLA presented peptides recognized by drug-specific TCRs. Using the crystal structure of HLA-B*57:01 complexed with abacavir and an immunogenic self peptide, VTTDIQVKV SPT5a 976-984, peptide side chains exhibiting flexibility and solvent exposure were identified as potential drug-specific T cell recognition motifs. Viral sequences with structural motifs similar to the immunogenic self peptide were identified. Abacavir-specific T cell clones were used to determine if virus peptides presented in the context of abacavir stimulate T cell responsiveness. An abacavir-specific T cell clone was stimulated by VTQQAQVRL, corresponding to HSV1/2 230-238, in the context of HLA-B*57:01. These data suggest the T cell polyclonal response to abacavir consists of multiple subsets, including T cells that recognize self peptide/HLA-B*57:01 complexes and crossreact with viral peptide/HLA-B*57:01 complexes due to similarity in TCR contact residues.

  3. Characteristics of early spelling of children with Specific Language Impairment.

    PubMed

    Cordewener, Kim A H; Bosman, Anna M T; Verhoeven, Ludo

    2012-01-01

    The present study investigated active grapheme knowledge and early spelling of 59 first grade children with Specific Language Impairment (SLI). Speed, nature, and knowledge transfer of spelling acquisition were taken into account. Four orthographic characteristics that influence early spelling, namely, 'Type of Grapheme', 'Grapheme Position', 'Number of Graphemes', and 'Word Structure' were examined at the middle and at the end of first grade. At the beginning of first grade when children were between 71 and 97 months, they performed well below national norms on assessment of active grapheme knowledge. The delay in word spelling persisted, but decreased between the middle and the end of first grade. Despite this delay, the findings suggest that characteristics of early spelling for children with SLI are rather similar to those of children with typical language development. For example, children with SLI represented more graphemes at the end of first grade than at the middle of first grade, found it easier to represent the initial grapheme in words than the final or medial grapheme (Grapheme Position), were more successful spelling shorter than longer words (Number of Graphemes), and spelled words with simple structures (CVC) more accurately than those with complex structures (CVCC and CCVC; Word Structure). Finally, participants demonstrated that they can use known graphemes to spell words, but the transfer between active grapheme knowledge and word spelling was not always stable. As a result of this activity, readers will be able to explain the speed and the nature of spelling acquisition of children with SLI. As a result of this activity, readers will be able to explain what skills are most important for teachers to practice with children with SLI to improve the spelling skills of these children. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges.

    PubMed

    Wu, Lin-Ping; Ficker, Mario; Christensen, Jørn B; Trohopoulos, Panagiotis N; Moghimi, Seyed Moein

    2015-07-15

    Dendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments. These have included the use of dendrimers as pro-drugs and vehicles for solubilization, encapsulation, complexation, delivery, and site-specific targeting of small-molecule drugs, biopharmaceuticals, and contrast agents. We briefly review these advances, paying particular attention to attributes that make dendrimers versatile for drug formulation as well as challenging issues surrounding the future development of dendrimer-based medicines.

  5. Base-flow characteristics of streams in the Valley and Ridge, the Blue Ridge, and the Piedmont physiographic provinces of Virginia

    USGS Publications Warehouse

    Nelms, David L.; Harlow, George E.; Hayes, Donald C.

    1997-01-01

    Growth within the Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces of Virginia has focused concern about allocation of surface-water flow and increased demands on the ground-water resources. Potential surface-water yield was determined from statistical analysis of base-flow characteristics of streams. Base-flow characteristics also may provide a relative indication of the potential ground-water yield for areas that lack sufficient specific capacity or will-yield data; however, other factors need to be considered, such as geologic structure, lithology, precipitation, relief, and the degree of hydraulic interconnection between the regolith and bedrock.

  6. Conferring Virulence: Structure and Function of the chimeric A2B5 Typhoid Toxin

    PubMed Central

    Song, Jeongmin; Gao, Xiang; Galán, Jorge E.

    2013-01-01

    Salmonella Typhi differs from most other salmonellae in that it causes a life-threatening systemic infection known as typhoid fever1. The molecular bases for its unique clinical presentation are unknown2. Here we found that in an animal model, the systemic administration of typhoid toxin, a unique virulence factor of S. Typhi, reproduces many of the acute symptoms of typhoid fever. We identified specific carbohydrate moieties on specific surface glycoproteins that serve as receptors for typhoid toxin, which explains its broad cell target specificity. We present the atomic structure of typhoid toxin, which shows an unprecedented A2B5 organization with two covalently-linked A subunits non-covalently-associated to a pentameric B subunit. The structure provides insight into the toxin’s receptor-binding specificity and delivery mechanisms and reveals how the activities of two powerful toxins have been coopted into a single, unique toxin that can induce many of the symptoms characteristic of typhoid fever. These findings may lead to the development of potentially life-saving therapeutics against typhoid fever. PMID:23842500

  7. In silico local structure approach: a case study on outer membrane proteins.

    PubMed

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.

  8. Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization.

    PubMed

    Tavladoraki, Paraskevi; Cervelli, Manuela; Antonangeli, Fabrizio; Minervini, Giovanni; Stano, Pasquale; Federico, Rodolfo; Mariottini, Paolo; Polticelli, Fabio

    2011-04-01

    Spermine oxidase (SMO) and acetylpolyamine oxidase (APAO) are FAD-dependent enzymes that are involved in the highly regulated pathways of polyamine biosynthesis and degradation. Polyamine content is strictly related to cell growth, and dysfunctions in polyamine metabolism have been linked with cancer. Specific inhibitors of SMO and APAO would allow analyzing the precise role of these enzymes in polyamine metabolism and related pathologies. However, none of the available polyamine oxidase inhibitors displays the desired characteristics of selective affinity and specificity. In addition, repeated efforts to obtain structural details at the atomic level on these two enzymes have all failed. In the present study, in an effort to better understand structure-function relationships, SMO enzyme-substrate complex has been probed through a combination of molecular modeling, site-directed mutagenesis and biochemical studies. Results obtained indicate that SMO binds spermine in a similar conformation as that observed in the yeast polyamine oxidase FMS1-spermine complex and demonstrate a major role for residues His82 and Lys367 in substrate binding and catalysis. In addition, the SMO enzyme-substrate complex highlights the presence of an active site pocket with highly polar characteristics, which may explain the different substrate specificity of SMO with respect to APAO and provide the basis for the design of specific inhibitors for SMO and APAO.

  9. Ciliopathies: The Trafficking Connection

    PubMed Central

    Madhivanan, Kayalvizhi; Aguilar, R. Claudio

    2014-01-01

    The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multi-organ diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies seems to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e., affecting cilia assembly) will lead to more severe symptoms, while those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology. PMID:25040720

  10. Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers

    NASA Astrophysics Data System (ADS)

    Falkovich, S.; Markelov, D.; Neelov, I.; Darinskii, A.

    2013-08-01

    Poly-L-lysine (PLL) dendrimers are promising systems for biomedical applications due to their biocompatibility. These dendrimers have a specific topology: two spacers of different lengths come out of each branching point and thus the branching is asymmetric. Because of this asymmetry terminal groups are located at branches of different lengths, unlike dendrimers with a symmetric branching. This paper presents the results of the first systematic molecular dynamics simulation of such asymmetric PLL dendrimers. It is shown that PLL dendrimers are porous molecules with all terminal groups equally accessible to water. We have found that in spite of an asymmetry of branching the general structural characteristics of PLL dendrimers are rather similar to those of dendrimers with symmetric branching. We have also found that the structural characteristics of PLL dendrimers obey the general laws for dendrimers and that their electrostatic properties agree with the predictions of a general analytic theory.

  11. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  12. Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump with Gap Impeller

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Hongxun; Wei, Qun

    2014-06-01

    This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.

  13. General Characteristics of the Changes in the Thermal Stability of Proteins and Enzymes After the Chemical Modification of Their Functional Groups

    NASA Astrophysics Data System (ADS)

    Kutuzova, G. D.; Ugarova, N. N.; Berezin, Ilya V.

    1984-11-01

    The principal structural and physicochemical factors determining the stability of protein macromolecules in solution and the characteristics of the structure of the proteins from thermophilic microorganisms are examined. The mechanism of the changes in the thermal stability of proteins and enzymes after the chemical modification of their functional side groups and the experimental data concerning the influence of chemical modification on the thermal stability of proteins are analysed. The dependence of the stabilisation effect and of the changes in the structure of protein macromolecules on the degree of modification and on the nature of the modified groups and the groups introduced into proteins in the course of modification (their charge and hydrophobic properties) is demonstrated. The great practical value of the method of chemical modification for the preparation of stabilised forms of biocatalysts is shown in relation to specific examples. The bibliography includes 178 references.

  14. Common structural features of toxic intermediates from α-synuclein and GroES fibrillogenesis detected using cryogenic coherent X-ray diffraction imaging.

    PubMed

    Kameda, Hiroshi; Usugi, Sayaka; Kobayashi, Mana; Fukui, Naoya; Lee, Seki; Hongo, Kunihiro; Mizobata, Tomohiro; Sekiguchi, Yuki; Masaki, Yu; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi; Takayama, Yuki; Yamamoto, Masaki; Kawata, Yasushi

    2017-01-01

    The aggregation and deposition of α-synuclein (αSyn) in neuronal cells is correlated to pathogenesis of Parkinson's disease. Although the mechanism of αSyn aggregation and fibril formation has been studied extensively, the structural hallmarks that are directly responsible for toxicity toward cells are still under debate. Here, we have compared the structural characteristics of the toxic intermediate molecular species of αSyn and similar toxic species of another protein, GroES, using coherent X-ray diffraction analysis. Using coherent X-ray free electron laser pulses of SACLA, we analysed αSyn and GroES fibril intermediate species and characterized various aggregate structures. Unlike previous studies where an annular oligomeric form of αSyn was identified, particle reconstruction from scattering traces suggested that the specific forms of the toxic particles were varied, with the sizes of the particles falling within a specific range. We did however discover a common structural feature in both αSyn and GroES samples; the edges of the detected particles were nearly parallel and produced a characteristic diffraction pattern in the diffraction experiments. The presence of parallel-edged particles in toxic intermediates of αSyn and GroES fibrillogenesis pointed towards a plausible common molecular interface that leads to the formation of mature fibrils. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  15. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  16. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    PubMed

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Structural empowerment, Magnet hospital characteristics, and patient safety culture: making the link.

    PubMed

    Armstrong, Kevin J; Laschinger, Heather

    2006-01-01

    Nurse managers are seeking ways to improve patient safety in their organizations. At the same time, they struggle to address nurse recruitment and retention concerns by focusing on the quality of nurses' work environment. This exploratory study tested a theoretical model, linking the quality of the nursing practice environments to a culture of patient safety. Specific strategies to increase nurses' access to empowerment structures and thereby increase the culture of patient safety are suggested.

  18. Out-of-pocket expenditures for pharmaceuticals: lessons from the Austrian household budget survey.

    PubMed

    Sanwald, Alice; Theurl, Engelbert

    2017-05-01

    Paying pharmaceuticals out of pocket is an important source of financing pharmaceutical consumption. Only limited empirical knowledge is available on the determinants of these expenditures. In this article we analyze which characteristics of private households influence out-of-pocket pharmaceutical expenditure (OOPPE) in Austria. We use cross-sectional information on OOPPE and household characteristics provided by the Austrian household budget survey 2009/10. We split pharmaceutical expenditures into the two components prescription fees and over-the-counter (OTC) expenditures. To adjust for the specific characteristics of the data, we compare different econometric approaches: a two-part model, hurdle model, generalized linear model and zero-inflated negative binomial regression model. The finally selected econometric approaches give a quite consistent picture. The probability of expenditures of both types is strongly influenced by the household structure. It increases with age, doctoral visits and the presence of a female householder. The education level and income only increase the probability of OTC pharmaceuticals. The level of OTC expenditures remains widely unexplained while the household structure and age influence the expenditures for prescription fees. Insurance characteristics of private households, either private or public, play a minor role in explaining the expenditure levels in all specifications. This refers to a homogeneous and comprehensive provision of pharmaceuticals in the public part of the Austrian health care system. The article gives useful insights into the determinants of pharmaceutical expenditures of private households and supplements the previous research that focuses on the individual level.

  19. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the American Physiological Society.

  20. Cations Form Sequence Selective Motifs within DNA Grooves via a Combination of Cation-Pi and Ion-Dipole/Hydrogen Bond Interactions

    PubMed Central

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752

  1. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    PubMed

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  2. Application of linear array imaging techniques to the real-time inspection of airframe structures and substructures

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    Development and application of linear array imaging technologies to address specific aging-aircraft inspection issues is described. Real-time video-taped images were obtained from an unmodified commercial linear-array medical scanner of specimens constructed to simulate typical types of flaws encountered in the inspection of aircraft structures. Results suggest that information regarding the characteristics, location, and interface properties of specific types of flaws in materials and structures may be obtained from the images acquired with a linear array. Furthermore, linear array imaging may offer the advantage of being able to compare 'good' regions with 'flawed' regions simultaneously, and in real time. Real-time imaging permits the inspector to obtain image information from various views and provides the opportunity for observing the effects of introducing specific interventions. Observation of an image in real-time can offer the operator the ability to 'interact' with the inspection process, thus providing new capabilities, and perhaps, new approaches to nondestructive inspections.

  3. Towards revealing the structure of bacterial inclusion bodies

    PubMed Central

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6–12 nm, they are comprised of residue-specific cross-β structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies. PMID:19806034

  4. Towards revealing the structure of bacterial inclusion bodies.

    PubMed

    Wang, Lei

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.

  5. SPS structures and control: A perspective

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1980-01-01

    The characteristics and design requirements for the structure and control systems for a solar power satellite were evaluated. A simplistic, indicative analysis on a representative configuration was developed. Representative configuration masses and dimensions are given in convenient approximate magnitudes. The significance of structure control interaction and the significance of stiffness to the minimization of dynamic energy was demonstrated. It was found that the thermal environment for the SPS was dominated by solar radiation and waste heat rejection by the antenna. A more in-depth assessment of the control system design and associated system performance is still needed, specifically the inter-relatonships between control sensors, actuators, and structural response.

  6. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  7. [Derivatives of lupinin and epilupinin as ligands of various cholinesterases].

    PubMed

    Basova, N E; Kormilitsyn, B N; Rozengart, E V; Saakov, V S; Suvorov, A A

    2012-01-01

    Literature data have been summarized on interaction of cholinesterases of some mammals and arthropods with a group of isomer derivatives of alkaloid lupini and its epimer epilupinin. As substrates of cholinesterases of several mammals there are studied 8 acetates containing in their molecules the chinolysidin bicycle with different structure of N-alkyl radical, which showed certain elements of specificity of action. For 2 isomer esters that are derivatives of the protonated base of the lupinin and epilupinin structures, differences in their substrate characteristics were revealed. The polyenzyme analysis if anticholinesterase efficiency was performed for 30 organophosphorus inhibitors that are dialkoxyphosphorus derivatives of lupinin and epilupinin; as a result, quite a few peculiarities of their action depending on their structure were revealed. Several tested compounds turned out to act as specific inhibitors of cholinesterases of some mammals and arthropods.

  8. MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization

    PubMed Central

    Telford, Ryan; Vattoth, Surjith

    2014-01-01

    Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832

  9. Construct validity of the abbreviated mental test in older medical inpatients.

    PubMed

    Antonelli Incalzi, R; Cesari, M; Pedone, C; Carosella, L; Carbonin, P U

    2003-01-01

    To evaluate validity and internal structure of the Abbreviated Mental Test (AMT), and to assess the dependence of the internal structure upon the characteristics of the patients examined. Cross-sectional examination using data from the Italian Group of Pharmacoepidemiology in the Elderly (GIFA) database. Twenty-four acute care wards of Geriatrics or General Medicine. Two thousand eight hundred and eight patients consecutively admitted over a 4-month period. Demographic characteristics, functional status, medical conditions and performance on AMT were collected at discharge. Sensitivity, specificity and predictive values of the AMT <7 versus a diagnosis of dementia made according to DSM-III-R criteria were computed. The internal structure of AMT was assessed by principal component analysis. The analysis was performed on the whole population and stratified for age (<65, 65-80 and >80 years), gender, education (<6 or >5 years) and presence of congestive heart failure (CHF). AMT achieved high sensitivity (81%), specificity (84%) and negative predictive value (99%), but a low positive predictive value of 25%. The principal component analysis isolated two components: the former component represents the orientation to time and space and explains 45% of AMT variance; the latter is linked to memory and attention and explains 13% of variance. Comparable results were obtained after stratification by age, gender or education. In patients with CHF, only 48.3% of the cumulative variance was explained; the factor accounting for most (34.6%) of the variance explained was mainly related to the three items assessing memory. AMT >6 rules out dementia very reliably, whereas AMT <7 requires a second level cognitive assessment to confirm dementia. AMT is bidimensional and maintains the same internal structure across classes defined by selected social and demographic characteristics, but not in CHF patients. It is likely that its internal structure depends on the type of patients. The use of a sum-score could conceal some part of the information provided by the AMT. Copyright 2003 S. Karger AG, Basel

  10. Repetition across Successive Sentences Facilitates Young Children's Word Learning

    ERIC Educational Resources Information Center

    Schwab, Jessica F.; Lew-Williams, Casey

    2016-01-01

    Young children who hear more child-directed speech (CDS) tend to have larger vocabularies later in childhood, but the specific characteristics of CDS underlying this link are currently underspecified. The present study sought to elucidate how the structure of language input boosts learning by investigating whether repetition of object labels in…

  11. The Dawn of Development: A Guide for Educating Visually Impaired Young Children. Volume I: Assessment.

    ERIC Educational Resources Information Center

    Umansky, Warren; And Others

    The guide offers a means for evaluating specific learning characteristics of visually impaired children at three levels: prereadiness (prekindergarten), readiness (kindergarten), and academic (primary grades). Items are designed to be administered by informal observation and structured testing. Score sheets contain space for reporting two testing…

  12. Community Decision-Making for Education Associations. PR Bookshelf No. 10.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC.

    This booklet seeks to acquaint education association leaders with the concept of the community power structure, specifically with how to identify powerful individuals in the community and their role in decision making. The following topics are covered: the nature of community decision making, bases for community influence, characteristics of power…

  13. Associations among breeding birds and gambel oak in Southwestern ponderosa pine forests

    Treesearch

    Stephanie Jentsch; R. William Mannan; Brett G. Dickson; William M. Block

    2008-01-01

    Ponderosa pine (Pinus ponderosa) forests with Gambel oak (Quercus gambelii) are associated with higher bird abundance and diversity than are ponderosa pine forests lacking Gambel oak. Little is known, however, about specific structural characteristics of Gambel oak trees, clumps, and stands that may be important to birds in...

  14. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  15. The Factor Structure of Concrete and Formal Operations: A Confirmation of Piaget.

    ERIC Educational Resources Information Center

    Gray, William M.

    Piaget has hypothesized that concrete and formal operations can be described by specific logical models. The present study focused on assessing various aspects of four concrete operational groupings and two variations of two formal operational characteristics. Six hundred twenty-two 9-14 year old students participating in the Human Sciences…

  16. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... identified, you should match the particular characteristics and functions of your item to a specific ECCN. If the ECCN contains a list under the Items heading, you should review the list to determine within which..., individual items are identified by an Export Control Classification Number (ECCN). Each number consists of a...

  17. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... identified, you should match the particular characteristics and functions of your item to a specific ECCN. If the ECCN contains a list under the Items heading, you should review the list to determine within which..., individual items are identified by an Export Control Classification Number (ECCN). Each number consists of a...

  18. Family-Centered Early Intervention for Communication Disorders: Prevention and Treatment. Excellence in Practice Series.

    ERIC Educational Resources Information Center

    Donahue-Kilburg, Gail

    This book is designed to provide a broad range of information on family structure and function in an increasingly multicultural society, family system characteristics and the implications for intervention, communication development in the family context, the nature and delivery of family centered-services, specific requirements of Public Law…

  19. A Multidimensional Examination of Parent Involvement across Child and Parent Characteristics

    ERIC Educational Resources Information Center

    Garbacz, S. Andrew; McDowall, Philippa S.; Schaughency, Elizabeth; Sheridan, Susan M.; Welch, Greg W.

    2015-01-01

    The purpose of this study was to clarify equivocal findings in the parent-involvement literature and examine novel interactions in a New Zealand context. Specifically, this study tested direct effects of school year, parent education, family structure, and child gender on parent involvement in elementary school. In addition, interactions between…

  20. Influence of Teachers and Schools on Students' Civic Outcomes in Latin America

    ERIC Educational Resources Information Center

    Treviño, Ernesto; Béjares, Consuelo; Villalobos, Cristóbal; Naranjo, Eloísa

    2017-01-01

    The authors investigated to what extent teachers' practices and school characteristics can influence students' civic knowledge, civic attitudes, and future participation in Chile, Colombia, and Mexico and how this can be related to their specific curricular structures and educational content. It uses data from the International Civic and…

  1. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region.

    PubMed Central

    Stamatoyannopoulos, J A; Goodwin, A; Joyce, T; Lowrey, C H

    1995-01-01

    The beta-like globin genes require the upstream locus control region (LCR) for proper expression. The active elements of the LCR coincide with strong erythroid-specific DNase I-hypersensitive sites (HSs). We have used 5' HS4 as a model to study the formation of these HSs. Previously, we identified a 101 bp element that is required for the formation of this HS. This element binds six proteins in vitro. We now report a mutational analysis of the HS4 HS-forming element (HSFE). This analysis indicates that binding sites for the hematopoietic transcription factors NF-E2 and GATA-1 are required for the formation of the characteristic chromatin structure of the HS following stable transfection into murine erythroleukemia cells. Similarly arranged NF-E2 and GATA binding sites are present in the other HSs of the human LCR, as well as in the homologous mouse and goat sequences and the chicken beta-globin enhancer. A combination of DNase I and micrococcal nuclease sensitivity assays indicates that the characteristic erythroid-specific hypersensitivity of HS4 to DNase I is the result of tissue-specific alterations in both nucleosome positioning and tertiary DNA structure. Images PMID:7828582

  2. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    PubMed

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  3. [Characterization of structural change of ascorbate peroxidase from Chinese kale during denaturation by circular dichroism].

    PubMed

    Xi, Jia-Fu; Tang, Lei; Zhang, Jian-Hua; Zhang, Hong-Jian; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-11-01

    Circular dichroism (CD) is a special absorption spectrum. The secondary structure of protein such as α-helix, β-sheet and β-turn in the far ultraviolet region (190-250 nm) has a characteristic CD spectrum. In order to understand the activity and structural changes of ascorbate peroxidase from Chinese kale (BaAPX) during denaturation, specific activity and percentage of secondary structure of BaAPX under different time, temperature and concentration were analyzed by CD dynamically. In addition, the percentage of four secondary structures in BaAPX was calculated by CD analysis software Dichroweb. The results show that BaAPX is a full α-type enzyme whose specific activity is positively related to the percentage of α-helix. During denaturation of BaAPX, three kinds of structural changes were proposed: the one-step structural change from initial state (N state) to minimum state of α-helix (R state) under low concentration and low temperature; the one-step structural change from N state to equilibrium state (T state) under high concentration and low temperature; the two-step structural changes from N state through R state to final T state under heat treatment and low temperature renaturation.

  4. Characteristics and practices of National Immunisation Technical Advisory Groups in Europe and potential for collaboration, April 2014.

    PubMed

    Takla, A; Wichmann, O; Carrillo-Santisteve, P; Cotter, S; Levy-Bruhl, D; Paradowska-Stankiewicz, I; Valentiner-Branth, P; D'Ancona, F

    2015-03-05

    In many countries, national vaccination recommendations are developed by independent expert committees, so-called national immunisation technical advisory groups (NITAG). Since the evaluation of vaccines is complex and resource-demanding, collaboration between NITAGs that evaluate the same vaccines could be beneficial. We conducted a cross-sectional survey among 30 European countries in February 2014, to explore basic characteristics and current practices of European NITAGs and identify potential modes and barriers for collaboration. Of 28 responding countries, 26 reported to have a NITAG or an equivalent expert group. Of these, 20 apply a systematic approach in the vaccine decision-making process, e.g. by considering criteria such as country-specific disease epidemiology, vaccine efficacy/effectiveness/safety, health economics, programme implementation/logistics or country-specific values/preferences. However, applied frameworks and extent of evidence review differ widely. The use of systematic reviews is required for 15 of 26 NITAGs, while results from transmission modelling and health economic evaluations are routinely considered by 18 and 20 of 26 NITAGs, respectively. Twenty-five countries saw potential for NITAG-collaboration, but most often named structural concerns, e.g. different NITAG structures or countries’ healthcare systems. Our survey gathered information that can serve as an inventory on European NITAGs, allowing further exploration of options and structures for NITAG collaboration.

  5. Peptide-templated noble metal catalysts: syntheses and applications

    PubMed Central

    Wang, Wei; Anderson, Caleb F.; Wang, Zongyuan; Wu, Wei

    2017-01-01

    Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches. PMID:28507701

  6. The FNS-based analyzing the EEG to diagnose the bipolar affective disorder

    NASA Astrophysics Data System (ADS)

    Panischev, Yu; Panischeva, S. N.; Demin, S. A.

    2015-11-01

    Here we demonstrate a capability of method based on the Flicker-Noise Spectroscopy (FNS) in analyzing the manifestation bipolar affective disorder (BAD) in EEG. Generally EEG from BAD patient does not show the visual differences from healthy EEG. Analyzing the behavior of FNS-parameters and the structure of 3D-cross correlators allows to discover the differential characteristics of BAD. The cerebral cortex electric activity of BAD patients have a specific collective dynamics and configuration of the FNS-characteristics in comparison with healthy subjects.

  7. Experimental evidence for the lattice instability of Bi-based superconducting systems

    NASA Astrophysics Data System (ADS)

    Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang

    1989-11-01

    Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.

  8. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei

    2018-01-01

    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  9. Structural Elements Recognized by Abacavir-Induced T Cells

    PubMed Central

    Yerly, Daniel; Pompeu, Yuri Andreiw; Schutte, Ryan J.; Eriksson, Klara. K.; Strhyn, Anette; Bracey, Austin. W.; Buus, Soren; Ostrov, David A.

    2017-01-01

    Adverse drug reactions are one of the leading causes of morbidity and mortality in health care worldwide. Human leukocyte antigen (HLA) alleles have been strongly associated with drug hypersensitivities, and the causative drugs have been shown to stimulate specific T cells at the sites of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context of small molecule drugs are not well studied. Using HLA-B*57:01 mediated hypersensitivity to abacavir as a model system, this study examines structural similarities of HLA presented peptides recognized by drug-specific TCRs. Using the crystal structure of HLA-B*57:01 complexed with abacavir and an immunogenic self peptide, VTTDIQVKV SPT5a 976–984, peptide side chains exhibiting flexibility and solvent exposure were identified as potential drug-specific T cell recognition motifs. Viral sequences with structural motifs similar to the immunogenic self peptide were identified. Abacavir-specific T cell clones were used to determine if virus peptides presented in the context of abacavir stimulate T cell responsiveness. An abacavir-specific T cell clone was stimulated by VTQQAQVRL, corresponding to HSV1/2 230–238, in the context of HLA-B*57:01. These data suggest the T cell polyclonal response to abacavir consists of multiple subsets, including T cells that recognize self peptide/HLA-B*57:01 complexes and crossreact with viral peptide/HLA-B*57:01 complexes due to similarity in TCR contact residues. PMID:28686208

  10. A structural model for composite rotor blades and lifting surfaces

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  11. Supramolecular effects as driving force of dipyrrin based functional materials engineering

    NASA Astrophysics Data System (ADS)

    Banakova, E.; Bobrov, A.; Kazak, A.; Marfin, Yu; Merkushev, D.; Molchanov, E.; Rumyantsev, E.; Shipalova, M.; Usoltsev, S.; Vodyanova, O.

    2018-01-01

    Dipyrrin based luminophores are of major interest in different areas of chemistry, material science and molecular biology. Vast variety of the structures with dipyrrin motif were synthesized and investigated up to date. Modern trend in the dipyrrin chemistry is the aimed functionalization of the ligand or complex structure allowing to gain the mechanism based on supramolecular interactions for controlling spectral and photophysical characteristics of compounds for tuning practically valuable properties for specific tasks. Presented paper summarize the results of our research group, working in the field of dipyrrin complexes with p-elements: synthesis, spectral characteristics evaluation and possibilities of practical application investigation. Discussion is focused on the opportunities of molecules preorganization for achieving the supramolecular interactions causing the tuning of fluorescence of the compounds in solutions, polymeric matrices and thin films.

  12. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  13. Cooperative binding of anti-tetanus toxin monoclonal antibodies: Implications for designing an efficient biclonal preparation to prevent tetanus toxin intoxication.

    PubMed

    Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Marinkovic, Emilija; Miljkovic, Radmila; Stojanovic, Marijana

    2018-05-15

    Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant.

    PubMed

    Shin, Dong Ho; Cho, Jin-Ho

    2018-05-24

    The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance. The actuator consists of a piezoelectric element, a miniature bellows, a cantilever membrane, a metal ring support, a ceramic tip, and titanium housing. The optimal structure of the cantilever-membrane design, which determines the frequency characteristics of the piezoelectric actuator, was derived through finite element analysis. Based on the results, the piezoelectric actuator was implemented, and its performance was verified through a cadaveric experiment. It was confirmed that the proposed actuator provides better performance than currently used actuators, in terms of frequency characteristics.

  15. Structure and function of seed storage proteins in faba bean (Vicia faba L.).

    PubMed

    Liu, Yujiao; Wu, Xuexia; Hou, Wanwei; Li, Ping; Sha, Weichao; Tian, Yingying

    2017-05-01

    The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.

  16. Comparison of damping in buildings under low-amplitude and strong motions

    USGS Publications Warehouse

    Celebi, M.

    1996-01-01

    This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.

  17. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs

    PubMed Central

    Tawhai, Merryn H; Hoffman, Eric A

    2013-01-01

    Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation is distributed to the peripheral tissue. The human airway structure spans more than 20 generations, beginning with the extra-thoracic airways (oral or nasal cavity, and through the pharynx and larynx to the trachea), then the conducting airways, the respiratory airways, and to the alveoli. The airways in individuals and sub-populations (by gender, age, ethnicity, and normal vs. diseased states) may exhibit different dimensions, branching patterns and angles, and thickness and rigidity. At the local level, one would like to capture detailed flow characteristics, e.g. local velocity profiles, shear stress, and pressure, for prediction of particle transport in an airway (lung structure) model that is specific to the geometry of an individual, to understand how inter-subject variation in airway geometry (normal or pathological) influences the transport and deposition of particles. In a systems biology – or multiscale modeling – approach, these local flow characteristics can be further integrated with epithelial cell models for the study of mechanotransduction. At the global (organ) level, one would like to match regional ventilation (lung function) that is specific to the individual, thus ensuring that the flow that transports inhaled particles is appropriately distributed throughout the lung model. Computational models that do not account for realistic distribution of ventilation are not capable of predicting realistic particle distribution or targeted drug deposition. Furthermore, the flow in the human lung can be transitional or turbulent in the upper and proximal airways, and becomes laminar in the distal airways. The flows in the laminar, transitional and turbulent regimes have different temporal and spatial scales. Therefore, modeling airway structure and predicting gas flow and particle transport at both local and global levels require image-guided multiscale modeling strategies. In this article, we will review the aforementioned three key aspects of CFD studies of the human lungs: airway structure (conducting airways), lung function (regional ventilation and boundary conditions), and flow characteristics (modeling of turbulent flow and its effect on particle transport). For modeling airway structure, we will focus on the conducting airways, and review both symmetric vs. asymmetric airway models, idealized vs. CT-based airway models, and multiscale subject-specific airway models. Imposition of physiological subject-specific boundary conditions (BCs) in CFD is essential to match regional ventilation in individuals, which is also critical in studying preferential deposition of inhaled aerosols in sub-populations, e.g. normals vs. asthmatics that may exhibit different ventilation patterns. Subject-specific regional ventilation defines flow distributions and characteristics in airway segments and bifurcations, which subsequently determines the transport and deposition of aerosols in the entire lungs. Turbulence models are needed to capture the transient and turbulent nature of the gas flow in the human lungs. Thus, the advantages and disadvantages of different turbulence models as well as their effects on particle transport will be discussed. The ultimate goal of the development is to identify sensitive structural and functional variables in sub-populations of normal and diseased lungs for potential clinical applications. PMID:23843310

  18. A face only an investor could love: CEOs' facial structure predicts their firms' financial performance.

    PubMed

    Wong, Elaine M; Ormiston, Margaret E; Haselhuhn, Michael P

    2011-12-01

    Researchers have theorized that innate personal traits are related to leadership success. Although links between psychological characteristics and leadership success have been well established, research has yet to identify any objective physical traits of leaders that predict organizational performance. In the research reported here, we identified leaders' facial structure as a specific physical trait that correlates with organizational performance. Specifically, we found that firms whose male CEOs have wider faces (relative to facial height) achieve superior financial performance. Decision-making dynamics within a firm's leadership team moderate this effect, such that the relationship between a given CEO's facial measurements and his firm's financial performance is stronger in firms with cognitively simple leadership teams.

  19. The design strategy of selective PTP1B inhibitors over TCPTP.

    PubMed

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon

    PubMed Central

    Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso, Miguel; Gallach, Darío; López-García, Juan; Martín-Palma, Raúl J.

    2010-01-01

    The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS) make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.

  1. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  2. Reading and spelling skills in German third graders: Examining the role of student and context characteristics.

    PubMed

    von Suchodoletz, Antje; Larsen, Ross A A; Gunzenhauser, Catherine; Fäsche, Anika

    2015-12-01

    Educational processes and outcomes are influenced by a multitude of factors, including individual and contextual characteristics. Recently, studies have demonstrated that student and context characteristics may produce unique and cumulative effects on educational outcomes. The study aimed to investigate (1) the relative contribution of student, classroom, and school characteristics to reading fluency and orthographic spelling, (2) the relative contribution of specific predictors to reading fluency and orthographic spelling within the sets of student, classroom, and school characteristics, and (3) whether the contribution of student, classroom, and school characteristics differs for reading fluency and orthographic spelling. Participants were 789 German third-grade students from 56 classrooms in 34 schools. Students completed an intelligence test and a questionnaire assessing self-control. Reading fluency and orthographic spelling performance were assessed using standardized achievement tests. Multilevel structural equation modelling was used to control for the hierarchical structure of educational data. Variances in students' reading and spelling skills were in large part explained by student characteristics (>90%). Classroom and school characteristics yielded little variance. Student-level intelligence and self-control were significantly related to reading fluency. For orthographic spelling, student-level intelligence and self-control, class-average intelligence, and, at the school level, the socio-economic status of the school's neighbourhood were significant predictors. Future research needs to investigate relevant classroom and school factors that may directly and indirectly relate to academic outcomes. © 2015 The British Psychological Society.

  3. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt-ZnO nanograin Schottky barrier interfaces

    NASA Astrophysics Data System (ADS)

    Chan, Yuet Ching; Yu, Jerry; Ho, Derek

    2018-06-01

    Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.

  4. Predicting Structural Behavior of Filament Wound Composite Pressure Vessel Using Three Dimensional Shell Analysis

    NASA Astrophysics Data System (ADS)

    Madhavi, M.; Venkat, R.

    2014-01-01

    Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.

  5. Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation.

    PubMed

    Shinada, Hiroshi; Yamamoto, Toshio; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Matsuba, Shuichi; Fujino, Kenji

    2014-04-01

    The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.

  6. Seismic risk assessment for Poiana Uzului (Romania) buttress dam on Uz river

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren-Adelina; Toma-Danila, Dragos; Paerele, Cosmin Marian; Emilian Toader, Victorin; Petruta Constantin, Angela; Ghita, Cristian

    2017-04-01

    The most important specific requirements towards dams' safety is the seismic risk assessment. This objective will be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine, 2002, and Bureau (2003), taking into account the maximum expected peak ground motions at dams' site, the structures vulnerability and the downstream risk characteristics. The maximum expected values for ground motions at dams' site have been obtained using probabilistic seismic hazard assessment approaches. The structural vulnerability was obtained from dams' characteristics (age, high, water volume) and the downstream risk was assessed using human, economical, touristic, historic and cultural heritage information from the areas that might be flooded in the case of a dam failure. A couple of flooding scenarios have been performed. The results of the work consist of local and regional seismic information, specific characteristics of dam, seismic hazard values for different return periods and risk classes. The studies realized in this paper have as final goal to provide in the near future the local emergency services with warnings of a potential dam failure and ensuing flood as a result of a large earthquake occurrence, allowing further public training for evacuation. Acknowledgments This work was partially supported by the Partnership in Priority Areas Program - PNII, under MEN-UEFISCDI, DARING Project no. 69/2014 and the Nucleu Program - PN 16-35, Project no. 03 01 and 01 06.

  7. [Studies on the structure-activity relationship of retinoids--Hansch analysis and 3D-OSAR studies on specific ligands of retinoid x receptor].

    PubMed

    Huang, N; Chu, F; Guo, Z

    1998-06-01

    Retinoids (Vitamin A, its metabolites and synthetic analogues) play important roles in a variety of biological processes, including cellular differentiation, proliferation and apoptosis. The many diverse actions of retinoids attribute to the ability of regulating transcription of different target genes through activation of multiple retinoid nuclear receptors (RAR of RXR). So, retinoids with selective binding ability to specific receptor may not only have improved therapeutic indices, but may also be invaluable for elucidating the molecular mechanism of retinoidal transcriptional activation. Based on the two dimensional and three dimensional quantitative structure-activity relationships of specific ligands of RXR, we carried out mimesis of environment of ligands interacting with their receptor and, to some extent, mapping the topological and physico-chemical characteristics of receptor. The knowledge of the QSAR study will offer detailed molecular information for design, synthesis and biological evaluation in drug research and development.

  8. Feather like highly active Co3O4 electrode for supercapacitor application: a potentiodynamic approach

    NASA Astrophysics Data System (ADS)

    Niveditha, C. V.; Aswini, R.; Jabeen Fatima, M. J.; Ramanarayan, Rajita; Pullanjiyot, Nijisha; Swaminathan, Sindhu

    2018-06-01

    This investigation focuses on the in situ preparation of cobalt oxide through a less explored potentiodynamic approach under ambient conditions. A spinel structured feather like p-type cobalt oxide is obtained having dual bandgaps. Gracing Incidence x-ray Diffraction, Raman spectroscopy, UV-Visble spectroscopy, Scanning Electron Microscope and Hall measurement are used to study the structural, optical, morphological and electrical characteristics of the film. The prepared film showed an excellent cyclic stability upto 1600 number of cycles and good charge retention as obtained from cyclic voltammetry and galvanostatic charge-discharge measurements. A high specific capacitance of 396.67 F g‑1, specific energy 71.40 Wh kg‑1 and specific power 10.02 kW kg‑1 is obtained, implying supercapacitive nature of the material. Overall a sustainable energy storage material, prepared by template free potentiodynamic method for new generation devices has been explored in this work.

  9. Common and Distant Structural Characteristics of Feruloyl Esterase Families from Aspergillus oryzae

    PubMed Central

    Udatha, D. B. R. K. Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Background Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. Methodology/Principal Findings The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Conclusions/Significance Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the putative substrates prior to docking studies or for post-processing docking results to remove false positives. Our study exemplifies how computational predictions can complement to the information obtained through experimental methods. PMID:22745763

  10. Common and distant structural characteristics of feruloyl esterase families from Aspergillus oryzae.

    PubMed

    Udatha, D B R K Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the putative substrates prior to docking studies or for post-processing docking results to remove false positives. Our study exemplifies how computational predictions can complement to the information obtained through experimental methods.

  11. Engineering of the function of diamond-like carbon binding peptides through structural design.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B

    2015-02-09

    The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.

  12. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  13. Hierarchically structured activated carbon for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-02-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

  14. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.

    PubMed

    Yang, Jie; Ma, Zhihua; Gao, Weixue; Wei, Mingdeng

    2017-01-12

    Layered structural Co-MOF nanosheets were synthesized and then used as an electrode material for supercapacitors for the first time. This material exhibited a high specific capacitance, a good rate capability, and an excellent cycling stability. A maximum capacitance of 2564 F g -1 can be achieved at a current density of 1 Ag -1 . Moreover, the capacitance retention can be kept at 95.8 % respectively of its initial value after 3000 cycles. To the best of our knowledge, both the specific capacitance and the capacitance retention were the highest values reported for MOF materials as supercapacitor electrodes until now. Such a high supercapacitive performance might be attributed to the intrinsic characteristics of this kind of Co-MOF material, including its layered structure, conductive network frame, and thin nanosheet. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.

    PubMed

    Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg

    2015-01-01

    Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.

  16. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  17. A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations.

    PubMed

    Teoh, Chai Lean; Pham, Chi L L; Todorova, Nevena; Hung, Andrew; Lincoln, Craig N; Lees, Emma; Lam, Yuen Han; Binger, Katrina J; Thomson, Neil H; Radford, Sheena E; Smith, Trevor A; Müller, Shirley A; Engel, Andreas; Griffin, Michael D W; Yarovsky, Irene; Gooley, Paul R; Howlett, Geoffrey J

    2011-02-04

    The self-assembly of specific proteins to form insoluble amyloid fibrils is a characteristic feature of a number of age-related and debilitating diseases. Lipid-free human apolipoprotein C-II (apoC-II) forms characteristic amyloid fibrils and is one of several apolipoproteins that accumulate in amyloid deposits located within atherosclerotic plaques. X-ray diffraction analysis of aligned apoC-II fibrils indicated a simple cross-β-structure composed of two parallel β-sheets. Examination of apoC-II fibrils using transmission electron microscopy, scanning transmission electron microscopy, and atomic force microscopy indicated that the fibrils are flat ribbons composed of one apoC-II molecule per 4.7-Å rise of the cross-β-structure. Cross-linking results using single-cysteine substitution mutants are consistent with a parallel in-register structural model for apoC-II fibrils. Fluorescence resonance energy transfer analysis of apoC-II fibrils labeled with specific fluorophores provided distance constraints for selected donor-acceptor pairs located within the fibrils. These findings were used to develop a simple 'letter-G-like' β-strand-loop-β-strand model for apoC-II fibrils. Fully solvated all-atom molecular dynamics (MD) simulations showed that the model contained a stable cross-β-core with a flexible connecting loop devoid of persistent secondary structure. The time course of the MD simulations revealed that charge clusters in the fibril rearrange to minimize the effects of same-charge interactions inherent in parallel in-register models. Our structural model for apoC-II fibrils suggests that apoC-II monomers fold and self-assemble to form a stable cross-β-scaffold containing relatively unstructured connecting loops. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Automatic prediction of facial trait judgments: appearance vs. structural models.

    PubMed

    Rojas, Mario; Masip, David; Todorov, Alexander; Vitria, Jordi

    2011-01-01

    Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

  19. The Importance of Memory Specificity and Memory Coherence for the Self: Linking Two Characteristics of Autobiographical Memory

    PubMed Central

    Vanderveren, Elien; Bijttebier, Patricia; Hermans, Dirk

    2017-01-01

    Autobiographical memory forms a network of memories about personal experiences that defines and supports well-being and effective functioning of the self in various ways. During the last three decades, there have been two characteristics of autobiographical memory that have received special interest regarding their role in psychological well-being and psychopathology, namely memory specificity and memory coherence. Memory specificity refers to the extent to which retrieved autobiographical memories are specific (i.e., memories about a particular experience that happened on a particular day). Difficulty retrieving specific memories interferes with effective functioning of the self and is related to depression and post-traumatic stress disorder. Memory coherence refers to the narrative expression of the overall structure of autobiographical memories. It has likewise been related to psychological well-being and the occurrence of psychopathology. Research on memory specificity and memory coherence has developed as two largely independent research domains, even though they show much overlap. This raises some important theoretical questions. How do these two characteristics of autobiographical memory relate to each other, both theoretically and empirically? Additionally, how can the integration of these two facilitate our understanding of the importance of autobiographical memory for the self? In this article, we give a critical overview of memory specificity and memory coherence and their relation to the self. We link both features of autobiographical memory by describing some important similarities and by formulating hypotheses about how they might relate to each other. By situating both memory specificity and memory coherence within Conway and Pleydell-Pearce’s Self-Memory System, we make a first attempt at a theoretical integration. Finally, we suggest some new and exciting research possibilities and explain how both research fields could benefit from integration in future research. PMID:29312089

  20. Structure and Strategies in Children's Educational Television: The Roles of Program Type and Learning Strategies in Children's Learning

    ERIC Educational Resources Information Center

    Linebarger, Deborah L.; Piotrowski, Jessica Taylor

    2010-01-01

    Educational TV has been consistently linked to children's learning. In this research, educational TV characteristics were identified, coded, and tested for their influence on children's program-specific comprehension and vocabulary outcomes. Study 1 details a content analysis of TV features including a program's macrostructure (i.e., narrative or…

  1. [Culture in initial interactions].

    PubMed

    Bossuroy, Muriel; Moro, Marie Rose

    2014-01-01

    Communication between infants and their parents is established through the initial interactions which begin at birth. These are unique to each parent-infant dyad and are structured both on the basis of the reactions, behaviour and characteristics specific to the babies as well as on the images, sensations, projections and representations of the parents. Culture and language are important elements in this context.

  2. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    NASA Astrophysics Data System (ADS)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.

  3. Fronto-Parietal gray matter and white matter efficiency differentially predict intelligence in males and females.

    PubMed

    Ryman, Sephira G; Yeo, Ronald A; Witkiewitz, Katie; Vakhtin, Andrei A; van den Heuvel, Martijn; de Reus, Marcel; Flores, Ranee A; Wertz, Christopher R; Jung, Rex E

    2016-11-01

    While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Finding the music of speech: Musical knowledge influences pitch processing in speech.

    PubMed

    Vanden Bosch der Nederlanden, Christina M; Hannon, Erin E; Snyder, Joel S

    2015-10-01

    Few studies comparing music and language processing have adequately controlled for low-level acoustical differences, making it unclear whether differences in music and language processing arise from domain-specific knowledge, acoustic characteristics, or both. We controlled acoustic characteristics by using the speech-to-song illusion, which often results in a perceptual transformation to song after several repetitions of an utterance. Participants performed a same-different pitch discrimination task for the initial repetition (heard as speech) and the final repetition (heard as song). Better detection was observed for pitch changes that violated rather than conformed to Western musical scale structure, but only when utterances transformed to song, indicating that music-specific pitch representations were activated and influenced perception. This shows that music-specific processes can be activated when an utterance is heard as song, suggesting that the high-level status of a stimulus as either language or music can be behaviorally dissociated from low-level acoustic factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    PubMed

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  6. Nanocomposites in Multifuntional Structures for Spacecraft Platforms

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.

    2012-07-01

    The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.

  7. Specific Phobia in Youth: Phenomenology and Psychological Characteristics

    PubMed Central

    Ollendick, Thomas H.; Raishevich, Natoshia; Davis, Thompson E.; Sirbu, Cristian; Öst, Lars-Göran

    2012-01-01

    Sociodemographic and psychological characteristics of 62 youth with animal and natural environment types of specific phobia were examined in a treatment-seeking sample. Differences due to age, sex, ethnicity, family structure, and family socioeconomic status were not found between youth with the two types of specific phobia. Moreover, differences were not obtained between the two groups in the clinical severity of their phobias, the perceived dangerousness of the feared outcomes associated with their phobias, the perceived levels of coping with their phobias, or overall fearfulness. However, differences between youth with the two types of specific phobias were found on somatic/anxious symptoms, depressive symptoms, and life satisfaction. In addition, differences were noted on withdrawn, somatic complaints, anxious/depressed symptoms, and social problems as reported by the mothers of these youngsters. Finally, differences in the percent of co-occurring anxiety disorders between youth with the two types of specific phobia were found. On all of the domains in which differences were found, youth with the natural environment type fared more poorly than those with the animal type. These findings converge with those obtained in treatment studies which indicate that youth with the natural environment type are more difficult to treat than youth with the animal type. PMID:20171334

  8. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors.

    PubMed

    Kaur, Rimaljeet; Kaur, Narinder; Gupta, Anil Kumar

    2014-11-01

    α-Amylase is an important digestive enzyme required for the optimal growth and development of insects. Several insect α-amylases had been purified and their physical and chemical properties were characterized. Insect α-amylases of different orders display variability in structure, properties and substrate specificity. Such diverse properties of amylases could be due to different feeding habits and gut environment of insects. In this review, structural features and properties of several insect α-amylases were compared. This could be helpful in exploring the diversity in characteristics of α-amylase between the members of the same class (insecta). Properties like pH optima are reflected in enzyme structural features. In plants, α-amylase inhibitors (α-AIs) occur as part of natural defense mechanisms against pests by interfering in their digestion process and thus could also provide access to new pest management strategies. AIs are quite specific in their action; therefore, these could be employed according to their effectiveness against target amylases. Potential of transgenics with α-AIs has also been discussed for insect resistance and controlling infestation. The differences in structural features of insect α-amylases provided reasons for their efficient functioning at different pH and the specificity towards various substrates. Various proteinaceous and non-proteinaceous inhibitors discussed could be helpful in controlling pest infestation. In depth detailed studies are required on proteinaceous α-AI-α-amylase interaction at different pH's as well as the insect proteinase action on these inhibitors before selecting the α-AI for making transgenics resistant to particular insect. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases

    PubMed Central

    Leitão, Ana Lúcia; Costa, Marina C.; Enguita, Francisco J.

    2015-01-01

    The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes. PMID:25622248

  10. Spatio-temporal patterns of major bacterial groups in alpine waters.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2014-01-01

    Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.

  11. Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives

    NASA Astrophysics Data System (ADS)

    Mostaert, Anika S.; Jarvis, Suzanne P.

    2007-01-01

    While biological systems are notorious for their complexity, nature sometimes displays mechanisms that are elegant in their simplicity. We have recently identified such a mechanism at work to enhance the mechanical properties of certain natural adhesives. The mechanism is simple because it utilizes a non-specific protein folding and subsequent aggregation process, now thought to be generic for any polypeptide under appropriate conditions. This non-specific folding forms proteinaceous crossed β-sheet amyloid fibrils, which are usually associated with neurodegenerative diseases. Here we show evidence for the beneficial mechanical characteristics of these fibrils discovered in natural adhesives. We suggest that amyloid protein quaternary structures should be considered as a possible generic mechanism for mechanical strength in a range of natural adhesives and other natural materials due to their many beneficial mechanical features and apparent ease of self-assembly.

  12. Formulation of advanced consumables management models: Environmental control and electrical power system performance models requirements

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.

  13. Envisioning Science Environment Technology and Society

    NASA Astrophysics Data System (ADS)

    Maknun, J.; Busono, T.; Surasetja, I.

    2018-02-01

    Science Environment Technology and Society (SETS) approach helps students to connect science concept with the other aspects. This allows them to achieve a clearer depiction of how each concept is linked with the other concepts in SETS. Taking SETS into account will guide students to utilize science as a productive concept in inventing and developing technology, while minimizing its negative impacts on the environment and society. This article discusses the implementation of Sundanese local wisdoms, that can be found in the local stilt house (rumah panggung), in the Building Construction subject in vocational high school on Building Drawing Technique expertise. The stilt house structural system employs ties, pupurus joints, and wedges on its floor, wall, and truss frames, as well as its beams. This local knowledge was incorporated into the Building Construction learning program and applied on the following basic competences: applying wood’s specification and characteristics for building construction, managing wood’s specification and characteristics for building construction, analyzing building structure’s type and function based on their characteristics, reasoning building structure’s type and function based on their characteristics, categorizing wood construction works, and reasoning wood construction works. The research result is the Sundanese traditional-local-wisdom-based learning design of the Building Construction subject.

  14. Crashworthiness analysis on alternative square honeycomb structure under axial loading

    NASA Astrophysics Data System (ADS)

    Li, Meng; Deng, Zongquan; Guo, Hongwei; Liu, Rongqiang; Ding, Beichen

    2013-07-01

    Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.

  15. Site-specific estimation of peak-streamflow frequency using generalized least-squares regression for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.

  16. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  17. [Selection criteria of mobile lifters in the hospital setting].

    PubMed

    Ferriero, G; Ottonello, M; Franchignoni, F

    2002-01-01

    The manual handling of patients with limited mobility represents the major cause of musculoskeletal injury to the spine in paramedical health care workers. Within the hospital, the more complex procedures of patient transfer often require the use of mobile hoists. The aim of this paper is to describe the basic criteria for the selection of such hoists. The main characteristics of a hoist are its stability, the sling attachment, the speed of operation, range of movement of the spreader bar, safety of the operation being performed, patient comfort, the physical effort required on the part of the health care worker, manoeuvrability and simplicity of use. Important organizational-structural features to evaluate include: the type of patient normally present in the unit concerned, the specific movement to be performed, the structural characteristics of the environment, and the work organization of the personnel.

  18. Psychrophiles

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khawar S.; Williams, Timothy J.; Wilkins, David; Yau, Sheree; Allen, Michelle A.; Brown, Mark V.; Lauro, Federico M.; Cavicchioli, Ricardo

    2013-05-01

    Psychrophilic (cold-adapted) microorganisms make a major contribution to Earth's biomass and perform critical roles in global biogeochemical cycles. The vast extent and environmental diversity of Earth's cold biosphere has selected for equally diverse microbial assemblages that can include archaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of enzymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents. In this review, we examine the ecology of Antarctic psychrophiles, physiological adaptation of psychrophiles, and properties of cold-adapted proteins, and we provide a view of how these characteristics inform studies of astrobiology.

  19. Impact of surface nanostructure on ice nucleation.

    PubMed

    Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

    2014-09-28

    Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

  20. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    NASA Astrophysics Data System (ADS)

    Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah

    2017-11-01

    In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  1. Metal/ceramic interface structures and segregation behavior in aluminum-based composites

    DOE PAGES

    Zhang, Xinming; Hu, Tao; Rufner, Jorgen F.; ...

    2015-06-14

    Trimodal Al alloy (AA) matrix composites consisting of ultrafine-­grained (UFG) and coarse-­ grained (CG) Al phases and micron-­sized B 4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation atmore » AA/B 4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B 4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. Here in this study, we use high-­resolution transmission electron microscopy, energy-­dispersive X-­ray spectroscopy, electron energy-­loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B 4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B 4C reinforcement particles. The amorphous multilayers consist of nonstoichiometric Al xO y, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B 4C interfaces.« less

  2. A two-level structure for advanced space power system automation

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.; Chankong, Vira

    1990-01-01

    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.

  3. Analyzing the nursing organizational structure and process from a scheduling perspective.

    PubMed

    Maenhout, Broos; Vanhoucke, Mario

    2013-09-01

    The efficient and effective management of nursing personnel is of critical importance in a hospital's environment comprising approximately 25 % of the hospital's operational costs. The nurse organizational structure and the organizational processes highly affect the nurses' working conditions and the provided quality of care. In this paper, we investigate the impact of different nurse organization structures and different organizational processes for a real-life situation in a Belgian university hospital. In order to make accurate nurse staffing decisions, the employed solution methodology incorporates shift scheduling characteristics in order to overcome the deficiencies of the many phase-specific methodologies that are proposed in the academic literature.

  4. Organizational context and taxonomy of health care databases.

    PubMed

    Shatin, D

    2001-01-01

    An understanding of the organizational context and taxonomy of health care databases is essential to appropriately use these data sources for research purposes. Characteristics of the organizational structure of the specific health care setting, including the model type, financial arrangement, and provider access, have implications for accessing and using this data effectively. Additionally, the benefit coverage environment may affect the utility of health care databases to address specific research questions. Coverage considerations that affect pharmacoepidemiologic research include eligibility, the nature of the pharmacy benefit, and regulatory aspects of the treatment under consideration.

  5. Development of Independent-type Optical CT

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsushi; Shiozawa, Daigoro; Rokunohe, Toshiaki; Kida, Junzo; Zhang, Wei

    Optical current transformers (optical CTs) have features that they can be made much smaller and lighter than conventional electromagnetic induction transformers by their simple structure, and contribute to improvement of equipment reliability because of their excellent surge resistance performance. Authors consider optical CTs to be next generation transformers, and are conducting research and development of optical CTs aiming to apply to measuring and protection in electric power systems. Specifically we developed an independent-type optical CT by utilizing basic data of optical CTs accumulated for large current characteristics, temperature characteristics, vibration resistance characteristics, and so on. In performance verification, type tests complying with IEC standards, such as short-time current tests, insulation tests, accuracy tests, and so on, showed good results. This report describes basic principle and configuration of optical CTs. After that, as basic characteristics of optical CTs, conditions and results of verification tests for dielectric breakdown characteristics of sensor fibers, large current characteristics, temperature characteristics, and vibration resistance characteristics are described. Finally, development outline of the independent-type optical CT aiming to apply to all digital substation and its type tests results are described.

  6. A conceptual framework of clinical nursing care in intensive care.

    PubMed

    da Silva, Rafael Celestino; Ferreira, Márcia de Assunção; Apostolidis, Thémistoklis; Brandão, Marcos Antônio Gomes

    2015-01-01

    to propose a conceptual framework for clinical nursing care in intensive care. descriptive and qualitative field research, carried out with 21 nurses from an intensive care unit of a federal public hospital. We conducted semi-structured interviews and thematic and lexical content analysis, supported by Alceste software. the characteristics of clinical intensive care emerge from the specialized knowledge of the interaction, the work context, types of patients and nurses characteristic of the intensive care and care frameworks. the conceptual framework of the clinic's intensive care articulates elements characteristic of the dynamics of this scenario: objective elements regarding technology and attention to equipment and subjective elements related to human interaction, specific of nursing care, countering criticism based on dehumanization.

  7. Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin

    PubMed Central

    Ball, David A.; Mehta, Gunjan D.; Salomon-Kent, Ronit; Mazza, Davide; Morisaki, Tatsuya; Mueller, Florian; McNally, James G.; Karpova, Tatiana S.

    2016-01-01

    In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12–0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast. PMID:27566148

  8. A lack of Birbeck granules in Langerhans cells is associated with a naturally occurring point mutation in the human Langerin gene.

    PubMed

    Verdijk, Pauline; Dijkman, Remco; Plasmeijer, Elsemieke I; Mulder, Aat A; Zoutman, Willem H; Mieke Mommaas, A; Tensen, Cornelis P

    2005-04-01

    A heterozygous mutation in the Langerin gene corresponding to position 837 in the Langerin mRNA was identified in a person deficient in Birbeck granules (BG). This mutation results in an amino acid replacement of tryptophan by arginine at position 264 in the carbohydrate recognition domain of the Langerine protein. Expression of mutated Langerin in human fibroblasts induces tubular-like structures that are negative for BG-specific antibodies and do not resemble the characteristic structural features of BG.

  9. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  10. Variational study on the vibrational level structure and IVR behavior of highly vibrationally excited S0 formaldehyde.

    PubMed

    Rashev, Svetoslav; Moule, David C

    2012-02-15

    We perform large scale converged variational vibrational calculations on S(0) formaldehyde up to very high excess vibrational energies (E(v)), E(v)∼17,000cm(-1), using our vibrational method, consisting of a specific search/selection/Lanczos iteration procedure. Using the same method we investigate the vibrational level structure and intramolecular vibrational redistribution (IVR) characteristics for various vibrational levels in this energy range in order to assess the onset of IVR. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  12. [Biochemical characteristics and antigenic structures of Chlamydia].

    PubMed

    Puy, H; Fuentes, V; Eb, F; Orfila, J

    1989-01-01

    New biotechnology in immunology and molecular biology has enabled the identification and definition of the structure of glycolipids and especially membrane proteins of Chlamydia. Chlamydia antigen lipopolysaccharide, major outer membrane protein, protein 74 kDa, eukaryotic cell binding protein and cysteine rich proteins are all carriers of antigenic determinants, genus, species or type specific. They are very usefull for diagnosis of Chlamydial infections and epidemiological studies. These membranous antigens have an important role in the pathogenesis of these bacteries. Finally these studies have contributed to the isolation of a new species: C. pneumoniae (TWAR strains).

  13. Development of optimized techniques and requirements for computer enhancement of structural weld radiographs. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Adams, J. R.; Hawley, S. W.; Peterson, G. R.; Salinger, S. S.; Workman, R. A.

    1971-01-01

    A hardware and software specification covering requirements for the computer enhancement of structural weld radiographs was considered. Three scanning systems were used to digitize more than 15 weld radiographs. The performance of these systems was evaluated by determining modulation transfer functions and noise characteristics. Enhancement techniques were developed and applied to the digitized radiographs. The scanning parameters of spot size and spacing and film density were studied to optimize the information content of the digital representation of the image.

  14. A mutant sumo facilitates quick plasmid construction for expressing proteins with native N-termini after fusion tag removal

    USDA-ARS?s Scientific Manuscript database

    Sumo is one of the fusion tags commonly used to enhance the solubility and yield of recombinant proteins. One advantage of using sumo is that the removal of the sumo tag is highly specific because its recognition by the ULP sumo protease is determined by its structural characteristics, instead of th...

  15. Children's Acquisition of Nouns and Verbs in Italian: Contrasting the Roles of Frequency and Positional Salience in Maternal Language

    ERIC Educational Resources Information Center

    Longobardi, Emiddia; Rossi-Arnaud, Clelia; Spataro, Pietro; Putnick, Diane L.; Bornstein, Marc H.

    2015-01-01

    Because of its structural characteristics, specifically the prevalence of verb types in infant-directed speech and frequent pronoun-dropping, the Italian language offers an attractive opportunity to investigate the predictive effects of input frequency and positional salience on children's acquisition of nouns and verbs. We examined this…

  16. Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease.

    PubMed

    Górska, Sabina; Sandstrőm, Corine; Wojas-Turek, Justyna; Rossowska, Joanna; Pajtasz-Piasecka, Elżbieta; Brzozowska, Ewa; Gamian, Andrzej

    2016-11-21

    Characteristic changes in the microbiota biostructure and a decreased tolerance to intestinal bacteria have been associated with inflammatory bowel disease (IBD). However, few studies have examined the constituents of the intestinal microbiota, including the surface molecules of the bacteria, in healthy and IBD subsets. Here, we compare the chemical structures and immunomodulatory properties of the exopolysaccharides (EPS) of lactobacilli isolated from mice with induced IBD (IBD "+") versus those of healthy mice (IBD "-"). Classical structural analyses were performed using nuclear magnetic resonance spectroscopy and mass spectrometry. Immunomodulatory properties were assessed by stimulation of dendritic cells derived from mouse bone marrow or human peripheral mononuclear blood cells. Our results revealed that EPS produced by IBD "+" species are structurally different from those isolated from IBD "-". Moreover, the structurally different EPS generate different immune responses by dendritic cells. We speculate that resident strains could, upon gut inflammation, switch to producing EPS with specific motifs that are absent from lactobacilli IBD "-", and/or that bacteria with a particular EPS structure might inhabit the inflamed intestinal mucosa. This study may shed light on the role of EPS in IBD and help the development of a specific probiotic therapy for this disease.

  17. Connectingthe puzzle pieces between cytoskeleton andsecretory pathway

    PubMed Central

    Gurel, Pinar S.; Hatch, Anna L.; Higgs, Henry N.

    2014-01-01

    A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addressesconnections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on threetopics: ER structure/function, ER-to-Golgi transport; and Golgi structure/function. Making these connections has been challenging, due to 1) the small sizes and dynamic characteristics of some components, 2) the fact that organelle-specific cytoskeleton can easily be obscured by more abundant cytoskeletal structures, and 3) the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultra-structural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics. PMID:25050967

  18. CHROMOSOMAL DIFFERENTIATIONS OF THE LAMPBRUSH TYPE FORMED BY THE Y CHROMOSOME IN DROSOPHILA HYDEI AND DROSOPHILA NEOHYDEI

    PubMed Central

    Hess, Oswald; Meyer, Günther F.

    1963-01-01

    The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome. PMID:13954225

  19. Normal Science Education and its Dangers: The Case of School Chemistry

    NASA Astrophysics Data System (ADS)

    Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert

    We started the Conceptual Structure of School Chemistry research project, a part of which is reported on here, with an attempt to solve the problem of the hidden structure in school chemistry. In order to solve that problem, and informed by previous research, we performed a content analysis of school chemistry textbooks and syllabi. This led us to the hypothesis that school chemistry curricula are based on an underlying, coherent structure of chemical concepts that students are supposed to learn for the purpose of explaining and predicting chemical phenomena. The elicited comments and criticisms of an International Forum of twenty-eight researchers of chemical education, though, refuted the central claims of this hypothesis. This led to a descriptive theory of the currently dominant school chemistry curriculum in terms of a rigid combination of a specific substantive structure, based on corpuscular theory, a specific philosophical structure, educational positivism, and a specific pedagogical structure, involving initiatory and preparatory training of future chemists. Secondly, it led to an explanatory theory of the structure of school chemistry - based on Kuhn's theory of normal science and scientific training - in which dominant school chemistry is interpreted as a form of normal science education. Since the former has almost all characteristics in common with the latter, dominant school chemistry must be regarded as normal chemistry education. Forum members also formulated a number of normative criticisms on dominant school chemistry, which we interpret as specific dangers of normal chemistry education, complementing Popper's discussion of the general dangers of normal science and its teaching. On the basis of these criticisms, it is argued that normal chemistry education is isolated from common sense, everyday life and society, history and philosophy of science, technology, school physics, and from chemical research.

  20. [The morphometric characteristics of the main structural components of renal nephrons in the white rats with experimentally induced acute and chronic alcohol intoxication].

    PubMed

    Shcherbakova, V M

    2016-01-01

    The objective of the present work was to study the morphometric characteristics of the main structural components of renal nephrons in the white rats with the experimentally induced acute and chronic alcohol intoxication. We undertook the morphometric examination of the structural elements of rat kidneys with the subsequent statistical analysis of the data obtained. The results of the study give evidence of the toxic action of ethanol on all structural components of the nephron in the case of both acute and chronic alcohol intoxication. The study revealed some specific features of the development of pathological process in the renal tissue structures at different stages of alcohol intoxication. The most pronounced morphological changes were observed in the renal proximal tubules and the least pronounced ones in the structure of the renal glomeruli. The earliest morphological changes become apparent in distal convoluted tubules of the nephron; in the case of persistent alcoholemia, they first develop in the renal corpuscles and thereafter in the distal proximal tubules. The maximum changes occur in the case of acute alcohol intoxication and between 2 weeks and 2 months of chronic intoxication; they become less conspicuous during a later period.

  1. Analysis on pseudo excitation of random vibration for structure of time flight counter

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Dapeng

    2015-03-01

    Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.

  2. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo.

    PubMed

    Xu, Tao; Liu, Nian; Yu, Zhenglei; Xu, Tianshuang; Zou, Meng

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.

  3. Computer based interpretation of infrared spectra-structure of the knowledge-base, automatic rule generation and interpretation

    NASA Astrophysics Data System (ADS)

    Ehrentreich, F.; Dietze, U.; Meyer, U.; Abbas, S.; Schulz, H.

    1995-04-01

    It is a main task within the SpecInfo-Project to develop interpretation tools that can handle a great deal more of the complicated, more specific spectrum-structure-correlations. In the first step the empirical knowledge about the assignment of structural groups and their characteristic IR-bands has been collected from literature and represented in a computer readable well-structured form. Vague, verbal rules are managed by introduction of linguistic variables. The next step was the development of automatic rule generating procedures. We had combined and enlarged the IDIOTS algorithm with the algorithm by Blaffert relying on set theory. The procedures were successfully applied to the SpecInfo database. The realization of the preceding items is a prerequisite for the improvement of the computerized structure elucidation procedure.

  4. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo

    PubMed Central

    Xu, Tao; Liu, Nian

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body. PMID:29118571

  5. The relevance of network micro-structure for neural dynamics.

    PubMed

    Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan

    2013-01-01

    The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits.

  6. Correlates of State Enactment of Elementary School Physical Education Laws

    PubMed Central

    Monnat, Shannon M.; Lounsbery, Monica A.F.; Smith, Nicole J.

    2014-01-01

    Objective To describe variation in U.S. state elementary school physical education (PE) policies and to assess associations between state PE policy enactment and education funding, academic achievement, sociodemographic disadvantage, and political characteristics. Methods U.S. state laws regarding school PE time, staffing, curriculum, fitness assessment, and moderate-to-vigorous physical activity (MVPA) in 2012 were classified as strong/specific, weak/nonspecific, or none based on codified law ratings within the Classification of Laws Associated with School Students (C.L.A.S.S.). Laws were merged with state-level data from multiple sources. Logistic regression was used to determine associations between state characteristics and PE laws (N=51). Results Laws with specific PE and MVPA time requirements and evidence-based curriculum standards were more likely in states with low academic performance and in states with sociodemographically disadvantaged populations. School day length was positively associated with enacting a PE curriculum that referenced evidence-based standards. School funding and political characteristics were not associated with PE laws. Conclusions Limited time and high-stakes testing requirements force schools to prioritize academic programs, posing barriers to state passage of specific PE laws. To facilitate PE policy enactment, it may be necessary to provide evidence of how PE policies can be implemented within existing time and staffing structures. PMID:25230368

  7. Correlates of state enactment of elementary school physical education laws.

    PubMed

    Monnat, Shannon M; Lounsbery, Monica A F; Smith, Nicole J

    2014-12-01

    To describe variation in U.S. state elementary school physical education (PE) policies and to assess associations between state PE policy enactment and education funding, academic achievement, sociodemographic disadvantage, and political characteristics. U.S. state laws regarding school PE time, staffing, curriculum, fitness assessment, and moderate-to-vigorous physical activity (MVPA) in 2012 were classified as strong/specific, weak/nonspecific, or none based on codified law ratings within the Classification of Laws Associated with School Students (C.L.A.S.S.). Laws were merged with state-level data from multiple sources. Logistic regression was used to determine associations between state characteristics and PE laws (N=51). Laws with specific PE and MVPA time requirements and evidence-based curriculum standards were more likely in states with low academic performance and in states with sociodemographically disadvantaged populations. School day length was positively associated with enacting a PE curriculum that referenced evidence-based standards. School funding and political characteristics were not associated with PE laws. Limited time and high-stake testing requirements force schools to prioritize academic programs, posing barriers to state passage of specific PE laws. To facilitate PE policy enactment, it may be necessary to provide evidence on how PE policies can be implemented within existing time and staffing structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Molecular biomimetics: GEPI-based biological routes to technology.

    PubMed

    Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet

    2010-01-01

    In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we describe lessons from biology with examples of protein-mediated functional biological materials, explain how novel peptides can be designed with specific affinity to inorganic solids using evolutionary engineering approaches, give examples of their potential utilizations in technology and medicine, and, finally, provide a summary of challenges and future prospects. (c) 2010 Wiley Periodicals, Inc.

  9. MyPMFs: a simple tool for creating statistical potentials to assess protein structural models.

    PubMed

    Postic, Guillaume; Hamelryck, Thomas; Chomilier, Jacques; Stratmann, Dirk

    2018-05-29

    Evaluating the model quality of protein structures that evolve in environments with particular physicochemical properties requires scoring functions that are adapted to their specific residue compositions and/or structural characteristics. Thus, computational methods developed for structures from the cytosol cannot work properly on membrane or secreted proteins. Here, we present MyPMFs, an easy-to-use tool that allows users to train statistical potentials of mean force (PMFs) on the protein structures of their choice, with all parameters being adjustable. We demonstrate its use by creating an accurate statistical potential for transmembrane protein domains. We also show its usefulness to study the influence of the physical environment on residue interactions within protein structures. Our open-source software is freely available for download at https://github.com/bibip-impmc/mypmfs. Copyright © 2018. Published by Elsevier B.V.

  10. Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Manh, D. H.; Phong, P. T.; Nam, P. H.; Tung, D. K.; Phuc, N. X.; Lee, In-Ja

    We investigated structural and magnetic properties and alternating current magnetic heating characteristics of La0.7Sr0.3MnO3 nanoparticles with respect to the possible application for magnetic hyperthermia treatments. Using Rietveld Profile refinement of powder X-ray diffraction data, the hexagonal structure has been observed. The particle sizes varied from 20 to 50 nm as the annealing temperature increases from 700 to 900 °C. The hysteresis loop is not observed and the good fit of Langevin function with magnetization data reveals the superparamagnetic nature at room temperature for all samples. Characteristic magnetic parameters of the particles including saturation magnetization in the temperature range 10-300 K, an effective anisotropy constant and a magnetocrystalline anisotropy constant have been determined. The Specific Absorption Rate for 15 mg/mL sample concentration was measured in alternating magnetic fields of 50-80 Oe at a fixed frequency of 236 kHz. In addition, the intrinsic loss power (ILP) has been calculated from SAR values. It is believed that La0.7Sr0.3MnO3 nanoparticles with a high ILP will be useful for the in situ hyperthermia treatment of cancer.

  11. The use of deconvolution techniques to identify the fundamental mixing characteristics of urban drainage structures.

    PubMed

    Stovin, V R; Guymer, I; Chappell, M J; Hattersley, J G

    2010-01-01

    Mixing and dispersion processes affect the timing and concentration of contaminants transported within urban drainage systems. Hence, methods of characterising the mixing effects of specific hydraulic structures are of interest to drainage network modellers. Previous research, focusing on surcharged manholes, utilised the first-order Advection-Dispersion Equation (ADE) and Aggregated Dead Zone (ADZ) models to characterise dispersion. However, although systematic variations in travel time as a function of discharge and surcharge depth have been identified, the first order ADE and ADZ models do not provide particularly good fits to observed manhole data, which means that the derived parameter values are not independent of the upstream temporal concentration profile. An alternative, more robust, approach utilises the system's Cumulative Residence Time Distribution (CRTD), and the solute transport characteristics of a surcharged manhole have been shown to be characterised by just two dimensionless CRTDs, one for pre- and the other for post-threshold surcharge depths. Although CRTDs corresponding to instantaneous upstream injections can easily be generated using Computational Fluid Dynamics (CFD) models, the identification of CRTD characteristics from non-instantaneous and noisy laboratory data sets has been hampered by practical difficulties. This paper shows how a deconvolution approach derived from systems theory may be applied to identify the CRTDs associated with urban drainage structures.

  12. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  13. 35 Hz shape memory alloy actuator with bending-twisting mode.

    PubMed

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-02-19

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators.

  14. 35 Hz shape memory alloy actuator with bending-twisting mode

    PubMed Central

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-01-01

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators. PMID:26892438

  15. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W.; Jaynes, M.L.

    1994-01-01

    November of water into and out of tidally affected canals in eastern North Carolina was documented before and after the installation of water-control structures. Water levels in five of the canals downstream from the water-control structures were controlled primarily by water-level fluctuations in estuarine receiving waters. Water-control structures also altered upstream water levels in all canals. Water levels were lowered upstream from tide gates, but increased upstream from flashboard risers. Both types of water-control structures attenuated the release of runoff following rainfall events, but in slightly different ways. Tide gates appeared to reduce peak discharge rates associated with rainfall, and flashboard risers lengthened the duration of runoff release. Tide gates had no apparent effect on pH, dissolved oxygen, suspended-sediment, or total phosphorus concentrations downstream from the structures. Specific conductance measured from composite samples collected with automatic samples increased downstream of tide gates after installation. Median concentrations of nitrite plus nitrate nitrogen were near the minimum detection level throughout the study; however, the number of observations of concentrations exceeding 0.1 milligram per liter dropped significantly after tide gates were installed. Following tide-gate installation, instantaneous loadings of nitrite plus nitrate nitrogen were significantly reduced at one test site, but this reduction was not observed at the other test site. Loadings of other nutrient species and suspended sediment did not change at the tide-gate test sites after tide-gate installation. Specific conductance was lower in the Beaufort County canals than in the Hyde County canals. Although there was a slight increase in median values at the flashboard-riser sites, the mean and maximum values declined substantially downstream from the risers following installation. This decline of specific conductance in the canals occurred despite a large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  16. The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure.

    PubMed

    Balasubramaniam, Krishna N; Beisner, Brianne A; Berman, Carol M; De Marco, Arianna; Duboscq, Julie; Koirala, Sabina; Majolo, Bonaventura; MacIntosh, Andrew J; McFarland, Richard; Molesti, Sandra; Ogawa, Hideshi; Petit, Odile; Schino, Gabriele; Sosa, Sebastian; Sueur, Cédric; Thierry, Bernard; de Waal, Frans B M; McCowan, Brenda

    2018-01-01

    Among nonhuman primates, the evolutionary underpinnings of variation in social structure remain debated, with both ancestral relationships and adaptation to current conditions hypothesized to play determining roles. Here we assess whether interspecific variation in higher-order aspects of female macaque (genus: Macaca) dominance and grooming social structure show phylogenetic signals, that is, greater similarity among more closely-related species. We use a social network approach to describe higher-order characteristics of social structure, based on both direct interactions and secondary pathways that connect group members. We also ask whether network traits covary with each other, with species-typical social style grades, and/or with sociodemographic characteristics, specifically group size, sex-ratio, and current living condition (captive vs. free-living). We assembled 34-38 datasets of female-female dyadic aggression and allogrooming among captive and free-living macaques representing 10 species. We calculated dominance (transitivity, certainty), and grooming (centrality coefficient, Newman's modularity, clustering coefficient) network traits as aspects of social structure. Computations of K statistics and randomization tests on multiple phylogenies revealed moderate-strong phylogenetic signals in dominance traits, but moderate-weak signals in grooming traits. GLMMs showed that grooming traits did not covary with dominance traits and/or social style grade. Rather, modularity and clustering coefficient, but not centrality coefficient, were strongly predicted by group size and current living condition. Specifically, larger groups showed more modular networks with sparsely-connected clusters than smaller groups. Further, this effect was independent of variation in living condition, and/or sampling effort. In summary, our results reveal that female dominance networks were more phylogenetically conserved across macaque species than grooming networks, which were more labile to sociodemographic factors. Such findings narrow down the processes that influence interspecific variation in two core aspects of macaque social structure. Future directions should include using phylogeographic approaches, and addressing challenges in examining the effects of socioecological factors on primate social structure. © 2017 Wiley Periodicals, Inc.

  17. Structure of the mouse sex peptide pheromone ESP1 reveals a molecular basis for specific binding to the class C G-protein-coupled vomeronasal receptor.

    PubMed

    Yoshinaga, Sosuke; Sato, Toru; Hirakane, Makoto; Esaki, Kaori; Hamaguchi, Takashi; Haga-Yamanaka, Sachiko; Tsunoda, Mai; Kimoto, Hiroko; Shimada, Ichio; Touhara, Kazushige; Terasawa, Hiroaki

    2013-05-31

    Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.

  18. Bovine Milk as a Source of Functional Oligosaccharides for Improving Human Health12

    PubMed Central

    Zivkovic, Angela M.; Barile, Daniela

    2011-01-01

    Human milk oligosaccharides are complex sugars that function as selective growth substrates for specific beneficial bacteria in the gastrointestinal system. Bovine milk is a potentially excellent source of commercially viable analogs of these unique molecules. However, bovine milk has a much lower concentration of these oligosaccharides than human milk, and the majority of the molecules are simpler in structure than those found in human milk. Specific structural characteristics of milk-derived oligosaccharides are crucial to their ability to selectively enrich beneficial bacteria while inhibiting or being less than ideal substrates for undesirable and pathogenic bacteria. Thus, if bovine milk products are to provide human milk–like benefits, it is important to identify specific dairy streams that can be processed commercially and cost-effectively and that can yield specific oligosaccharide compositions that will be beneficial as new food ingredients or supplements to improve human health. Whey streams have the potential to be commercially viable sources of complex oligosaccharides that have the structural resemblance and diversity of the bioactive oligosaccharides in human milk. With further refinements to dairy stream processing techniques and functional testing to identify streams that are particularly suitable for enriching beneficial intestinal bacteria, the future of oligosaccharides isolated from dairy streams as a food category with substantiated health claims is promising. PMID:22332060

  19. Bovine milk as a source of functional oligosaccharides for improving human health.

    PubMed

    Zivkovic, Angela M; Barile, Daniela

    2011-05-01

    Human milk oligosaccharides are complex sugars that function as selective growth substrates for specific beneficial bacteria in the gastrointestinal system. Bovine milk is a potentially excellent source of commercially viable analogs of these unique molecules. However, bovine milk has a much lower concentration of these oligosaccharides than human milk, and the majority of the molecules are simpler in structure than those found in human milk. Specific structural characteristics of milk-derived oligosaccharides are crucial to their ability to selectively enrich beneficial bacteria while inhibiting or being less than ideal substrates for undesirable and pathogenic bacteria. Thus, if bovine milk products are to provide human milk-like benefits, it is important to identify specific dairy streams that can be processed commercially and cost-effectively and that can yield specific oligosaccharide compositions that will be beneficial as new food ingredients or supplements to improve human health. Whey streams have the potential to be commercially viable sources of complex oligosaccharides that have the structural resemblance and diversity of the bioactive oligosaccharides in human milk. With further refinements to dairy stream processing techniques and functional testing to identify streams that are particularly suitable for enriching beneficial intestinal bacteria, the future of oligosaccharides isolated from dairy streams as a food category with substantiated health claims is promising.

  20. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing

    PubMed Central

    Yang, Qin; Gilmartin, Gregory M.; Doublié, Sylvie

    2010-01-01

    Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing. PMID:20479262

  1. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2010-06-01

    Human Cleavage Factor Im (CFI(m)) is an essential component of the pre-mRNA 3' processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFI(m)25) of the CFI(m) complex possesses a characteristic alpha/beta/alpha Nudix fold, CFI(m)25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFI(m)25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFI(m)25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson-Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap(4)A (diadenosine tetraphosphate) by CFI(m)25 suggests a potential role for small molecules in the regulation of mRNA 3' processing.

  2. Broadband Transmission Loss Due to Reverberant Excitation

    NASA Technical Reports Server (NTRS)

    Barisciano, Lawrence P. Jr.

    1999-01-01

    The noise transmission characteristics of candidate curved aircraft sidewall panel constructions is examined analytically using finite element models of the selected panel geometries. The models are validated by experimental modal analyses and transmission loss testing. The structural and acoustic response of the models are then examined when subjected to random or reverberant excitation, the simulation of which is also discussed. For a candidate curved honeycomb panel, the effect of add-on trim panel treatments is examined. Specifically, two different mounting configurations are discussed and their effect on the transmission loss of the panel is presented. This study finds that the add-on acoustical treatments do improve on the primary structures transmission loss characteristics, however, much more research is necessary to draw any valid conclusions about the optimal configuration for the maximum noise transmission loss. This paper describes several directions for the extension of this work.

  3. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  4. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  5. Age-specific productivity and nest site characteristics of Cooper's hawks (Accipiter cooperii)

    USGS Publications Warehouse

    Moore, K.R.; Henny, C.J.

    1984-01-01

    Nesting Cooper's Hawks (Accipiter cooperii) were studied in northeastern Oregon. Second-year (SY) males did not breed, but 22 percent of the breeding females were SY's. Mean clutch size (P = 0.012) and mean number of young fledged per pair that laid eggs (P < 0.10) were lower for SY females than for adult (after second year [ASY}) females; however, an equal percentage of the eggs (excluding a collected sample egg) yielded fledged young for each age class. Stepwise discriminant analysis suggested differences in structural characteristics of the nest site habitat for ASY and SY females, i.e., SY female nest sites were associated with younger successional stages than ASY female nest sites. Nests of both age groups were built in trees with high crown volume, but ASY females utilized mistletoe (Arceuthobium sp.) for nest structures more frequently (P < 0.01) than SY females.

  6. A remote sensing based vegetation classification logic for global land cover analysis

    USGS Publications Warehouse

    Running, Steven W.; Loveland, Thomas R.; Pierce, Lars L.; Nemani, R.R.; Hunt, E. Raymond

    1995-01-01

    This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.

  7. The adoption of wraparound services among substance abuse treatment organizations serving criminal offenders: The role of a women-specific program.

    PubMed

    Oser, Carrie; Knudsen, Hannah; Staton-Tindall, Michele; Leukefeld, Carl

    2009-08-01

    Women's substance abuse treatment outcomes are improved when women-specific needs are addressed through wraparound services, such as the provision of child care, employment assistance, or mental health counseling. Despite a higher prevalence of pre-incarceration drug use, women in prison report receiving fewer services than their male counterparts, suggesting they likely have greater service needs upon release. It is unknown whether community-based treatment organizations with a women-specific program offer more wraparound services than programs without a focus on women. This study uses data from the Criminal Justice Drug Abuse Treatment Studies (CJ-DATS) research cooperative's National Criminal Justice Treatment Practices Survey (NCJTPS), a nationally representative sample of community-based treatment programs serving predominantly criminal offenders (n=217). First, bivariate analyses identified differences between organizations with and without a women-specific program on the number of wraparound services adopted as well as organizational-level characteristics (i.e., organizational structure, personnel characteristics, culture, sources of information, and systems integration) related to their adoption. Second, Poisson regression was used to identify the organizational characteristics associated with the number of adopted wraparound services, with having a women-specific program being the primary covariate of interest. Results indicate larger organizations that utilized a greater number of treatment approaches and believed that treatment could reduce crime were more likely to offer a greater assortment of wraparound services. In an effort to improve behavioral treatment outcomes, it is imperative to examine organizational-level contextual factors that shape the availability of wraparound services for female offenders in community-based substance abuse treatment settings.

  8. A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors

    NASA Astrophysics Data System (ADS)

    Bang, Joon Hyuk; Lee, Hye-Min; An, Kay-Hyeok; Kim, Byung-Joo

    2017-09-01

    This study aimed to understand the impact of CO2 activation of commercial activated carbons (AC) on the changes in pore characteristics and the electrochemical property. The surface structure of manufactured AC was observed with a X-ray diffraction (XRD); the pore characteristics were analyzed at N2/77 K isothermal absorption using the Brunauer-Emmett-Teller (BET) and Dubinin-Radushkevich (DR) equations. In addition, the electrochemical characteristics were analyzed by means of an electrolyte of 1 M (C2H5)4NBF4/propylene carbonate, using a charge/discharge test, cyclic voltammetry (CV), and impedance. The N2/77 K isothermal absorption curve of the manufactured AC falls under Type I in the classification of the International Union of Pure and Applied Chemistry (IUPAC) and was found to largely comprise micropores. The specific surface area increased from 1690 m2/g to 2290 m2/g, and the pore volume grew from 0.80 cm3/g to 1.10 cm3/g. The analysis of electrochemical characteristics also found that the specific capacity increased from 17 F/g to 20 F/g (in a full cell condition). Based on these results, we were able to determine the pore characteristics of commercial AC through an additional activation process, which consequently allowed us to manufacture the AC with an advanced electrochemical property.

  9. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, Alberto; Martinez de Alba, Angel-Emilio; Flores, Ricardo

    2008-02-05

    Infection by viroids, non-protein-coding circular RNAs, occurs with the accumulation of 21-24 nt viroid-derived small RNAs (vd-sRNAs) with characteristic properties of small interfering RNAs (siRNAs) associated to RNA silencing. The vd-sRNAs most likely derive from dicer-like (DCL) enzymes acting on viroid-specific dsRNA, the key elicitor of RNA silencing, or on the highly structured genomic RNA. Previously, viral dsRNAs delivered mechanically or agroinoculated have been shown to interfere with virus infection in a sequence-specific manner. Here, we report similar results with members of the two families of nuclear- and chloroplast-replicating viroids. Moreover, homologous vd-sRNAs co-delivered mechanically also interfered with one ofmore » the viroids examined. The interference was sequence-specific, temperature-dependent and, in some cases, also dependent on the dose of the co-inoculated dsRNA or vd-sRNAs. The sequence-specific nature of these effects suggests the involvement of the RNA induced silencing complex (RISC), which provides sequence specificity to RNA silencing machinery. Therefore, viroid titer in natural infections might be regulated by the concerted action of DCL and RISC. Viroids could have evolved their secondary structure as a compromise between resistance to DCL and RISC, which act preferentially against RNAs with compact and relaxed secondary structures, respectively. In addition, compartmentation, association with proteins or active replication might also help viroids to elude their host RNA silencing machinery.« less

  10. A review of hospital characteristics associated with improved performance.

    PubMed

    Brand, Caroline A; Barker, Anna L; Morello, Renata T; Vitale, Michael R; Evans, Sue M; Scott, Ian A; Stoelwinder, Johannes U; Cameron, Peter A

    2012-10-01

    The objective of this review was to critically appraise the literature relating to associations between high-level structural and operational hospital characteristics and improved performance. The Cochrane Library, MEDLINE (Ovid), CINAHL, proQuest and PsychINFO were searched for articles published between January 1996 and May 2010. Reference lists of included articles were reviewed and key journals were hand searched for relevant articles. and data extraction Studies were included if they were systematic reviews or meta-analyses, randomized controlled trials, controlled before and after studies or observational studies (cohort and cross-sectional) that were multicentre, comparative performance studies. Two reviewers independently extracted data, assigned grades of evidence according to the Australian National Health and Medical Research Council guidelines and critically appraised the included articles. Data synthesis Fifty-seven studies were reported within 12 systematic reviews and 47 observational articles. There was heterogeneity in use and definition of performance outcomes. Hospital characteristics investigated were environment (incentives, market characteristics), structure (network membership, ownership, teaching status, geographical setting, service size) and operational design (innovativeness, leadership, organizational culture, public reporting and patient safety practices, information technology systems and decision support, service activity and planning, workforce design, staff training and education). The strongest evidence for an association with overall performance was identified for computerized physician order entry systems. Some evidence supported the associations with workforce design, use of financial incentives, nursing leadership and hospital volume. There is limited, mainly low-quality evidence, supporting the associations between hospital characteristics and healthcare performance. Further characteristic-specific systematic reviews are indicated.

  11. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    PubMed

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  12. Factorial Invariance of an Integrated Measure of Classroom Sense of Community in Face-to-Face and Online Courses

    ERIC Educational Resources Information Center

    Cho, YoonJung; Hathcoat, John D.; Bridges, Stacey L.; Mathew, Susan; Bang, Hyeyoung

    2014-01-01

    The aim of the present study was to develop a more integrated measure of classroom sense of community (SOC) while testing factorial invariance of the measurement structure across face-to-face and online courses. We incorporated two existing SOC measures to capture both context-specific and context-general characteristics of SOC and developed an…

  13. Timation 3 satellite. [artificial satellite for navigation, space radiation, and time transfer applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, C. A.

    1972-01-01

    The characteristics of the Timation 3 satellite are discussed. A diagram of the basic structure is provide to show the solar panels, navigation and telemetry antennas, gravity gradient booms, and solar cell experiments. The specific application of the satellite for time management or time transfer for navigation purposes is reported. Various measurements and experiments conducted by the satellite are described.

  14. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  15. Mineralogical, crystallographic and morphological characteristics of natural kaolins from the Ivory Coast (West Africa)

    NASA Astrophysics Data System (ADS)

    Sei, J.; Morato, F.; Kra, G.; Staunton, S.; Quiquampoix, H.; Jumas, J. C.; Olivier-Fourcade, J.

    2006-10-01

    Thirteen clay samples from four deposits in the Ivory Coast (West Africa) were studied using X-ray diffraction, thermogravimetric analysis and chemical analysis. Mineralogical, crystallographic and morphological characteristics of these samples are given. Kaolinite is the principal mineral but other minerals are present in small quantities: illite, quartz, anatase and iron oxides (oxides and oxyhydroxides). The crystallographic, morphological and surface characteristics are influenced by the presence of these impurities. In particular, the presence of iron oxides was associated with reduced structural ordering and thermal stability of kaolinite and increased specific surface area. These clays could be used in the ceramics industry to make tiles and bricks, and also in agronomy as supports for chemical fertilizers or for environmental protection by immobilising potentially toxic waste products.

  16. Personality, work characteristics, and employee well-being: a longitudinal analysis of additive and moderating effects.

    PubMed

    Houkes, Inge; Janssen, Peter P M; de Jonge, Jan; Bakker, Arnold B

    2003-01-01

    This study tested the longitudinal influence of personality (measured by the characteristics growth need strength, negative affectivity [NA], and upward striving) on 3 psychological outcomes (intrinsic work motivation, emotional exhaustion, and turnover intention), using a pattern of specific relationships between work characteristics and these outcomes as a framework. The study hypotheses were tested in a multioccupational sample consisting of bank employees and teachers, using a 2-wave panel design with a 1-year time interval and structural equation modeling. NA had a cross-lagged direct and additive relationship with emotional exhaustion and also moderated the relationship between Time 1 workload and Time 2 emotional exhaustion. The authors concluded that NA may have multiple effects on emotional exhaustion that persist over time.

  17. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  18. A comparison of the structure and flow characteristics of the upper troposphere and stratosphere of the Northern and Southern Hemispheres

    NASA Technical Reports Server (NTRS)

    Adler, R. F.

    1974-01-01

    The general circulations of the Northern and Southern Hemispheres are compared with regard to the upper troposphere and stratosphere using atmospheric structure obtained from satellite, multi-channel radiance data. Specifically, the data are from the Satellite Infrared Spectrometer (SIRS) instrument aboard the Nimbus 3 spacecraft. The inter-hemispheric comparisons are based on two months of data (one summer month and one winter month) in each hemisphere. Topics studied include: mean meridional circulation in the Southern Hemisphere stratosphere; magnitude and distribution of tropospheric eddy heat flux; magnitudes of energy cycle components; and the relation of vortex structure to the breakdown climatology of the Antarctic stratospheric polar vortex.

  19. Perceiving environmental structure from optical motion

    NASA Technical Reports Server (NTRS)

    Lappin, Joseph S.

    1991-01-01

    Generally speaking, one of the most important sources of optical information about environmental structure is known to be the deforming optical patterns produced by the movements of the observer (pilot) or environmental objects. As an observer moves through a rigid environment, the projected optical patterns of environmental objects are systematically transformed according to their orientations and positions in 3D space relative to those of the observer. The detailed characteristics of these deforming optical patterns carry information about the 3D structure of the objects and about their locations and orientations relative to those of the observer. The specific geometrical properties of moving images that may constitute visually detected information about the shapes and locations of environmental objects is examined.

  20. The micro-social risk environment for injection drug use: An event specific analysis of dyadic, situational, and network predictors of injection risk behavior.

    PubMed

    Janulis, Patrick

    2016-01-01

    This study explores the risk environment for drug use by examining injection risk behavior during specific injection episodes. By leveraging multiple observations of injection episodes of participants, the study attempts to move beyond global assessment of environmental variables to simultaneously model within (i.e., event level) as well as between (i.e., individual level) predictors of injection risk. Furthermore, gender is also explored as a potential moderator of the relationship between the association of specific partner characteristics (e.g., having an injection partner who is also a sexual partner) and injection risk behavior. Data is used from the Sexual Acquisition of Transmission of HIV Cooperative Agreement Study (SATHCAP). Multilevel structural equation modeling is utilized to predict within and between variations in underlying injection risk behavior as measured using four indicators of injection risk. Results indicated that a number of partner level characteristics (i.e., being emotionally close with the partner, sexual partnership, being a first time partner) and one social situational (i.e., the number of non-injectors present at the injection episode) characteristic predicted event level injection risk behavior. However, the impact of partner characteristics also appears to be moderated by gender of the participants. More specifically, sharing a sexual partnership with an injection partner was more strongly associated with injection risk among females as compared to males and females indicated higher levels of risk when injecting with other females while the partner's gender showed no significant association with risk for male injectors. These results suggest that people who inject drug do report varying levels of risk during different injection episodes and this variation can be explained by partner and situational characteristics. Improved understanding of the social processes surrounding injection episodes is required to further refine harm reduction approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  2. Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms

    PubMed Central

    Wagner, Katrin; Mendieta-Leiva, Glenda; Zotz, Gerhard

    2015-01-01

    Information on the degree of host specificity is fundamental for an understanding of the ecology of structurally dependent plants such as vascular epiphytes. Starting with the seminal paper of A.F.W. Schimper on epiphyte ecology in the late 19th century over 200 publications have dealt with the issue of host specificity in vascular epiphytes. We review and critically discuss this extensive literature. The available evidence indicates that host ranges of vascular epiphytes are largely unrestricted while a certain host bias is ubiquitous. However, tree size and age and spatial autocorrelation of tree and epiphyte species have not been adequately considered in most statistical analyses. More refined null expectations and adequate replication are needed to allow more rigorous conclusions. Host specificity could be caused by a large number of tree traits (e.g. bark characteristics and architectural traits), which influence epiphyte performance. After reviewing the empirical evidence for their relevance, we conclude that future research should use a more comprehensive approach by determining the relative importance of various potential mechanisms acting locally and by testing several proposed hypotheses regarding the relative strength of host specificity in different habitats and among different groups of structurally dependent flora. PMID:25564514

  3. Evolution of porous structure and texture in nanoporous SiO2/Al2O3 materials during calcination

    NASA Astrophysics Data System (ADS)

    Glazkova, Elena A.; Bakina, Olga V.

    2016-11-01

    The study focuses on the evolution of porous structure and texture of silica/alumina xerogels during calcination in the temperature range from 500 to 1200°C. The xerogel was prepared via sol-gel method using subcritical drying. The silica/alumina xerogels were examined using transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), Brunauer Emmett Teller-Barrett Joyner Halenda (BET-BJH), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. SiO2 primary particles of size about 10 nm are connected with each other to form a porous xerogel structure. Alumina is uniformly distributed over the xerogel volume. The changes of textural characteristics under heat treatment of samples are radical; the specific surface area and pore size attain their maximum at 500-700°C. The heat treatment of samples causes dehydroxylation of the xerogel surface, and at 1200°C the sample is sintered, loses mesoporosity, and its specific surface area reduces considerably down to 78 m2/g.

  4. Developing an institutional framework to incorporate ecosystem services into decision making-Proceedings of a workshop

    USGS Publications Warehouse

    Hogan, Dianna; Arthaud, Greg; Brookshire, David; Gunther, Tom; Pincetl, Stephanie; Shapiro, Carl; Van Horne, Bea

    2011-01-01

    The appropriate use of institutional structures, including markets, to integrate ecosystem services into decision making depends on the players and characteristics of the specific situation (such as stakeholders, the ecosystem, resources, and the political environment). Incorporating ecosystem service values into decisions requires consideration of place-based social, cultural, economic, and landscape characteristics and institutions. Thus, a single, prescribed solution will not work-various institutional strategies must be used in different situations. Market-based approaches require appropriate regulations, monitoring, and enforcement, depending on the situation and place. Further, market approaches will need to be coupled with nonmarket approaches into an integrated institutional framework.

  5. Operating characteristics of depression and anxiety disorder phenotype dimensions and trait neuroticism: a theoretical examination of the fear and distress disorders from the Netherlands study of depression and anxiety.

    PubMed

    Tully, Phillip J; Wardenaar, Klaas J; Penninx, Brenda W J H

    2015-03-15

    The receiver operating characteristics (ROC) of anhedonic depression and anxious arousal to detect the distress- (major depression, dysthymia, generalized anxiety disorder) and fear-disorder clusters (i.e. panic disorder, agoraphobia, social phobia) have not been reported in a large sample. A sample of 2981 persons underwent structured psychiatric interview; n=652 were without lifetime depression and anxiety disorder history. Participants also completed a neuroticism scale (Revised NEO Five Factor Inventory [NEO-FFI]), and the 30-item short adaptation of the Mood and Anxiety Symptoms Questionnaire (MASQ-D30) measuring anhedonic depression, anxious arousal and general distress. Maximal sensitivity and specificity was determined by the Youden Index and the area-under-the-curve (AUC) in ROC analysis. A total of 2624 completed all measures (age M=42.4 years±13.1, 1760 females [67.1%]), including 1060 (40.4%) persons who met criteria for a distress-disorder, and 973 (37.1%) who met criteria for a fear-disorder. The general distress dimension provided the highest ROC values in the detection of the distress-disorders (AUC=.814, sensitivity=71.95%, specificity=76.34%, positive predictive value=67.33, negative predictive value=80.07). None of the measures provided suitable operating characteristics in the detection of the fear-disorders with specificity values <75%. Over sampling of depression and anxiety disorders may lead to inflated positive- and negative predictive values. The MASQ-D30 general distress dimension showed clinically suitable operating characteristics in the detection of distress-disorders. Neither neuroticism nor the MASQ-D30 dimensions provided suitable operating characteristics in the detection of the fear-disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Progress study of Micro Carbon Coils

    NASA Astrophysics Data System (ADS)

    Wang, Haiquan; Yang, Shaoming; Chen, Xiuqin

    2017-12-01

    As a kind of novel bio-mimetic carbon fibers, with diversities of high functions, carbon microcoils (CMC) have the outstanding properties of high specific strength, low-density, large specific surface area, heat resistance, corrosion resistance, chemical stability, conductive ability and thermal conductivity. Due to their special three-dimensional spiral structure, they have the chiral characteristics and a high flexibility. Carbon microcoils has become a research hotspot, especially the preparation of polymer-based carbon microcoils composite materials and they have wide more application such as flexible sensors, electromagnetic shielding materials, hydrogen storage materials, health care products and so on.

  7. First metatarsophalangeal joint motion in Homo sapiens: theoretical association of two-axis kinematics and specific morphometrics.

    PubMed

    Durrant, Michael N; McElroy, Tucker; Durrant, Lara

    2012-01-01

    The metatarsal head and proximal phalanx exhibit considerable asymmetry in their shape and geometry, but there is little documentation in the literature regarding the prevalence of structural characteristics that occur in a given population. Although there is a considerable volume of in vivo and in vitro experiments demonstrating first metatarsal inversion around its longitudinal axis with dorsiflexion, little is known regarding the applicability of specific morphometrics to these motions. Nine distinctive osseous characteristics in the metatarsal head and phalanx were selected based on their location, geometry, and perceived functional relationship to previous studies describing metatarsal motion as inversion with dorsiflexion. The prevalences of the chosen characteristics were determined in a cohort of 21 randomly selected skeletal specimens, 19 of which were provided by the anatomical preparation office at the University of California, San Diego, and two of which were in the possession of one of us (M.D.). The frequency of occurrence of each selected morphological characteristic in this sample and the relevant summary statistics confirm a strong association between the selected features and a conceptual two-axis kinematic model of the metatarsophalangeal joint. The selected morphometrics are consistent with inversion of the metatarsal around its longitudinal axis as it dorsiflexes.

  8. The scope and strength of sex-specific selection in genome evolution

    PubMed Central

    Wright, A E; Mank, J E

    2013-01-01

    Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. PMID:23848139

  9. Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian

    2012-07-11

    Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminalmore » region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS-ATP and hpDTBS-GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.« less

  10. Characteristics of communication guidelines that facilitate or impede guideline use: a focus group study

    PubMed Central

    Veldhuijzen, Wemke; Ram, Paul M; van der Weijden, Trudy; Niemantsverdriet, Susan; van der Vleuten, Cees PM

    2007-01-01

    Background The quality of doctor-patient communication has a major impact on the quality of medical care. Communication guidelines define best practices for doctor patient communication and are therefore an important tool for improving communication. However, adherence to communication guidelines remains low, despite doctors participating in intensive communication skill training. Implementation research shows that adherence is higher for guidelines in general that are user centred and feasible, which implies that they are consistent with users' opinions, tap into users' existing skills and fit into existing routines. Developers of communication guidelines seem to have been somewhat negligent with regard to user preferences and guideline feasibility. In order to promote the development of user centred and practicable communication guidelines, we elicited user preferences and identified which guideline characteristics facilitate or impede guideline use. Methods Seven focus group interviews were conducted with experienced GPs, communication trainers (GPs and behavioural scientists) and communication learners (GP trainees and medical students) and three focus group interviews with groups of GP trainees only. All interviews were transcribed and analysed qualitatively. Results The participants identified more impeding guideline characteristics than facilitating ones. The most important impeding characteristic was that guidelines do not easily fit into GPs' day-to-day practice. This is due to rigidity and inefficiency of communication guidelines and erroneous assumptions underpinning guideline development. The most important facilitating characteristic was guideline structure. Guidelines that were structured in distinct phases helped users to remain in control of consultations, which was especially useful in complicated consultations. Conclusion Although communication guidelines are generally considered useful, especially for structuring consultations, their usefulness is impaired by lack of flexibility and applicability to practice routines. User centred and feasible guidelines should combine the advantages of helping doctors to structure consultations with flexibility to tailor communication strategies to specific contexts and situations. PMID:17506878

  11. Possiblity of substituting 12XH3A steel in the manufacture of gears for a Sova motorcycle gearing box

    NASA Astrophysics Data System (ADS)

    Abramov, L. M.; Karabanov, V. P.; Abramov, V. L.; Astakhin, A. S.

    1996-03-01

    The experimental work describes the possibility of substituting the expensive alloying steel 12XH3A for the low-cost material (steel 40X) in manufacturing gears of the motor cycle gearing box. It ban be achieved on the basis of the obtained results and with the help of laser melting treatment of small-alloying steel. We can speak about the dependence of laser melting radiation efficiency on the regimes and procedures. The breakage of the gearing box of the motor cycle 'Sova' may be explained by the low carry ability of its first gearing box gear. This investigation includes the determination of the cause of this problem. One of the most wide spread methods of such decisions is the substitution of the used materials by another. The most important criteria for the new materials are: (1) the increase of mechanical characteristics (solidity, plasticity); (2) the increase of such characteristics as hardness, specific percussive viscosity; (3) the improvement of the technological characteristics; (4) the condencention of the manufacturing expenditures (economical effect). In accordance with these creations some materials (35X, 40X, 20XH, 40XHM steels) were chosen. The best material is 40X steel, because it allows us to treat the gears by laser radiation with the surface melt. Surface melt allows us to produce: (1) martensite structure with high solidity and low percussive viscosity; (2) martensite structure with chrome carbides and high percussive viscosity, but low plasticity; (3) amorphous or monocrystallic structures with the best characteristics. The last structure has the best characteristics because dislocation defects in such material are practically absent. Also, the amorphous surface of the materials is the most interesting. The spirit of the investigation is to define the parameters of production such as radiation power, size of laser spot, and speed of spot.

  12. A proteome view of structural, functional, and taxonomic characteristics of major protein domain clusters.

    PubMed

    Sun, Chia-Tsen; Chiang, Austin W T; Hwang, Ming-Jing

    2017-10-27

    Proteome-scale bioinformatics research is increasingly conducted as the number of completely sequenced genomes increases, but analysis of protein domains (PDs) usually relies on similarity in their amino acid sequences and/or three-dimensional structures. Here, we present results from a bi-clustering analysis on presence/absence data for 6,580 unique PDs in 2,134 species with a sequenced genome, thus covering a complete set of proteins, for the three superkingdoms of life, Bacteria, Archaea, and Eukarya. Our analysis revealed eight distinctive PD clusters, which, following an analysis of enrichment of Gene Ontology functions and CATH classification of protein structures, were shown to exhibit structural and functional properties that are taxa-characteristic. For examples, the largest cluster is ubiquitous in all three superkingdoms, constituting a set of 1,472 persistent domains created early in evolution and retained in living organisms and characterized by basic cellular functions and ancient structural architectures, while an Archaea and Eukarya bi-superkingdom cluster suggests its PDs may have existed in the ancestor of the two superkingdoms, and others are single superkingdom- or taxa (e.g. Fungi)-specific. These results contribute to increase our appreciation of PD diversity and our knowledge of how PDs are used in species, yielding implications on species evolution.

  13. Large structures and tethers working group

    NASA Technical Reports Server (NTRS)

    Murphy, G.; Garrett, H.; Samir, U.; Barnett, A.; Raitt, J.; Sullivan, J.; Katz, I.

    1986-01-01

    The Large Structures and Tethers Working Group sought to clarify the meaning of large structures and tethers as they related to space systems. Large was assumed to mean that the characteristic length of the structure was greater than one of such relevant plasma characteristics as ion gyroradius or debey length. Typically, anything greater than or equal to the Shuttle dimensions was considered large. It was agreed that most large space systems that the tether could be better categorized as extended length, area, or volume structures. The key environmental interactions were then identified in terms of these three categories. In the following Working Group summary, these categories and the related interactions are defined in detail. The emphasis is on how increases in each of the three spatial dimensions uniquely determine the interactions with the near-Earth space environment. Interactions with the environments around the other planets and the solar wind were assumed to be similar or capable of being extrapolated from the near-Earth results. It should be remembered in the following that the effects on large systems do not just affect specific technologies but will quite likely impact whole missions. Finally, the possible effects of large systems on the plasma environment, although only briefly discussed, were felt to be of potentially great concern.

  14. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    PubMed

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Revisiting the European sovereign bonds with a permutation-information-theory approach

    NASA Astrophysics Data System (ADS)

    Fernández Bariviera, Aurelio; Zunino, Luciano; Guercio, María Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2013-12-01

    In this paper we study the evolution of the informational efficiency in its weak form for seventeen European sovereign bonds time series. We aim to assess the impact of two specific economic situations in the hypothetical random behavior of these time series: the establishment of a common currency and a wide and deep financial crisis. In order to evaluate the informational efficiency we use permutation quantifiers derived from information theory. Specifically, time series are ranked according to two metrics that measure the intrinsic structure of their correlations: permutation entropy and permutation statistical complexity. These measures provide the rectangular coordinates of the complexity-entropy causality plane; the planar location of the time series in this representation space reveals the degree of informational efficiency. According to our results, the currency union contributed to homogenize the stochastic characteristics of the time series and produced synchronization in the random behavior of them. Additionally, the 2008 financial crisis uncovered differences within the apparently homogeneous European sovereign markets and revealed country-specific characteristics that were partially hidden during the monetary union heyday.

  16. Structural Masquerade of Plesiomonas shigelloides Strain CNCTC 78/89 O-Antigen-High-Resolution Magic Angle Spinning NMR Reveals the Modified d-galactan I of Klebsiella pneumoniae.

    PubMed

    Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz

    2017-11-29

    The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.

  17. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  18. [Comparative analysis of the genetic structure of Red Polish cattle in Poland and the Ukraine].

    PubMed

    Oblap, R V; Zvezhkhovski, L; Ivanchenko, E V; Glazko, V I

    2002-01-01

    Comparative analysis of genetic structure of two groups of Red Polish cattle, which reproduce in Poland and Ukraine, was made. Six molecular-genetic markers (kappa-casein, beta-lactoglobulin, leptin, myostatin, growth hormone, and pituitary-specific transcription factor Pit-I) were tested by PCR-RFLP. No significant differences between the considered intrabreed groups were found. High frequency of some alleles (Csn kappa B, Blg B, and Gh L) related to the important productivity traits were observed. The rare alleles in some genes were revealed. The obtained results are evidence of the unique characteristics of the investigated breed.

  19. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  20. DNA viewed as an out-of-equilibrium structure

    NASA Astrophysics Data System (ADS)

    Provata, A.; Nicolis, C.; Nicolis, G.

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  1. Association between brain structure and phenotypic characteristics in pedophilia.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. DNA viewed as an out-of-equilibrium structure.

    PubMed

    Provata, A; Nicolis, C; Nicolis, G

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  3. Dendrite and Axon Specific Geometrical Transformation in Neurite Development

    PubMed Central

    Mironov, Vasily I.; Semyanov, Alexey V.; Kazantsev, Victor B.

    2016-01-01

    We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size. PMID:26858635

  4. Framework development for the assessment of interprofessional teamwork in mental health settings.

    PubMed

    Tomizawa, Ryoko; Shigeta, Masahiro; Reeves, Scott

    2017-01-01

    In mental health settings, interprofessional practice is regarded as a comprehensive approach to prevent relapse and manage chronic conditions with practice of various teamwork interventions. To reinforce the potential of interprofessional teamwork, it is recommended that theories or conceptual frameworks be employed. There continues, however, to be a limited use of such approaches that assess the quality of interprofessional teamwork in mental health settings. This article aimed to present a new conceptual framework for the assessment of interprofessional teamwork based on the findings of a scoping review of the literature. This review was undertaken to identify conceptual frameworks utilised in interprofessional teamwork in mental health settings. After reviewing 952 articles, the methodological characteristics extracted from 12 articles were considered. The included studies were synthesised into the Donabedian structure-process-outcome model. The findings revealed that structural issues comprised three elements: professional characteristics, client-care characteristics, and contextual characteristics in organisations. Process issues comprised two elements: team mechanisms and community-oriented services. Finally, outcome issues comprised the following elements: clients' outcomes and professionals' outcomes. The review findings suggested possibilities for further development of how to assess the quality of interprofessional teamwork and provided information about what specific approach is required to improve interprofessional teamwork. Future research should utilise various areas and cultures to clarify the adaptation potential.

  5. High levels of E4-PHA-reactive oligosaccharides: potential as marker for cells with characteristics of hepatic progenitor cells.

    PubMed

    Sasaki, Nozomi; Moriwaki, Kenta; Uozumi, Naofumi; Noda, Katsuhisa; Taniguchi, Naoyuki; Kameyama, Akihiko; Narimatsu, Hisashi; Takeishi, Shunsaku; Yamada, Masao; Koyama, Nobuto; Miyoshi, Eiji

    2009-12-01

    Oligosaccharides serve as markers of the cell surface and have been used as certain kinds of tumor markers. In the present study, we established a simple method for isolating hepatic progenitor cells using a lectin, which recognizes a characteristic oligosaccharide structure. Rat liver epithelial (RLE) cells, which have been established as a hepatic stem-like cell, were used to identify characteristic oligosaccharide structures on hepatic stem cells. As a result from lectin micro array, several types of lectin including E4-PHA were identified to bind RLE cells specifically. Furthermore, lectin blot and lectin flow cytometry analyses showed that binding to E(4)-PHA lectin was significantly increased in RLE cells, compared to hepatocytes, and hepatoma cells. The induction of differentiation into a hepatocyte lineage of RLE cells by treatment with Oncostatin M and dexamethasone resulted in a decrease in E(4)-PHA binding. Using an E(4)-PHA column, we succeeded in isolating hepatic stem cells from LEC (Long-Evans with cinnamon coat color) rat livers with fluminant hepatitis. The characteristics of the established cells were similar to RLE cells and had a potential of proliferating in rat liver. These results suggest that oligosaccharides can serve as a novel marker for the isolation of the hepatic progenitor cells.

  6. Experiences in extraction of contact parameters from process-evaluation test-structures

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo

    1988-01-01

    Six-terminal-contact test structures are introduced for characterizing ohmic contacts between a metal and a heavily doped semiconductor layer. Specifically, the six-terminal test structure supplies the additional information needed in order to calculate the transmission length and eventual corrections to the characteristic resistance per unit width due to finite contact length. The essential feature of this test structure is a square contact with four taps in the lower (semiconductor) layer. Every other one of these taps is used for current injection ('front'). From the voltage drop at the opposite tap and the side taps, the 'end' resistance and the 'side' resistances are calculated. The test structures are shown to give valuable information complementary to the common front resistance measurements. The interfacial resistivity is obtained directly after proper correction for flange effects.

  7. Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures

    NASA Astrophysics Data System (ADS)

    Ander Arregi, Jon; Horký, Michal; Fabianová, Kateřina; Tolley, Robert; Fullerton, Eric E.; Uhlíř, Vojtěch

    2018-03-01

    The effects of mesoscale confinement on the metamagnetic behavior of lithographically patterned FeRh structures are investigated via Kerr microscopy. Combining the temperature- and field-dependent magnetization reversal of individual sub-micron FeRh structures provides specific phase-transition characteristics of single mesoscale objects. Relaxation of the epitaxial strain caused by patterning lowers the metamagnetic phase transition temperature by more than 15 K upon confining FeRh films below 500 nm in one lateral dimension. We also observe that the phase transition becomes highly asymmetric when comparing the cooling and heating cycles for 300 nm-wide FeRh structures. The investigation of FeRh under lateral confinement provides an interesting platform to explore emergent metamagnetic phenomena arising from the interplay of the structural, magnetic and electronic degrees of freedom at the mesoscopic length scale.

  8. Using linear algebra for protein structural comparison and classification

    PubMed Central

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532

  9. Using linear algebra for protein structural comparison and classification.

    PubMed

    Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo

    2009-07-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  10. Photogrammetry Methodology Development for Gossamer Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Walford, Alan; Black, Jonathan T.; Robson, Stuart; Shortis, Mark R.

    2002-01-01

    Photogrammetry--the science of calculating 3D object coordinates from images-is a flexible and robust approach for measuring the static and dynamic characteristics of future ultralightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.

  11. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acα2-6Galβ1-4GlcNAc human-type influenza receptor

    PubMed Central

    Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J

    2011-01-01

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237

  12. Preferences for HIV test characteristics among young, Black Men Who Have Sex With Men (MSM) and transgender women: Implications for consistent HIV testing.

    PubMed

    Frye, Victoria; Wilton, Leo; Hirshfield, Sabina; Chiasson, Mary Ann; Lucy, Debbie; Usher, DaShawn; McCrossin, Jermaine; Greene, Emily; Koblin, Beryl

    2018-01-01

    Promoting consistent HIV testing is critical among young, Black Men Who Have Sex With Men (MSM) and transgender women who are overrepresented among new HIV cases in the United States. New HIV test options are available, including mobile unit testing, one-minute testing, at home or self-testing and couples HIV testing and counseling (CHTC). In the context of these newer options, the objective of this study was to explore whether and how preferences for specific characteristics of the tests acted as barriers to and/or facilitators of testing in general and consistent testing specifically among young Black MSM and transgender women aged 16 to 29. We conducted 30 qualitative, semi-structured, in-depth interviews with young, Black, gay, bisexual or MSM and transgender women in the New York City metropolitan area to identify preferences for specific HIV tests and aspects of HIV testing options. Participants were primarily recruited from online and mobile sites, followed by community-based, face-to-face recruitment strategies to specifically reach younger participants. Thematic coding was utilized to analyze the qualitative data based on a grounded theoretical approach. We identified how past experiences, perceived test characteristics (e.g., accuracy, cost, etc.) and beliefs about the "fit" between the individual, and the test relate to preferred testing methods and consistent testing. Three major themes emerged as important to preferences for HIV testing methods: the perceived accuracy of the test method, venue characteristics, and lack of knowledge or experience with the newer testing options, including self-testing and CHTC. These findings suggest that increasing awareness of and access to newer HIV testing options (e.g., free or reduced price on home or self-tests or CHTC available at all testing venues) is critical if these new options are to facilitate increased levels of consistent testing among young, Black MSM and transgender women. Addressing perceptions of test accuracy and supporting front line staff in creating welcoming and safe testing environments may be key intervention targets. Connecting young Black MSM and transgender women to the best test option, given preferences for specific characteristics, may support more and more consistent HIV testing.

  13. Etiological Beliefs, Treatments, Stigmatizing Attitudes toward Schizophrenia. What Do Italians and Israelis Think?

    PubMed

    Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura

    2017-01-01

    Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.

  14. TRFolder-W: a web server for telomerase RNA structure prediction in yeast genomes.

    PubMed

    Zhang, Dong; Xue, Xingran; Malmberg, Russell L; Cai, Liming

    2012-10-15

    TRFolder-W is a web server capable of predicting core structures of telomerase RNA (TR) in yeast genomes. TRFolder is a command-line Python toolkit for TR-specific structure prediction. We developed a web-version built on the django web framework, leveraging the work done previously, to include enhancements to increase flexibility of usage. To date, there are five core sub-structures commonly found in TR of fungal species, which are the template region, downstream pseudoknot, boundary element, core-closing stem and triple helix. The aim of TRFolder-W is to use the five core structures as fundamental units to predict potential TR genes for yeast, and to provide a user-friendly interface. Moreover, the application of TRFolder-W can be extended to predict the characteristic structure on species other than fungal species. The web server TRFolder-W is available at http://rna-informatics.uga.edu/?f=software&p=TRFolder-w.

  15. Solving a meiotic LEGO puzzle: transverse filaments and the assembly of the synaptonemal complex in Caenorhabditis elegans.

    PubMed

    Hawley, R Scott

    2011-10-01

    The structure of the meiosis-specific synaptonemal complex, which is perhaps the central visible characteristic of meiotic prophase, has been a matter of intense interest for decades. Although a general picture of the interactions between the transverse filament proteins that create this structure has emerged from studies in a variety of organisms, a recent analysis of synaptonemal complex structure in Caenorhabditis elegans by Schild-Prüfert et al. (2011) has provided the clearest picture of the structure of the architecture of a synaptonemal complex to date. Although the transverse filaments of the worm synaptonemal complex are assembled differently then those observed in yeast, mammalian, and Drosophila synaptonemal complexes, a comparison of the four assemblies shows that achieving the overall basic structure of the synaptonemal complex is far more crucial than conserving the structures of the individual transverse filaments.

  16. Morphological and motor characteristics of Croatian first league female football players.

    PubMed

    Jelaska, Petra Mandić; Katić, Ratko; Jelaska, Igor

    2013-05-01

    The aim of this study was to determine the structure of morphological and motor characteristics of Croatian first league female football players and their impact on the estimated quality of the players. According to the goal of the research, a sample consisted of 70 Croatian first league female football players. Participants were measured in 18 tests for assessing morphological characteristics, a set of 12 basic motor abilities tests and a set of 7 tests for assessing football-specific motor abilities. Exploratory factor analysis strategy was applied separately to all measured tests: morphological, basic motor abilities and football specific motor abilities. Factor analysis of morphological tests has shown existence of 3 significant latent dimensions that explain 64% of the total variability. Factors are defined as transverse dimensionality of the skeleton and voluminosity (35%), subcutaneous fat tissue (16%) and longitudinal dimensionality of the skeleton (13%). In the area of basic motor abilities, four factors were extracted. The first factor is responsible for the integration of agility and explosive power of legs, i.e. a factor of movement regulation (agility/lower body explosiveness) (23%), the second one defines muscle tone regulation (15%), the third one defines the frequency of leg movements (12%), while the fourth one is recognized as responsible for the manifestation of basic strength, particularly of basic core strength (19%). Two factors were isolated in the space of football-specific motor abilities: football-specific efficiency (53%) and situational football coordination (27%). Furthermore, by use of factor analysis on extracted latent dimensions (morphological, basic and football specific motor abilities) two higher order factors (explaining 87% of common variability) were extracted. They were named morphological-motor factor (54%) and football-specific motor abilities factor (33%). It is assumed that two extracted higher-order factors fully describe morphological and motor status of first league female football players. Furthermore, the linear regression results in latent space showed that the identified factors are very good predictors of female football players quality (delta = 0.959). In doing so, both specific motor abilities factors and the first factor of basic motor abilities as a factor of general motor efficiency have the greatest impact on player quality, and these factors have been identified as most important predictors of player quality in Croatian women's first league and elite female football players in general. Obtained results provide deep insight into the structure of relations between the morphological, motor and specific motor variables and also indicate the importance of such definition of specific motor abilities. Consequently, results explicitly indicate the necessity of early, continuous, and systematic development of football-specific motor abilities in female football players of high competitive level but also, adjusted, to the younger age categories.

  17. Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation

    PubMed Central

    Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan

    2017-01-01

    Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174

  18. The structural characteristics of inflatable beams

    NASA Astrophysics Data System (ADS)

    Wicker, William J.

    1992-08-01

    Two inflatable beams are designed and fabricated from polyethylene of ultrahigh molecular weight, and the structures are tested against similar composite and metal-alloy tubes. Specific attention is given to the choice of material that insures material stiffness, good strength-to-weight ratio, creep resistance, and durability. A cloth beam is built from a commercial extended-chain polyethylene fiber, and the inflated beams are tested by means of three- and four-point loading to measure bending and shear deformation. Comparing geometrically similar structures shows that the fabric beams can be about 35 percent as stiff as aluminum for small deflections. The inflatable beams have elastic stiffness coefficients five and two times higher than those for nylon and polyester tubes, respectively. Inflatable structures are concluded to hold promise for lightweight aerospace applications which demand small storage areas.

  19. Self-organization in neural networks - Applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  20. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians.

    PubMed

    Walter, Uwe; Buttkus, Franziska; Benecke, Reiner; Grossmann, Annette; Dressler, Dirk; Altenmüller, Eckart

    2012-01-01

    In distinct movement disorders, transcranial sonography detects alterations of deep brain structures with higher sensitivity than other neuroimaging methods. Lenticular nucleus hyperechogenicity on transcranial sonography, thought to be caused by increased local copper content, has been reported as a characteristic finding in primary spontaneous dystonia. Here, we wanted to find out whether deep brain structures are altered in task-specific dystonia. The frequency of sonographic brainstem and basal ganglia changes was studied in an investigator-blinded setting in 15 musicians with focal task-specific hand dystonia, 15 musicians without dystonia, and 15 age- and sex-matched nonmusicians without dystonia. Lenticular nucleus hyperechogenicity was found in 12 musicians with task-specific dystonia, but only in 3 nondystonic musicians (Fisher's exact test, p = 0.001) and 2 nonmusicians (p < 0.001). The degree of lenticular nucleus hyperechogenicity in affected musicians correlated with age, but not with duration of music practice or duration of dystonia. In 2 of 3 affected musicians with normal echogenic lenticular nucleus, substantia nigra hyperechogenicity was found. Our findings support the idea of a pathogenetic link between primary spontaneous and task-specific dystonia. Sonographic basal ganglia alteration might indicate a risk factor that in combination with extensive fine motor training promotes the manifestation of task-specific dystonia. Copyright © 2011 S. Karger AG, Basel.

  1. Structure of the lutein-binding domain of human StARD3 at 1.74 Å resolution and model of a complex with lutein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horvath, Martin P., E-mail: martin.horvath@utah.edu; George, Evan W.; Tran, Quang T.

    The structure of a START-domain protein known to bind lutein in the human retina is reported to an improved resolution limit. Rigid-body docking demonstrates that at least a portion of lutein must protrude from the large tunnel-like cavity characteristic of this helix-grip protein and suggests a mechanism for lutein binding specificity. A crystal structure of the lutein-binding domain of human StARD3 (StAR-related lipid-transfer protein 3; also known as MLN64) has been refined to 1.74 Å resolution. A previous structure of the same protein determined to 2.2 Å resolution highlighted homology with StARD1 and shared cholesterol-binding character. StARD3 has since beenmore » recognized as a carotenoid-binding protein in the primate retina, where its biochemical function of binding lutein with specificity appears to be well suited to recruit this photoprotective molecule. The current and previous structures correspond closely to each other (r.m.s.d. of 0.25 Å), especially in terms of the helix-grip fold constructed around a solvent-filled cavity. Regions of interest were defined with alternate conformations in the current higher-resolution structure, including Arg351 found within the cavity and Ω1, a loop of four residues found just outside the cavity entrance. Models of the complex with lutein generated by rigid-body docking indicate that one of the ionone rings must protrude outside the cavity, and this insight has implications for molecular interactions with transport proteins and enzymes that act on lutein. Interestingly, models with the ∊-ionone ring characteristic of lutein pointing towards the bottom of the cavity were associated with fewer steric clashes, suggesting that steric complementarity and ligand asymmetry may play a role in discriminating lutein from the other ocular carotenoids zeaxanthin and meso-zeaxanthin, which only have β-ionone rings.« less

  2. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  3. Structure and Activity Analyses of Escherichia coli K-12 NagD Provide Insight into the Evolution of Biochemical Function in the Haloakanoic Acid Dehlogenase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay,L.; Dunaway-Mariano, D.; Allen, K.

    2006-01-01

    The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics. To understand the structure/function relationships in all of the subfamilies, a type IIA subfamily member, NagD from Escherichia colimore » K-12, was selected (type I, IIB, and III members have been more extensively studied). The structure of the NagD protein was solved to 1.80 Angstroms with R{sub work} = 19.8% and R{sub free} = 21.8%. Substrate screening and kinetic analysis showed NagD to have high specificity for nucleotide monophosphates with kcat/Km = 3.12 x 10{sup 4} and 1.28 x 10{sup 4} {micro}M{sup -1} s{sup -1} for UMP and GMP, respectively. This specificity is consistent with the presence of analogues of NagD that exist as fusion proteins with a nucleotide pyrophosphatase from the Nudix family. Docking of the nucleoside substrate in the active site brings it in contact with conserved residues from the cap domain that can act as a substrate specificity loop (NagD residues 144-149) in the type IIA subfamily. NagD and other subfamily IIA and IIB members show the common trait that substrate specificity and catalytic efficiencies (k{sub cat}/K{sub m}) are low (1 x 10{sup 4} M{sup -1} s{sup -1}) and the boundaries defining physiological substrates are somewhat overlapping. The ability to catabolize other related secondary metabolites indicates that there is regulation at the genetic level.« less

  4. Fish assemblage structure and habitat associations in a large western river system

    USGS Publications Warehouse

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  5. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming.

    PubMed

    Zhou, Zhanping; Liu, Yang; Chang, Zhenying; Wang, Huilin; Leier, André; Marquez-Lago, Tatiana T; Ma, Yanhe; Li, Jian; Song, Jiangning

    2017-04-01

    Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are promising, eco-friendly substitutes for conventional chemical degumming processes. However, to potentiate the enzymes' use for industrial applications, resolving the molecular structure to elucidate catalytic mechanisms becomes necessary. In this manuscript, we report the high resolution (1.45 Å) crystal structure of pectate lyase (pelN) from Paenibacillus sp. 0602 in apo form. Through sequence alignment and structural superposition with other members of the polysaccharide lyase (PL) family 1 (PL1), we determined that pelN shares the characteristic right-handed β-helix and is structurally similar to other members of the PL1 family, while exhibiting key differences in terms of catalytic and substrate binding residues. Then, based on information from structure alignments with other PLs, we engineered a novel pelN. Our rational design yielded a pelN mutant with a temperature for enzymatic activity optimally shifted from 67.5 to 60 °C. Most importantly, this pelN mutant displayed both higher specific activity and ramie fiber degumming ability when compared with the wild-type enzyme. Altogether, our rational design method shows great potential for industrial applications. Moreover, we expect the reported high-resolution crystal structure to provide a solid foundation for future rational, structure-based engineering of genetically enhanced pelNs.

  6. The Peculiarities of Forming Rural School Students' Healthy Living Skills after School and in Extracurricular Work by the Use of Information Innovation Technology

    ERIC Educational Resources Information Center

    Talgat, Daniarov; Kanat, Bazarbaev; Saltanat, Nyshnova; Akbota, Myrzakhanova

    2012-01-01

    If we turn to the educational views and ideas in the history of education, we see that the goals of education have an active and changeable specific historical characteristics. Specifying its state policy and ideology determine the social needs, based on natural, social and human development of objective laws. In this structure, there is a need…

  7. Hypothesis on interactions of macromolecules based on molecular vibration patterns in cells and tissues.

    PubMed

    Jaross, Werner

    2018-01-01

    The molecular vibration patterns of structure-forming macromolecules in the living cell create very specific electromagnetic frequency patterns which might be used for information on spatial position in the three-dimensional structure as well as the chemical characteristics. Chemical change of a molecule results in a change of the vibration pattern and thus in a change of the emitted electromagnetic frequency pattern. These patterns have to be received by proteins responsible for the necessary interactions and functions. Proteins can function as resonators for frequencies in the range of 1013-1015 Hz. The individual frequency pattern is defined by the amino acid sequence and the polarity of every amino acid caused by their functional groups. If the arriving electromagnetic signal pattern and the emitted pattern of the absorbing protein are matched in relevant parts and in opposite phase, photon energy in the characteristic frequencies can be transferred resulting in a conformational change of that molecule and respectively in an increase of its specific activity. The electromagnetic radiation is very weak. The possibilities to overcome intracellular distances are shown. The motor-driven directed transport of macromolecules starts in the Golgi apparatus. The relevance of molecular interactions based on this signaling for the induction and navigation in the intracellular transport is discussed.

  8. Distinct phylogeographic structure recognized within Desmazierella acicola.

    PubMed

    Martinović, Tijana; Koukol, Ondřej; Hirose, Dai

    2016-01-01

    Desmazierella acicola (anamorph Verticicladium trifidum, Chorioactidaceae) represents a frequent colonizer of pine needles in litter. Considering the global diversity and distribution of pine species, we expected different phylogenetic lineages to exist in different geographical and climatic areas inhabited by these hosts. We compared DNA sequence data with phenotypic characteristics (morphology of the anamorph and growth at three different temperatures) of 43 strains isolated mostly from pine and also spruce needle litter sampled in various geographical areas. Analyses of ITS rDNA recovered eight geographically structured lineages. Fragments of genes for the translation elongation factor 1-α, and the second largest subunit of RNA polymerase II reproduced similar lineages, although not all of them were monophyletic. The similarity in ITS sequences among the clade with samples from Continental-Atlantic Europe and four other clades was lower than 95%. Several lineages exhibit also a tendency toward host specificity to a particular pine species. Growth tests at different temperatures indicated a different tolerance to specific climatic conditions in different geographic areas. However, the surveyed phenotypic characteristics also showed high variation within lineages, most evident in the morphology of the anamorph. Until a morphological study of the teleomorph is carried out, all of these lineages should be treated as distinct populations within a single species. © 2016 by The Mycological Society of America.

  9. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  10. Mass spectrometry of analytical derivatives. 2. “Ortho” and “Para” effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids1

    PubMed Central

    Todua, Nino G.; Mikaia, Anzor I.

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187

  11. Monitoring of water supply connections as an element to reduce apparent losses of water?

    NASA Astrophysics Data System (ADS)

    Gwoździej-Mazur, Joanna

    2017-11-01

    Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the right water meter in the operating conditions is not an easy issue. The problem has been further intensified by decrease of water consumption which began in the 90s of the twentieth century and continuing to the present day. As a result, there has changed the structure of water consumption in both the residential and industrial applications. In this situation, a right selection of the optimal water meter it is an important case. The article presents the results of research in the field of characteristic flows in the water supply connections in multi-family housing using modern monitoring systems. It has been presented the calculated inequality ratio of water consumption, which can be helpful when designing a plumbing systems. In addition, the structure of water consumption due to the typical flow ranges was determined.

  12. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  13. Predictors of suicide and suicide attempt in subway stations: a population-based ecological study.

    PubMed

    Niederkrotenthaler, Thomas; Sonneck, Gernot; Dervic, Kanita; Nader, Ingo W; Voracek, Martin; Kapusta, Nestor D; Etzersdorfer, Elmar; Mittendorfer-Rutz, Ellenor; Dorner, Thomas

    2012-04-01

    Suicidal behavior on the subway often involves young people and has a considerable impact on public life, but little is known about factors associated with suicides and suicide attempts in specific subway stations. Between 1979 and 2009, 185 suicides and 107 suicide attempts occurred on the subway in Vienna, Austria. Station-specific suicide and suicide attempt rates (defined as the frequency of suicidal incidents per time period) were modeled as the outcome variables in bivariate and multivariate Poisson regression models. Structural station characteristics (presence of a surveillance unit, train types used, and construction on street level versus other construction), contextual station characteristics (neighborhood to historical sites, size of the catchment area, and in operation during time period of extensive media reporting on subway suicides), and passenger-based characteristics (number of passengers getting on the trains per day, use as meeting point by drug users, and socioeconomic status of the population in the catchment area) were used as the explanatory variables. In the multivariate analyses, subway suicides increased when stations were served by the faster train type. Subway suicide attempts increased with the daily number of passengers getting on the trains and with the stations' use as meeting points by drug users. The findings indicate that there are some differences between subway suicides and suicide attempts. Completed suicides seem to vary most with train type used. Suicide attempts seem to depend mostly on passenger-based characteristics, specifically on the station's crowdedness and on its use as meeting point by drug users. Suicide-preventive interventions should concentrate on crowded stations and on stations frequented by risk groups.

  14. Image and emotion: from outcomes to brain behavior.

    PubMed

    Nanda, Upali; Zhu, Xi; Jansen, Ben H

    2012-01-01

    A systematic review of neuroscience articles on the emotional states of fear, anxiety, and pain to understand how emotional response is linked to the visual characteristics of an image at the level of brain behavior. A number of outcome studies link exposure to visual images (with nature content) to improvements in stress, anxiety, and pain perception. However, an understanding of the underlying perceptual mechanisms has been lacking. In this article, neuroscience studies that use visual images to induce fear, anxiety, or pain are reviewed to gain an understanding of how the brain processes visual images in this context and to explore whether this processing can be linked to specific visual characteristics. The amygdala was identified as one of the key regions of the brain involved in the processing of fear, anxiety, and pain (induced by visual images). Other key areas included the thalamus, insula, and hippocampus. Characteristics of visual images such as the emotional dimension (valence/arousal), subject matter (familiarity, ambiguity, novelty, realism, and facial expressions), and form (sharp and curved contours) were identified as key factors influencing emotional processing. The broad structural properties of an image and overall content were found to have a more pivotal role in the emotional response than the specific details of an image. Insights on specific visual properties were translated to recommendations for what should be incorporated-and avoided-in healthcare environments.

  15. The influence of partnership centrality on organizational perceptions of support: a case study of the AHLN structure.

    PubMed

    Moore, Spencer; Smith, Cynthia; Simpson, Tammy; Minke, Sharlene Wolbeck

    2006-10-31

    Knowledge of the structure and character of inter-organizational relationships found among health promotion organizations is a prerequisite for the development of evidence-based network-level intervention activities. The Alberta Healthy Living Network (AHLN) mapped the inter-organizational structure of its members to examine the effects of the network environment on organizational-level perceptions. This exploratory analysis examines whether network structure, specifically partnership ties among AHLN members, influences organizational perceptions of support after controlling for organizational-level attributes. Organizational surveys were conducted with representatives from AHLN organizations as of February 2004 (n = 54). Organizational attribute and inter-organizational data on various network dimensions were collected. Organizations were classified into traditional and non-traditional categories. We examined the partnership network dimension. In- and out-degree centrality scores on partnership ties were calculated for each organization and tested against organizational perceptions of available financial support. Non-traditional organizations are more likely to view financial support as more readily available for their HEALTR programs and activities than traditional organizations (1.57, 95% CI: .34, 2.79). After controlling for organizational characteristics, organizations that have been frequently identified by other organizations as valuable partners in the AHLN network were found significantly more likely to perceive a higher sense of funding availability (In-degree partnership value) (.03, 95% CI: .01, .05). Organizational perceptions of a supportive environment are framed not only by organizational characteristics but also by an organization's position in an inter-organizational network. Network contexts can influence the way that organizations perceive their environment and potentially the actions that organizations may take in light of such perceptions. By developing evidence-based understandings on the influence of network contexts, the AHLN can better target the particularities of its specific health promotion network.

  16. Alcohol use and misuse: What are the contributions of occupation and work organization conditions?

    PubMed Central

    Marchand, Alain

    2008-01-01

    Background This research examines the specific contribution of occupation and work organization conditions to alcohol use and misuse. It is based on a social-action model that takes into account agent personality, structures of daily life, and macro social structures. Methods Data come from a representative sample of 10,155 workers in Quebec, Canada. Multinomial regression models corrected for sample design effect have been used to predict low-risk and high-risk drinking compared to non-drinkers. The contribution of occupation and work organization conditions (skill used, decision authority, physical and psychological demands, hours worked, irregular work schedule, harassment, unionization, job insecurity, performance pay, prestige) have been adjusted for family situation, social network outside the workplace, and individual characteristics. Results Compared to non-qualified blue-collars, both low-risk and high-risk drinking are associated with qualified blue-collars, semi-qualified white-collars, and middle managers; high-risk drinking is associated with upper managers. For constraints-resources related to work organization conditions, only workplace harassment is an important determinant of both low-risk and high-risk drinking, but it is modestly moderated by occupation. Family situation, social support outside work, and personal characteristics of individuals are also associated with alcohol use and misuse. Non-work factors mediated/suppressed the role of occupation and work organization conditions. Conclusion Occupation and workplace harassment are important factors associated with alcohol use and misuse. The results support the theoretical model conceptualizing alcohol use and misuse as being the product of stress caused by constraints and resources brought to bear simultaneously by agent personality, structures of daily life, and macro social structures. Occupational alcohol researchers must expand their theoretical perspectives to avoid erroneous conclusions about the specific role of the workplace. PMID:18816388

  17. Alcohol use and misuse: what are the contributions of occupation and work organization conditions?

    PubMed

    Marchand, Alain

    2008-09-24

    This research examines the specific contribution of occupation and work organization conditions to alcohol use and misuse. It is based on a social-action model that takes into account agent personality, structures of daily life, and macro social structures. Data come from a representative sample of 10,155 workers in Quebec, Canada. Multinomial regression models corrected for sample design effect have been used to predict low-risk and high-risk drinking compared to non-drinkers. The contribution of occupation and work organization conditions (skill used, decision authority, physical and psychological demands, hours worked, irregular work schedule, harassment, unionization, job insecurity, performance pay, prestige) have been adjusted for family situation, social network outside the workplace, and individual characteristics. Compared to non-qualified blue-collars, both low-risk and high-risk drinking are associated with qualified blue-collars, semi-qualified white-collars, and middle managers; high-risk drinking is associated with upper managers. For constraints-resources related to work organization conditions, only workplace harassment is an important determinant of both low-risk and high-risk drinking, but it is modestly moderated by occupation. Family situation, social support outside work, and personal characteristics of individuals are also associated with alcohol use and misuse. Non-work factors mediated/suppressed the role of occupation and work organization conditions. Occupation and workplace harassment are important factors associated with alcohol use and misuse. The results support the theoretical model conceptualizing alcohol use and misuse as being the product of stress caused by constraints and resources brought to bear simultaneously by agent personality, structures of daily life, and macro social structures. Occupational alcohol researchers must expand their theoretical perspectives to avoid erroneous conclusions about the specific role of the workplace.

  18. The influence of partnership centrality on organizational perceptions of support: a case study of the AHLN structure

    PubMed Central

    Moore, Spencer; Smith, Cynthia; Simpson, Tammy; Minke, Sharlene Wolbeck

    2006-01-01

    Background Knowledge of the structure and character of inter-organizational relationships found among health promotion organizations is a prerequisite for the development of evidence-based network-level intervention activities. The Alberta Healthy Living Network (AHLN) mapped the inter-organizational structure of its members to examine the effects of the network environment on organizational-level perceptions. This exploratory analysis examines whether network structure, specifically partnership ties among AHLN members, influences organizational perceptions of support after controlling for organizational-level attributes. Methods Organizational surveys were conducted with representatives from AHLN organizations as of February 2004 (n = 54). Organizational attribute and inter-organizational data on various network dimensions were collected. Organizations were classified into traditional and non-traditional categories. We examined the partnership network dimension. In- and out-degree centrality scores on partnership ties were calculated for each organization and tested against organizational perceptions of available financial support. Results Non-traditional organizations are more likely to view financial support as more readily available for their HEALTR programs and activities than traditional organizations (1.57, 95% CI: .34, 2.79). After controlling for organizational characteristics, organizations that have been frequently identified by other organizations as valuable partners in the AHLN network were found significantly more likely to perceive a higher sense of funding availability (In-degree partnership value) (.03, 95% CI: .01, .05). Conclusion Organizational perceptions of a supportive environment are framed not only by organizational characteristics but also by an organization's position in an inter-organizational network. Network contexts can influence the way that organizations perceive their environment and potentially the actions that organizations may take in light of such perceptions. By developing evidence-based understandings on the influence of network contexts, the AHLN can better target the particularities of its specific health promotion network. PMID:17076906

  19. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    NASA Astrophysics Data System (ADS)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  20. Causes of death and demographic characteristics of victims of meteorological disasters in Korea from 1990 to 2008

    PubMed Central

    2011-01-01

    Background Meteorological disasters are an important component when considering climate change issues that impact morbidity and mortality rates. However, there are few epidemiological studies assessing the causes and characteristics of deaths from meteorological disasters. The present study aimed to analyze the causes of death associated with meteorological disasters in Korea, as well as demographic and geographic vulnerabilities and their changing trends, to establish effective measures for the adaptation to meteorological disasters. Methods Deaths associated with meteorological disasters were examined from 2,045 cases in Victim Survey Reports prepared by 16 local governments from 1990 to 2008. Specific causes of death were categorized as drowning, structural collapse, electrocution, lightning, fall, collision, landslide, avalanche, deterioration of disease by disaster, and others. Death rates were analyzed according to the meteorological type, specific causes of death, and demographic and geographic characteristics. Results Drowning (60.3%) caused the greatest number of deaths in total, followed by landslide (19.7%) and structural collapse (10.1%). However, the causes of deaths differed between disaster types. The meteorological disaster associated with the greatest number of deaths has changed from flood to typhoon. Factors that raised vulnerability included living in coastal provinces (11.3 times higher than inland metropolitan), male gender (1.9 times higher than female), and older age. Conclusions Epidemiological analyses of the causes of death and vulnerability associated with meteorological disasters can provide the necessary information for establishing future adaptation measures against climate change. A more comprehensive system for assessing disaster epidemiology needs to be established. PMID:21943038

  1. Crystal structures of the archaeal RNase P protein Rpp38 in complex with RNA fragments containing a K-turn motif.

    PubMed

    Oshima, Kosuke; Gao, Xuzhu; Hayashi, Seiichiro; Ueda, Toshifumi; Nakashima, Takashi; Kimura, Makoto

    2018-01-01

    A characteristic feature of archaeal ribonuclease P (RNase P) RNAs is that they have extended helices P12.1 and P12.2 containing kink-turn (K-turn) motifs to which the archaeal RNase P protein Rpp38, a homologue of the human RNase P protein Rpp38, specifically binds. PhoRpp38 from the hyperthermophilic archaeon Pyrococcus horikoshii is involved in the elevation of the optimum temperature of the reconstituted RNase P by binding the K-turns in P12.1 and P12.2. Previously, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was determined at 3.4 Å resolution. In this study, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was improved to 2.1 Å resolution and the structure of PhoRpp38 in complex with the K-turn in P12.1 was also determined at a resolution of 3.1 Å. Both structures revealed that Lys35, Asn38 and Glu39 in PhoRpp38 interact with characteristic G·A and A·G pairs in the K-turn, while Thr37, Asp59, Lys84, Glu94, Ala96 and Ala98 in PhoRpp38 interact with the three-nucleotide bulge in the K-turn. Moreover, an extended stem-loop containing P10-P12.2 in complex with PhoRpp38, as well as PhoRpp21 and PhoRpp29, which are the archaeal homologues of the human proteins Rpp21 and Rpp29, respectively, was affinity-purified and crystallized. The crystals thus grown diffracted to a resolution of 6.35 Å. Structure determination of the crystals will demonstrate the previously proposed secondary structure of stem-loops including helices P12.1 and P12.2 and will also provide insight into the structural organization of the specificity domain in P. horikoshii RNase P RNA.

  2. The Adoption of Wraparound Services among Substance Abuse Treatment Organizations Serving Criminal Offenders: The Role of a Women-Specific Program

    PubMed Central

    Knudsen, Hannah; Staton-Tindall, Michele; Leukefeld, Carl

    2009-01-01

    Women’s substance abuse treatment outcomes are improved when women-specific needs are addressed through wraparound services, such as the provision of child care, employment assistance, or mental health counseling. Despite a higher prevalence of pre-incarceration drug use, women in prison report receiving fewer services than their male counterparts, suggesting they likely have greater service needs upon release. It is unknown whether community-based treatment organizations with a women-specific program offer more wraparound services than programs without a focus on women. This study uses data from the Criminal Justice Drug Abuse Treatment Studies (CJ-DATS) research cooperative’s National Criminal Justice Treatment Practices Survey (NCJTPS), a nationally representative sample of community-based treatment programs serving predominantly criminal offenders (n = 217). First, bivariate analyses identified differences between organizations with and without a women-specific program on the number of wraparound services adopted as well as organizational-level characteristics (i.e., organizational structure, personnel characteristics, culture, sources of information, and systems integration) related to their adoption. Second, Poisson regression was used to identify the organizational characteristics associated with the number of adopted wraparound services, with having a women-specific program being the primary covariate of interest. Results indicate larger organizations that utilized a greater number of treatment approaches and believed that treatment could reduce crime were more likely to offer a greater assortment of wraparound services. In an effort to improve behavioral treatment outcomes, it is imperative to examine organizational-level contextual factors that shape the availability of wraparound services for female offenders in community-based substance abuse treatment settings. PMID:19181457

  3. Child functional characteristics explain child and family outcomes better than diagnosis: Population-based study of children with autism or other neurodevelopmental disorders/disabilities.

    PubMed

    Miller, Anton; Shen, Jane; Mâsse, Louise C

    2016-06-15

    Allocation of resources for services and supports for children with neurodevelopmental disorders/disabilities (NDD/D) is often based on the presence of specific health conditions. This study investigated the relative roles of a child's diagnosed health condition and neurodevelopmental and related functional characteristics in explaining child and family health and well-being. The data on children with NDD/D (ages 5 to 14; weighted n = 120,700) are from the 2006 Participation and Activity Limitation Survey (PALS), a population-based Canadian survey of parents of children with functional limitations/disabilities. Direct and indirect effects of child diagnosis status-autism spectrum disorder (ASD)/not ASD-and functional characteristics (particularly, ASD-related impairments in speech, cognition, and emotion and behaviour) on child participation and family health and well-being were investigated in a series of structural equation models, while controlling for covariates. All models adequately fitted the data. Child ASD diagnosis was significantly associated with child participation and family health and well-being. When ASD-related child functional characteristics were added to the model, all direct effects from child diagnosis on child and family outcomes disappeared; the effect of child diagnosis on child and family outcomes was fully mediated via ASD-related child functional characteristics. Children's neurodevelopmental functional characteristics are integral to understanding the child and family health-related impact of neurodevelopmental disorders such as ASD. These findings have implications for the relative weighting given to functional versus diagnosis-specific factors in considering needs for services and supports.

  4. Spontaneously amplified homochiral organic-inorganic nano-helix complexes via self-proliferation.

    PubMed

    Zhai, Halei; Quan, Yan; Li, Li; Liu, Xiang-Yang; Xu, Xurong; Tang, Ruikang

    2013-04-07

    Most spiral coiled biomaterials in nature, such as gastropod shells, are homochiral, and the favoured chiral feature can be precisely inherited. This inspired us that selected material structures, including chirality, could be specifically replicated into the self-similar populations; however, a physicochemical understanding of the material-based heritage is unknown. We study the homochirality by using calcium phosphate mineralization in the presence of racemic amphiphilic molecules and biological protein. The organic-inorganic hybrid materials with spiral coiling characteristics are produced at the nanoscale. The resulted helixes are chiral with the left- and right-handed characteristics, which are agglomerated hierarchically to from clusters and networks. It is interesting that each cluster or network is homochiral so that the enantiomorphs can be separated readily. Actually, each homochiral architecture is evolved from an original chiral helix, demonstrating the heritage of the matrix chirality during the material proliferation under a racemic condition. By using the Ginzburg-Landaue expression we find that the chiral recognition in the organic-inorganic hybrid formation may be determined by a spontaneous chiral separation and immobilization of asymmetric amphiphilic molecules on the mineral surface, which transferred the structural information from the mother matrix to the descendants by an energetic control. This study shows how biomolecules guide the selective amplification of chiral materials via spontaneous self-replication. Such a strategy can be applied generally in the design and production of artificial materials with self-similar structure characteristics.

  5. Contemporary seismicity in and around the Yakima Fold and Thrust Belt in eastern Washington

    USGS Publications Warehouse

    Gomberg, J.; Sherrod, B.; Trautman, M.; Burns, E.; Snyder, Diane

    2012-01-01

    We examined characteristics of routinely cataloged seismicity from 1970 to the present in and around the Yakima fold‐and‐thrust belt (YFTB) in eastern Washington to determine if the characteristics of contemporary seismicity provide clues about regional‐scale active tectonics or about more localized, near‐surface processes. We employed new structural and hydrologic models of the Columbia River basalts (CRB) and found that one‐third to one‐half of the cataloged earthquakes occur within the CRB and that these CRB earthquakes exhibit significantly more clustered, and swarmlike, behavior than those outside. These results and inferences from published studies led us to hypothesize that clustered seismicity is likely associated with hydrologic changes in the CRB, which hosts the regional aquifer system. While some general features of the regional groundwater system support this hypothesis, seismicity patterns and mapped long‐term changes in groundwater levels and present‐day irrigation neither support nor refute it. Regional tectonic processes and crustal‐scale structures likely influence the distribution of earthquakes both outside and within the CRB as well. We based this inference on qualitatively assessed alignments between the dominant northwest trends in the geologic structure and the seismicity generally and between specific faults and characteristics of the 2009 Wooded Island swarm and aseismic slip, which is the only cluster studied in detail and the most vigorous since regional monitoring began.

  6. Latent structure analysis of the process variables and pharmaceutical responses of an orally disintegrating tablet.

    PubMed

    Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2012-01-01

    A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.

  7. The well-tuned blues: the role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae)

    PubMed Central

    Bálint, Zsolt; Kertész, Krisztián; Piszter, Gábor; Vértesy, Zofia; Biró, László P.

    2012-01-01

    The photonic nanoarchitectures responsible for the blue colour of the males of nine polyommatine butterfly species living in the same site were investigated structurally by electron microscopy and spectrally by reflectance spectroscopy. Optical characterization was carried out on 110 exemplars. The structural data extracted by dedicated software and the spectral data extracted by standard software were inputted into an artificial neural network software to test the specificity of the structural and optical characteristics. It was found that both the structural and the spectral data allow species identification with an accuracy better than 90 per cent. The reflectance data were further analysed using a colour representation diagram built in a manner analogous to that of the human Commission Internationale de l'Eclairage diagram, but the additional blue visual pigment of lycaenid butterflies was taken into account. It was found that this butterfly-specific colour representation diagram yielded a much clearer distinction of the position of the investigated species compared with previous calculations using the human colour space. The specific colours of the investigated species were correlated with the 285 flight-period data points extracted from museum collections. The species with somewhat similar colours fly in distinct periods of the year such that the blue colours are well tuned for safe mate/competitor recognition. This allows for the creation of an effective pre-zygotic isolation mechanism for closely related synchronic and syntopic species. PMID:22319114

  8. Understanding the evolution of Mammalian brain structures; the need for a (new) cerebrotype approach.

    PubMed

    Willemet, Romain

    2012-05-18

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.

  9. Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach

    PubMed Central

    Willemet, Romain

    2012-01-01

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772

  10. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.

    PubMed

    Chamanza, R; Wright, J A

    2015-11-01

    There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Structure-based multiscale approach for identification of interaction partners of PDZ domains.

    PubMed

    Tiwari, Garima; Mohanty, Debasisa

    2014-04-28

    PDZ domains are peptide recognition modules which mediate specific protein-protein interactions and are known to have a complex specificity landscape. We have developed a novel structure-based multiscale approach which identifies crucial specificity determining residues (SDRs) of PDZ domains from explicit solvent molecular dynamics (MD) simulations on PDZ-peptide complexes and uses these SDRs in combination with knowledge-based scoring functions for proteomewide identification of their interaction partners. Multiple explicit solvent simulations ranging from 5 to 50 ns duration have been carried out on 28 PDZ-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these simulations show a correlation coefficient of 0.755 with the experimental binding affinities. On the basis of the SDRs of PDZ domains identified by MD simulations, we have developed a simple scoring scheme for evaluating binding energies for PDZ-peptide complexes using residue based statistical pair potentials. This multiscale approach has been benchmarked on a mouse PDZ proteome array data set by calculating the binding energies for 217 different substrate peptides in binding pockets of 64 different mouse PDZ domains. Receiver operating characteristic (ROC) curve analysis indicates that, the area under curve (AUC) values for binder vs nonbinder classification by our structure based method is 0.780. Our structure based method does not require experimental PDZ-peptide binding data for training.

  12. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  13. Analytical assessment of some characteristic ratios for s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan

    2018-04-01

    We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.

  14. Structure-Function Relationships of Human Milk Oligosaccharides123

    PubMed Central

    Bode, Lars; Jantscher-Krenn, Evelyn

    2012-01-01

    Human milk contains more than a hundred structurally distinct oligosaccharides. In this review, we provide examples of how the structural characteristics of these human milk oligosaccharides (HMO) determine functionality. Specific α1–2-fucosylated HMO have been shown to serve as antiadhesive antimicrobials to protect the breast-fed infant against infections with Campylobacter jejuni, one of the most common causes of bacterial diarrhea. In contrast, α1–2-fucosylation may abolish the beneficial effects of HMO against Entamoeba histolytica, a protozoan parasite that causes colitis, acute dysentery, or chronic diarrhea. In a different context, HMO need to be both fucosylated and sialylated to reduce selectin-mediated leukocyte rolling, adhesion, and activation, which may protect breast-fed infants from excessive immune responses. In addition, our most recent data show that a single HMO that carries not 1 but 2 sialic acids protects neonatal rats from necrotizing enterocolitis, one of the most common and often fatal intestinal disorders in preterm infants. Oligosaccharides currently added to infant formula are structurally different from the oligosaccharides naturally occurring in human milk. Thus, it appears unlikely that they can mimic some of the structure-specific effects of HMO. Recent advances in glycan synthesis and isolation have increased the availability of certain HMO tri- and tetrasaccharides for in vitro and in vivo preclinical studies. In the end, intervention studies are needed to confirm that the structure-specific effects observed at the laboratory bench translate into benefits for the human infant. Ultimately, breastfeeding remains the number one choice to nourish and nurture our infants. PMID:22585916

  15. Specific modes of vibratory technological machines: mathematical models, peculiarities of interaction of system elements

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.

    2018-03-01

    The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.

  16. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  17. The ability of the Coincidence Doppler Broadening Spectroscopy to characterize polymers containing different chemical elements

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, T.; Han, L. A.; Cao, X. Z.; Yu, R. S.; Wang, B. Y.

    2017-04-01

    Hydrocarbon polymers, O-containing, F-containing and Cl-containing polymers are comprehensively studied by Coincidence Doppler Broadening Spectroscopy (CDBS). It is shown that for polymers with different chemical structure, CDBS results can effectively distinguish polar groups C dbnd O, Csbnd Cl, and Csbnd F. For polymers with similar chemical structure, the intensity of the element-specific peak in the CDBS ratio curve is dependent not only on the fraction of free positrons, but also on the content of characteristic atom in polymer repeated unit, and the polarity of the polymer molecule. For polymers containing several different polar groups, such as PCTFE (Csbnd F & Csbnd Cl) and PFA (Csbnd F & C dbnd O), whether the element-specific peak appears or not depends on the amount of the polar groups and its positron capture ability. This work may provide insights into potential applications of CDBS for studying complex polymer systems.

  18. Correlation between Parameters of Calcaneal Quantitative Ultrasound and Hip Structural Analysis in Osteoporotic Fracture Patients

    PubMed Central

    Zheng, Hailiang; Li, Ming; Yin, Pengbin; Peng, Ye; Gao, Yuan; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Background Calcaneal quantitative ultrasound (QUS), which is used in the evaluation of osteoporosis, is believed to be intimately associated with the characteristics of the proximal femur. However, the specific associations of calcaneal QUS with characteristics of the hip sub-regions remain unclear. Design A cross-sectional assessment of 53 osteoporotic patients was performed for the skeletal status of the heel and hip. Methods We prospectively enrolled 53 female osteoporotic patients with femoral fractures. Calcaneal QUS, dual energy X-ray absorptiometry (DXA), and hip structural analysis (HSA) were performed for each patient. Femoral heads were obtained during the surgery, and principal compressive trabeculae (PCT) were extracted by a three-dimensional printing technique-assisted method. Pearson’s correlation between QUS measurement with DXA, HSA-derived parameters and Young’s modulus were calculated in order to evaluate the specific association of QUS with the parameters for the hip sub-regions, including the femoral neck, trochanteric and Ward’s areas, and the femoral shaft, respectively. Results Significant correlations were found between estimated BMD (Est.BMD) and BMD of different sub-regions of proximal femur. However, the correlation coefficient of trochanteric area (r = 0.356, p = 0.009) was higher than that of the neck area (r = 0.297, p = 0.031) and total proximal femur (r = 0.291, p = 0.034). Furthermore, the quantitative ultrasound index (QUI) was significantly correlated with the HSA-derived parameters of the trochanteric area (r value: 0.315–0.356, all p<0.05) as well as with the Young’s modulus of PCT from the femoral head (r = 0.589, p<0.001). Conclusion The calcaneal bone had an intimate association with the trochanteric cancellous bone. To a certain extent, the parameters of the calcaneal QUS can reflect the characteristics of the trochanteric area of the proximal hip, although not specifically reflective of those of the femoral neck or shaft. PMID:26710123

  19. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    PubMed Central

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  20. A supramolecular structure insight for conversion property of cellulose in hot compressed water: Polymorphs and hydrogen bonds changes.

    PubMed

    Wang, Yan; Lian, Jie; Wan, Jinquan; Ma, Yongwen; Zhang, Yingshi

    2015-11-20

    Waste paper samples with different cellulose supramolecular structure were treated in hot compressed water (HCW) at 375°C and 22.5MPa within 200s to evaluate the specific effect mechanism of cellulose supramolecular structure on the conversion of waste paper to reusable resource. Although the distribution of liquid products and the oligosaccharides were related to reaction time, depolymerization and decrystallization of the cellulose, the characteristics absorption peak of cellulose from FTIR analysis and crystal structure of the cellulose detected in the residues with hydrolysis rate up 96.5% indicated crystal structure was the dominant factor that affect conversion behavior of waste paper. The conversion of cellulose Iβ to cellulose Iα or cellulose I(α+β) in HCW demonstrated that the recrystallization occurred during the decrystallization of cellulose through the rearrangement of hydrogen bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  2. Photogrammetry Methodology Development for Gossamer Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Black, Jonathan T.; Walford, Alan; Robson, Stuart; Shortis, Mark R.

    2002-01-01

    Photogrammetry--the science of calculating 3D object coordinates from images--is a flexible and robust approach for measuring the static and dynamic characteristics of future ultra-lightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.

  3. On factors structuring the flatfish assemblage in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Piet, G. J.; Pfisterer, A. B.; Rijnsdorp, A. D.

    1998-09-01

    Ten species of flatfish were studied to see to what extent interspecific competition influences their diet or spatial distribution and whether the potential of these flatfish species to avoid interspecific competition through resource partitioning is constrained by specific morphological characteristics. For this, seven morphological characteristics were measured, diet composition was determined from gut content analyses and overlap in distribution was determined from the co-occurrence in trawl hauls. Canonical correspondence analysis revealed the morphological characteristics that were most strongly correlated with the diet composition. Based on these findings the mouth gape was considered to be the most important morphological constraint affecting the choice of food. Two resource dimensions were distinguished along which interspecific competition can act on the flatfish assemblage: the trophic dimension (diet composition) and the spatial dimension (distribution). Resource partitioning was observed along both dimensions separately and, more importantly, the degree of resource partitioning along the two dimensions was negatively correlated. Especially the latter was considered strong circumstantial evidence that interspecific competition is a major factor structuring the flatfish assemblage. Resource partitioning along the two resource dimensions increased with decreasing mouth gape, suggesting that interspecific competition mainly acts on the small-mouthed fish, i.e. juveniles.

  4. Comets and the origin of life; Proceedings of the Fifth College Park Colloquium on Chemical Evolution, University of Maryland, College Park, MD, October 29-31, 1980

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.

    1981-01-01

    Papers are presented concerning the characteristics of comets and their possible role in the origin of life. Specific topics include the characteristics, origin and structure of the cometary nucleus, cometary chemical abundances, the nature of interplanetary dust and its entry into terrestrial planet atmospheres, and the mechanism of ray closure in comet tails. Attention is also given to chemically evolved interstellar dust as a source of prebiotic material, the relation of comets to paleoatmospheric photochemistry, comets as a vehicle for panspermia, limits to life posed by extreme environments, and the status of cometary space missions as of 1980.

  5. Physical security and cyber security issues and human error prevention for 3D printed objects: detecting the use of an incorrect printing material

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2017-06-01

    A wide variety of characteristics of 3D printed objects have been linked to impaired structural integrity and use-efficacy. The printing material can also have a significant impact on the quality, utility and safety characteristics of a 3D printed object. Material issues can be created by vendor issues, physical security issues and human error. This paper presents and evaluates a system that can be used to detect incorrect material use in a 3D printer, using visible light imaging. Specifically, it assesses the ability to ascertain the difference between materials of different color and different types of material with similar coloration.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay; Nomura, Kenji

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  7. Wound healing.

    PubMed

    Harvey, Carol

    2005-01-01

    Wound healing in orthopaedic care is affected by the causes of the wound, as well as concomitant therapies used to repair musculoskeletal structures. Promoting the health of the host and creating an environment to foster natural healing processes is essential for helping to restore skin integrity. Normal wound healing physiologic processes, factors affecting wound healing, wound classification systems, unique characteristics of orthopaedic wounds, wound contamination and drainage characteristics, and potential complications are important to understand in anticipation of patient needs. Accurate wound assessment and knowledge of nursing implications with specific wound care measures (cleansing, debridement, and dressings) is important for quality care. New technologies are enhancing traditional wound care measures with goals of effective comfortable wound care to promote restoration of skin integrity.

  8. Lunar Regolith Particle Shape Analysis

    NASA Technical Reports Server (NTRS)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  9. Conversion of scFv peptide-binding specificity for crystal chaperone development

    PubMed Central

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2011-01-01

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 Å resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a ∼52 Å channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries. PMID:21217145

  10. Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin.

    PubMed

    Ball, David A; Mehta, Gunjan D; Salomon-Kent, Ronit; Mazza, Davide; Morisaki, Tatsuya; Mueller, Florian; McNally, James G; Karpova, Tatiana S

    2016-12-01

    In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12-0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture.

    PubMed

    Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter

    2012-03-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Development of weight and cost estimates for lifting surfaces with active controls

    NASA Technical Reports Server (NTRS)

    Anderson, R. D.; Flora, C. C.; Nelson, R. M.; Raymond, E. T.; Vincent, J. H.

    1976-01-01

    Equations and methodology were developed for estimating the weight and cost incrementals due to active controls added to the wing and horizontal tail of a subsonic transport airplane. The methods are sufficiently generalized to be suitable for preliminary design. Supporting methodology and input specifications for the weight and cost equations are provided. The weight and cost equations are structured to be flexible in terms of the active control technology (ACT) flight control system specification. In order to present a self-contained package, methodology is also presented for generating ACT flight control system characteristics for the weight and cost equations. Use of the methodology is illustrated.

  13. Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Braaten, O.; Fjellvag, H.; Kjekshus, A.

    1991-01-01

    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents.

  14. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  15. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.

    PubMed

    Zhou, P; Huang, J; Tian, F

    2012-01-01

    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  16. Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes.

    PubMed

    Aydogdu, Ayca; Sumnu, Gulum; Sahin, Serpil

    2018-02-01

    The aim of this study was to investigate the effects of addition of dietary fibers on rheological properties of batter and cake quality. Wheat flour was replaced by 5 and 10% (wt%) oat, pea, apple and lemon fibers. All cake batters showed shear thinning behavior. Incorporation of fibers increased consistency index (k), storage modulus (G') and loss modulus (G″). As quality parameters, specific volume, hardness, weight loss, color and microstructure of cakes were investigated. Cakes containing oat and pea fibers (5%) had similar specific volume and texture with control cakes which contained no fiber. As fiber concentration increased, specific volume decreased but hardness increased. No significant difference was found between weight loss of control cake and cakes with oat, pea and apple fibers. Lemon fiber enriched cakes had the lowest specific volume, weight loss and color difference. When microstructural images were examined, it was seen that control cake had more porous structure than fiber enriched cakes. In addition, lemon and apple fiber containing cakes had less porous crumb structure as compared to oat and pea containing ones. Oat and pea fiber (5%) enriched cakes had similar physical properties (volume, texture and color) with control cakes.

  17. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  18. Geometric modeling of Plateau borders using the orthographic projection method for closed cell rigid polyurethane foam thermal conductivity prediction

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wu, Tao; Peng, Chuang; Adegbite, Stephen

    2017-09-01

    The geometric Plateau border model for closed cell polyurethane foam was developed based on volume integrations of approximated 3D four-cusp hypocycloid structure. The tetrahedral structure of convex struts was orthogonally projected into 2D three-cusp deltoid with three central cylinders. The idealized single unit strut was modeled by superposition. The volume of each component was calculated by geometric analyses. The strut solid fraction f s and foam porosity coefficient δ were calculated based on representative elementary volume of Kelvin and Weaire-Phelan structures. The specific surface area Sv derived respectively from packing structures and deltoid approximation model were put into contrast against strut dimensional ratio ɛ. The characteristic foam parameters obtained from this semi-empirical model were further employed to predict foam thermal conductivity.

  19. Algebraic Functions of H-Functions with Specific Dependency Structure.

    DTIC Science & Technology

    1984-05-01

    a study of its characteristic function. Such analysis is reproduced in books by Springer (17), Anderson (23), Feller (34,35), Mood and Graybill (52...following linearity property for expectations of jointly distributed random variables is derived. r 1 Theorem 1.1: If X and Y are real random variables...appear in American Journal of Mathematical and Management Science. 13. Mathai, A.M., and R.K. Saxena, "On linear combinations of stochastic variables

  20. Study, selection, and preparation of solid cationic conductors. [characteristics of solid electrolytes for rechargeable high energy and high power density batteries

    NASA Technical Reports Server (NTRS)

    Roth, W. L.; Muller, O.

    1974-01-01

    Crystal chemical principles and transport theory have been used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. Structures with 1-, 2-, and 3-dimensional channels were synthesized and screened by nuclear magnetic resonance, dielectric loss, and conductivity. There is significant conductivity at room temperature in some of the materials but none attain a level that is comparable to beta-alumina. Microwave and fast pulse methods were developed to measure conductivity in powders and in small crystals.

  1. Dibenzylbutyrolactone Lignans - A Review of Their Structural Diversity, Biosynthesis, Occurrence, Identification and Importance.

    PubMed

    Solyomváry, Anna; Beni, Szabolcs; Boldizsar, Imre

    2017-01-01

    Dibenzylbutyrolactone lignans represent a unique group of plant secondary metabolites with increasing significance in medicine. This review summarizes their structural characteristics and classification, as well as the biosynthesis starting in the chloroplast, and their supposed biological activity associated with plant defense mechanisms are also discussed. Over 85 natural dibenzylbutyrolactone lignans known to date and their corresponding plant sources are summarized herein for the first time, highlighting a taxon- and organ-specific accumulation of these compounds. The isolation strategies, applied analytical methods and pharmacological activities of dibenzylbutyrolactone lignans are also thoroughly reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Adoption of high technology medical imaging and hospital quality and efficiency: Towards a conceptual framework.

    PubMed

    Sandoval, Guillermo A; Brown, Adalsteinn D; Wodchis, Walter P; Anderson, Geoffrey M

    2018-05-17

    Measuring the value of medical imaging is challenging, in part, due to the lack of conceptual frameworks underlying potential mechanisms where value may be assessed. To address this gap, this article proposes a framework that builds on the large body of literature on quality of hospital care and the classic structure-process-outcome paradigm. The framework was also informed by the literature on adoption of technological innovations and introduces 2 distinct though related aspects of imaging technology not previously addressed specifically in the literature on quality of hospital care: adoption (a structural hospital characteristic) and use (an attribute of the process of care). The framework hypothesizes a 2-part causality where adoption is proposed to be a central, linking factor between hospital structural characteristics, market factors, and hospital outcomes (ie, quality and efficiency). The first part indicates that hospital structural characteristics and market factors influence or facilitate the adoption of high technology medical imaging within an institution. The presence of this technology, in turn, is hypothesized to improve the ability of the hospital to deliver high quality and efficient care. The second part describes this ability throughout 3 main mechanisms pointing to the importance of imaging use on patients, to the presence of staff and qualified care providers, and to some elements of organizational capacity capturing an enhanced clinical environment. The framework has the potential to assist empirical investigations of the value of adoption and use of medical imaging, and to advance understanding of the mechanisms that produce quality and efficiency in hospitals. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

    PubMed

    Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z

    2017-03-01

    Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Characteristics of the electrical explosion of fine metallic wires in vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Zhao, Zhigang

    2017-09-01

    The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  5. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    PubMed

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  6. The Effect of Complex Solvents on the Structure and Dynamics of Protein Solutions: the case of Lysozyme in Trehalose/Water Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.

    We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen Egg White Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically,more » we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen- bonding characteristics and dynamic behavior at different length scales.« less

  7. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness

    PubMed Central

    Mangus, J Michael; Turner, Benjamin O

    2017-01-01

    Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500

  8. Biological sequence compression algorithms.

    PubMed

    Matsumoto, T; Sadakane, K; Imai, H

    2000-01-01

    Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.

  9. Membranous glomerulopathy with spherules: an uncommon variant with obscure pathogenesis.

    PubMed

    Kowalewska, Jolanta; Smith, Kelly D; Hudkins, Kelly L; Chang, Anthony; Fogo, Agnes B; Houghton, Donald; Leslie, Deena; Aitchison, John; Nicosia, Roberto F; Alpers, Charles E

    2006-06-01

    Occasional case reports of membranous glomerulopathy described unique subepithelial accumulations of an unusual type of immune deposit composed of spherular structures. The identity of such structures as nuclear pores has been suggested, but not established. We identified a cohort of patients (n = 14, including 1 patient with disease recurrence in an allograft) who presented with nephrotic syndrome and had renal biopsy specimens with light and immunofluorescence microscopic findings characteristic of membranous glomerulopathy. These patients were distinguished by ultrastructural studies that showed glomerular capillary wall accumulations of subepithelial immune deposits composed of uniform spherular structures, while lacking the typical granular electron-dense deposits seen in membranous glomerulopathy. The molecular identity of these spherular structures as nuclear pores was tested by using immunofluorescence microscopy and immunohistochemistry with mouse monoclonal antinuclear pore antibodies (Covance, Princeton, NJ) and anti-Nuclear Pore-O-Linked Glycoprotein (Affinity BioReagents Inc, Golden, CO) antibodies. Measurement of spherular structures by using high-magnification electron microscopy showed an average diameter of 84.5 nm, which correlated well with accepted diameters of nuclear pores (80 to 120 nm). Immunofluorescence microscopy and immunoperoxidase staining with both antibodies showed characteristic beaded staining of nuclear membranes of multiple cell types within normal control kidney, but no staining of immune-type deposits within glomerular basement membranes. These cases form a rare, but distinctive, morphological subclass of membranous glomerulopathy. The antigenic specificity of immune deposits in these cases remains elusive.

  10. Application of far-infrared spectroscopy to the structural identification of protein materials.

    PubMed

    Han, Yanchen; Ling, Shengjie; Qi, Zeming; Shao, Zhengzhong; Chen, Xin

    2018-05-03

    Although far-infrared (IR) spectroscopy has been shown to be a powerful tool to determine peptide structure and to detect structural transitions in peptides, it has been overlooked in the characterization of proteins. Herein, we used far-IR spectroscopy to monitor the structure of four abundant non-bioactive proteins, namely, soybean protein isolate (SPI), pea protein isolate (PPI) and two types of silk fibroins (SFs), domestic Bombyx mori and wild Antheraea pernyi. The two globular proteins SPI and PPI result in broad and weak far-IR bands (between 50 and 700 cm-1), in agreement with those of some other bioactive globular proteins previously studied (lysozyme, myoglobin, hemoglobin, etc.) that generally only have random amino acid sequences. Interestingly, the two SFs, which are characterized by a structure composed of highly repetitive motifs, show several sharp far-IR characteristic absorption peaks. Moreover, some of these characteristic peaks (such as the peaks at 260 and 428 cm-1 in B. mori, and the peaks at 245 and 448 cm-1 in A. pernyi) are sensitive to conformational changes; hence, they can be directly used to monitor conformational transitions in SFs. Furthermore, since SF absorption bands clearly differ from those of globular proteins and different SFs even show distinct adsorption bands, far-IR spectroscopy can be applied to distinguish and determine the specific SF component within protein blends.

  11. Quality of care and patient satisfaction in hospitals with high concentrations of black patients.

    PubMed

    Brooks-Carthon, J Margo; Kutney-Lee, Ann; Sloane, Douglas M; Cimiotti, Jeannie P; Aiken, Linda H

    2011-09-01

    To examine the influence of nursing-specifically nurse staffing and the nurse work environment-on quality of care and patient satisfaction in hospitals with varying concentrations of Black patients. Cross-sectional secondary analysis of 2006-2007 nurse survey data collected across four states (Florida, Pennsylvania, New Jersey, and California), the Hospital Consumer Assessment of Healthcare Providers and Systems survey, and administrative data. Global analysis of variance and linear regression models were used to examine the association between the concentration of Black patients on quality measures (readiness for discharge, patient or family complaints, health care-associated infections) and patient satisfaction, before and after accounting for nursing and hospital characteristics. Nurses working in hospitals with higher concentrations of Blacks reported poorer confidence in patients' readiness for discharge and more frequent complaints and infections. Patients treated in hospitals with higher concentrations of Blacks were less satisfied with their care. In the fully adjusted regression models for quality and patient satisfaction outcomes, the effects associated with the concentration of Blacks were explained in part by nursing and structural hospital characteristics. This study demonstrates a relationship between nursing, structural hospital characteristics, quality of care, and patient satisfaction in hospitals with high concentrations of Black patients. Consideration of nursing factors, in addition to other important hospital characteristics, is critical to understanding and improving quality of care and patient satisfaction in minority-serving hospitals. © 2011 Sigma Theta Tau International.

  12. Environment effect on spectral and charge distribution characteristics of some drugs of folate derivatives

    NASA Astrophysics Data System (ADS)

    Khadem Sadigh, M.; Zakerhamidi, M. S.; Seyed Ahmadian, S. M.; Johari-Ahar, M.; Zare Haghighi, L.

    2017-01-01

    Molecular surrounding media as an important factor can effect on the operation of wide variety of drugs. For more study in this paper, spectral properties of Methotrexate and Folinic acid have been studied in various solvents. Our results show that the photo-physical of solute molecules depend strongly on solute-solvent interactions and active groups in their chemical structures. In order to investigate the contribution of specific and nonspecific interactions on the various properties of drug molecules, the linear solvation energy relationships concept is used. Moreover, charge distribution characteristics of used samples with various resonance structures in solvent environments were calculated by means of solvatochromic method. The high value of dipole moments in excited state show that local intramolecular charge transfer can occur by excitation. These results about molecular interactions can be extended to biological systems and can indicate completely the behaviors of Methotrexate and Folinic acid in polar solvents such as water in body system.

  13. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  14. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia.

    PubMed

    Antonios, Tarek F T; Nama, Vivek; Wang, Duolao; Manyonda, Isaac T

    2013-09-01

    Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.

  15. Papillary Architecture and Functional Characterization of Mucosubstances in the Sheep Tongue.

    PubMed

    Erdoğan, Serkan; Sağsöz, Hakan

    2018-04-30

    This research aimed to reveal the general morphology and topographic distribution of lingual papillae, epithelial characteristics, mucosal structure, and glands with their mucin content in the sheep tongue, with consideration of species-specific characteristics. The tongues of ten sheep were analyzed for this purpose. Filiform and fungiform papillae existed within the borders of the ventral surface of the lingual apex. The majority of the filiform papillae had multiple secondary projections. Fungiform papillae were also seen on the lingual torus among lenticular papillae, as well as 6 to 10 circumvallate papillae arranged on its caudal border. The species-specific details of the general anatomical structure of the tongue were determined and, in general, the papillary organization in the sheep was similar to goats, while the papillary organization also was similar to features with deer species, specifically the filiform papilla from the mechanical papillae and fungiform papilla from the gustatory papillae. Neutral and weak sulfated mucins and N-acetyl sialomucins were located in seromucous glands, salivary duct epithelium and von Ebner's glands. Carboxylated acid mucins and N-acetyl sialomucins were not present in seromucous and von Ebner's glands. In seromucous glands, MUC1, MUC5AC and MUC6 localized only in epithelial cells of ducts, whereas MUC2 localized in both glandular and ductal epithelial cells. All MUCs were present in both von Ebner's glands and salivary ducts. We showed that this mucin composition, may serve as a physical barrier in the initial section of the digestive system. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  16. Deterministic folding: The role of entropic forces and steric specificities

    NASA Astrophysics Data System (ADS)

    da Silva, Roosevelt A.; da Silva, M. A. A.; Caliri, A.

    2001-03-01

    The inverse folding problem of proteinlike macromolecules is studied by using a lattice Monte Carlo (MC) model in which steric specificities (nearest-neighbors constraints) are included and the hydrophobic effect is treated explicitly by considering interactions between the chain and solvent molecules. Chemical attributes and steric peculiarities of the residues are encoded in a 10-letter alphabet and a correspondent "syntax" is provided in order to write suitable sequences for the specified target structures; twenty-four target configurations, chosen in order to cover all possible values of the average contact order χ (0.2381⩽χ⩽0.4947 for this system), were encoded and analyzed. The results, obtained by MC simulations, are strongly influenced by geometrical properties of the native configuration, namely χ and the relative number φ of crankshafts-type structures: For χ<0.35 the folding is deterministic, that is, the syntax is able to encode successful sequences: The system presents larger encodability, minimum sequence-target degeneracies and smaller characteristic folding time τf. For χ⩾0.35 the above results are not reproduced any more: The folding success is severely reduced, showing strong correlation with φ. Additionally, the existence of distinct characteristic folding times suggests that different mechanisms are acting at the same time in the folding process. The results (all obtained from the same single model, under the same "physiological conditions") resemble some general features of the folding problem, supporting the premise that the steric specificities, in association with the entropic forces (hydrophobic effect), are basic ingredients in the protein folding process.

  17. Modelling the development and arrangement of the primary vascular structure in plants.

    PubMed

    Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano

    2014-09-01

    The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.

  18. Species-specific responses to landscape fragmentation: implications for management strategies

    PubMed Central

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-01-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925

  19. Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.

    PubMed

    Schäfer, Axel; Vaitl, Dieter; Schienle, Anne

    2010-04-01

    This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Structural and functional characterization of peptide-{beta}{sub 2}m fused HLA-A2/MART1{sub 27-35} complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Chuanlai; Chang Chienchung; Zhang Jianqiong

    The uses of soluble HLA class I/peptide complexes to monitor antigen reactive T cells are often hampered by their low-yield and high-cost production. As an alternative strategy, the peptide-{beta}{sub 2}m fused, 2-component (2C) HLA class I/peptide complex has been developed, but its application is limited due to the lack of the comparison of its structural and functional characteristics with those of its conventional 3-component (3C) counterpart. In this study, we have demonstrated that the 2C and 3C HLA-A2/MART1{sub 27-35} complexes have a similar chromatographical profile and comparable stability, but the former has 2.5 times higher yield and significantly higher bindingmore » ability with HLA-A2/MART1{sub 27-35} complex-specific receptors than the latter. Furthermore, the 2C complex has a comparable ability to stimulate specific CTL proliferation, but appears to be more effective in eliciting the cytotoxicity of antigen-specific CTL, as compared to its 3C counterpart.« less

  1. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    PubMed

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  2. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  3. Staircase polymetalsilicon nanocomplexes - Polymetalphenyl siloxanes: Structure and properties

    NASA Astrophysics Data System (ADS)

    Shapkin, N. P.; Balanov, M. I.; Razov, V. I.; Gardionov, S. V.; Mayorov, V. Yu; Tokar, E. A.; Papynov, E. K.; Korochentsev, V. V.; Leont'ev, L. B.; Slobodyuk, A. B.; Modin, E. B.

    2018-03-01

    Polyphenyl siloxanes containing chromium, iron, and aluminum in the backbone chain have been synthesized. The structure of the obtained staircase nano-metal complexes has been studied by the methods of XRD analysis and IR, 29Si and 27Al NMR, and XPS spectroscopy and scanning electron microscopy. Physical-chemical characteristics of these compounds have been investigated by the positron annihilation spectroscopy (PAS) and low-temperature nitrogen adsorption. The data of X-ray diffraction analysis (XRD) enabled us to calculate the size and volume of coherent scattering regions (CSR) and the cross-section area of the polymer chains. By means of the PAS method, the specific volumes of positron (Ve+) and positronium (Vps) "traps" have been calculated. The data of 29Si NMR spectroscopy have shown the presence of T2 and T3 fragments in the structure. As was shown on the basis of the data of 27Al NMR and XPS spectroscopy, tetrahedral (66%) and octahedral surroundings of the metal atom were realized in the backbone chain. The obtained data were used to describe a spatial layered structure of phenyl siloxanes containing trivalent metals. The electron microscopy of nanocomplexes revealed the presence of spherical particles, whose size changes in cases of chromium, iron, and aluminum. Using the data of low-temperature nitrogen adsorption, it was assumed that the specific surface area was filled with a layer of compacted spherical particles, whereas the layer thickness was determined, in its turn, by the specific polarizing potential (SPP) calculated as a ratio of the polarizing potential (PP) to the volume of voids between coherent scattering regions. Similar dependence is observed between the layer thickness and the specific polarizing potential calculated as a ratio of the polarizing potential to the positronium "trap" volume. A direct dependence between the thickness of the spherical particles layer and the specific polarizing potential has been demonstrated. The assumption on a fractal structure of spherical particles was made. Tribotechnical properties of the motor oil with metal siloxane additives have been studied.

  4. The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132

    PubMed Central

    Remenyi, Judit; Bajan, Sarah; Fuller-Pace, Frances V.; Arthur, J. Simon C.; Hutvagner, Gyorgy

    2016-01-01

    miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132. PMID:26947125

  5. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  6. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  7. The Distribution of the Informative Intensity of the Text in Terms of its Structure (On Materials of the English Texts in the Mining Sphere)

    NASA Astrophysics Data System (ADS)

    Znikina, Ludmila; Rozhneva, Elena

    2017-11-01

    The article deals with the distribution of informative intensity of the English-language scientific text based on its structural features contributing to the process of formalization of the scientific text and the preservation of the adequacy of the text with derived semantic information in relation to the primary. Discourse analysis is built on specific compositional and meaningful examples of scientific texts taken from the mining field. It also analyzes the adequacy of the translation of foreign texts into another language, the relationships between elements of linguistic systems, the degree of a formal conformance, translation with the specific objectives and information needs of the recipient. Some key words and ideas are emphasized in the paragraphs of the English-language mining scientific texts. The article gives the characteristic features of the structure of paragraphs of technical text and examples of constructions in English scientific texts based on a mining theme with the aim to explain the possible ways of their adequate translation.

  8. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  9. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    PubMed Central

    Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343

  10. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  11. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less

  12. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    PubMed

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  13. Structural characteristics of gels prepared from sonohydrolysis and conventional hydrolysis of TEOS: an emphasis on the mass fractal as determined from the pore size distribution

    NASA Astrophysics Data System (ADS)

    Vollet, D. R.; Torres, R. R.; Donatti, D. A.; Ibañez Ruiz, A.

    2005-11-01

    Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gels were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale = 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively.

  14. The scope and strength of sex-specific selection in genome evolution.

    PubMed

    Wright, A E; Mank, J E

    2013-09-01

    Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. A high-density lipoprotein-mediated drug delivery system.

    PubMed

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The expression of keratins, vimentin, neurofilament proteins, smooth muscle actin, neuron-specific enolase, and synaptophysin in tumors of the specific glands in the canine anal region.

    PubMed

    Vos, J H; van den Ingh, T S; Ramaekers, F C; Molenbeek, R F; de Neijs, M; van Mil, F N; Ivanyi, D

    1993-07-01

    Eight canine tumors originating from specific glandular structures in the anal region, as well as metastatic tumor tissue of two of these cases (case Nos. 7, 8), were immunohistochemically analyzed using various monoclonal antibodies (MoAbs) directed against human keratin types, vimentin, neurofilament proteins, and alpha-smooth muscle actin. These tumors also were stained for the broad-spectrum neuroendocrine markers neuron-specific enolase (NSE) and synaptophysin. In histologically normal canine anal structures, alpha-smooth muscle actin and NSE antibodies stained basally localized (probably myoepithelial) cells in the anal glands and the anal sac glands. NSE staining also was present in a limited number of luminal cells in both anal glands and anal sac glands. Synaptophysin labeling was not observed in any of these glandular structures. Histologically, the tumors were differentiated into well- and moderately differentiated perianal gland tumors (n = 5) and carcinomas without perianal gland differentiation (n = 3), corresponding to the so-called apocrine carcinomas of the anal region. Immunohistochemically, the perianal gland tumors could be differentiated from the carcinomas by marked differences in staining pattern with the various keratin MoAbs, particularly MoAbs directed against human keratin types 7 and 18. The keratin-staining characteristics of the carcinomas suggest a glandular luminal cell origin. Metastases of the carcinomas showed loss of some keratin-staining characteristics as compared with the primary tumor. Staining for NSE was only observed in solitary cells and small cell clusters in the carcinomas and their metastases, whereas the alpha-smooth muscle actin antibody did not react with the carcinoma cells. None of the tumors stained for neurofilament proteins or synaptophysin. An unequivocal neuroendocrine nature of the carcinomas could not be substantiated by our immunohistochemical study, although the presence of a population of neuroendocrine cells within these neoplasms seems likely. Because the immunohistochemical features of the carcinomas with respect to various keratin MoAbs and NSE are similar to those of the anal glands and the anal sac glands, both these glands might be considered as site of origin of these carcinomas.

  17. On the specification of structural equation models for ecological systems

    USGS Publications Warehouse

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the system and the latter being preferable where facets act together consistently when influencing other parts of the system. Because ecological theory characteristically deals with concepts that are multifaceted, we expect the methods presented in this paper will be useful for ecologists wishing to use SEM. ?? 2010 by the Ecological Society of America.

  18. [Reticulate evolution of parthenogenetic species of the Lacertidae rock lizards: inheritance of CLsat tandem repeats and anonymous RAPD markers].

    PubMed

    Chobanu, D; Rudykh, I A; Riabinina, N L; Grechko, V V; Kramerov, D A; Darevskiĭ, I S

    2002-01-01

    The genetic relatedness of several bisexual and of four unisexual "Lacerta saxicola complex" lizards was studied, using monomer sequences of the complex-specific CLsat tandem repeats and anonymous RAPD markers. Genomes of parthenospecies were shown to include different satellite monomers. The structure of each such monomer is specific for a certain pair of bisexual species. This fact might be interpreted in favor of co-dominant inheritance of these markers in bisexual species hybridogenesis. This idea is supported by the results obtained with RAPD markers; i.e., unisexual species genomes include only the loci characteristic of certain bisexual species. At the same time, in neither case parthenospecies possess specific, autoapomorphic loci that were not present in this or that bisexual species.

  19. Application of Structured Light System Technique for Authentication of Wooden Panel Paintings.

    PubMed

    Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente

    2016-06-14

    This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application.

  20. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, G. W., E-mail: gary.paterson@glasgow.ac.uk; Gonçalves, F. J. T.; McFadzean, S.

    2015-11-28

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structuralmore » features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.« less

  1. Application of Structured Light System Technique for Authentication of Wooden Panel Paintings

    PubMed Central

    Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente

    2016-01-01

    This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application. PMID:27314353

  2. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level

    PubMed Central

    Gleason, Frank H.; Crawford, John W.; Neuhauser, Sigrid; Henderson, Linda E.; Lilje, Osu

    2012-01-01

    Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples. PMID:22308003

  3. An Overview of Structural Characteristics in Problematic Video Game Playing.

    PubMed

    Griffiths, Mark D; Nuyens, Filip

    2017-01-01

    There are many different factors involved in how and why people develop problems with video game playing. One such set of factors concerns the structural characteristics of video games (i.e., the structure, elements, and components of the video games themselves). Much of the research examining the structural characteristics of video games was initially based on research and theorizing from the gambling studies field. The present review briefly overviews the key papers in the field to date. The paper examines a number of areas including (i) similarities in structural characteristics of gambling and video gaming, (ii) structural characteristics in video games, (iii) narrative and flow in video games, (iv) structural characteristic taxonomies for video games, and (v) video game structural characteristics and game design ethics. Many of the studies carried out to date are small-scale, and comprise self-selected convenience samples (typically using self-report surveys or non-ecologically valid laboratory experiments). Based on the small amount of empirical data, it appears that structural features that take a long time to achieve in-game are the ones most associated with problematic video game play (e.g., earning experience points, managing in-game resources, mastering the video game, getting 100% in-game). The study of video games from a structural characteristic perspective is of benefit to many different stakeholders including academic researchers, video game players, and video game designers, as well as those interested in prevention and policymaking by making the games more socially responsible. It is important that researchers understand and recognize the psycho-social effects and impacts that the structural characteristics of video games can have on players, both positive and negative.

  4. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.

    PubMed

    Chen, Handing; Chen, Xueli; Qin, Yueqiang; Wei, Juntao; Liu, Haifeng

    2017-03-01

    The influence of torrefaction on the physicochemical characteristics of char during raw and water washed rice straw pyrolysis at 800-1200°C is investigated. Pore structure, aromaticity and gasification activity of pyrolysis chars are compared between raw and torrefied samples. For raw straw, BET specific surface area decreases with the increased torrefaction temperature at the same pyrolysis temperature and it approximately increases linearly with weight loss during pyrolysis. The different pore structure evolutions relate to the different volatile matters and pore structures between raw and torrefied straw. Torrefaction at higher temperature would bring about a lower graphitization degree of char during pyrolysis of raw straw. Pore structure and carbon crystalline structure evolutions of raw and torrefied water washed straw are different from these of raw straw during pyrolysis. For both raw and water washed straw, CO 2 gasification activities of pyrolysis chars are different between raw and torrefied samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Preferences for HIV test characteristics among young, Black Men Who Have Sex With Men (MSM) and transgender women: Implications for consistent HIV testing

    PubMed Central

    Frye, Victoria; Hirshfield, Sabina; Chiasson, Mary Ann; Lucy, Debbie; Usher, DaShawn; McCrossin, Jermaine; Greene, Emily; Koblin, Beryl

    2018-01-01

    Background Promoting consistent HIV testing is critical among young, Black Men Who Have Sex With Men (MSM) and transgender women who are overrepresented among new HIV cases in the United States. New HIV test options are available, including mobile unit testing, one-minute testing, at home or self-testing and couples HIV testing and counseling (CHTC). In the context of these newer options, the objective of this study was to explore whether and how preferences for specific characteristics of the tests acted as barriers to and/or facilitators of testing in general and consistent testing specifically among young Black MSM and transgender women aged 16 to 29. Methods We conducted 30 qualitative, semi-structured, in-depth interviews with young, Black, gay, bisexual or MSM and transgender women in the New York City metropolitan area to identify preferences for specific HIV tests and aspects of HIV testing options. Participants were primarily recruited from online and mobile sites, followed by community-based, face-to-face recruitment strategies to specifically reach younger participants. Thematic coding was utilized to analyze the qualitative data based on a grounded theoretical approach. Results We identified how past experiences, perceived test characteristics (e.g., accuracy, cost, etc.) and beliefs about the “fit” between the individual, and the test relate to preferred testing methods and consistent testing. Three major themes emerged as important to preferences for HIV testing methods: the perceived accuracy of the test method, venue characteristics, and lack of knowledge or experience with the newer testing options, including self-testing and CHTC. Conclusions These findings suggest that increasing awareness of and access to newer HIV testing options (e.g., free or reduced price on home or self-tests or CHTC available at all testing venues) is critical if these new options are to facilitate increased levels of consistent testing among young, Black MSM and transgender women. Addressing perceptions of test accuracy and supporting front line staff in creating welcoming and safe testing environments may be key intervention targets. Connecting young Black MSM and transgender women to the best test option, given preferences for specific characteristics, may support more and more consistent HIV testing. PMID:29462156

  6. Investigation Analysis of Crack Growth Arresting with Fasteners in Hybrid Laminated Skin-Stiffener Joint

    NASA Astrophysics Data System (ADS)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-02-01

    In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.

  7. LncRNA Structural Characteristics in Epigenetic Regulation

    PubMed Central

    Wang, Chenguang; Wang, Lianzong; Ding, Yu; Lu, Xiaoyan; Zhang, Guosi; Yang, Jiaxin; Zheng, Hewei; Wang, Hong; Jiang, Yongshuai; Xu, Liangde

    2017-01-01

    The rapid development of new generation sequencing technology has deepened the understanding of genomes and functional products. RNA-sequencing studies in mammals show that approximately 85% of the DNA sequences have RNA products, for which the length greater than 200 nucleotides (nt) is called long non-coding RNAs (lncRNA). LncRNAs now have been shown to play important epigenetic regulatory roles in key molecular processes, such as gene expression, genetic imprinting, histone modification, chromatin dynamics, and other activities by forming specific structures and interacting with all kinds of molecules. This paper mainly discusses the correlation between the structure and function of lncRNAs with the recent progress in epigenetic regulation, which is important to the understanding of the mechanism of lncRNAs in physiological and pathological processes. PMID:29292750

  8. The Structure of Performance of a Sport Rock Climber

    PubMed Central

    Magiera, Artur; Roczniok, Robert; Maszczyk, Adam; Czuba, Miłosz; Kantyka, Joanna; Kurek, Piotr

    2013-01-01

    This study is a contribution to the discussion about the structure of performance of sport rock climbers. Because of the complex and multifaceted nature of this sport, multivariate statistics were applied in the study. The subjects included thirty experienced sport climbers. Forty three variables were scrutinised, namely somatic characteristics, specific physical fitness, coordination abilities, aerobic and anaerobic power, technical and tactical skills, mental characteristics, as well as 2 variables describing the climber’s performance in the OS (Max OS) and RP style (Max RP). The results show that for training effectiveness of advanced climbers to be thoroughly analysed and examined, tests assessing their physical, technical and mental characteristics are necessary. The three sets of variables used in this study explained the structure of performance similarly, but not identically (in 38, 33 and 25%, respectively). They were also complementary to around 30% of the variance. The overall performance capacity of a sport rock climber (Max OS and Max RP) was also evaluated in the study. The canonical weights of the dominant first canonical root were 0.554 and 0.512 for Max OS and Max RP, respectively. Despite the differences between the two styles of climbing, seven variables – the maximal relative strength of the fingers (canonical weight = 0.490), mental endurance (one of scales : The Formal Characteristics of Behaviour–Temperament Inventory (FCB–TI; Strelau and Zawadzki, 1995)) (−0.410), climbing technique (0.370), isometric endurance of the fingers (0.340), the number of errors in the complex reaction time test (−0.319), the ape index (−0.319) and oxygen uptake during arm work at the anaerobic threshold (0.254) were found to explain 77% of performance capacity common to the two styles. PMID:23717360

  9. The Water Framework Directive: total environment or political compromise?

    PubMed

    Moss, Brian

    2008-08-01

    The European Water Framework Directive (2000/60/EC) is potentially ground-breaking legislation. It seeks to bring about improvement of aquatic habitats in Europe to 'good ecological status', defined as slightly different from 'high ecological status', with no or minimal human impact. The characteristics of pristine ecological status include nutrient parsimony, a defined characteristic structure of the system (including geomorphological structure and hydrology, biological and food web structure) and the connectivity and extent of the system that are essential for resilience to change. This modern ecological understanding is being ignored by government agencies charged with enacting the Directive. Schemes are being devised that measure secondary characteristics of habitats using approaches drawn from traditional water quality management. Typologies, indicated by the Directive to give a geographical basis within which to determine ecological status, are also being corrupted with different typologies used for different determinands. The ecological reality of reasonably distinctive, integrated systems (an erosive upland river versus a floodplain system, for example) is being avoided. Emphasis is being placed on precision of measurement of specific determinands rather than accuracy in what is being measured and proposed schemes are complex and expensive when accurate assessment could be carried out much more cheaply. Many are also likely to become redundant as effects of climate change take hold. The current approach will lead to some improvement in water quality but not to the fundamental change in ecological quality intended by the Directive and has partly been encouraged by lack of definition and contradictions within the Directive itself. Documented details currently available from the UK agencies are used to illustrate how the intentions of the Directive are being undermined for ostensibly political convenience through processes of redefinition and limitation of characteristics measured. There appears to be a parallel concern among official and non-governmental European bodies.

  10. An Exploratory Analysis of Network Characteristics and Quality of Interactions among Public Health Collaboratives

    PubMed Central

    Varda, Danielle M.; Retrum, Jessica H.

    2012-01-01

    While the benefits of collaboration have become widely accepted and the practice of collaboration is growing within the public health system, a paucity of research exists that examines factors and mechanisms related to effective collaboration between public health and their partner organizations. The purpose of this paper is to address this gap by exploring the structural and organizational characteristics of public health collaboratives. Design and Methods. Using both social network analysis and traditional statistical methods, we conduct an exploratory secondary data analysis of 11 public health collaboratives chosen from across the United States. All collaboratives are part of the PARTNER (www.partnertool.net) database. We analyze data to identify relational patterns by exploring the structure (the way that organizations connect and exchange relationships), in relation to perceptions of value and trust, explanations for varying reports of success, and factors related to outcomes. We describe the characteristics of the collaboratives, types of resource contributions, outcomes of the collaboratives, perceptions of success, and reasons for success. We found high variation and significant differences within and between these collaboratives including perceptions of success. There were significant relationships among various factors such as resource contributions, reasons cited for success, and trust and value perceived by organizations. We find that although the unique structure of each collaborative makes it challenging to identify a specific set of factors to determine when a collaborative will be successful, the organizational characteristics and interorganizational dynamics do appear to impact outcomes. We recommend a quality improvement process that suggests matching assessment to goals and developing action steps for performance improvement. Acknowledgements the authors would like to thank the Robert Wood Johnson Foundation’s Public Health Program for funding for this research. PMID:25170462

  11. An Exploratory Analysis of Network Characteristics and Quality of Interactions among Public Health Collaboratives.

    PubMed

    Varda, Danielle M; Retrum, Jessica H

    2012-06-15

    While the benefits of collaboration have become widely accepted and the practice of collaboration is growing within the public health system, a paucity of research exists that examines factors and mechanisms related to effective collaboration between public health and their partner organizations. The purpose of this paper is to address this gap by exploring the structural and organizational characteristics of public health collaboratives. Design and Methods. Using both social network analysis and traditional statistical methods, we conduct an exploratory secondary data analysis of 11 public health collaboratives chosen from across the United States. All collaboratives are part of the PARTNER (www.partnertool.net) database. We analyze data to identify relational patterns by exploring the structure (the way that organizations connect and exchange relationships), in relation to perceptions of value and trust, explanations for varying reports of success, and factors related to outcomes. We describe the characteristics of the collaboratives, types of resource contributions, outcomes of the collaboratives, perceptions of success, and reasons for success. We found high variation and significant differences within and between these collaboratives including perceptions of success. There were significant relationships among various factors such as resource contributions, reasons cited for success, and trust and value perceived by organizations. We find that although the unique structure of each collaborative makes it challenging to identify a specific set of factors to determine when a collaborative will be successful, the organizational characteristics and interorganizational dynamics do appear to impact outcomes. We recommend a quality improvement process that suggests matching assessment to goals and developing action steps for performance improvement. the authors would like to thank the Robert Wood Johnson Foundation's Public Health Program for funding for this research.

  12. Structural and Functional Characteristics of the Social Networks of People with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    van Asselt-Goverts, A. E.; Embregts, P. J. C. M.; Hendriks, A. H. C.

    2013-01-01

    In the research on people with intellectual disabilities and their social networks, the functional characteristics of their networks have been examined less often than the structural characteristics. Research on the structural characteristics of their networks is also usually restricted to the size and composition of the networks, moreover, with…

  13. Biomotor structures in elite female handball players according to performance.

    PubMed

    Cavala, Marijana; Rogulj, Nenad; Srhoj, Vatromir; Srhoj, Ljerka; Katić, Ratko

    2008-03-01

    In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities, and of variables evaluating situation motor abilities of elite female handball players (n = 53) were determined first, followed by determination of differences and relations of the morphological, motor and specific motor space according to handball performance. Factor analysis of 16 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity, i.e. mesoendomorphy, factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of throwing explosive strength, factor of running explosive strength (sprint), factor of jumping explosive strength and factor of movement frequency rate. Factor analysis of 5 situation motor variables produced two dimensions: factor of specific agility with explosiveness and factor of specific precision with ball manipulation. Analysis of variance yielded greatest differences relative to handball performance in the factor of specific agility and throwing strength, and the factor of basic motoricity that integrates the ability of coordination (agility) with upper extremity throwing explosiveness and lower extremity sprint (30-m sprint) and jumping (standing triple jump). Considering morphological factors, the factor of voluminosity, i.e. mesoendomorphy, which is defined by muscle mass rather than adipose tissue, was found to contribute significantly to the players'performance. Results of regression analysis indicated the handball performance to be predominantly determined by the general specific motor factor based on specific agility and explosiveness, and by the morphological factor based on body mass and volume, i.e. muscle mass. Concerning basic motor abilities, the factor of movement frequency rate, which is associated with the ability of ball manipulation, was observed to predict significantly the handball players' performance.

  14. Grading technologies for the manufacture of innovative cutting blades

    NASA Astrophysics Data System (ADS)

    Rostek, Tim; Homberg, Werner

    2018-05-01

    Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.

  15. Organisational characteristics associated with the use of daily interruption of sedation in US hospitals: a national study.

    PubMed

    Miller, Melissa A; Krein, Sarah L; Saint, Sanjay; Kahn, Jeremy M; Iwashyna, Theodore J

    2012-02-01

    Daily interruption of sedation (DIS) has multiple proven benefits, but implementation is erratic. Past research on sedative interruption utilisation focused on individual clinicians, ignoring the role of organisations in shaping practice. The authors test the hypothesis that specific hospital organisational characteristics are associated with routine use of DIS. National, mailed survey to a stratified random sample of US hospitals in 2009. Respondents were the lead infection control professionals at each institution. Survey items enquired about DIS use, institutional structure, and organisational culture. Multivariable analysis was used to evaluate the independent association of these factors with DIS use. A total of 386 hospitals formed our final analytic sample; the response rate was 69.4%. Hospitals ranged in size from 25 to 1359 beds. 26% of hospitals were associated with a medical school. Almost 80% reported regular use of DIS for ventilated patients. While 75.4% of hospitals reported having leadership focus on safety culture, only 42.7% reported that their staff were receptive to changes in practice. In a multivariable logistic regression model, structural characteristics such as size and academic affiliation were not associated with use of DIS. However, leadership emphasis on safety culture (p=0.04), staff receptivity to change (p=0.02) and involvement in an infection prevention collaborative (p=0.04) were significantly associated with regular DIS use. Several elements of hospital organisational culture were associated with regular use of DIS in US hospitals. These findings emphasise the importance of combining specific administrative approaches with strategies to encourage receptivity to change among bedside clinicians in order to successfully implement complex evidence-based practices in the intensive care setting.

  16. Thermodynamic properties of the S =1 /2 twisted triangular spin tube

    NASA Astrophysics Data System (ADS)

    Ito, Takuya; Iino, Chihiro; Shibata, Naokazu

    2018-05-01

    Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.

  17. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    NASA Technical Reports Server (NTRS)

    Goldfarb, W.; Carpenter, L. C.; Redhed, D. D.; Hansen, S. D.; Anderson, L. O.; Kawaguchi, A. S.

    1973-01-01

    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included.

  18. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less

  19. ATLAS, an integrated structural analysis and design system. Volume 6: Design module theory

    NASA Technical Reports Server (NTRS)

    Backman, B. F.

    1979-01-01

    The automated design theory underlying the operation of the ATLAS Design Module is decribed. The methods, applications and limitations associated with the fully stressed design, the thermal fully stressed design and a regional optimization algorithm are presented. A discussion of the convergence characteristics of the fully stressed design is also included. Derivations and concepts specific to the ATLAS design theory are shown, while conventional terminology and established methods are identified by references.

  20. Simulation of Optical Resonators for Vertical-Cavity Surface-Emitting Lasers (vcsel)

    NASA Astrophysics Data System (ADS)

    Mansour, Mohy S.; Hassen, Mahmoud F. M.; El-Nozahey, Adel M.; Hafez, Alaa S.; Metry, Samer F.

    2010-04-01

    Simulation and modeling of the reflectivity and transmissivity of the multilayer DBR of VCSEL, as well as inside the active region quantum well are analyzed using the characteristic matrix method. The electric field intensity distributions inside such vertical-cavity structure are calculated. A software program under MATLAB environment is constructed for the simulation. This study was performed for two specific Bragg wavelengths 980 nm and 370 nm for achieving a resonant periodic gain (RPG)

  1. [Research progress on cathepsin F of parasitic helminths].

    PubMed

    Qu, Zi-Gang; Fu, Bao-Quan

    2013-10-01

    Cathepsin F is an important member of papain-like subfamily in cysteine protease family. Cathepsin F of helminth parasites can hydrolyze the specific substrate, degrade host protein such as hemoglobin for nutrition, and be involved in invasion into host tissue. Therefore, cathepsin F serves as a potential target for parasitic disease immunodiagnosis, vaccine design and anti-parasite drug screening. This article reviews the structural characteristics and mechanisms of cathepsin F, and research advances on cathepsin F of parasitic helminths.

  2. Discovery and therapeutic promise of selective androgen receptor modulators.

    PubMed

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  3. Discovery AND Therapeutic Promise OF Selective Androgen Receptor Modulators

    PubMed Central

    Chen, Jiyun; Kim, Juhyun; Dalton, James T.

    2007-01-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects. PMID:15994457

  4. Structural Investigation of Disordered Stress Proteins. Comparison of Full-Length Dehydrins with Isolated Peptides of Their Conserved Segments1

    PubMed Central

    Mouillon, Jean-Marie; Gustafsson, Petter; Harryson, Pia

    2006-01-01

    Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na2SO4. Taken together, these observations indicate that the dehydrins are not in equilibrium with high-energy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows sequence similarity with the animal chaperone HSP90. PMID:16565295

  5. The spatial structure of chronic morbidity: evidence from UK census returns.

    PubMed

    Dutey-Magni, Peter F; Moon, Graham

    2016-08-24

    Disease prevalence models have been widely used to estimate health, lifestyle and disability characteristics for small geographical units when other data are not available. Yet, knowledge is often lacking about how to make informed decisions around the specification of such models, especially regarding spatial assumptions placed on their covariance structure. This paper is concerned with understanding processes of spatial dependency in unexplained variation in chronic morbidity. 2011 UK census data on limiting long-term illness (LLTI) is used to look at the spatial structure in chronic morbidity across England and Wales. The variance and spatial clustering of the odds of LLTI across local authority districts (LADs) and middle layer super output areas are measured across 40 demographic cross-classifications. A series of adjacency matrices based on distance, contiguity and migration flows are tested to examine the spatial structure in LLTI. Odds are then modelled using a logistic mixed model to examine the association with district-level covariates and their predictive power. The odds of chronic illness are more dispersed than local age characteristics, mortality, hospitalisation rates and chance alone would suggest. Of all adjacency matrices, the three-nearest neighbour method is identified as the best fitting. Migration flows can also be used to construct spatial weights matrices which uncover non-negligible autocorrelation. Once the most important characteristics observable at the LAD-level are taken into account, substantial spatial autocorrelation remains which can be modelled explicitly to improve disease prevalence predictions. Systematic investigation of spatial structures and dependency is important to develop model-based estimation tools in chronic disease mapping. Spatial structures reflecting migration interactions are easy to develop and capture autocorrelation in LLTI. Patterns of spatial dependency in the geographical distribution of LLTI are not comparable across ethnic groups. Ethnic stratification of local health information is needed and there is potential to further address complexity in prevalence models by improving access to disaggregated data.

  6. Molecular structure of human aortic valve by μSR- FTIR microscopy

    NASA Astrophysics Data System (ADS)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very early phase of aortic valve calcific degeneration.

  7. How Staphylococcus aureus biofilms develop their characteristic structure

    PubMed Central

    Periasamy, Saravanan; Joo, Hwang-Soo; Duong, Anthony C.; Bach, Thanh-Huy L.; Tan, Vee Y.; Chatterjee, Som S.; Cheung, Gordon Y. C.; Otto, Michael

    2012-01-01

    Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofilm structuring factors in the premier biofilm-forming pathogen Staphylococcus aureus. We provide evidence that all known PSM classes participate in structuring and detachment processes. Specifically, absence of PSMs in isogenic S. aureus psm deletion mutants led to strongly impaired formation of biofilm channels, abolishment of the characteristic waves of biofilm detachment and regrowth, and loss of control of biofilm expansion. In contrast, induced expression of psm loci in preformed biofilms promoted those processes. Furthermore, PSMs facilitated dissemination from an infected catheter in a mouse model of biofilm-associated infection. Moreover, formation of the biofilm structure was linked to strongly variable, quorum sensing-controlled PSM expression in biofilm microenvironments, whereas overall PSM production remained constant to ascertain biofilm homeostasis. Our study describes a mechanism of biofilm structuring in molecular detail, and the general principle (i.e., quorum-sensing controlled expression of surfactants) seems to be conserved in several bacteria, despite the divergence of the respective biofilm-structuring surfactants. These findings provide a deeper understanding of biofilm development processes, which represents an important basis for strategies to interfere with biofilm formation in the environment and human disease. PMID:22232686

  8. The influence of different processing stages on particle size, microstructure, and appearance of dark chocolate.

    PubMed

    Glicerina, Virginia; Balestra, Federica; Dalla Rosa, Marco; Bergenhstål, Bjorn; Tornberg, Eva; Romani, Santina

    2014-07-01

    The effect of different process stages on microstructural and visual properties of dark chocolate was studied. Samples were obtained at each phase of the manufacture process: mixing, prerefining, refining, conching, and tempering. A laser light diffraction technique and environmental scanning electron microscopy (ESEM) were used to study the particle size distribution (PSD) and to analyze modifications in the network structure. Moreover, colorimetric analyses (L*, h°, and C*) were performed on all samples. Each stage influenced in stronger way the microstructural characteristic of products and above all the PSD. Sauter diameter (D [3.2]) decreased from 5.44 μm of mixed chocolate sample to 3.83 μm, of the refined one. ESEM analysis also revealed wide variations in the network structure of samples during the process, with an increase of the aggregation and contact point between particles from mixing to refining stage. Samples obtained from the conching and tempering were characterized by small PS, and a less dense aggregate structure. From color results, samples with the finest particles, having larger specific surface area and the smallest diameter, appeared lighter and more saturated than those with coarse particles. Final quality of food dispersions is affected by network and particles characteristics. The deep knowledge of the influence of single processing stage on chocolate microstructural properties is useful in order to improve or modify final product characteristics. ESEM and laser diffraction are suitable techniques to study changes in chocolate microstructure. © 2014 Institute of Food Technologists®

  9. Performance in quasi-firms: an example from the Community Clinical Oncology Program.

    PubMed

    Lacey, L M; Hynes, D M; Kaluzny, A D

    1992-01-01

    In this analysis, the authors examined the effects of different sets of process, structure, and environmental variables on the performance of the CCOP as a quasi-firm. Specifically, they distinguished between internal organizational processes, structural, and size characteristics of the CCOP and the organizational environment created by prior NCI program experience and the relationship within the quasi-firm. The analysis revealed that these sets of organizational and environmental characteristics have differential effects on treatment accrual. The strongest predictors are those associated with the quasi-firm relationship between the CCOP and its chosen research bases. Any definitive policy implications for the design of organizational network relationships--especially the CCOPs--will require further analysis. Particular attention needs to be given to the longitudinal nature of the relationships and the ability of these organizational and environmental factors to affect other aspects of performance. Several points have been made within this initial assessment. First, the structural character of the CCOP and its relationship to its organizational environment are important factors affecting accrual performance. The subtleties of this multivariate model are not as important as simply demonstrating that the various internal and external characteristics of these organizations as quasi-firms simultaneously affect their ability to accrue patients to clinical trials. Secondly, the importance of research base relations, and particularly the significant role of nurses, needs to be emphasized. While CCOPs were originally designed as a network of physicians and hospitals, it appears that an infrastructure of professionally active nurses working within a larger organizational environment is critical to success--at least as defined by accrual to treatment protocols. Finally, the failure of prior experience with other NCI community programs to affect CCOP accrual performance suggests that such experience does not assure "organizational learning" that may enhance performance. This suggests that CCOPs can be designated de novo to maximize performance without necessarily having to undergo a developmental or experiential phase involving community cancer programs to be effective. However, the authors suspect that another method of characterizing experience may produce different results. Further analyses of these data will test these results against other measures of CCOP performance. Specifically, attention will be given to whether this same set of characteristics is predictive of accrual to cancer control research protocols. Similarly, these same organizational characteristics may or may not be associated with other dimensions of CCOP performance such as changes in physician practice patterns and/or levels of institutionalization of the CCOP within its local community.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Ultrastructural diversity between centrioles of eukaryotes.

    PubMed

    Gupta, Akshari; Kitagawa, Daiju

    2018-02-16

    Several decades of centriole research have revealed the beautiful symmetry present in these microtubule-based organelles, which are required to form centrosomes, cilia, and flagella in many eukaryotes. Centriole architecture is largely conserved across most organisms, however, individual centriolar features such as the central cartwheel or microtubule walls exhibit considerable variability when examined with finer resolution. Here, we review the ultrastructural characteristics of centrioles in commonly studied organisms, highlighting the subtle and not-so-subtle differences between specific structural components of these centrioles. Additionally, we survey some non-canonical centriole structures that have been discovered in various species, from the coaxial bicentrioles of protists and lower land plants to the giant irregular centrioles of the fungus gnat Sciara. Finally, we speculate on the functional significance of these differences between centrioles, and the contribution of individual structural elements such as the cartwheel or microtubules towards the stability of centrioles.Centriole structure, cartwheel, triplet microtubules, SAS-6, centrosome.

  11. Colloids in food: ingredients, structure, and stability.

    PubMed

    Dickinson, Eric

    2015-01-01

    This article reviews progress in the field of food colloids with particular emphasis on advances in novel functional ingredients and nanoscale structuring. Specific aspects of ingredient development described here are the stabilization of bubbles and foams by the protein hydrophobin, the emulsifying characteristics of Maillard-type protein-polysaccharide conjugates, the structural and functional properties of protein fibrils, and the Pickering stabilization of dispersed droplets by food-grade nanoparticles and microparticles. Building on advances in the nanoscience of biological materials, the application of structural design principles to the fabrication of edible colloids is leading to progress in the fabrication of functional dispersed systems-multilayer interfaces, multiple emulsions, and gel-like emulsions. The associated physicochemical insight is contributing to our mechanistic understanding of oral processing and textural perception of food systems and to the development of colloid-based strategies to control delivery of nutrients during food digestion within the human gastrointestinal tract.

  12. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity.

    PubMed

    Gonzales, Gerard Bryan; Smagghe, Guy; Grootaert, Charlotte; Zotti, Moises; Raes, Katleen; Van Camp, John

    2015-05-01

    Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.

  13. A methodology for the assessment of manned flight simulator fidelity

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Malsbury, Terry N.

    1989-01-01

    A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.

  14. Specific Features of Pressure-Fluctuation Fields in the Vicinity of a Forward-Facing Step-Backward-Facing Step Configuration

    NASA Astrophysics Data System (ADS)

    Golubev, A. Yu.

    2018-01-01

    A computational model of inhomogeneous pressure-fluctuation fields in the vicinity of a forward-facing step-backward-facing step configuration taking into account the high degree of their mutual correlation (global correlation) is generalized from experimental data. It is shown that when determining the characteristics of pressure fluctuations that act on an elastic structure, the global correlation is represented by an additional inhomogeneous field. It is demonstrated that a high degree of correlation may lead to a significant change in the main characteristics of the pressure-fluctuation field in the wake behind the configuration. This is taken into consideration in the model by correcting the local properties of this field.

  15. Comparison of high-speed rail and maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, F.T.; Nassar, F.E.

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, themore » German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).« less

  16. The strategic marketing reaction of conventional nonprofit hospitals to the market entry of alternative care provider organizations.

    PubMed

    Schul, P L; Remington, S J; Planchon, J M

    1994-01-01

    A study was conducted examining the competitive reaction of incumbent firms to the market entry of new form competition in the health care services industry. Specifically, the study addressed the relative impact of both objective and perceptual characteristics of the threat potential posed by the entrance of alternative care facilities (ACF's) into markets previously dominated by nonprofit hospital organizations. The results showed that incumbent hospitals tend to rely most extensively on limited, low-risk market differentiation when responding to the threat posed by ACF entrants. Objective characteristics reflective of the structural complexity of the threat were found to be less important in influencing incumbent reaction than were administrators' perceptions of new entrant threat.

  17. Preparation of a functional fluorescent human Fas ligand extracellular domain derivative using a three-dimensional structure guided site-specific fluorochrome conjugation.

    PubMed

    Muraki, Michiro

    2016-01-01

    Human Fas ligand extracellular domain has been investigated as an important target protein in the field of medical biotechnology. In a recent study, the author developed an effective method to produce biologically active human Fas ligand extracellular domain derivatives using site-specific chemical modifications. A human Fas ligand extracellular domain derivative containing a reactive cysteine residue within its N-terminal tag sequence, which locates not proximal to the binding interface between the ligand and the receptor in terms of the three-dimensional structure, was modified by Fluorescein-5-Maleimide without impairing the specific binding activity toward human Fas receptor extracellular domain. The purified protein sample free of low molecular-weight contaminants showed a characteristic fluorescence spectrum derived from the attached Fluorescein moieties, and formed a stable binding complex with human Fas receptor extracellular domain-human IgG1 Fc domain fusion protein in solution. The conjugation number of the fluorochrome was estimated to be 2.5 per a single human Fas ligand extracellular domain trimer from the ratio of the absorbance value at 280 nm to that at 495 nm. A functional fluorescent human Fas ligand extracellular domain derivative was prepared via a site-specific conjugation of fluorochrome, which was guided by the three-dimensional structure information on the ligand-receptor complex. Fluorescent derivatives created by this method may contribute to the development of an improved diagnosis system for the diseases related to Fas receptor.

  18. Specific Stimuli Induce Specific Adaptations: Sensorimotor Training vs. Reactive Balance Training

    PubMed Central

    Freyler, Kathrin; Krause, Anne; Gollhofer, Albert; Ritzmann, Ramona

    2016-01-01

    Typically, balance training has been used as an intervention paradigm either as static or as reactive balance training. Possible differences in functional outcomes between the two modalities have not been profoundly studied. The objective of the study was to investigate the specificity of neuromuscular adaptations in response to two balance intervention modalities within test and intervention paradigms containing characteristics of both profiles: classical sensorimotor training (SMT) referring to a static ledger pivoting around the ankle joint vs. reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. Thirty-eight subjects were assigned to either SMT or RBT. Before and after four weeks of intervention training, postural sway and electromyographic activities of shank and thigh muscles were recorded and co-contraction indices (CCI) were calculated. We argue that specificity of training interventions could be transferred into corresponding test settings containing properties of SMT and RBT, respectively. The results revealed that i) postural sway was reduced in both intervention groups in all test paradigms; magnitude of changes and effect sizes differed dependent on the paradigm: when training and paradigm coincided most, effects were augmented (P<0.05). ii) These specificities were accompanied by segmental modulations in the amount of CCI, with a greater reduction within the CCI of thigh muscles after RBT compared to the shank muscles after SMT (P<0.05). The results clearly indicate the relationship between test and intervention specificity in balance performance. Hence, specific training modalities of postural control cause multi-segmental and context-specific adaptations, depending upon the characteristics of the trained postural strategy. In relation to fall prevention, perturbation training could serve as an extension to SMT to include the proximal segment, and thus the control of structures near to the body’s centre of mass, into training. PMID:27911944

  19. Effects of structural complexity enhancement on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood forests

    USGS Publications Warehouse

    McKenny, H.C.; Keeton, W.S.; Donovan, T.M.

    2006-01-01

    Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses. ?? 2006 Elsevier B.V. All rights reserved.

  20. Structure-specific magnetic field inhomogeneities and its effect on the correlation time.

    PubMed

    Ziener, Christian H; Bauer, Wolfgang R; Melkus, Gerd; Weber, Thomas; Herold, Volker; Jakob, Peter M

    2006-12-01

    We describe the relationship between the correlation time and microscopic spatial inhomogeneities in the static magnetic field. The theory takes into account diffusion of nuclear spins in the inhomogeneous field created by magnetized objects. A simple general expression for the correlation time is obtained. It is shown that the correlation time is dependent on a characteristic length, the diffusion coefficient of surrounding medium, the permeability of the surface and the volume fraction of the magnetized objects. For specific geometries (spheres and cylinders), exact analytical expressions for the correlation time are given. The theory can be applied to contrast agents (magnetically labeled cells), capillary network, BOLD effect and so forth.

Top