Sample records for specific subcellular localization

  1. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases

    PubMed Central

    Park, Solip; Yang, Jae-Seong; Shin, Young-Eun; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2011-01-01

    Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease-associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease-associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression. PMID:21613983

  2. Modeling of Protein Subcellular Localization in Bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Kulkarni, Rahul

    2006-03-01

    Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.

  3. Optogenetic Tools for Subcellular Applications in Neuroscience.

    PubMed

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising.

    PubMed

    Yu, Bin; Li, Shan; Qiu, Wen-Ying; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-12-08

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.

  5. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising

    PubMed Central

    Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-01-01

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195

  6. BUSCA: an integrative web server to predict subcellular localization of proteins.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Profiti, Giuseppe; Casadio, Rita

    2018-04-30

    Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.

  7. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  8. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction.

    PubMed

    Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali

    2018-01-01

    Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Determination of the Subcellular Distribution of Liposomes Using Confocal Microscopy.

    PubMed

    Solomon, Melani A

    2017-01-01

    It is being increasingly recognized that therapeutics need to be delivered to specific organelle targets within cells. Liposomes are versatile lipid-based drug delivery vehicles that can be surface-modified to deliver the loaded cargo to specific subcellular locations within the cell. Hence, the development of such technology requires a means of measuring the subcellular distribution possibly by utilizing imaging techniques that can visualize and quantitate the extent of this subcellular localization. The apparent increase of resolution along the Z-axis offered by confocal microscopy makes this technique suitable for such studies. In this chapter, we describe the application of confocal laser scanning microscopy (CLSM) to determine the subcellular distribution of fluorescently labeled mitochondriotropic liposomes.

  10. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility.

    PubMed

    Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G

    2012-01-01

    Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    PubMed

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  12. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    PubMed

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins

    PubMed Central

    Li, Hui; Wang, Rong; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305

  14. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.

    PubMed

    Wang, Xiao; Li, Hui; Wang, Rong; Zhang, Qiuwen; Zhang, Weiwei; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.

  15. Remote Control of Gene Function by Local Translation

    PubMed Central

    Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.

    2014-01-01

    The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524

  16. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.

  17. Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

    PubMed Central

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-01-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg. PMID:24603469

  18. PLPD: reliable protein localization prediction from imbalanced and overlapped datasets

    PubMed Central

    Lee, KiYoung; Kim, Dae-Won; Na, DoKyun; Lee, Kwang H.; Lee, Doheon

    2006-01-01

    Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has too many classes (there are more than 10 localizations in a cell), it is a multi-label dataset (a protein may occur in several different subcellular locations), and it is too imbalanced (the number of proteins in each localization is remarkably different). Even though many previous works have been done for the prediction of protein subcellular localization, none of them tackles effectively these characteristics at the same time. Thus, a new computational method for protein localization is eventually needed for more reliable outcomes. To address the issue, we present a protein localization predictor based on D-SVDD (PLPD) for the prediction of protein localization, which can find the likelihood of a specific localization of a protein more easily and more correctly. Moreover, we introduce three measurements for the more precise evaluation of a protein localization predictor. As the results of various datasets which are made from the experiments of Huh et al. (2003), the proposed PLPD method represents a different approach that might play a complimentary role to the existing methods, such as Nearest Neighbor method and discriminate covariant method. Finally, after finding a good boundary for each localization using the 5184 classified proteins as training data, we predicted 138 proteins whose subcellular localizations could not be clearly observed by the experiments of Huh et al. (2003). PMID:16966337

  19. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.

    PubMed

    Hebelstrup, Kim H; Østergaard-Jensen, Erik; Hill, Robert D

    2008-01-01

    Plant hemoglobins are ubiquitous in all plant families. They are expressed at low levels in specific tissues. Several studies have established that plant hemoglobins are scavengers of nitric oxide (NO) and that varying the endogenous level of hemoglobin in plant cells negatively modulates bioactivity of NO generated under hypoxic conditions or during cellular signaling. Earlier methods for determination of hemoglobin-dependent scavenging in planta were based on measuring activity in whole plants or organs. Plant hemoglobins do not contain specific organelle localization signals; however, earlier reports on plant hemoglobin have demonstrated either cytosolic or nuclear localization, depending on the method or cell type investigated. We have developed two bioimaging techniques: one for visualization of hemoglobin-catalyzed scavenging of NO in specific cells and another for visualization of subcellular localization of green fluorescent protein-tagged plant hemoglobins in transformed Arabidopsis thaliana plants.

  20. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.

    PubMed

    Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu

    2012-12-01

    Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.

  1. Geary autocorrelation and DCCA coefficient: Application to predict apoptosis protein subcellular localization via PSSM

    NASA Astrophysics Data System (ADS)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2017-02-01

    Apoptosis is a fundamental process controlling normal tissue homeostasis by regulating a balance between cell proliferation and death. Predicting subcellular location of apoptosis proteins is very helpful for understanding its mechanism of programmed cell death. Prediction of apoptosis protein subcellular location is still a challenging and complicated task, and existing methods mainly based on protein primary sequences. In this paper, we propose a new position-specific scoring matrix (PSSM)-based model by using Geary autocorrelation function and detrended cross-correlation coefficient (DCCA coefficient). Then a 270-dimensional (270D) feature vector is constructed on three widely used datasets: ZD98, ZW225 and CL317, and support vector machine is adopted as classifier. The overall prediction accuracies are significantly improved by rigorous jackknife test. The results show that our model offers a reliable and effective PSSM-based tool for prediction of apoptosis protein subcellular localization.

  2. ALA-mediated PDT of melanoma tumors: light-sensitizer interactions determined by a novel spectral imaging system

    NASA Astrophysics Data System (ADS)

    Malik, Zvi; Dishi, M.

    1995-05-01

    The subcellular localization of endogenous protoporphyrin (endo- PP) during photosensitization in B-16 melanoma cells was analyzed by a novel spectral imaging system, the SpectraCube 1000. The melanoma cells were incubated with 5-aminolevulinic acid (ALA), and then the fluorescence of endo-PP was recorded in individual living cells by three modes: conventional fluorescence imaging, multipixel point by point fluorescence spectroscopy, and image processing, by operating a function of spectral similarity mapping and reconstructing new images derived from spectral information. The fluorescence image of ALA-treated cells revealed vesicular distribution of endo-PP all over the cytosol, with mitochondrial, lysosomal, as well as endoplasmic reticulum cisternael accumulation. Two main spectral fluorescence peaks were demonstrated at 635 and 705 nm, with intensities that differed from one subcellular site to another. Photoirradiation of the cells included point-specific subcellular fluorescence spectrum changes and demonstrated photoproduct formation. Spectral image reconstruction revealed the local distribution of a chosen spectrum in the photosensitized cells. On the other hand, B 16 cells treated with exogenous protoporphyrin (exo-PP) showed a dominant fluorescence peak at 670 nm and a minor peak at 630 nm. Fluorescence was localized at a perinuclear=Golgi region. Light exposure induced photobleaching and photoproduct-spectral changes followed by relocalization. The new localization at subcellular compartments showed pH dependent spectral shifts and photoproduct formation on a subcellular level.

  3. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    PubMed

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  4. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons.

    PubMed

    Devaux, Sara; Poulain, Fabienne E; Devignot, Véronique; Lachkar, Sylvie; Irinopoulou, Theano; Sobel, André

    2012-06-22

    During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.

  5. Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-02-24

    Predicting protein subcellular localization is indispensable for inferring protein functions. Recent studies have been focusing on predicting not only single-location proteins, but also multi-location proteins. Almost all of the high performing predictors proposed recently use gene ontology (GO) terms to construct feature vectors for classification. Despite their high performance, their prediction decisions are difficult to interpret because of the large number of GO terms involved. This paper proposes using sparse regressions to exploit GO information for both predicting and interpreting subcellular localization of single- and multi-location proteins. Specifically, we compared two multi-label sparse regression algorithms, namely multi-label LASSO (mLASSO) and multi-label elastic net (mEN), for large-scale predictions of protein subcellular localization. Both algorithms can yield sparse and interpretable solutions. By using the one-vs-rest strategy, mLASSO and mEN identified 87 and 429 out of more than 8,000 GO terms, respectively, which play essential roles in determining subcellular localization. More interestingly, many of the GO terms selected by mEN are from the biological process and molecular function categories, suggesting that the GO terms of these categories also play vital roles in the prediction. With these essential GO terms, not only where a protein locates can be decided, but also why it resides there can be revealed. Experimental results show that the output of both mEN and mLASSO are interpretable and they perform significantly better than existing state-of-the-art predictors. Moreover, mEN selects more features and performs better than mLASSO on a stringent human benchmark dataset. For readers' convenience, an online server called SpaPredictor for both mLASSO and mEN is available at http://bioinfo.eie.polyu.edu.hk/SpaPredictorServer/.

  6. Subcellular distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase in bovine and murine adrenocortical tissue: species differences in the localization of activity and immunoreactivity.

    PubMed

    Perry, J E; Ishii-Ohba, H; Stalvey, J R

    1991-06-01

    Key to the production of biologically active steroids is the enzyme 3 beta-hydroxysteroid dehydrogenase-isomerase. Some controversy has arisen concerning the subcellular distribution of this enzyme within steroidogenic cells. The distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase was assessed in subcellular fractions obtained from homogenates of rat, bovine, and mouse adrenal glands in two ways. The activity of 3 beta-hydroxysteroid dehydrogenase-isomerase was quantitated by measuring the conversion of radiolabeled pregnenolone to radiolabeled progesterone in an aliquot of each of the fractions obtained. The presence of the enzyme was assessed by performing Western analyses on aliquots of each of the fractions obtained with the use of a specific polyclonal antiserum against 3 beta-hydroxysteroid dehydrogenase-isomerase, the characterization of which is described. In control experiments, the degree of contamination of the fractions was determined by assessing the presence of known subcellular fraction markers with Western analysis. In the bovine and mouse adrenal glands, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to be localized solely in the microsomal fraction, while in the rat, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to have dual subcellular distribution: the microsomes and the inner mitochondrial membrane. We conclude that there is a species difference in the subcellular distribution of this important steroidogenic enzyme and that this species difference may be related to the steroidogenic pathway preferred in that species.

  7. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    PubMed Central

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  8. Predicting plant protein subcellular multi-localization by Chou's PseAAC formulation based multi-label homolog knowledge transfer learning.

    PubMed

    Mei, Suyu

    2012-10-07

    Recent years have witnessed much progress in computational modeling for protein subcellular localization. However, there are far few computational models for predicting plant protein subcellular multi-localization. In this paper, we propose a multi-label multi-kernel transfer learning model for predicting multiple subcellular locations of plant proteins (MLMK-TLM). The method proposes a multi-label confusion matrix and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which we further extend our published work MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for plant protein subcellular multi-localization. By proper homolog knowledge transfer, MLMK-TLM is applicable to novel plant protein subcellular localization in multi-label learning scenario. The experiments on plant protein benchmark dataset show that MLMK-TLM outperforms the baseline model. Unlike the existing models, MLMK-TLM also reports its misleading tendency, which is important for comprehensive survey of model's multi-labeling performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    PubMed

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  10. Localization of A-type K+ channel subunit Kv4.2 in rat brain.

    PubMed

    Tsaur, M L; Wu, Y L; Huang, F L; Shih, Y H

    2001-09-30

    Kv4.2, a voltage-gated K+ (Kv) channel subunit, has been suggested to be the key component of the subthreshold A-type K+ currents (I(SA)s) recorded from the specific subcellular compartments of certain CNS neurons. To correlate Kv4.2 localization with the I(SA)s detected, immunohistochemistry will be useful. Although the Kv4.2 immunostaining pattern in the hippocampus and cerebellum has been reported, the Kv4.2 antibody used was not specific. Furthermore, Kv4.2 localization in other brain regions remains unclear. In this report, we first demonstrated the specificity of a new Kv4.2 antibody, and then used it to examine Kv4.2 localization throughout adult rat brain by immunohistochemistry. At the cellular level, Kv4.2 was found in neurons but not glias. At the subcellular level, Kv4.2 was localized in the somatodendritic compartment of most neurons examined. Nevertheless, our preliminary data indicated that Kv4.2 might be also present in the axon/terminal compartment. At the functional level, our data indicates that Kv4.2 localization and I(SA) correlate quite well in some CNS neurons, supporting that Kv4.2 is the key component of some I(SA)s recorded in vivo.

  11. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms

    PubMed Central

    Sipieter, François; Cappe, Benjamin; Gonzalez Pisfil, Mariano; Spriet, Corentin; Bodart, Jean-François; Cailliau-Maggio, Katia; Vandenabeele, Peter; Héliot, Laurent; Riquet, Franck B.

    2015-01-01

    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues. PMID:26517832

  12. A draft map of the mouse pluripotent stem cell spatial proteome

    PubMed Central

    Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.

    2016-01-01

    Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106

  13. Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi.

    PubMed Central

    D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M

    2004-01-01

    Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647

  14. Prognostic Subcellular Notch2, Notch3 and Jagged1 Localization Patterns in Early Triple-negative Breast Cancer.

    PubMed

    Strati, Titika-Marina; Kotoula, Vassiliki; Kostopoulos, Ioannis; Manousou, Kyriaki; Papadimitriou, Christos; Lazaridis, Georgios; Lakis, Sotiris; Pentheroudakis, George; Pectasides, Dimitrios; Pazarli, Elissavet; Christodoulou, Christos; Razis, Evangelia; Pavlakis, Kitty; Magkou, Christina; Chrisafi, Sofia; Aravantinos, Gerasimos; Bafaloukos, Dimitrios; Papakostas, Pavlos; Gogas, Helen; Kalogeras, Konstantine T; Fountzilas, George

    2017-05-01

    The Notch pathway has been implicated in triple-negative breast cancer (TNBC). Herein, we studied the subcellular localization of the less investigated Notch2 and Notch3 and that of the Jagged1 (Jag1) ligand in patients with operable TNBC. We applied immunohistochemistry for Notch2, Notch3 and Jag1 in 333 tumors from TNBC patients treated with adjuvant anthracycline-based chemotherapy. We evaluated cytoplasmic (c), membranous (m) and nuclear (n) protein localization. c-Notch2 (35% positive tumors), c-Notch3 (63%), c-Jag1 (43%), m-Notch3 (23%) and n-Jag1 (17%) were analyzed individually and by using hierarchical clustering for prognostic evaluation. Upon multivariate analysis, compared to high m-Notch3 in the absence of n-Jag1 (cluster 4), all other marker combinations (clusters 1, 2, 3) conferred significantly higher risk for relapse (p<0.05). Specific Notch3 and Jag1 subcellular localization patterns may provide clues for the behavior of the tumors and potentially for Jag1 targeting in TNBC patients. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins

    PubMed Central

    Handfield, Louis-François; Chong, Yolanda T.; Simmons, Jibril; Andrews, Brenda J.; Moses, Alan M.

    2013-01-01

    Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images. PMID:23785265

  16. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.

    PubMed

    Wang, Minmin; Toda, Kyoko; Maeda, Hiroshi A

    2016-12-01

    Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  18. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3

    PubMed Central

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M.; Huidobro-Toro, Juan P.; Cerda, Oscar; Trimmer, James S.; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood. PMID:29440991

  19. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3.

    PubMed

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M; Huidobro-Toro, Juan P; Cerda, Oscar; Trimmer, James S; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca 2+ -activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.

  20. Protein subcellular localization prediction using multiple kernel learning based support vector machine.

    PubMed

    Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam

    2017-03-28

    Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that MKLoc not only achieves higher accuracy than a single kernel based SVM system but also shows significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). Moreover, MKLoc requires less computation time to tune and train the system than that required for BNCs and single kernel based SVM.

  1. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns.

    PubMed

    Peng, Tao; Bonamy, Ghislain M C; Glory-Afshar, Estelle; Rines, Daniel R; Chanda, Sumit K; Murphy, Robert F

    2010-02-16

    Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.

  2. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    PubMed

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Quantitative imaging with fluorescent biosensors.

    PubMed

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  4. LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST

    PubMed Central

    Xie, Dan; Li, Ao; Wang, Minghui; Fan, Zhewen; Feng, Huanqing

    2005-01-01

    Subcellular location of a protein is one of the key functional characters as proteins must be localized correctly at the subcellular level to have normal biological function. In this paper, a novel method named LOCSVMPSI has been introduced, which is based on the support vector machine (SVM) and the position-specific scoring matrix generated from profiles of PSI-BLAST. With a jackknife test on the RH2427 data set, LOCSVMPSI achieved a high overall prediction accuracy of 90.2%, which is higher than the prediction results by SubLoc and ESLpred on this data set. In addition, prediction performance of LOCSVMPSI was evaluated with 5-fold cross validation test on the PK7579 data set and the prediction results were consistently better than the previous method based on several SVMs using composition of both amino acids and amino acid pairs. Further test on the SWISSPROT new-unique data set showed that LOCSVMPSI also performed better than some widely used prediction methods, such as PSORTII, TargetP and LOCnet. All these results indicate that LOCSVMPSI is a powerful tool for the prediction of eukaryotic protein subcellular localization. An online web server (current version is 1.3) based on this method has been developed and is freely available to both academic and commercial users, which can be accessed by at . PMID:15980436

  5. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  6. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  7. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    PubMed

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Divergent N-Terminal Sequences Target an Inducible Testis Deubiquitinating Enzyme to Distinct Subcellular Structures

    PubMed Central

    Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.

    2000-01-01

    Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131

  9. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Ami; Katayama, Syouichi; Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed amore » typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.« less

  10. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  11. LOCATE: a mouse protein subcellular localization database

    PubMed Central

    Fink, J. Lynn; Aturaliya, Rajith N.; Davis, Melissa J.; Zhang, Fasheng; Hanson, Kelly; Teasdale, Melvena S.; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D.

    2006-01-01

    We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at . PMID:16381849

  12. A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein.

    PubMed

    Bryan, Anthony C; Zhang, Jin; Guo, Jianjun; Ranjan, Priya; Singan, Vasanth; Barry, Kerrie; Schmutz, Jeremy; Weighill, Deborah; Jacobson, Daniel; Jawdy, Sara; Tuskan, Gerald A; Chen, Jin-Gui; Muchero, Wellington

    2018-06-08

    Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington's and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA ( PtAN1 ) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization. Copyright © 2018, G3: Genes, Genomes, Genetics.

  13. Altered Subcellular Localization of a Tobacco Membrane Raft-Associated Remorin Protein by Tobamovirus Infection and Transient Expression of Viral Replication and Movement Proteins

    PubMed Central

    Sasaki, Nobumitsu; Takashima, Eita; Nyunoya, Hiroshi

    2018-01-01

    Remorins are plant specific proteins found in plasma membrane microdomains (termed lipid or membrane rafts) and plasmodesmata. A potato remorin is reported to be involved in negatively regulating potexvirus movement and plasmodesmal permeability. In this study, we isolated cDNAs of tobacco remorins (NtREMs) and examined roles of an NtREM in infection by tomato mosaic virus (ToMV). Subcellular localization analysis using fluorescently tagged NtREM, ToMV, and viral replication and movement proteins (MPs) indicated that virus infection and transient expression of the viral proteins promoted the formation of NtREM aggregates by altering the subcellular distribution of NtREM, which was localized uniformly on the plasma membrane under normal conditions. NtREM aggregates were often observed associated closely with endoplasmic reticulum networks and bodies of the 126K replication and MPs. The bimolecular fluorescence complementation assay indicated that NtREM might interact directly with the MP on the plasma membrane and around plasmodesmata. In addition, transient overexpression of NtREM facilitated ToMV cell-to-cell movement. Based on these results, we discuss possible roles of the tobacco remorin in tobamovirus movement. PMID:29868075

  14. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  15. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    PubMed

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Subcellular localization of full-length human myeloid leukemia factor 1 (MLF1) is independent of 14-3-3 proteins.

    PubMed

    Molzan, Manuela; Ottmann, Christian

    2013-03-01

    Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.

  17. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    PubMed

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A maize database resource that captures tissue-specific and subcellular-localized gene expression, via fluorescent tags and confocal imaging (Maize Cell Genomics Database).

    PubMed

    Krishnakumar, Vivek; Choi, Yongwook; Beck, Erin; Wu, Qingyu; Luo, Anding; Sylvester, Anne; Jackson, David; Chan, Agnes P

    2015-01-01

    Maize is a global crop and a powerful system among grain crops for genetic and genomic studies. However, the development of novel biological tools and resources to aid in the functional identification of gene sequences is greatly needed. Towards this goal, we have developed a collection of maize marker lines for studying native gene expression in specific cell types and subcellular compartments using fluorescent proteins (FPs). To catalog FP expression, we have developed a public repository, the Maize Cell Genomics (MCG) Database, (http://maize.jcvi.org/cellgenomics), to organize a large data set of confocal images generated from the maize marker lines. To date, the collection represents major subcellular structures and also developmentally important progenitor cell populations. The resource is available to the research community, for example to study protein localization or interactions under various experimental conditions or mutant backgrounds. A subset of the marker lines can also be used to induce misexpression of target genes through a transactivation system. For future directions, the image repository can be expanded to accept new image submissions from the research community, and to perform customized large-scale computational image analysis. This community resource will provide a suite of new tools for gaining biological insights by following the dynamics of protein expression at the subcellular, cellular and tissue levels. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    PubMed

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  20. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones.

    PubMed

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-12-20

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.

  1. The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development.

    PubMed

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Wucke, Cornelia; Geigenberger, Peter

    2008-07-01

    Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.

  2. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  3. Protein subcellular localization prediction using artificial intelligence technology.

    PubMed

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woo Taek; Franceschi, V.R.; Okita, T.W.

    The subcellular localization of ADPglucose pyrophosphorylase, a key regulatory enzyme in starch biosynthesis, was determined in developing potato tuber cells by immunocytochemical localization techniques at the light microscopy level. Specific labeling of ADPglucose pyrophosphorylase by either immunofluorescence or immunogold followed by silver enhancement was detected only in the amyloplasts and indicates that this enzyme is located exclusively in the amyloplasts in developing potato tuber cells. Labeling occurred on the starch grains and, in some instances, specific labeling patterns were evident which may be related to sites active in starch deposition.

  5. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.

    PubMed

    Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin

    2007-12-01

    Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.

  6. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  7. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  8. Compressed learning and its applications to subcellular localization.

    PubMed

    Zheng, Zhong-Long; Guo, Li; Jia, Jiong; Xie, Chen-Mao; Zeng, Wen-Cai; Yang, Jie

    2011-09-01

    One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  9. Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy.

    PubMed

    Ohkoshi, Shogo; Yano, Masahiko; Matsuda, Yasunobu

    2015-11-14

    A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention.

  10. Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy

    PubMed Central

    Ohkoshi, Shogo; Yano, Masahiko; Matsuda, Yasunobu

    2015-01-01

    A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention. PMID:26576099

  11. Subcellular Localized Chemical Imaging of Benthic Algal Nutritional Content via HgCdTe Array FT-IR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, D.; Murdock, J; Dodds, W

    2008-01-01

    Algae respond rapidly and uniquely to changes in nutrient availability by adjusting pigment, storage product, and organelle content and quality. Cellular and subcellular variability of the relative abundance of macromolecular pools (e.g. protein, lipid, carbohydrate, and phosphodiesters) within the benthic (bottom dwelling) alga Cladophora glomerata (a common nuisance species in fresh and saline waters) was revealed by FT-IR microspectroscopic imaging. Nutrient heterogeneity was compared at the filament, cellular, and subcellular level, and localized nutrient uptake kinetics were studied by detecting the gradual incorporation of isotopically labeled nitrogen (N) (as K15NO3) from surrounding water into cellular proteins. Nutritional content differed substantiallymore » among filament cells, with differences driven by protein and lipid abundance. Whole cell imaging showed high subcellular macromolecular variability in all cells, including adjacent cells on a filament that developed clonally. N uptake was also very heterogeneous, both within and among cells, and did not appear to coincide with subcellular protein distribution. Despite high intercellular variability, some patterns emerged. Cells acquired more 15N the further they were away from the filament attachment point, and 15N incorporation was more closely correlated with phosphodiester content than protein, lipid, or carbohydrate content. Benthic algae are subject to substantial environmental heterogeneity induced by microscale hydrodynamic factors and spatial variability in nutrient availability. Species specific responses to nutrient heterogeneity are central to understanding this key component of aquatic ecosystems. FT-IR microspectroscopy, modified for benthic algae, allows determination of algal physiological responses at scales not available using current techniques.« less

  12. Vaccinia-related kinase 3 (VRK3) sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Nayoung; Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Kyunggi-do, 16499; Song, Jieun

    In the eukaryotic circadian clock machinery, negative feedback repression of CLOCK (CLK) and BMAL1 transcriptional activity by PERIOD (PER) and CRYPTOCHROME (CRY) underlies the basis for 24 h rhythmic gene expression. Thus, precise regulation of the time-dependent nuclear entry of circadian repressors is crucial to generating normal circadian rhythms. Here, we sought to identify novel kinase(s) that regulate nuclear entry of mammalian CRY1 (mCRY1) with an unbiased screening using red fluorescent protein (RFP)-tagged human kinome expression plasmids in mammalian cells. Transient expression of human vaccinia-related kinase 3 (hVRK3) reduced the nuclear presence of mCRY1. hVRK3 expression also induced alterations in themore » subcellular localization of other core clock proteins, including mCRY2, mPER2, and BMAL1. In contrast, the subcellular localization of mCLK was not changed. Given that singly expressed mCLK mostly resides in the cytoplasm and that nuclear localization sequence (NLS) mutation of hVRK3 attenuated the effect of hVRK3 co-expression on subcellular localization, ectopically expressed hVRK3 presumably reduces the retention of proteins in the nucleus. Finally, downregulation of hvrk3 using siRNA reduced the amplitude and lengthened the period of the cellular bioluminescence rhythm. Taken together, these data suggest that VRK3 plays a role in setting the amplitude and period length of circadian rhythms in mammalian cells. - Highlights: • Screening was performed to identify kinases that regulate CRY1 subcellular localization. • VRK3 alters the subcellular localization of CRY1, CRY2, PER2, and BMAL1. • VRK3 knock-down alters the circadian bioluminescence rhythm in mammalian cells.« less

  13. Systematic Analysis of Arabidopsis Organelles and a Protein Localization Database for Facilitating Fluorescent Tagging of Full-Length Arabidopsis Proteins1[W

    PubMed Central

    Li, Shijun; Ehrhardt, David W.; Rhee, Seung Y.

    2006-01-01

    Cells are organized into a complex network of subcellular compartments that are specialized for various biological functions. Subcellular location is an important attribute of protein function. To facilitate systematic elucidation of protein subcellular location, we analyzed experimentally verified protein localization data of 1,300 Arabidopsis (Arabidopsis thaliana) proteins. The 1,300 experimentally verified proteins are distributed among 40 different compartments, with most of the proteins localized to four compartments: mitochondria (36%), nucleus (28%), plastid (17%), and cytosol (13.3%). About 19% of the proteins are found in multiple compartments, in which a high proportion (36.4%) is localized to both cytosol and nucleus. Characterization of the overrepresented Gene Ontology molecular functions and biological processes suggests that the Golgi apparatus and peroxisome may play more diverse functions but are involved in more specialized processes than other compartments. To support systematic empirical determination of protein subcellular localization using a technology called fluorescent tagging of full-length proteins, we developed a database and Web application to provide preselected green fluorescent protein insertion position and primer sequences for all Arabidopsis proteins to study their subcellular localization and to store experimentally verified protein localization images, videos, and their annotations of proteins generated using the fluorescent tagging of full-length proteins technology. The database can be searched, browsed, and downloaded using a Web browser at http://aztec.stanford.edu/gfp/. The software can also be downloaded from the same Web site for local installation. PMID:16617091

  14. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    PubMed

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  15. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  16. Identification of human cysteine-rich secretory protein 3 (CRISP-3) as a matrix protein in a subset of peroxidase-negative granules of neutrophils and in the granules of eosinophils.

    PubMed

    Udby, Lene; Calafat, Jero; Sørensen, Ole E; Borregaard, Niels; Kjeldsen, Lars

    2002-09-01

    Cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) was originally discovered in human neutrophilic granulocytes. We have recently developed a sensitive sandwich enzyme-linked immunosorbent assay for CRISP-3 and demonstrated the presence of CRISP-3 in exocrine secretions. To investigate the subcellular localization and mobilization of CRISP-3 in human neutrophils, we performed subcellular fractionation of resting and activated neutrophils on three-layer Percoll density gradients, release-studies of granule proteins in response to different secretagogues, and double-labeling immunogold electron microscopy. CRISP-3 was found to be localized in a subset of granules with overlapping characteristics of specific and gelatinase granules and mobilized accordingly, thus confirming the hypothesis that peroxidase-negative granules exist as a continuum from specific to gelatinase granules regarding protein content and mobilization. CRISP-3 was found to be a matrix protein, which is stored in granules as glycosylated and as unglycosylated protein. The subcellular distribution of the two forms of CRISP-3 was identical. In addition, CRISP-3 was found as a granule protein in eosinophilic granulocytes. The presence of CRISP-3 in peroxidase-negative granules of neutrophils, in granules of eosinophils, and in exocrine secretions indicates a role in the innate host defense.

  17. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis.

    PubMed

    Xiao, Shangxi; MacNair, Laura; McGoldrick, Philip; McKeever, Paul M; McLean, Jesse R; Zhang, Ming; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2015-10-01

    A noncoding hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). It has been reported that the repeat expansion causes a downregulation of C9orf72 transcripts, suggesting that haploinsufficiency may contribute to disease pathogenesis. Two protein isoforms are generated from three alternatively spliced transcripts of C9orf72; a long form (C9-L) and a short form (C9-S), and their function(s) are largely unknown owing to lack of specific antibodies. To investigate C9orf72 protein properties, we developed novel antibodies that recognize either C9-L or C9-S. Multiple techniques, including Western blot, immunohistochemistry, and coimmunoprecipitation, were used to determine the expression levels and subcellular localizations of C9-L and C9-S. Investigation of expression of C9-L and C9-S demonstrated distinct biochemical profiles, region-specific changes, and distinct subcellular localizations in ALS tissues. In particular, C9-L antibody exhibited a diffuse cytoplasmic staining in neurons and labeled large speckles in cerebellar Purkinje cells. In contrast, C9-S antibody gave very specific labeling of the nuclear membrane in healthy neurons, with apparent relocalization to the plasma membrane of diseased motor neurons in ALS. Coimmunoprecipitation experiments revealed an interaction of the C9-isoforms with both Importin β1 and Ran-GTPase, components of the nuclear pore complex. Using these antibodies, we have shown that C9orf72 may be involved in nucleocytoplasmic shuttling and this may have relevance to pathophysiology of ALS/FTLD. Our antibodies have provided improved detection of C9orf72 protein isoforms, which will help elucidate its physiological function and role in ALS/FTLD. © 2015 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  18. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-12-10

    Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less

  19. Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase1

    PubMed Central

    Leivar, Pablo; González, Víctor M.; Castel, Susanna; Trelease, Richard N.; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier

    2005-01-01

    Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-μm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants. PMID:15618432

  20. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.

  1. Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2007-02-15

    Viruses can reproduce their progenies only within a host cell, and their actions depend both on its destructive tendencies toward a specific host cell and on environmental conditions. Therefore, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very useful for in-depth studying of their functions and mechanisms as well as designing antiviral drugs. An analysis on the Swiss-Prot database (version 50.0, released on May 30, 2006) indicates that only 23.5% of viral protein entries are annotated for their subcellular locations in this regard. As for the gene ontology database, the corresponding percentage is 23.8%. Such a gap calls for the development of high throughput tools for timely annotating the localization of viral proteins within host and virus-infected cells. In this article, a predictor called "Virus-PLoc" has been developed that is featured by fusing many basic classifiers with each engineered according to the K-nearest neighbor rule. The overall jackknife success rate obtained by Virus-PLoc in identifying the subcellular compartments of viral proteins was 80% for a benchmark dataset in which none of proteins has more than 25% sequence identity to any other in a same location site. Virus-PLoc will be freely available as a web-server at http://202.120.37.186/bioinf/virus for the public usage. Furthermore, Virus-PLoc has been used to provide large-scale predictions of all viral protein entries in Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Virus-PLoc.xls." This file is available at the same website and will be updated twice a year to include the new entries of viral proteins and reflect the continuous development of Virus-PLoc. 2006 Wiley Periodicals, Inc.

  2. Muscle glycogen and cell function--Location, location, location.

    PubMed

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  4. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

    PubMed

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-08

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.

    PubMed

    Nigro, Michelangelo; De Sanctis, Claudia; Formisano, Pietro; Stanzione, Rosita; Forte, Maurizio; Capasso, Giovambattista; Gigliotti, Giuseppe; Rubattu, Speranza; Viggiano, Davide

    2018-06-23

    The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.

  6. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.

    PubMed

    Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang

    2017-01-01

    Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.

  7. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    PubMed Central

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  8. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  9. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus.

    PubMed

    Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.

  10. Analyses of expression and localization of two mammalian-type transglutaminases in Physarum polycephalum, an acellular slime mold.

    PubMed

    Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka

    2004-11-01

    Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.

  11. Semi-supervised protein subcellular localization.

    PubMed

    Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang

    2009-01-30

    Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.

  12. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  13. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    PubMed Central

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  14. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC.

    PubMed

    Xiao, Xuan; Cheng, Xiang; Chen, Genqiang; Mao, Qi; Chou, Kuo-Chen

    2018-05-26

    Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called "pLoc-mGpos" was developed for identifying the subcellular localization of Gram-positive bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called "multiplex proteins", may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGpos was trained by an extremely skewed dataset in which some subset (subcellular location) was over 11 times the size of the other subsets. Accordingly, it cannot avoid the bias consequence caused by such an uneven training dataset. To alleviate such bias consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGpos by quasi-balancing the training dataset. Rigorous target jackknife tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGpos, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-positive bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mGpos/, by which users can easily get their desired results without the need to go through the detailed mathematics. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Quantification of non-coding RNA target localization diversity and its application in cancers.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  16. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp; Gotoh, Eiko; Kawamata, Natsuko

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclearmore » export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.« less

  17. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, ChangHyuk, E-mail: netbuyer@hanmail.net; Tak, Hyosun, E-mail: chuberry@naver.com; Rho, Mina, E-mail: minarho@hanyang.ac.kr

    2014-03-28

    Highlights: • piRNA sequences were mapped to human mitochondrial (mt) genome. • We inspected small RNA-Seq datasets from somatic cell mt subcellular fractions. • Piwi and piRNA transcripts are present in mammalian somatic cancer cell mt fractions. - Abstract: Piwi-interacting RNAs (piRNAs) are 26–31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWImore » and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies.« less

  18. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.

    PubMed

    Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K

    2015-01-01

    The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  19. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    PubMed Central

    Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.

    2015-01-01

    Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380

  20. The N-terminal Set-β Protein Isoform Induces Neuronal Death*

    PubMed Central

    Trakhtenberg, Ephraim F.; Morkin, Melina I.; Patel, Karan H.; Fernandez, Stephanie G.; Sang, Alan; Shaw, Peter; Liu, Xiongfei; Wang, Yan; Mlacker, Gregory M.; Gao, Han; Velmeshev, Dmitry; Dombrowski, Susan M.; Vitek, Michael P.; Goldberg, Jeffrey L.

    2015-01-01

    Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death. PMID:25833944

  1. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.

    PubMed

    Yu, Nancy Y; Wagner, James R; Laird, Matthew R; Melli, Gabor; Rey, Sébastien; Lo, Raymond; Dao, Phuong; Sahinalp, S Cenk; Ester, Martin; Foster, Leonard J; Brinkman, Fiona S L

    2010-07-01

    PSORTb has remained the most precise bacterial protein subcellular localization (SCL) predictor since it was first made available in 2003. However, the recall needs to be improved and no accurate SCL predictors yet make predictions for archaea, nor differentiate important localization subcategories, such as proteins targeted to a host cell or bacterial hyperstructures/organelles. Such improvements should preferably be encompassed in a freely available web-based predictor that can also be used as a standalone program. We developed PSORTb version 3.0 with improved recall, higher proteome-scale prediction coverage, and new refined localization subcategories. It is the first SCL predictor specifically geared for all prokaryotes, including archaea and bacteria with atypical membrane/cell wall topologies. It features an improved standalone program, with a new batch results delivery system complementing its web interface. We evaluated the most accurate SCL predictors using 5-fold cross validation plus we performed an independent proteomics analysis, showing that PSORTb 3.0 is the most accurate but can benefit from being complemented by Proteome Analyst predictions. http://www.psort.org/psortb (download open source software or use the web interface). psort-mail@sfu.ca Supplementary data are available at Bioinformatics online.

  2. Prediction of protein subcellular localization by weighted gene ontology terms.

    PubMed

    Chi, Sang-Mun

    2010-08-27

    We develop a new weighting approach of gene ontology (GO) terms for predicting protein subcellular localization. The weights of individual GO terms, corresponding to their contribution to the prediction algorithm, are determined by the term-weighting methods used in text categorization. We evaluate several term-weighting methods, which are based on inverse document frequency, information gain, gain ratio, odds ratio, and chi-square and its variants. Additionally, we propose a new term-weighting method based on the logarithmic transformation of chi-square. The proposed term-weighting method performs better than other term-weighting methods, and also outperforms state-of-the-art subcellular prediction methods. Our proposed method achieves 98.1%, 99.3%, 98.1%, 98.1%, and 95.9% overall accuracies for the animal BaCelLo independent dataset (IDS), fungal BaCelLo IDS, animal Höglund IDS, fungal Höglund IDS, and PLOC dataset, respectively. Furthermore, the close correlation between high-weighted GO terms and subcellular localizations suggests that our proposed method appropriately weights GO terms according to their relevance to the localizations. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.

    PubMed

    Okuhira, Keiichiro; Shoda, Takuji; Omura, Risa; Ohoka, Nobumichi; Hattori, Takayuki; Shibata, Norihito; Demizu, Yosuke; Sugihara, Ryo; Ichino, Asato; Kawahara, Haruka; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Kurihara, Masaaki; Itoh, Susumu; Saito, Hiroyuki; Naito, Mikihiko

    2017-03-01

    Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  5. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  6. Subcellular localization of the Snf1 kinase is regulated by specific β subunits and a novel glucose signaling mechanism

    PubMed Central

    Vincent, Olivier; Townley, Robert; Kuchin, Sergei; Carlson, Marian

    2001-01-01

    The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the α (catalytic) subunit Snf1, one of the three related β subunits Gal83, Sip1, or Sip2, and the γ subunit Snf4. We present evidence that the β subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different β subunits, affords versatility in regulating physiological responses. PMID:11331606

  7. Subcellular localization and cytoplasmic complex status of endogenous Keap1.

    PubMed

    Watai, Yoriko; Kobayashi, Akira; Nagase, Hiroko; Mizukami, Mio; McEvoy, Justina; Singer, Jeffrey D; Itoh, Ken; Yamamoto, Masayuki

    2007-10-01

    Keap1 acts as a sensor for oxidative/electrophilic stress, an adaptor for Cullin-3-based ubiquitin ligase, and a regulator of Nrf2 activity through the interaction with Nrf2 Neh2 domain. However, the mechanism(s) of Nrf2 migration into the nucleus in response to stress remains largely unknown due to the lack of a reliable antibody for the detection of endogenous Keap1 molecule. Here, we report the generation of a new monoclonal antibody for the detection of endogenous Keap1 molecules. Immunocytochemical analysis of mouse embryonic fibroblasts with the antibody revealed that under normal, unstressed condition, Keap1 is localized primarily in the cytoplasm with minimal amount in the nucleus and endoplasmic reticulum. This subcellular localization profile of Keap1 appears unchanged after treatment of cells with diethyl maleate, an electrophile, and/or Leptomycin B, a nuclear export inhibitor. Subcellular fractionation analysis of mouse liver cells showed similar results. No substantial change in the subcellular distribution profile could be observed in cells isolated from butylated hydroxyanisole-treated mice. Analyses of sucrose density gradient centrifugation of mouse liver cells indicated that Keap1 appears to form multiprotein complexes in the cytoplasm. These results demonstrate that endogenous Keap1 remains mostly in the cytoplasm, and electrophiles promote nuclear accumulation of Nrf2 without altering the subcellular localization of Keap1.

  8. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias)

    PubMed Central

    Cutler, Christopher P.; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III–In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells. PMID:22363294

  9. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    PubMed

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells.

  10. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function

    PubMed Central

    Feng, Suihan; Harayama, Takeshi; Montessuit, Sylvie; David, Fabrice PA; Winssinger, Nicolas; Martinou, Jean-Claude

    2018-01-01

    Photoactivation ('uncaging’) is a powerful approach for releasing bioactive small-molecules in living cells. Current uncaging methods are limited by the random distribution of caged molecules within cells. We have developed a mitochondria-specific photoactivation method, which permitted us to release free sphingosine inside mitochondria and thereafter monitor local sphingosine metabolism by lipidomics. Our results indicate that sphingosine was quickly phosphorylated into sphingosine 1-phosphate (S1P) driven by sphingosine kinases. In time-course studies, the mitochondria-specific uncaged sphingosine demonstrated distinct metabolic patterns compared to globally-released sphingosine, and did not induce calcium spikes. Our data provide direct evidence that sphingolipid metabolism and signaling are highly dependent on the subcellular location and opens up new possibilities to study the effects of lipid localization on signaling and metabolic fate. PMID:29376826

  11. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase in nuclei and rimmed vacuoles of muscle fibers in DMRV (distal myopathy with rimmed vacuoles).

    PubMed

    Ishihara, Shoichiro; Tomimitsu, Hiroyuki; Fujigasaki, Hiroto; Saito, Fumiaki; Mizusawa, Hidehiro

    2008-03-01

    UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key molecule in the pathogenesis of distal myopathy with rimmed vacuoles (DMRV) and hereditary inclusion body myopathy (HIBM) and almost all such patients have some mutations in GNE. However, subcellular localization of GNE and the mechanism of muscular damage have not been clarified. A rabbit polyclonal antibody for GNE was prepared. Immunohistochemistry was performed using anti-GNE and anti-nuclear protein antibodies. Western blotting with subcellular fractionated proteins was performed to determine subcellular localization of GNE. The sizes of myonuclei were quantified in muscle biopsies from patients with DMRV and amyotrophic lateral sclerosis (ALS). In DMRV muscles, immunohistochemistry identified GNE in sarcoplasm and specifically in myonuclei and rimmed vacuoles (RV). Nuclear proteins were also found in RVs. Immunohistochemistry showed colocalization of GNE and emerin in C2C12 cells. Western blotting revealed the presence of GNE in nuclear fractions of human embryonic kidney (HEK) 293T cells. The mean size of myonuclei of DMRV was significantly larger than that of ALS. GNE is present in myonuclei near nuclear membrane. Our results suggest that myonuclei are involved in RV formation in DMRV, and that mutant GNE in myonuclei seems to play some role in this process.

  12. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    PubMed

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.).

    PubMed

    Wu, Tsung-Meng; Lin, Ke-Chun; Liau, Wei-Shiang; Chao, Yun-Yang; Yang, Ling-Hung; Chen, Szu-Yun; Lu, Chung-An; Hong, Chwan-Yang

    2016-01-01

    In the post-genomic era, many useful tools have been developed to accelerate the investigation of gene functions. Fluorescent proteins have been widely used as protein tags for studying the subcellular localization of proteins in plants. Several fluorescent organelle marker lines have been generated in dicot plants; however, useful and reliable fluorescent organelle marker lines are lacking in the monocot model rice. Here, we developed eight different GFP-based organelle markers in transgenic rice and created a set of DsRed-based gateway vectors for combining with the marker lines. Two mitochondrial-localized rice ascorbate peroxidase genes fused to DsRed and successfully co-localized with mitochondrial-targeted marker lines verified the practical use of this system. The co-localization of GFP-fusion marker lines and DsRed-fusion proteins provide a convenient platform for in vivo or in vitro analysis of subcellular localization of rice proteins.

  14. Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2016-01-01

    Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.

  15. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  16. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  18. DeepLoc: prediction of protein subcellular localization using deep learning.

    PubMed

    Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole

    2017-11-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. A steady-state model of spreading depression predicts the importance of an unknown conductance in specific dendritic domains.

    PubMed

    Makarova, Julia; Ibarz, José M; Canals, Santiago; Herreras, Oscar

    2007-06-15

    Spreading depression (SD) is a pathological wave of transient neuronal inactivation. We recently reported that the characteristic sustained complete depolarization is restricted to specific cell domains where the input resistance (R(in)) first becomes negligible before achieving partial recovery, whereas in adjacent, more polarized membranes it drops by much less. The experimental study of the participating membrane channels is hindered by their mixed contribution and heterogeneous distribution. Therefore, we derived a biophysical model to analyze the conductances that replicate the subcellular profile of R(in) during SD. Systematic variation of conductance densities far beyond the ranges reported failed to fit the experimental values. Besides standard potassium, sodium, and Glu-mediated conductances, the initial opening and gradual closing of an as yet undetermined large conductance is required to account for the evolution of R(in). Potassium conductances follow in the relative contribution and their closing during the late phase is also predicted. Large intracellular potential gradients from zero to rest are readily sustained between shunted and adjacent SD-spared membranes, which remain electroregenerative. The gradients are achieved by a combination of high-conductance subcellular domains and transmembrane ion redistribution in extended but discrete dendritic domains. We conclude that the heterogeneous subcellular behavior is due to local membrane properties, some of which may be specifically activated under extreme SD conditions.

  20. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    USDA-ARS?s Scientific Manuscript database

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  1. Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia.

    PubMed

    Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma

    2018-06-01

    The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic cardiomyopathy.

  2. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells.

    PubMed

    Kwon, ChangHyuk; Tak, Hyosun; Rho, Mina; Chang, Hae Ryung; Kim, Yon Hui; Kim, Kyung Tae; Balch, Curt; Lee, Eun Kyung; Nam, Seungyoon

    2014-03-28

    Piwi-interacting RNAs (piRNAs) are 26-31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    PubMed

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  4. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    PubMed

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  5. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle

    PubMed Central

    Peterson, Soren J.; Krasnow, Mark A.

    2015-01-01

    SUMMARY To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains including inside the cell. PMID:25557078

  6. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle.

    PubMed

    Peterson, Soren J; Krasnow, Mark A

    2015-01-15

    To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Subcellular Localization Screening of Colletotrichum higginsianum Effector Candidates Identifies Fungal Proteins Targeted to Plant Peroxisomes, Golgi Bodies, and Microtubules.

    PubMed

    Robin, Guillaume P; Kleemann, Jochen; Neumann, Ulla; Cabre, Lisa; Dallery, Jean-Félix; Lapalu, Nicolas; O'Connell, Richard J

    2018-01-01

    The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum , encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium -mediated transformation to transiently express them as N -terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana , and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C -terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.

  8. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    PubMed

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  9. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies

    PubMed Central

    Thapa, Dharendra; Shepherd, Danielle L.

    2014-01-01

    Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166

  10. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    PubMed

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  11. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence.

    PubMed

    Rolland, N; Droux, M; Douce, R

    1992-03-01

    The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.

  12. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence

    PubMed Central

    Rolland, Norbert; Droux, Michel; Douce, Roland

    1992-01-01

    The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs. ImagesFigure 1 PMID:16668766

  13. Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.

    PubMed

    Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin

    2010-11-01

    The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.

  14. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species

    PubMed Central

    Harrison, David G.

    2014-01-01

    Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2•−), hydrogen peroxide, and peroxynitrite (ONOO•−), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372–382. PMID:22978713

  15. Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression.

    PubMed

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-04-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33(ING1b) splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33(ING1b) protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33(ING1b) increased levels of the p21(Waf1) cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21(Waf1) by p33(ING1b), consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33(ING1b) by directing its subcellular localization.

  16. mLASSO-Hum: A LASSO-based interpretable human-protein subcellular localization predictor.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-10-07

    Knowing the subcellular compartments of human proteins is essential to shed light on the mechanisms of a broad range of human diseases. In computational methods for protein subcellular localization, knowledge-based methods (especially gene ontology (GO) based methods) are known to perform better than sequence-based methods. However, existing GO-based predictors often lack interpretability and suffer from overfitting due to the high dimensionality of feature vectors. To address these problems, this paper proposes an interpretable multi-label predictor, namely mLASSO-Hum, which can yield sparse and interpretable solutions for large-scale prediction of human protein subcellular localization. By using the one-vs-rest LASSO-based classifiers, 87 out of more than 8000 GO terms are found to play more significant roles in determining the subcellular localization. Based on these 87 essential GO terms, we can decide not only where a protein resides within a cell, but also why it is located there. To further exploit information from the remaining GO terms, a method based on the GO hierarchical information derived from the depth distance of GO terms is proposed. Experimental results show that mLASSO-Hum performs significantly better than state-of-the-art predictors. We also found that in addition to the GO terms from the cellular component category, GO terms from the other two categories also play important roles in the final classification decisions. For readers' convenience, the mLASSO-Hum server is available online at http://bioinfo.eie.polyu.edu.hk/mLASSOHumServer/. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines.

    PubMed

    Ahou, Abdellah; Martignago, Damiano; Alabdallah, Osama; Tavazza, Raffaela; Stano, Pasquale; Macone, Alberto; Pivato, Micaela; Masi, Antonio; Rambla, Jose L; Vera-Sirera, Francisco; Angelini, Riccardo; Federico, Rodolfo; Tavladoraki, Paraskevi

    2014-04-01

    Polyamine oxidases (PAOs) are flavin-dependent enzymes involved in polyamine catabolism. In Arabidopsis five PAO genes (AtPAO1-AtPAO5) have been identified which present some common characteristics, but also important differences in primary structure, substrate specificity, subcellular localization, and tissue-specific expression pattern, differences which may suggest distinct physiological roles. In the present work, AtPAO5, the only so far uncharacterized AtPAO which is specifically expressed in the vascular system, was partially purified from 35S::AtPAO5-6His Arabidopsis transgenic plants and biochemically characterized. Data presented here allow AtPAO5 to be classified as a spermine dehydrogenase. It is also shown that AtPAO5 oxidizes the polyamines spermine, thermospermine, and N(1)-acetylspermine, the latter being the best in vitro substrate of the recombinant enzyme. AtPAO5 also oxidizes these polyamines in vivo, as was evidenced by analysis of polyamine levels in the 35S::AtPAO5-6His Arabidopsis transgenic plants, as well as in a loss-of-function atpao5 mutant. Furthermore, subcellular localization studies indicate that AtPAO5 is a cytosolic protein undergoing proteasomal control. Positive regulation of AtPAO5 expression by polyamines at the transcriptional and post-transcriptional level is also shown. These data provide new insights into the catalytic properties of the PAO gene family and the complex regulatory network controlling polyamine metabolism.

  18. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.

    PubMed

    Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa

    2002-04-12

    The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.

  19. Essential Function of Protein 4.1G in Targeting of Membrane Protein Palmitoylated 6 into Schmidt-Lanterman Incisures in Myelinated Nerves

    PubMed Central

    Saitoh, Yurika; Ohno, Nobuhiko; Komada, Masayuki; Saitoh, Sei; Peles, Elior; Ohno, Shinichi

    2012-01-01

    Protein 4.1G is a membrane skeletal protein found in specific subcellular structures in myelinated Schwann cells and seminiferous tubules. Here, we show that in the mouse sciatic nerve, protein 4.1G colocalized at Schmidt-Lanterman incisures (SLI) and the paranodes with a member of the membrane-associated guanylate kinase (MAGUK) family, membrane protein palmitoylated 6 (MPP6). Coimmunoprecipitation experiments revealed that MPP6 was interacting with protein 4.1G. In contrast to wild-type nerves, in 4.1G knockout mice, MPP6 was found largely in the cytoplasm near Schwann cell nuclei, indicating an abnormal protein transport. Although the SLI remained in the 4.1G knockout sciatic nerves, as confirmed by E-cadherin immunostaining, their shape was altered in aged 4.1G knockout nerves compared to their shape in wild-type nerves. In the seminiferous tubules, MPP6 was localized similarly to protein 4.1G along cell membranes of the spermatogonium and early spermatocytes. However, in contrast to myelinated peripheral nerves, the specific localization of MPP6 in the seminiferous tubules was unaltered in the absence of protein 4.1G. These results indicate that 4.1G has a specific role in the targeting of MPP6 to the SLI and the assembly of these subcellular structures. PMID:22025680

  20. Cytoplasmic YY1 Is Associated with Increased Smooth Muscle-Specific Gene Expression

    PubMed Central

    Favot, Laure; Hall, Susan M.; Haworth, Sheila G.; Kemp, Paul R.

    2005-01-01

    Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of γ-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized γ-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-α expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension. PMID:16314465

  1. Specificity in ROS Signaling and Transcript Signatures

    PubMed Central

    Vaahtera, Lauri; Brosché, Mikael; Wrzaczek, Michael

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. Recent Advances: A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. Critical Issues: The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. Future Directions: Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a “ROS marker gene” should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of “ROS signatures,” which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes. Antioxid. Redox Signal. 21, 1422–1441. PMID:24180661

  2. Focal calcium monitoring with targeted nanosensors at the cytosolic side of endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Hou, Yanyan; Arai, Satoshi; Takei, Yoshiaki; Murata, Atsushi; Takeoka, Shinji; Suzuki, Madoka

    2016-01-01

    Ca2+ distribution is spatially and temporally non-uniform inside cells due to cellular compartmentalization. However, Ca2+ sensing with small organic dyes, such as fura-2 and fluo-4, has been practically applied at a single cell level where the averaged signal from freely diffusing dye molecules is acquired. In this study, we aimed to target azide-functionalized fura-2 (N3-fura-2) to a specific site of subcellular compartments to realize focal Ca2+ sensing. Using scAVD (single-chain avidin)-biotin interaction and a copper-free click reaction system, we linked N3-fura-2 to specifically-targeted scAVD protein fused with a red fluorescent protein mCherry, so that Ca2+ sensors conjugated with four N3-fura-2 dyes with dibenzocyclooctyne (DBCO)-PEG4-biotin as a linker were generated at subcellular compartments in living cells. In cytoplasm, N3-fura-2 showed a prolonged retention period after binding to scAVD. Furthermore, the reacted N3-fura-2 was retained inside cells even after free dyes were washed out by methanol fixation. When scAVD was overexpressed on endoplasmic reticulum (ER) membranes, N3-fura-2 was accumulated on ER membranes. Upon histamine stimulation, which increases cytosolic Ca2+ concentration, ER-localized N3-fura-2 successfully sensed the Ca2+ level changes at the cytosolic side of ER membrane. Our study demonstrated specific targeting of N3-fura-2 to subcellular compartments and the ability of sensing focal Ca2+ level changes with the specifically targeted Ca2+ sensors.

  3. Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils

    PubMed Central

    Leclerc, Patrick; Biarc, Jordane; St-Onge, Mireille; Gilbert, Caroline; Dussault, Andrée-Anne; Laflamme, Cynthia; Pouliot, Marc

    2008-01-01

    The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis. PMID:18493301

  4. WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms.

    PubMed

    Chi, Sang-Mun; Nam, Dougu

    2012-04-01

    We present an accurate and fast web server, WegoLoc for predicting subcellular localization of proteins based on sequence similarity and weighted Gene Ontology (GO) information. A term weighting method in the text categorization process is applied to GO terms for a support vector machine classifier. As a result, WegoLoc surpasses the state-of-the-art methods for previously used test datasets. WegoLoc supports three eukaryotic kingdoms (animals, fungi and plants) and provides human-specific analysis, and covers several sets of cellular locations. In addition, WegoLoc provides (i) multiple possible localizations of input protein(s) as well as their corresponding probability scores, (ii) weights of GO terms representing the contribution of each GO term in the prediction, and (iii) a BLAST E-value for the best hit with GO terms. If the similarity score does not meet a given threshold, an amino acid composition-based prediction is applied as a backup method. WegoLoc and User's guide are freely available at the website http://www.btool.org/WegoLoc smchiks@ks.ac.kr; dougnam@unist.ac.kr Supplementary data is available at http://www.btool.org/WegoLoc.

  5. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  6. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  7. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  8. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  9. RNA deep sequencing as a tool for selection of cell lines for systematic subcellular localization of all human proteins.

    PubMed

    Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma

    2013-01-04

    One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.

  10. Subcellular localization of Mitf in monocytic cells.

    PubMed

    Lu, Ssu-Yi; Wan, Hsiao-Ching; Li, Mengtao; Lin, Yi-Ling

    2010-06-01

    Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf.

  11. Determination of localization accuracy based on experimentally acquired image sets: applications to single molecule microscopy

    PubMed Central

    Tahmasbi, Amir; Ward, E. Sally; Ober, Raimund J.

    2015-01-01

    Fluorescence microscopy is a photon-limited imaging modality that allows the study of subcellular objects and processes with high specificity. The best possible accuracy (standard deviation) with which an object of interest can be localized when imaged using a fluorescence microscope is typically calculated using the Cramér-Rao lower bound, that is, the inverse of the Fisher information. However, the current approach for the calculation of the best possible localization accuracy relies on an analytical expression for the image of the object. This can pose practical challenges since it is often difficult to find appropriate analytical models for the images of general objects. In this study, we instead develop an approach that directly uses an experimentally collected image set to calculate the best possible localization accuracy for a general subcellular object. In this approach, we fit splines, i.e. smoothly connected piecewise polynomials, to the experimentally collected image set to provide a continuous model of the object, which can then be used for the calculation of the best possible localization accuracy. Due to its practical importance, we investigate in detail the application of the proposed approach in single molecule fluorescence microscopy. In this case, the object of interest is a point source and, therefore, the acquired image set pertains to an experimental point spread function. PMID:25837101

  12. Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation

    PubMed

    Welch; Mauran; Maridonneau-Parini

    1996-06-01

    Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.

  13. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  14. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE PAGES

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    2017-06-13

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  15. Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios.

    PubMed

    Tiffany, Matthew; Szoka, Francis C

    2016-11-01

    We utilized quantitative high-resolution single particle tracking to study the internalization and endosomal sorting of lipid nanoparticles (LNPs) by HeLa cells in vitro to gain a better understanding of how cells process LNPs that are used for siRNA delivery. We compared the trafficking of three formulations that have been demonstrated to deliver siRNA into cells. They were composed of either a tritratable anionic lipid, formulation of cholesterol hemisuccinate (CHEMS), or a titratatable cationic lipid formulation of 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) or a non-titratable cationic formulation lipid formulation of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). They also contained either a substantial percentage of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol and 5 mole percent 1,2-dimyristoyl-sn-glycerol-[methoxy(polyethylene glycol)-2000 (PEG-DMG). We optically measured the endosomal pH experienced by individual LNPs, observed the internalization pathways used and tracked the particles as they co-localized with fluorescent protein tags on compartment-specific proteins, during endosomal sorting to the lysosome. The data revealed significant differences in the accumulation in subcellular compartments among the three formulations, which help to explain the observed effects LNP composition exerts on in vitro delivery efficiency.

  16. LocSigDB: a database of protein localization signals

    PubMed Central

    Negi, Simarjeet; Pandey, Sanjit; Srinivasan, Satish M.; Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    LocSigDB (http://genome.unmc.edu/LocSigDB/) is a manually curated database of experimental protein localization signals for eight distinct subcellular locations; primarily in a eukaryotic cell with brief coverage of bacterial proteins. Proteins must be localized at their appropriate subcellular compartment to perform their desired function. Mislocalization of proteins to unintended locations is a causative factor for many human diseases; therefore, collection of known sorting signals will help support many important areas of biomedical research. By performing an extensive literature study, we compiled a collection of 533 experimentally determined localization signals, along with the proteins that harbor such signals. Each signal in the LocSigDB is annotated with its localization, source, PubMed references and is linked to the proteins in UniProt database along with the organism information that contain the same amino acid pattern as the given signal. From LocSigDB webserver, users can download the whole database or browse/search for data using an intuitive query interface. To date, LocSigDB is the most comprehensive compendium of protein localization signals for eight distinct subcellular locations. Database URL: http://genome.unmc.edu/LocSigDB/ PMID:25725059

  17. Unique nuclear localization of Nile tilapia (Oreochromis niloticus) Neu4 sialidase is regulated by nuclear transport receptor importin α/β.

    PubMed

    Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2018-06-01

    Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    PubMed

    Jia, Xiuzhi; Li, Jingbo; Shi, Dejing; Zhao, Yu; Dong, Yucui; Ju, Huanyu; Yang, Jinfeng; Sun, Jianhua; Li, Xia; Ren, Huan

    2014-01-01

    Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652) between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  19. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes.

    PubMed

    Meng, Wei; Hsiao, An-Shan; Gao, Caiji; Jiang, Liwen; Chye, Mee-Len

    2014-07-01

    Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Multilabel learning via random label selection for protein subcellular multilocations prediction.

    PubMed

    Wang, Xiao; Li, Guo-Zheng

    2013-01-01

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multilocation proteins to multiple proteins with single location, which does not take correlations among different subcellular locations into account. In this paper, a novel method named random label selection (RALS) (multilabel learning via RALS), which extends the simple binary relevance (BR) method, is proposed to learn from multilocation proteins in an effective and efficient way. RALS does not explicitly find the correlations among labels, but rather implicitly attempts to learn the label correlations from data by augmenting original feature space with randomly selected labels as its additional input features. Through the fivefold cross-validation test on a benchmark data set, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark data sets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multilocations of proteins. The prediction web server is available at >http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  1. The testis-specific VAD1.3/AEP1 interacts with β-actin and syntaxin 1 and directs peri-nuclear/Golgi expression with bipartite nucleus localization (BNL) sequence.

    PubMed

    Zuo, Yan; Gao, Jing; Yeung, William S B; Lee, Kai-Fai

    2010-10-15

    VAD1.3 (AEP1), a novel testis-specific gene, was first isolated from the testis of a retinol-treated vitamin-A-deficient (VAD) rat model. It is expressed at the acrosomal region of spermatids from postnatal day 25. VAD1.3 immunoreactivity is present in rat, human, monkey and porcine spermatids and spermatozoa, suggesting that VAD1.3 may play a role in acrosome formation. However, direct evidence on the detailed sub-cellular localization of the VAD1.3 protein in the acrosome and how VAD1.3 is involved in acrosome formation remains largely unknown. Here, we isolated and identified VAD1.3 interacting proteins by immunoprecipitation followed by mass spectrometry, and determined the functional motifs of VAD1.3 that were important for its specific sub-cellular location in vitro. We found that VAD1.3 bound to syntaxin 1 and β-actin proteins in vitro. Immunogold electron microscopic study localized VAD1.3 immunoreactivity to the acrosome membranes and matrix, and colocalized it with the β-actin protein. The full-length GFP-VAD (1-3601) and GFP-VAD (1-730) fusion proteins that contain the bipartite nucleus localization (BNL) signal were located in the peri-nucleus/Golgi of the transfected cells. In addition, the GFP signal colocalized with the endoplasmic reticulum marker and the syntaxin 1 protein in the transfected HeLa and GC-2spd cells. The C-terminal GFP-VAD (1770-3601) was expressed in the nucleus. Taken together, VAD1.3 interacts with β-actin and syntaxin 1 in vitro. The BNL signal may mediate the peri-nuclei localization of the protein that may interact with syntaxin 1 and β-actin for acrosome formation in spermatogenesis. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  2. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-07-15

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.

  3. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    PubMed

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Ubiquitous Distribution of Late Embryogenesis Abundant Proteins across Cell Compartments in Arabidopsis Offers Tailored Protection against Abiotic Stress[C][W][OPEN

    PubMed Central

    Candat, Adrien; Paszkiewicz, Gaël; Neveu, Martine; Gautier, Romain; Logan, David C.; Avelange-Macherel, Marie-Hélène; Macherel, David

    2014-01-01

    Late embryogenesis abundant (LEA) proteins are hydrophilic, mostly intrinsically disordered proteins, which play major roles in desiccation tolerance. In Arabidopsis thaliana, 51 genes encoding LEA proteins clustered into nine families have been inventoried. To increase our understanding of the yet enigmatic functions of these gene families, we report the subcellular location of each protein. Experimental data highlight the limits of in silico predictions for analysis of subcellular localization. Thirty-six LEA proteins localized to the cytosol, with most being able to diffuse into the nucleus. Three proteins were exclusively localized in plastids or mitochondria, while two others were found dually targeted to these organelles. Targeting cleavage sites could be determined for five of these proteins. Three proteins were found to be endoplasmic reticulum (ER) residents, two were vacuolar, and two were secreted. A single protein was identified in pexophagosomes. While most LEA protein families have a unique subcellular localization, members of the LEA_4 family are widely distributed (cytosol, mitochondria, plastid, ER, and pexophagosome) but share the presence of the class A α-helix motif. They are thus expected to establish interactions with various cellular membranes under stress conditions. The broad subcellular distribution of LEA proteins highlights the requirement for each cellular compartment to be provided with protective mechanisms to cope with desiccation or cold stress. PMID:25005920

  5. Biosensor reveals multiple sources for mitochondrial NAD⁺.

    PubMed

    Cambronne, Xiaolu A; Stewart, Melissa L; Kim, DongHo; Jones-Brunette, Amber M; Morgan, Rory K; Farrens, David L; Cohen, Michael S; Goodman, Richard H

    2016-06-17

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases (PARPs), which are NAD(+)-consuming enzymes localized in the nucleus, cytosol, and mitochondria. Fluctuations in NAD(+) concentrations within these subcellular compartments are thought to regulate the activity of NAD(+)-consuming enzymes; however, the challenge in measuring compartmentalized NAD(+) in cells has precluded direct evidence for this type of regulation. We describe the development of a genetically encoded fluorescent biosensor for directly monitoring free NAD(+) concentrations in subcellular compartments. We found that the concentrations of free NAD(+) in the nucleus, cytoplasm, and mitochondria approximate the Michaelis constants for sirtuins and PARPs in their respective compartments. Systematic depletion of enzymes that catalyze the final step of NAD(+) biosynthesis revealed cell-specific mechanisms for maintaining mitochondrial NAD(+) concentrations. Copyright © 2016, American Association for the Advancement of Science.

  6. Modulation of integrin-linked kinase nucleo-cytoplasmic shuttling by ILKAP and CRM1.

    PubMed

    Nakrieko, Kerry-Ann; Vespa, Alisa; Mason, David; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina

    2008-07-15

    Integrin-linked kinase (ILK) plays key roles in a variety of cell functions, including cell proliferation, adhesion and migration. Within the cell, ILK localizes to multiple sites, including the cytoplasm, focal adhesion complexes that mediate cell adhesion to extracellular substrates, as well as cell-cell junctions in epidermal keratinocytes. Central to understanding ILK function is the elucidation of the mechanisms that regulate its subcellular localization. We now demonstrate that ILK is imported into the nucleus through sequences in its N-terminus, via active transport mechanisms that involve nuclear pore complexes. In addition, nuclear ILK can be rapidly exported into the cytoplasm through a CRM1-dependent pathway, and its export is enhanced by the type 2C protein phosphatase ILKAP. Nuclear localization of ILK in epidermal keratinocytes is associated with increased DNA synthesis, which is sensitive to inhibition by ILKAP. Our studies demonstrate the importance for keratinocyte proliferation of ILK regulation through changes in its subcellular localization, and establish ILKAP and CRM1 as pivotal modulators of ILK subcellular distribution and activity in these cells.

  7. Characterization of the Regulation and Function of Zinc-Dependent Histone Deacetylases During Mouse Liver Regeneration

    PubMed Central

    Huang, Jiansheng; Barr, Emily; Rudnick, David A.

    2013-01-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC mRNA and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA-treatment suppressed the effects of PH on histone deacetylation and hepatocellular BrdU incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. Conclusion The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. PMID:23258575

  8. Distribution of Single-Wall Carbon Nanotubes in the Xenopus laevis Embryo after Microinjection

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2016-01-01

    Single-wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and largescale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts, and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 μg mL-1 SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and sub-cellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labelled sub-cellular compartments demonstrated that even at the regions of highest SWCNT concentration, there were no gross alterations to sub-cellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate or localize to the perinuclear sub-cellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications. PMID:26510384

  9. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity. © 2015 John Wiley & Sons Ltd.

  10. The SubCons webserver: A user friendly web interface for state-of-the-art subcellular localization prediction.

    PubMed

    Salvatore, M; Shu, N; Elofsson, A

    2018-01-01

    SubCons is a recently developed method that predicts the subcellular localization of a protein. It combines predictions from four predictors using a Random Forest classifier. Here, we present the user-friendly web-interface implementation of SubCons. Starting from a protein sequence, the server rapidly predicts the subcellular localizations of an individual protein. In addition, the server accepts the submission of sets of proteins either by uploading the files or programmatically by using command line WSDL API scripts. This makes SubCons ideal for proteome wide analyses allowing the user to scan a whole proteome in few days. From the web page, it is also possible to download precalculated predictions for several eukaryotic organisms. To evaluate the performance of SubCons we present a benchmark of LocTree3 and SubCons using two recent mass-spectrometry based datasets of mouse and drosophila proteins. The server is available at http://subcons.bioinfo.se/. © 2017 The Protein Society.

  11. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-10-06

    Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation.

    PubMed

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-10-21

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.

  13. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations.

    PubMed

    Sala, Stefano; Van Troys, Marleen; Medves, Sandrine; Catillon, Marie; Timmerman, Evy; Staes, An; Schaffner-Reckinger, Elisabeth; Gevaert, Kris; Ampe, Christophe

    2017-05-05

    The multimodular nature of many eukaryotic proteins underlies their temporal or spatial engagement in a range of protein cocomplexes. Using the multimodule protein testin (TES), we here report a proteomics approach to increase insight in cocomplex diversity. The LIM-domain containing and tumor suppressor protein TES is present at different actin cytoskeleton adhesion structures in cells and influences cell migration, adhesion and spreading. TES module accessibility has been proposed to vary due to conformational switching and variants of TES lacking specific domains target to different subcellular locations. By applying iMixPro AP-MS ("intelligent Mixing of Proteomes"-affinity purification-mass spectrometry) to a set of tagged-TES modular variants, we identified proteins residing in module-specific cocomplexes. The obtained distinct module-specific interactomes combine to a global TES interactome that becomes more extensive and richer in information. Applying pathway analysis to the module interactomes revealed expected actin-related canonical pathways and also less expected pathways. We validated two new TES cocomplex partners: TGFB1I1 and a short form of the glucocorticoid receptor. TES and TGFB1I1 are shown to oppositely affect cell spreading providing biological validity for their copresence in complexes since they act in similar processes.

  14. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed Central

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-01-01

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033

  15. Prominin-1 Localizes to the Open Rims of Outer Segment Lamellae in Xenopus laevis Rod and Cone Photoreceptors

    PubMed Central

    Han, Zhou; Anderson, David W.

    2012-01-01

    Purpose. Prominin-1 expresses in rod and cone photoreceptors. Mutations in the prominin-1 gene cause retinal degeneration in humans. In this study, the authors investigated the expression and subcellular localization of xlProminin-1 protein, the Xenopus laevis ortholog of prominin-1, in rod and cone photoreceptors of this frog. Methods. Antibodies specific for xlProminin-1 were generated. Immunoblotting was used to study the expression and posttranslational processing of xlProminin-1 protein. Immunocytochemical light and electron microscopy and transgenesis were used to study the subcellular distribution of xlProminin-1. Results. xlProminin-1 is expressed and is subject to posttranslational proteolytic processing in the retina, brain, and kidney. xlProminin-1 is differently expressed and localized in outer segments of rod and cone photoreceptors of X. laevis. Antibodies specific for the N or C termini of xlProminin-1 labeled the open rims of lamellae of cone outer segments (COS) and the open lamellae at the base of rod outer segments (ROS). By contrast, anti–peripherin-2/rds antibody, Xper5A11, labeled the closed rims of cone lamellae adjacent to the ciliary axoneme and the rims of the closed ROS disks. The extent of labeling of the basal ROS by anti–xlProminin-1 antibodies varied with the light cycle in this frog. The entire ROS was also faintly labeled by both antibodies, a result that contrasts with the current notion that prominin-1 localizes only to the basal ROS. Conclusions. These findings suggest that xlProminin-1 may serve as an anti–fusogenic factor in the regulation of disk morphogenesis and may help to maintain the open lamellar structure of basal ROS and COS disks in X. laevis photoreceptors. PMID:22076989

  16. The N Terminus of Phosphodiesterase TbrPDEB1 of Trypanosoma brucei Contains the Signal for Integration into the Flagellar Skeleton ▿

    PubMed Central

    Luginbuehl, Edith; Ryter, Damaris; Schranz-Zumkehr, Judith; Oberholzer, Michael; Kunz, Stefan; Seebeck, Thomas

    2010-01-01

    The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton. PMID:20693305

  17. CellMap visualizes protein-protein interactions and subcellular localization

    PubMed Central

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  18. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    PubMed

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  19. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    PubMed

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yan; Lv, Liyang; Du, Juan

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizationsmore » may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.« less

  1. Plasmodium berghei MAPK1 Displays Differential and Dynamic Subcellular Localizations during Liver Stage Development

    PubMed Central

    Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094

  2. WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions.

    PubMed

    Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki

    2011-02-04

    PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.

  3. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.

  4. Prolactin-induced Subcellular Targeting of GLUT1 Glucose Transporter in Living Mammary Epithelial Cells

    PubMed Central

    Riskin, Arieh; Mond, Yehudit

    2015-01-01

    Background Studying the biological pathways involved in mammalian milk production during lactation could have many clinical implications. The mammary gland is unique in its requirement for transport of free glucose into the cell for the synthesis of lactose, the primary carbohydrate in milk. Objective To study GLUT1 trafficking and subcellular targeting in living mammary epithelial cells (MEC) in culture. Methods Immunocytochemistry was used to study GLUT1 hormonally regulated subcellular targeting in human MEC (HMEC). To study GLUT1 targeting and recycling in living mouse MEC (MMEC) in culture, we constructed fusion proteins of GLUT1 and green fluorescent protein (GFP) and expressed them in CIT3 MMEC. Cells were maintained in growth medium (GM), or exposed to secretion medium (SM), containing prolactin. Results GLUT1 in HMEC localized primarily to the plasma membrane in GM. After exposure to prolactin for 4 days, GLUT1 was targeted intracellularly and demonstrated a perinuclear distribution, co-localizing with lactose synthetase. The dynamic trafficking of GFP-GLUT1 fusion proteins in CIT3 MMEC suggested a basal constitutive GLUT1 recycling pathway between an intracellular pool and the cell surface that targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly within 90–110 minutes. Conclusions Our studies suggest intracellular targeting of GLUT1 to the central vesicular transport system upon exposure to prolactin. The existence of a dynamic prolactin-induced sorting machinery for GLUT1 could be important for transport of free glucose into the Golgi for lactose synthesis during lactation. PMID:26886772

  5. Identification of two internal signal peptide sequences: critical for classical swine fever virus non-structural protein 2 to trans-localize to the endoplasmic reticulum.

    PubMed

    Guo, Kang-kang; Tang, Qing-hai; Zhang, Yan-ming; Kang, Kai; He, Lei

    2011-05-18

    The membrane topology and molecular mechanisms for endoplasmic reticulum (ER) localization of classical swine fever virus (CSFV) non-structural 2 (NS2) protien is unclear. We attempted to elucidate the subcellular localization, and the molecular mechanisms responsible for the localization of this protein in our study. The NS2 gene was amplified by reverse transcription polymerase chain reaction, with the transmembrane region and hydrophilicity of the NS2 protein was predicted by bioinformatics analysis. Twelve cDNAs of the NS2 gene were amplified by the PCR deletion method and cloned into a eukaryotic expression vector, which was transfected into a swine umbilical vein endothelial cell line (SUVEC). Subcellular localization of the NS2 protein was characterized by confocal microscopy, and western blots were carried out to analyze protein expression. Our results showed that the -NH2 terminal of the CSFV NS2 protein was highly hydrophobic and the protein localized in the ER. At least four transmembrane regions and two internal signal peptide sequences (amino acids103-138 and 220-262) were identified and thought to be critical for its trans-localization to the ER. This is the first study to identify the internal signal peptide sequences of the CSFV NS2 protein and its subcellular localization, providing the foundation for further exploration of this protein's function of this protein and its role in CSFV pathogenesis.

  6. Protein location prediction using atomic composition and global features of the amino acid sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less

  7. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2018-05-01

    For in-depth understanding the functions of proteins in a cell, the knowledge of their subcellular localization is indispensable. The current study is focused on human protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions that are particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called 'pLoc-mHum' by extracting the crucial GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a same stringent benchmark dataset have indicated that the proposed pLoc-mHum predictor is remarkably superior to iLoc-Hum, the state-of-the-art method in predicting the human protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mHum/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xcheng@gordonlifescience.org. Supplementary data are available at Bioinformatics online.

  8. Learning cellular sorting pathways using protein interactions and sequence motifs.

    PubMed

    Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F

    2011-11-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.

  9. Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*

    PubMed Central

    Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik

    2012-01-01

    RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562

  10. A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed

    PubMed Central

    Lee, Euna

    2014-01-01

    By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565

  11. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters.

    PubMed

    Guo, B; Jin, Y; Wussler, C; Blancaflor, E B; Motes, C M; Versaw, W K

    2008-01-01

    The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid envelope, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves, although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.

  12. L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif

    PubMed Central

    Viranaicken, Wildriss; Gasmi, Laila; Chaumet, Alexandre; Durieux, Christiane; Georget, Virginie; Denoulet, Philippe; Larcher, Jean-Christophe

    2011-01-01

    Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins. PMID:21811582

  13. Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model

    PubMed Central

    Nguyen, Minh M; Harmon, Robert M; Wang, Zhou

    2014-01-01

    Background: Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. Methods: Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. Results: We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NESAR) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. Conclusions: These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms. PMID:25031696

  14. Identification of novel nuclear localization signals of Drosophila myeloid leukemia factor.

    PubMed

    Sugano, Wakana; Yamaguchi, Masamitsu

    2007-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as part of a leukemic fusion protein produced by a chromosomal translocation, and MLF family proteins are present in many animals. In mammalian cells, MLF1 has been described as mainly cytoplasmic, but in Drosophila, one of the dMLF isoforms (dMLFA) localized mainly in the nucleus while the other isoform (dMLFB), that appears to be produced by the alternative splicing, displays both nuclear and cytoplasmic localization. To investigate the difference in subcellular localization between MLF family members, we examined the subcellular localization of deletion mutants of dMLFA isoform. The analyses showed that the C-terminal 40 amino acid region of dMLFA is necessary and sufficient for nuclear localization. Based on amino acid sequences, we hypothesized that two nuclear localization signals (NLSs) are present within the region. Site-directed mutagenesis of critical residues within the two putative NLSs leads to loss of nuclear localization, suggesting that both NLS motifs are necessary for nuclear localization.

  15. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  16. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    PubMed

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  17. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration.

    PubMed

    Huang, Jiansheng; Barr, Emily; Rudnick, David A

    2013-05-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. Copyright © 2012 American Association for the Study of Liver Diseases.

  18. Subcellular Distribution and Chemical Forms of Pb in Corn: Strategies Underlying Tolerance in Pb Stress.

    PubMed

    Sun, Jianling; Luo, Liqiang

    2018-06-22

    Studying the accumulation position and forms of heavy metals (HMs) in organisms and cells is helpful to understand the transport process and detoxification mechanism. As typical HMs, lead (Pb) subcellular content, localization, and speciation of corn subcellular fractions were studied by a series of technologies, including transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray absorption near edge structure. The results revealed that the electrodense granules of Pb were localized in the cell wall, intercellular space, and plasma membranes. About 71% Pb was localized at the cell wall and soluble fraction. In cell walls, the total amount of pyromorphite and Pb carbonate was about 80% and the remaining was Pb stearate. In the nuclear and chloroplast fraction, which demonstrated significant changes, major speciations were Pb sulfide (72%), basic Pb carbonate (16%), and Pb stearate (12%). Pb is blocked by cell walls as pyromorphite and Pb carbonate sediments and compartmentalized by vacuoles, which both play an inportant role in cell detoxification. Besides, sulfur-containing compounds form inside the cells.

  19. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    PubMed

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.

  20. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5)

    PubMed Central

    Guise, Amanda J.; Cristea, Ileana M.

    2017-01-01

    As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear–cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease. PMID:27246208

  1. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators ofmore » two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.« less

  2. Internalization and Subcellular Trafficking of Poly-l-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2015-06-01

    Internalization and intracellular trafficking of dendrimer-drug conjugates play an important role in achieving successful drug delivery. In this study, we aimed to elucidate the endocytosis mechanisms and subcellular localization of poly-l-lysine (PLL) dendrimers in Caco-2 cells. We also investigated the impact of fluorophore conjugation on cytotoxicity, uptake, and transepithelial transport. Oregon green 514 (OG) was conjugated to PLL G3 at either the dendrimer periphery or the core. Chemical inhibitors of clathrin-, caveolin-, cholesterol-, and dynamin-mediated endocytosis pathways and macropinocytosis were employed to establish internalization mechanisms, while colocalization with subcellular markers was used to determine dendrimer trafficking. Cell viability, internalization, and uptake were all influenced by the site of fluorophore conjugation. Uptake was found to be highly dependent on cholesterol- and dynamin-mediated endocytosis as well as macropinocytosis. Dendrimers were trafficked to endosomes and lysosomes, and subcellular localization was impacted by the fluorophore conjugation site. The results of this study indicate that PLL dendrimers exploit multiple pathways for cellular entry, and internalization and trafficking can be impacted by conjugation. Therefore, design of dendrimer-drug conjugates requires careful consideration to achieve successful drug delivery.

  3. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-04

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  4. Extrasynaptic N-Methyl-d-aspartate (NMDA) Receptor Stimulation Induces Cytoplasmic Translocation of the CDKL5 Kinase and Its Proteasomal Degradation*

    PubMed Central

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-01-01

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-d-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. PMID:21832092

  5. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis

    PubMed Central

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-01-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765

  6. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    PubMed

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  7. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of Ajuga reptans (Lamiaceae).

    PubMed

    Findling, Sarah; Zanger, Klaus; Krueger, Stephan; Lohaus, Gertrud

    2015-01-01

    In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of assimilates.

  8. Epidermal growth factor-induced mobilization of a ganglioside-specific sialidase (NEU3) to membrane ruffles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kazunori; Hata, Keiko; Wada, Tadashi

    2006-07-28

    Human ganglioside-specific sialidase, NEU3, localized at cell membranes is thought to regulate various biological processes at cell surfaces. We here explored functional subcellular localization of the sialidase by immunofluorescence and found accumulation at leading edges of cell membranes in the presence of serum in culture. In response to EGF, the sialidase redistributed rapidly to ruffling cell membranes of squamous carcinoma A431 cells and co-localized with Rac-1. NEU3 overexpression enhanced Rac-1 activation and cell migration as compared with controls in HeLa cells as well as in A431 cells. Consistent with co-localization with Rac-1 by immunofluorescence, NEU3 was found to co-precipitate withmore » activated Rac bound to GST-PAK-1 fusion protein. NEU3 silencing by siRNA, in contrast, resulted in inhibition of Rac-1 activation. These results indicate that NEU3 is able to mobilize to membrane ruffles in response to growth stimuli and activate the Rac-1 signaling by co-localization with Rac-1, leading to increased cell motility.« less

  9. Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis

    PubMed Central

    Mancini, Marie; Machamer, Carolyn E.; Roy, Sophie; Nicholson, Donald W.; Thornberry, Nancy A.; Casciola-Rosen, Livia A.; Rosen, Antony

    2000-01-01

    Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors. PMID:10791974

  10. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES.

  11. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES. PMID:22465851

  12. Expression, subcellular localization and regulation of sigma receptor in retinal Müller cells

    PubMed Central

    Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P.; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose Sigma receptors (σR) are non-opioid, non-phencyclidine binding sites with robust neuroprotective properties. σR1 is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity and regulation of σR1 in retinal Müller cells. Methods Primary mouse Müller cells (1°MC) were analyzed by RT-PCR, immunoblotting and immunocytochemistry for the expression of σR1 and data were compared to the rat Müller cell line, rMC-1 and rat ganglion cell line, RGC-5. Confocal microscopy was used to determine the subcellular σR1 location in 1°MC. Membranes prepared from these cells were used for binding assays using [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various σR1 ligands to compete with σR1 binding and the effects of nitric oxide (NO) and reactive oxygen species (ROS) donors on binding were examined. Results σR1 is expressed in 1°MC and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in 1°MCs, rMC-1 and RGC-5 cells, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells and the binding was similarly robust in 1°MC. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of σR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased σR1 binding activity. Conclusions Müller cells express σR1 and demonstrate robust σR1 binding activity, which is inhibited by σR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind σR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy. PMID:17122151

  13. Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells.

    PubMed

    Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B

    2006-12-01

    Sigma receptors (sigmaRs) are nonopioid, nonphencyclidine binding sites with robust neuroprotective properties. Type 1 sigmaR1 (sigmaR1) is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity, and regulation of sigmaR1 in retinal Müller cells. Primary mouse Müller cells (MCs) were analyzed by RT-PCR, immunoblotting, and immunocytochemistry for the expression of sigmaR1, and data were compared with those of the rat Müller cell line (rMC-1) and the rat ganglion cell line (RGC-5). Confocal microscopy was used to determine the subcellular sigmaR1 location in primary mouse MCs. Membranes prepared from these cells were used for binding assays with [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various sigmaR1 ligands to compete with sigmaR1 binding, and the effects of donated nitric oxide (NO) and reactive oxygen species (ROS) on binding were examined. sigmaR1 is expressed in primary mouse MCs and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in primary mouse MCs, rMC-1, and RGC-5, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells, and the binding was similarly robust in primary mouse MCs. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of sigmaR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased sigmaR1 binding activity. MCs express sigmaR1 and demonstrate robust sigmaR1 binding activity, which is inhibited by sigmaR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind sigmaR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy.

  14. Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging.

    PubMed

    Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo

    2018-04-27

    Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.

  15. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.

    PubMed

    Wahl, Andreas; Schuth, Nora; Pfeiffer, Daniel; Nussberger, Stephan; Jendrossek, Dieter

    2012-11-16

    Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.

  16. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    PubMed

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  17. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity

    PubMed Central

    Song, Eun Hyeon; Oh, Wonkyung; Ulu, Arzu; Carr, Heather S.; Zuo, Yan; Frost, Jeffrey A.

    2015-01-01

    ABSTRACT Net1 isoform A (Net1A) is a RhoA GEF that is required for cell motility and invasion in multiple cancers. Nuclear localization of Net1A negatively regulates its activity, and we have recently shown that Rac1 stimulates Net1A relocalization to the plasma membrane to promote RhoA activation and cytoskeletal reorganization. However, mechanisms controlling the subcellular localization of Net1A are not well understood. Here, we show that Net1A contains two nuclear localization signal (NLS) sequences within its N-terminus and that residues surrounding the second NLS sequence are acetylated. Treatment of cells with deacetylase inhibitors or expression of active Rac1 promotes Net1A acetylation. Deacetylase inhibition is sufficient for Net1A relocalization outside the nucleus, and replacement of the N-terminal acetylation sites with arginine residues prevents cytoplasmic accumulation of Net1A caused by deacetylase inhibition or EGF stimulation. By contrast, replacement of these sites with glutamine residues is sufficient for Net1A relocalization, RhoA activation and downstream signaling. Moreover, the N-terminal acetylation sites are required for rescue of F-actin accumulation and focal adhesion maturation in Net1 knockout MEFs. These data indicate that Net1A acetylation regulates its subcellular localization to impact on RhoA activity and actin cytoskeletal organization. PMID:25588829

  18. Spreading the news: subcellular and organellar reactive oxygen species production and signalling.

    PubMed

    Mignolet-Spruyt, Lorin; Xu, Enjun; Idänheimo, Niina; Hoeberichts, Frank A; Mühlenbock, Per; Brosché, Mikael; Van Breusegem, Frank; Kangasjärvi, Jaakko

    2016-06-01

    As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compartments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in association with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  20. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    NASA Technical Reports Server (NTRS)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  1. Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model

    PubMed Central

    Hengel, Shawna M.; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-01-01

    To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues. PMID:28250387

  2. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  4. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  5. WAVE2 Forms a Complex with PKA and Is Involved in PKA Enhancement of Membrane Protrusions*

    PubMed Central

    Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki

    2011-01-01

    PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation. PMID:21119216

  6. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections

    PubMed Central

    Smith, Alex J.; Verkman, Alan S.

    2015-01-01

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4−/− astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. PMID:26682810

  7. Subcellular storage compartments of bacteriopheophorbide sensitizers

    NASA Astrophysics Data System (ADS)

    Moser, Joerg G.; Dembeck, U.; Hubert, M.; Spengler, Bernhard; Bayer, Rainer; Wagner, Birgit

    1994-03-01

    Fluorescence colocalization with the Golgi specific stain, NBD-ceramide, and the mitochondrial localizing stain, Rhodamine 123, confirmed the earlier assumption that the Golgi apparatus is one of the prominent storage compartments for bacteriopheophorbide esters in OAT 75 SCLC cells and several amelanotic melanoma cell lines (A375, Melur SP18, SkAMel 25). Furthermore, a diffuse staining of mitochondria, of non-structured cytoplasm, and an additional storage in melanine vesicles of the amelanotic melanoma cells suggests further storage compartments with quantitatively different contributions to the phototoxicity of bacteriochlorophyll-derived photosensitizers. Independent observations of early phototoxic effects on microfilamentous networks, enzymatic activities (succinate dehydrogenase, lactate dehydrogenase), and redistribution phenomena following primary uptake of the sensitizers let us assume that only a part of the 108 molecules taken up by a cell contribute directly to phototoxicity. Thus it may be asked if a proper subcellular positioning of only a few sensitizer molecules may have similar phototoxic effects as the huge amounts stored at apparently ineffective sites.

  8. A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    PubMed Central

    Boson, Bertrand; Granio, Ophélia; Bartenschlager, Ralf; Cosset, François-Loïc

    2011-01-01

    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly. PMID:21814513

  9. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combinedmore » with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).« less

  10. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples

    DOE PAGES

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna; ...

    2017-10-12

    Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combinedmore » with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).« less

  11. Prediction of rat protein subcellular localization with pseudo amino acid composition based on multiple sequential features.

    PubMed

    Shi, Ruijia; Xu, Cunshuan

    2011-06-01

    The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.

  12. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  13. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, J.T.; Cook, H.W.; Spence, M.W.

    1985-03-01

    To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-(1-/sup 3/H)galactose or (/sup 3/H)GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellularmore » membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous (/sup 3/H)GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru; Dmitriev, Ruslan I.; Kostina, Maria B.

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2),more » the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2 gene radiated from ATP2C1 (encoding SPCA1) during adaptation of tetrapod ancestors to terrestrial habitats.« less

  15. Membrane Targeting of Grb2-associated Binder-1 (Gab1) Scaffolding Protein through Src Myristoylation Sequence Substitutes for Gab1 Pleckstrin Homology Domain and Switches an Epidermal Growth Factor Response to an Invasive Morphogenic Program

    PubMed Central

    Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag

    2003-01-01

    The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness. PMID:12686619

  16. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less

  17. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    PubMed Central

    Lin, Tien-Ho; Bar-Joseph, Ziv

    2011-01-01

    Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284

  18. Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis.

    PubMed

    Gao, Yuan; Wake, Hidenori; Morioka, Yuta; Liu, Keyue; Teshigawara, Kiyoshi; Shibuya, Megumi; Zhou, Jingxiu; Mori, Shuji; Takahashi, Hideo; Nishibori, Masahiro

    2017-01-01

    Advanced glycation end products (AGEs) are the products of a series of nonenzymatic modifications of proteins by reducing sugars. AGEs play a pivotal role in development of diabetic complications and atherosclerosis. Accumulation of AGEs in a vessel wall may contribute to the development of vascular lesions. Although AGEs have a diverse range of bioactivities, the clearance process of AGEs from the extracellular space, including the incorporation of AGEs into specific cells, subcellular localization, and the fate of AGEs, remains unclear. In the present study, we examined the kinetics of the uptake of AGEs by mouse macrophage J774.1 cells in vitro and characterized the process. We demonstrated that AGEs bound to the surface of the cells and were also incorporated into the cytoplasm. The temperature- and time-dependent uptake of AGEs was saturable with AGE concentration and was inhibited by cytochalasin D but not chlorpromazine. We also observed the granule-like appearance of AGE immunoreactivity in subcellular localizations in macrophages. Higher concentrations of AGEs induced intracellular ROS and 4-HNE, which were associated with activation of the NF- κ B pathway and caspase-3. These results suggest that incorporation of AGEs occurred actively by endocytosis in macrophages, leading to apoptosis of these cells through NF- κ B activation.

  19. Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis

    PubMed Central

    Wake, Hidenori; Morioka, Yuta; Liu, Keyue; Shibuya, Megumi; Zhou, Jingxiu; Mori, Shuji; Takahashi, Hideo

    2017-01-01

    Advanced glycation end products (AGEs) are the products of a series of nonenzymatic modifications of proteins by reducing sugars. AGEs play a pivotal role in development of diabetic complications and atherosclerosis. Accumulation of AGEs in a vessel wall may contribute to the development of vascular lesions. Although AGEs have a diverse range of bioactivities, the clearance process of AGEs from the extracellular space, including the incorporation of AGEs into specific cells, subcellular localization, and the fate of AGEs, remains unclear. In the present study, we examined the kinetics of the uptake of AGEs by mouse macrophage J774.1 cells in vitro and characterized the process. We demonstrated that AGEs bound to the surface of the cells and were also incorporated into the cytoplasm. The temperature- and time-dependent uptake of AGEs was saturable with AGE concentration and was inhibited by cytochalasin D but not chlorpromazine. We also observed the granule-like appearance of AGE immunoreactivity in subcellular localizations in macrophages. Higher concentrations of AGEs induced intracellular ROS and 4-HNE, which were associated with activation of the NF-κB pathway and caspase-3. These results suggest that incorporation of AGEs occurred actively by endocytosis in macrophages, leading to apoptosis of these cells through NF-κB activation. PMID:29430285

  20. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38.

    PubMed

    Yustein, Jason T; Xia, Liang; Kahlenburg, J Michelle; Robinson, Dan; Templeton, Dennis; Kung, Hsing-Jien

    2003-09-18

    The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.

  1. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    PubMed Central

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  2. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  3. Choroid plexus epithelial cells express the adhesion protein P-cadherin at cell-cell contacts and syntaxin-4 in the luminal membrane domain.

    PubMed

    Christensen, Inga Baasch; Mogensen, Esben Nees; Damkier, Helle Hasager; Praetorius, Jeppe

    2018-05-01

    The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na + -K + -ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP 2 ) staining was most prominent in the luminal membrane domain along with the PIP 3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.

  4. Single-Molecule Localization Microscopy allows for the analysis of cancer metastasis-specific miRNA distribution on the nanoscale

    PubMed Central

    Tezcan, Kerem Can; Schaufler, Wladimir; Bestvater, Felix; Patil, Nitin; Birk, Udo; Hafner, Mathias; Altevogt, Peter; Cremer, Christoph; Allgayer, Heike

    2015-01-01

    We describe a novel approach for the detection of small non-coding RNAs in single cells by Single-Molecule Localization Microscopy (SMLM). We used a modified SMLM–setup and applied this instrument in a first proof-of-principle concept to human cancer cell lines. Our method is able to visualize single microRNA (miR)-molecules in fixed cells with a localization accuracy of 10–15 nm, and is able to quantify and analyse clustering and localization in particular subcellular sites, including exosomes. We compared the metastasis-site derived (SW620) and primary site derived (SW480) human colorectal cancer (CRC) cell lines, and (as a proof of principle) evaluated the metastasis relevant miR-31 as a first example. We observed that the subcellular distribution of miR-31 molecules in both cell lines was very heterogeneous with the largest subpopulation of optically acquired weakly metastatic cells characterized by a low number of miR-31 molecules, as opposed to a significantly higher number in the majority of the highly metastatic cells. Furthermore, the highly metastatic cells had significantly more miR-31-molecules in the extracellular space, which were visualized to co-localize with exosomes in significantly higher numbers. From this study, we conclude that miRs are not only aberrantly expressed and regulated, but also differentially compartmentalized in cells with different metastatic potential. Taken together, this novel approach, by providing single molecule images of miRNAs in cellulo can be used as a powerful supplementary tool in the analysis of miRNA function and behaviour and has far reaching potential in defining metastasis-critical subpopulations within a given heterogeneous cancer cell population. PMID:26561203

  5. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues.

    PubMed

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun

    2014-10-01

    Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft tissues and uterus) show differences for only one S1PR (cytoplasmic or nuclear), and twenty three organs/tissues show no significant difference in IHC scores for any S1PR (cytoplasmic or nuclear) between benign and malignant changes. This is the first study to evaluate the expression level of all S1PRs in benign and malignant tissues from multiple human organs. This study provides data regarding the systemic distribution, subcellular localization and differences in expression of all five S1PRs in benign and malignant changes for each organ/tissue. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues

    PubMed Central

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M.; Zhou, Xinchun

    2014-01-01

    Aims Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. Methods We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data were then compared in benign and malignant tissues from the same organ/tissue using the student t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. Results We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (either in nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft tissues and uterus) show differences for only one S1PR (cytoplasmic or nuclear), and twenty three organs/tissues show no significant difference in IHC score of any S1PR (cytoplasmic or nuclear) between benign and malignant changes. Conclusion This is the first study to evaluate the expression level of all S1PRs in benign and malignant tissues from multiple human organs. This study provides data regarding the systemic distribution, subcellular localization and differences in expression of all five S1PRs in benign and malignant changes for each organ/tissue. PMID:25084322

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttlingmore » of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.« less

  8. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-08-05

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.

  9. Localization of a bacterial group II intron-encoded protein in human cells

    PubMed Central

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; Pérez, José Luis García; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  10. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha

    PubMed Central

    2012-01-01

    Background Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Results Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Conclusion Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5. PMID:23157596

  11. Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration

    PubMed Central

    Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.

    2014-01-01

    The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368

  12. Live imaging of companion cells and sieve elements in Arabidopsis leaves.

    PubMed

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A; Thompson, Gary A; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo.

  13. Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves

    PubMed Central

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A.; Thompson, Gary A.; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo. PMID:25714357

  14. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofbauer, Anna; Peters, Jenny; Arcalis, Elsa

    2014-12-11

    Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PBmore » formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.« less

  15. Phosphoinositide-binding proteins in autophagy.

    PubMed

    Lystad, Alf Håkon; Simonsen, Anne

    2016-08-01

    Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.

  16. Synthesis, characterization, and subcellular localization studies of amino acid-substituted porphyrinic pigments

    NASA Astrophysics Data System (ADS)

    van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula

    2009-06-01

    Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di-fluoro-substituted TPPs are trapped in the plasma membrane. Only a pheophorbide derivative recently synthesized in our laboratory localized to the mitochondria of LNCaP cells, which are at the center of cell death as is reflected in their key role during apoptosis, thus reassuring our attempts toward rational drug design.

  17. Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension.

    PubMed

    Camargo, Livia L; Harvey, Adam P; Rios, Francisco J; Tsiropoulou, Sofia; Da Silva, Renée de Nazaré Oliveira; Cao, Zhenbo; Graham, Delyth; McMaster, Claire; Burchmore, Richard J; Hartley, Richard C; Bulleid, Neil; Montezano, Augusto C; Touyz, Rhian M

    2018-07-01

    Vascular Nox (NADPH oxidase)-derived reactive oxygen species and endoplasmic reticulum (ER) stress have been implicated in hypertension. However, relationships between these processes are unclear. We hypothesized that Nox isoforms localize in a subcellular compartment-specific manner, contributing to oxidative and ER stress, which influence the oxidative proteome and vascular function in hypertension. Nox compartmentalization (cell fractionation), O 2 - (lucigenin), H 2 O 2 (amplex red), reversible protein oxidation (sulfenylation), irreversible protein oxidation (protein tyrosine phosphatase, peroxiredoxin oxidation), and ER stress (PERK [protein kinase RNA-like endoplasmic reticulum kinase], IRE1α [inositol-requiring enzyme 1], and phosphorylation/oxidation) were studied in spontaneously hypertensive rat (SHR) vascular smooth muscle cells (VSMCs). VSMC proliferation was measured by fluorescence-activated cell sorting, and vascular reactivity assessed in stroke-prone SHR arteries by myography. Noxs were downregulated by short interfering RNA and pharmacologically. In SHR, Noxs were localized in specific subcellular regions: Nox1 in plasma membrane and Nox4 in ER. In SHR, oxidative stress was associated with increased protein sulfenylation and hyperoxidation of protein tyrosine phosphatases and peroxiredoxins. Inhibition of Nox1 (NoxA1ds), Nox1/4 (GKT137831), and ER stress (4-phenylbutyric acid/tauroursodeoxycholic acid) normalized SHR vascular reactive oxygen species generation. GKT137831 reduced IRE1α sulfenylation and XBP1 (X-box binding protein 1) splicing in SHR. Increased VSMC proliferation in SHR was normalized by GKT137831, 4-phenylbutyric acid, and STF083010 (IRE1-XBP1 disruptor). Hypercontractility in the stroke-prone SHR was attenuated by 4-phenylbutyric acid. We demonstrate that protein hyperoxidation in hypertension is associated with oxidative and ER stress through upregulation of plasmalemmal-Nox1 and ER-Nox4. The IRE1-XBP1 pathway of the ER stress response is regulated by Nox4/reactive oxygen species and plays a role in the hyperproliferative VSMC phenotype in SHR. Our study highlights the importance of Nox subcellular compartmentalization and interplay between cytoplasmic reactive oxygen species and ER stress response, which contribute to the VSMC oxidative proteome and vascular dysfunction in hypertension. © 2018 American Heart Association, Inc.

  18. Pseudoscaffolds and anchoring proteins: the difference is in the details

    PubMed Central

    Aggarwal-Howarth, Stacey; Scott, John D.

    2017-01-01

    Pseudokinases and pseudophosphatases possess the ability to bind substrates without catalyzing their modification, thereby providing a mechanism to recruit potential phosphotargets away from active enzymes. Since many of these pseudoenzymes possess other characteristics such as localization signals, separate catalytic sites, and protein–protein interaction domains, they have the capacity to influence signaling dynamics in local environments. In a similar manner, the targeting of signaling enzymes to subcellular locations by A-kinase-anchoring proteins (AKAPs) allows for precise and local control of second messenger signaling events. Here, we will discuss how pseudoenzymes form ‘pseudoscaffolds’ and compare and contrast this compartment-specific regulatory role with the signal organization properties of AKAPs. The mitochondria will be the focus of this review, as they are dynamic organelles that influence a broad range of cellular processes such as metabolism, ATP synthesis, and apoptosis. PMID:28408477

  19. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    PubMed

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Subcellular Localization of Rice Leaf Aryl Acylamidase Activity 1

    PubMed Central

    Gaynor, John J.; Still, Cecil C.

    1983-01-01

    The intracellular localization of aryl acylamidase (aryl-acylamide amidohydrolase, EC 3.5.1.13) in rice (Oryza sativa L. var Starbonnet) leaves was investigated. The enzyme hydrolyzes and detoxifies the herbicide propanil (3,4-dichloropropionanilide) thereby accounting for immunity of the rice plant to herbicidal action. Fractionation of mesophyll protoplasts by differential centrifugation yielded the highest specific activity of amidase in the crude mitochondrial fraction. Further separation of density gradients of the silica sol Percoll also indicated that this enzyme was mitochondrial. By the use of biochemical markers, the purified mitochondrial fraction was shown to be substantially free of contamination from nuclei, chloroplasts, golgi, and plasma membranes. Subfractionation of the purified mitochondria suggests that this enzyme is located on the outer membrane. PMID:16662987

  1. Identification and characterization of two ankyrin-B isoforms in mammalian heart

    PubMed Central

    Wu, Henry C.; Yamankurt, Gokay; Luo, JiaLie; Subramaniam, Janani; Hashmi, Syed Shahrukh; Hu, Hongzhen; Cunha, Shane R.

    2015-01-01

    Aims Excitation–contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive. Methods and results Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium–calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes. Conclusion The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins. PMID:26109584

  2. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis.

    PubMed

    Feitosa, Weber Beringui; Hwang, KeumSil; Morris, Patricia L

    2018-02-15

    During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Regulation of Cell Physiology and Pathology by Protein S-Glutathionylation: Lessons Learned from the Cardiovascular System

    PubMed Central

    Pimentel, David; Haeussler, Dagmar Johanna; Matsui, Reiko; Burgoyne, Joseph Robert; Cohen, Richard Alan

    2012-01-01

    Abstract Significance: Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. Recent Advances: The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. Critical Issues: Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. Future Directions: The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed. Antioxid. Redox Signal. 16, 524–542. PMID:22010840

  4. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  5. Mass Spectrometry Analysis of Spatial Protein Networks by Colocalization Analysis (COLA).

    PubMed

    Mardakheh, Faraz K

    2017-01-01

    A major challenge in systems biology is comprehensive mapping of protein interaction networks. Crucially, such interactions are often dynamic in nature, necessitating methods that can rapidly mine the interactome across varied conditions and treatments to reveal change in the interaction networks. Recently, we described a fast mass spectrometry-based method to reveal functional interactions in mammalian cells on a global scale, by revealing spatial colocalizations between proteins (COLA) (Mardakheh et al., Mol Biosyst 13:92-105, 2017). As protein localization and function are inherently linked, significant colocalization between two proteins is a strong indication for their functional interaction. COLA uses rapid complete subcellular fractionation, coupled with quantitative proteomics to generate a subcellular localization profile for each protein quantified by the mass spectrometer. Robust clustering is then applied to reveal significant similarities in protein localization profiles, indicative of colocalization.

  6. CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization.

    PubMed

    Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S L; Lynn, David J

    2015-01-01

    CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb © The Author(s) 2015. Published by Oxford University Press.

  7. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    PubMed

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states.

  8. Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM

    NASA Astrophysics Data System (ADS)

    Terryn, C.; Michel, J.; Kilian, L.; Bonhomme, P.; Balossier, G.

    2000-09-01

    Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0-30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.

  9. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes.

    PubMed

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L; Berrueta, Lisbeth; Salmen, Siham

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  11. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    PubMed

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  12. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    PubMed

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Age distribution patterns of human gene families: divergent for Gene Ontology categories and concordant between different subcellular localizations.

    PubMed

    Liu, Gangbiao; Zou, Yangyun; Cheng, Qiqun; Zeng, Yanwu; Gu, Xun; Su, Zhixi

    2014-04-01

    The age distribution of gene duplication events within the human genome exhibits two waves of duplications along with an ancient component. However, because of functional constraint differences, genes in different functional categories might show dissimilar retention patterns after duplication. It is known that genes in some functional categories are highly duplicated in the early stage of vertebrate evolution. However, the correlations of the age distribution pattern of gene duplication between the different functional categories are still unknown. To investigate this issue, we developed a robust pipeline to date the gene duplication events in the human genome. We successfully estimated about three-quarters of the duplication events within the human genome, along with the age distribution pattern in each Gene Ontology (GO) slim category. We found that some GO slim categories show different distribution patterns when compared to the whole genome. Further hierarchical clustering of the GO slim functional categories enabled grouping into two main clusters. We found that human genes located in the duplicated copy number variant regions, whose duplicate genes have not been fixed in the human population, were mainly enriched in the groups with a high proportion of recently duplicated genes. Moreover, we used a phylogenetic tree-based method to date the age of duplications in three signaling-related gene superfamilies: transcription factors, protein kinases and G-protein coupled receptors. These superfamilies were expressed in different subcellular localizations. They showed a similar age distribution as the signaling-related GO slim categories. We also compared the differences between the age distributions of gene duplications in multiple subcellular localizations. We found that the distribution patterns of the major subcellular localizations were similar to that of the whole genome. This study revealed the whole picture of the evolution patterns of gene functional categories in the human genome.

  14. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.

    PubMed

    He, Jianjun; Gu, Hong; Liu, Wenqi

    2012-01-01

    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.

  15. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    PubMed

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  16. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that severalmore » eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.« less

  17. Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys

    PubMed Central

    Galvan, Adriana; Hu, Xing; Smith, Yoland; Wichmann, Thomas

    2010-01-01

    The GABA transporters GAT-1 and GAT-3 are abundant in the external and internal segments of the globus pallidus (GPe and GPi, respectively). We have shown that pharmacological blockade of either of these transporters results in decreased neuronal firing, and in elevated levels of extracellular GABA in normal monkeys. We now studied whether the electrophysiologic and biochemical effects of local intra-pallidal injections of GAT-1 and GAT-3 blockers, or the subcellular localization of these transporters, are altered in monkeys rendered parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The subcellular localization of the transporters in GPe and GPi, studied with electron microscopy immunoperoxidase, was similar to that found in normal animals: i.e., GAT-3 immunoreactivity was mostly confined to glial processes, while GAT-1 labeling was expressed in unmyelinated axons and glial processes. A combined injection/recording device was used to record extracellular activity of single neurons in GPe and GPi, before, during and after administration of small volumes (1 μl) of either the GAT-1 inhibitor, SKF-89976A hydrochloride (720 ng), or the GAT-3 inhibitor, (S)-SNAP-5114 (500 ng). In GPe, the effects of GAT-1 or GAT-3 blockade were similar to those seen in normal monkeys. However, unlike the findings in the normal state, the firing of most neurons was not affected by blockade of either transporter in GPi. These results suggest that, after dopaminergic depletion, the functions of GABA transporters are altered in GPi; without major changes in their subcellular localization. PMID:20138865

  18. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.

    PubMed

    Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A

    2018-07-02

    We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.

  19. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    PubMed

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the nucleus at high concentration. Exposure to low concentrations of cobalt or silver did not alter the localization nor the concentration of endogenous elements within the cells. To our knowledge, this is the first report on element co-localization and segregation at the sub-cellular level in micro-algae by means of synchrotron nano X-ray fluorescence spectroscopy.

  20. [Expression and localization of transmembrane protein CMTM2 in human testis and sperm].

    PubMed

    Zhang, X W; Lan, K; Yang, W B; Li, Q; Zhao, Y P; Yin, H Q; Kite, B; Bai, W J; Xu, T

    2017-08-18

    To study the expression of transmembrane protein CMTM2 in the testis and sperm of adult males and to approach the potential function of the protein in the male reproductive system. The expression of CMTM2 in human testis and sperm was confirmed by Western blot. Immunohistochemical staining was used for detecting CMTM2 localization in the testis tissue, TRITC-CMTM2 and FITC-Hoechst double immunofluorescence staining was performed to examine the subcellular localization of CMTM2 in the human sperm before and after acrosome reaction, that is, immunofluorescent staining was used for detecting CMTM2 localization in both the testis and sperm before and after the acrosome reaction. CMTM2 was presented in both human testis and sperm. In the testis, CMTM2 immunoreactive particles were observed mainly in the membrane of the different stages of spermatogenic cells. In the human sperm, its immunoreactivity was restrictively localized to the posterior head where sperm-egg fusion occurred, and the CMTM2 localization was not affected by sperm acrosome reaction. CMTM2 was widely expressed in seminiferous tubules of the human testis, mainly in the cell membranes of spermatogenic cells, which was consistent with the previous reports. The immunofluorescence performed on frozen human testis slides showed similar findings with immunohistochemistry, which gave weight to the localization of CMTM2 in the cell membranes of spermatogenic cells at different stages. TRITC-CMTM2 and FITC-Hoechst double immunofluorescence staining was performed to examine the subcellular localization of CMTM2 in the human sperm before and after acrosome reaction. CMTM2 was localized at the posterior head of sperm before and after acrosome reaction. The localization and expression of CMTM2 were not affected by sperm acrosome reaction. Expression of CMTM2 in the male reproductive system of the adult human exhibits cell- and region-specific patterns, which suggests that they may play an important role in spermatogenesis and sperm-egg fusion. The expression of CMTM2 in the male reproductive system of the adult human exhibits cell- and region-specific patterns, which suggests that they may play an important role in spermatogenesis and sperm-egg fusion. However, it still remains to be further elucidated about the definite role of CMTM2 in male reproductive system and the process of spermatogenesis. And in vitro fertilization experiments are needed to confirm the role of CMTM2 in fertilization in future.

  1. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly

    PubMed Central

    Becker, Jordan T.

    2017-01-01

    ABSTRACT Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans. In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5′ packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins (gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy. PMID:28053097

  2. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly.

    PubMed

    Becker, Jordan T; Sherer, Nathan M

    2017-03-15

    Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis -acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins ( gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy. Copyright © 2017 American Society for Microbiology.

  3. TRPC6-mediated ERK1/2 Activation Regulates Neuronal Excitability via Subcellular Kv4.3 Localization in the Rat Hippocampus

    PubMed Central

    Kim, Ji-Eun; Park, Jin-Young; Kang, Tae-Cheon

    2017-01-01

    Recently, we have reported that transient receptor potential channel-6 (TRPC6) plays an important role in the regulation of neuronal excitability and synchronization of spiking activity in the dentate granule cells (DGC). However, the underlying mechanisms of TRPC6 in these phenomena have been still unclear. In the present study, we investigated the role of TRPC6 in subcellular localization of Kv4.3 and its relevance to neuronal excitability in the rat hippocampus. TRPC6 knockdown increased excitability and inhibitory transmission in the DGC and the CA1 neurons in response to a paired-pulse stimulus. However, TRPC6 knockdown impaired γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus during and after high-frequency stimulation (HFS). TRPC6 knockdown reduced the Kv4.3 clusters in membrane fractions and its dendritic localization on DGC and GABAergic interneurons. TRPC6 knockdown also decreased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and the efficacy of 4-aminopyridine (4-AP) in neuronal excitability. An ERK1/2 inhibitor generated multiple population spikes in response to a paired-pulse stimulus, concomitant with reduced membrane Kv4.3 translocation. A TRPC6 activator (hyperforin) reversed the effects of TRPC knockdown, except paired-pulse inhibition. These findings provide valuable clues indicating that TRPC6-mediated ERK1/2 activation may regulate subcellular Kv4.3 localization in DGC and interneurons, which is cause-effect relationship between neuronal excitability and seizure susceptibility. PMID:29326557

  4. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated thatmore » TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.« less

  5. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation.

    PubMed

    Dubey, Aditi; Copeland, Paul R

    2016-01-01

    Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec's nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function.

  6. Nano-Enabled Approaches to Chemical Imaging in Biosystems

    DOE PAGES

    Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John

    2018-02-28

    Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less

  7. Nano-Enabled Approaches to Chemical Imaging in Biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John

    Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less

  8. Identification of a Novel Lysosomal Trafficking Peptide using Phage Display Biopanning Coupled with Endocytic Selection Pressure

    PubMed Central

    2015-01-01

    Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559

  9. The role of endomembrane-localized VHA-c in plant growth.

    PubMed

    Zhou, Aimin; Takano, Tetsuo; Liu, Shenkui

    2018-01-02

    In plant cells, the vacuolar-type H + -ATPase (V-ATPase), a large multis`ubunit endomembrane proton pump, plays an important role in acidification of subcellular organelles, pH and ion homeostasis, and endocytic and secretory trafficking. V-ATPase subunit c (VHA-c) is essential for V-ATPase assembly, and is directly responsible for binding and transmembrane transport of protons. In previous studies, we identified a PutVHA-c gene from Puccinellia tenuiflora, and investigated its function in plant growth. Subcellular localization revealed that PutVHA-c is mainly localized in endosomal compartments. Overexpression of PutVHA-c enhanced V-ATPase activity and promoted plant growth in transgenic Arabidopsis. Furthermore, the activity of V-ATPase affected intracellular transport of the Golgi-derived endosomes. Our results showed that endomembrane localized-VHA-c contributes to plant growth by influencing V-ATPase-dependent endosomal trafficking. Here, we discuss these recent findings and speculate on the VHA-c mediated molecular mechanisms involved in plant growth, providing a better understanding of the functions of VHA-c and V-ATPase.

  10. Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales

    PubMed Central

    Rigato, Annafrancesca; Rico, Felix; Eghiaian, Frédéric; Piel, Mathieu; Scheuring, Simon

    2015-01-01

    In multicellular organisms cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous and unconstrained substrate with non-specific adhesion sites – thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young’s moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics. PMID:26013956

  11. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.

    PubMed

    Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota

    2007-08-31

    Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.

  12. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. A Novel Mutation of Human Liver Alanine:Glyoxylate Aminotransferase Causes Primary Hyperoxaluria Type 1: Immunohistochemical Quantification and Subcellular Distribution

    PubMed Central

    Kawai, Chikage; Minatogawa, Yohsuke; Akiyoshi, Hidetaka; Hirose, Shinichi; Suehiro, Tsunatoshi; Tone, Shigenobu

    2012-01-01

    A novel alanine:glyoxylate aminotransferase (AGT) mutation involved in primary hyperoxaluria type 1 (PH1) was studied in Japanese patients. Two mutations in exon 7, c.751T>A and c.752G>A, lead to a W251K amino acid substitution. Proband 1 (patient 1) was homozygous for the W251K mutation allele (DDBJ Accession No. AB292648), and AGT-specific activity in the patient’s liver was very low. To reveal the cause of the low enzymatic activity, the intracellular localization of AGT (W251K) was studied using immunohistochemistry and immunoelectron microscopy. The latter analysis showed that patient 2 had only one-fifth of the normal AGT expression per catalase, suggesting impairment of AGT (W251K) dependent transport into peroxisomes. Peroxisomal transport of human AGT is believed to be dependent on the presence of the type 1 peroxisomal targeting sequence. The C-terminal tripeptide of AGT, KKL is necessary for peroxisomal targeting. In cultured cells, EGFP-AGT (W251K) localized both in the peroxisome and cytosol. These results were consistent with the data obtained from liver analysis of patient 2. The subcellular distribution of AGT (W251K) and the results from a random mutagenesis study suggest that KKL is necessary for peroxisomal targeting of human AGT, but additional signal other than KKL may be necessary. PMID:22685354

  14. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2015-12-30

    Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Multiplexed multi-scale imaging: novel roles for the scaffold protein IQGAP1 in epithelial cell development (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schweikhard, Volker

    2016-02-01

    The precise sub-cellular spatial localization of multi-protein complexes is increasingly recognized as a key mechanism governing the organization of mammalian cells. Consequently, there is a need for novel microscopy techniques capable of investigating such sub-cellular architectures in comprehensive detail. Here, we applied a novel multiplexed STORM super-resolution microscopy technique, in combination with high-throughput immunofluorescence microscopy and live-cell imaging, to investigate the roles of the scaffold protein IQGAP1 in epithelial cells. IQGAP1 is known to orchestrate a wide range of biological processes, including intracellular signaling, cytoskeletal regulation, cell-cell adhesion, and protein trafficking, by forming distinct complexes with a number of known interaction partners, and recruiting these complexes to specific subcellular locations. Our results demonstrate that, in addition to supporting epithelial adherens junctions by associating with specialized cortical actin structures, IQGAP1 plays a second role in which it controls the confinement of a unique, previously undocumented class of membranous compartments to the basal actin cortex. These largely immotile yet highly dynamic structures appear transiently as cells merge into clusters and establish of apical-basolateral (epithelial) polarity, and are identified as an intermediate compartment in the endocytic recycling pathways for cell junction complexes and cell surface receptors. Although these two functions of IQGAP1 occur in parallel and largely independently of each other, they both support the maturation and maintenance of polarized epithelial cell architectures.

  16. Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress.

    PubMed

    Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric

    2007-01-01

    The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.

  17. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-08-22

    One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment. To realize this, it is indispensable to develop an automated method for fast and accurate identification of the subcellular locations of uncharacterized proteins. The current study is focused on plant protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most of the existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex protein is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mPlant" by extracting the optimal GO (Gene Ontology) information into the Chou's general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on the same stringent benchmark dataset indicated that the proposed pLoc-mPlant predictor is remarkably superior to iLoc-Plant, the state-of-the-art method for predicting plant protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at , by which users can easily get their desired results without the need to go through the complicated mathematics involved.

  18. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-09-10

    Knowledge of subcellular locations of proteins is crucially important for in-depth understanding their functions in a cell. With the explosive growth of protein sequences generated in the postgenomic age, it is highly demanded to develop computational tools for timely annotating their subcellular locations based on the sequence information alone. The current study is focused on virus proteins. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex proteins is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mVirus" by extracting the optimal GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mVirus predictor is remarkably superior to iLoc-Virus, the state-of-the-art method in predicting virus protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mVirus/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  20. Subcellular localization and compartmentation of thiamine derivatives in rat brain.

    PubMed

    Bettendorff, L; Wins, P; Lesourd, M

    1994-05-26

    The subcellular distribution of thiamine derivatives in rat brain was studied. Thiamine diphosphate content was highest in the mitochondrial and synaptosomal fractions, and lowest in microsomal, myelin and cytosolic fractions. Only 3-5% of total thiamine diphosphate was bound to transketolase, a cytosolic enzyme. Thiamine triphosphate was barely detectable in the microsomal and cytosolic fraction, but synaptosomes were slightly enriched in this compound compared to the crude homogenate. Both myelin and mitochondrial fractions contained significant amounts of thiamine triphosphate. In order to estimate the relative turnover rates of these compounds, the animals received an intraperitoneal injection of either [14C]thiamine or [14C]sulbutiamine (isobutyrylthiamine disulfide) 1 h before decapitation. The specific radioactivities of thiamine compounds found in the brain decreased in the order: thiamine > thiamine triphosphate > thiamine monophosphate > thiamine diphosphate. Incorporation of radioactivity into thiamine triphosphate was more marked with [14C]sulbutiamine than with [14C]thiamine. The highest specific radioactivity of thiamine diphosphate was found in the cytosolic fraction of the brain, though this pool represents less than 10% of total thiamine diphosphate. Cytosolic thiamine diphosphate had a twice higher specific radioactivity when [14C]sulbutiamine was used as precursor compared with thiamine though no significant differences were found in the other cellular compartments. Our results suggest the existence of two thiamine diphosphate pools: the bound cofactor pool is essentially mitochondrial and has a low turnover; a much smaller cytosolic pool (6-7% of total TDP) of high turnover is the likely precursor of thiamine triphosphate.

  1. Comprehensive Genomic Analysis and Expression Profiling of Phospholipase C Gene Family during Abiotic Stresses and Development in Rice

    PubMed Central

    Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K.; Sopory, Sudhir K.; Kapoor, Sanjay; Pandey, Girdhar K.

    2013-01-01

    Background Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. Methodology/Principal Findings An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. Conclusion/Significance The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future. PMID:23638098

  2. Differential Subcellular Localization of the Glucocorticoid Receptor in Distinct Neural Stem and Progenitor Populations of the Mouse Telencephalon In Vivo

    PubMed Central

    Tsiarli, Maria A.; Monaghan, A. Paula; DeFranco, Donald B.

    2013-01-01

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expression of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain has not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. PMID:23751362

  3. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo.

    PubMed

    Tsiarli, Maria A; Paula Monaghan, A; Defranco, Donald B

    2013-07-26

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice.

    PubMed

    Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K; Sopory, Sudhir K; Kapoor, Sanjay; Pandey, Girdhar K

    2013-01-01

    Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future.

  5. Genome-wide identification of the subcellular localization of the Escherichia coli B proteome using experimental and computational methods.

    PubMed

    Han, Mee-Jung; Yun, Hongseok; Lee, Jeong Wook; Lee, Yu Hyun; Lee, Sang Yup; Yoo, Jong-Shin; Kim, Jin Young; Kim, Jihyun F; Hur, Cheol-Goo

    2011-04-01

    Escherichia coli K-12 and B strains have most widely been employed for scientific studies as well as industrial applications. Recently, the complete genome sequences of two representative descendants of E. coli B strains, REL606 and BL21(DE3), have been determined. Here, we report the subproteome reference maps of E. coli B REL606 by analyzing cytoplasmic, periplasmic, inner and outer membrane, and extracellular proteomes based on the genome information using experimental and computational approaches. Among the total of 3487 spots, 651 proteins including 410 non-redundant proteins were identified and characterized by 2-DE and LC-MS/MS; they include 440 cytoplasmic, 45 periplasmic, 50 inner membrane, 61 outer membrane, and 55 extracellular proteins. In addition, subcellular localizations of all 4205 ORFs of E. coli B were predicted by combined computational prediction methods. The subcellular localizations of 1812 (43.09%) proteins of currently unknown function were newly assigned. The results of computational prediction were also compared with the experimental results, showing that overall precision and recall were 92.16 and 92.16%, respectively. This work represents the most comprehensive analyses of the subproteomes of E. coli B, and will be useful as a reference for proteome profiling studies under various conditions. The complete proteome data are available online (http://ecolib.kaist.ac.kr). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Prostaglandin D2 Regulates SOX9 Nuclear Translocation during Gonadal Sex Determination in Tammar Wallaby, Macropus eugenii.

    PubMed

    Chen, Yu; Yu, Hongshi; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2017-01-01

    Sex determination and sexual differentiation pathways are highly conserved between marsupials and eutherians. There are 2 different pathways of prostaglandin D2 (PGD2) synthesis: prostaglandin D synthase (PTGDS) and haematopoietic prostaglandin D synthase (HPGDS). PGD2 regulates the subcellular localization of SOX9 during gonadal sexual differentiation. To investigate the function of PGD2 in the tammar gonad, we cultured undifferentiated male gonads in the presence of the HPGDS inhibitor HQL-79 and female gonads with exogenous PGD2 to mimic activation of the PTGDS-PGD2 pathway. Tammar PTGDS and HPGDS have only 50% similarity with mouse and human orthologues, but functional domains are conserved. The expression of SOX9 was unchanged by the treatments in cultured gonads, but its subcellular localization was markedly affected. SOX9 remained cytoplasmic in the Sertoli cells of testes treated with HQL-79. Treated testes developed a thickened ovary-like surface epithelium. In contrast, SOX9 became nuclear in the granulosa cells of developing ovaries treated with PGD2 and the surface epithelium was thin, as in testes. These results demonstrate that PGD2 regulates the subcellular localization of SOX9 and subsequent gonadal development in the developing marsupial gonads, as it does in mice, and that it must have been an ancestral mechanism. © 2017 S. Karger AG, Basel.

  7. Localization to Mature Melanosomes by Virtue of Cytoplasmic Dileucine Motifs Is Required for Human OCA2 Function

    PubMed Central

    Sitaram, Anand; Piccirillo, Rosanna; Palmisano, Ilaria; Harper, Dawn C.; Dell'Angelica, Esteban C.; Schiaffino, M. Vittoria

    2009-01-01

    Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes. PMID:19116314

  8. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study

    PubMed Central

    Allam, Sushmita L.; Bouteiller, Jean-Marie C.; Hu, Eric Y.; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics. PMID:26480028

  9. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study.

    PubMed

    Allam, Sushmita L; Bouteiller, Jean-Marie C; Hu, Eric Y; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.

  10. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    PubMed

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible at http://biomed.zzuli.edu.cn/bioinfo/gpos-ecc-mploc/ and http://biomed.zzuli.edu.cn/bioinfo/gneg-ecc-mploc/ respectively.

  11. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    PubMed Central

    Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R

    2010-01-01

    Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848

  12. Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo.

    PubMed

    Manning, Samuel A; Dent, Lucas G; Kondo, Shu; Zhao, Ziqing W; Plachta, Nicolas; Harvey, Kieran F

    2018-05-21

    The Hippo pathway is an evolutionarily conserved signaling network that integrates diverse cues to control organ size and cell fate. The central downstream pathway protein in Drosophila is the transcriptional co-activator Yorkie (YAP and TAZ in humans), which regulates gene expression with the Scalloped/TEA domain family member (TEAD) transcription factors [1-8]. A central regulatory step in the Hippo pathway is phosphorylation of Yorkie by the NDR family kinase Warts, which promotes Yorkie cytoplasmic localization by stimulating association with 14-3-3 proteins [9-12]. Numerous reports have purported a static model of Hippo signaling whereby, upon Hippo activation, Yorkie/YAP/TAZ become cytoplasmic and therefore inactive, and upon Hippo repression, Yorkie/YAP/TAZ transit to the nucleus and are active. However, we have little appreciation for the dynamics of Yorkie/YAP/TAZ subcellular localization because most studies have been performed in fixed cells and tissues. To address this, we used live multiphoton microscopy to investigate the dynamics of an endogenously tagged Yorkie-Venus protein in growing epithelial organs. We found that the majority of Yorkie rapidly traffics between the cytoplasm and nucleus, rather than being statically localized in either compartment. In addition, discrete cell populations within the same organ display different rates of Yorkie nucleo-cytoplasmic shuttling. By assessing Yorkie dynamics in warts mutant tissue, we found that the Hippo pathway regulates Yorkie subcellular distribution by regulating its rate of nuclear import. Furthermore, Yorkie's localization fluctuates dramatically throughout the cell cycle, being predominantly cytoplasmic during interphase and, unexpectedly, chromatin enriched during mitosis. Yorkie's association with mitotic chromatin is Scalloped dependent, suggesting a potential role in mitotic bookmarking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer.

    PubMed

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K; Jhala, Nirag C; Behring, Michael P; Katkoori, Venkat R; Sugandha, Shajan P; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-03-21

    Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival.

  14. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer

    PubMed Central

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K.; Jhala, Nirag C.; Behring, Michael P.; Katkoori, Venkat R.; Sugandha, Shajan P.; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-01-01

    Background Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Methods Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. Results LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. Conclusions LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival. PMID:28423626

  15. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi

    PubMed Central

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these structural findings. PMID:28207833

  16. Structure, kinetic characterization and subcellular localization of the two ribulose 5-phosphate epimerase isoenzymes from Trypanosoma cruzi.

    PubMed

    Gonzalez, Soledad Natalia; Valsecchi, Wanda Mariela; Maugeri, Dante; Delfino, José María; Cazzulo, Juan José

    2017-01-01

    The enzyme of the pentose phosphate pathway (PPP) ribulose-5-phosphate-epimerase (RPE) is encoded by two genes present in the genome of Trypanosoma cruzi CL Brener clone: TcRPE1 and TcRPE2. Despite high sequence similarity at the amino acid residue level, the recombinant isoenzymes show a strikingly different kinetics. Whereas TcRPE2 follows a typical michaelian behavior, TcRPE1 shows a complex kinetic pattern, displaying a biphasic curve, suggesting the coexistence of -at least- two kinetically different molecular forms. Regarding the subcellular localization in epimastigotes, whereas TcRPE1 is a cytosolic enzyme, TcRPE2 is localized in glycosomes. To our knowledge, TcRPE2 is the first PPP isoenzyme that is exclusively localized in glycosomes. Over-expression of TcRPE1, but not of TcRPE2, significantly reduces the parasite doubling time in vitro, as compared with wild type epimastigotes. Both TcRPEs represent single domain proteins exhibiting the classical α/β TIM-barrel fold, as expected for enzymes with this activity. With regard to the architecture of the active site, all the important amino acid residues for catalysis -with the exception of M58- are also present in both TcRPEs models. The superimposition of the binding pocket of both isoenzyme models shows that they adopt essentially identical positions in the active site with a residue specific RMSD < 2Å, with the sole exception of S12, which displays a large deviation (residue specific RMSD: 11.07 Å). Studies on the quaternary arrangement of these isoenzymes reveal that both are present in a mixture of various oligomeric species made up of an even number of molecules, probably pointing to the dimer as their minimal functional unit. This multiplicity of oligomeric species has not been reported for any of the other RPEs studied so far and it might bear implications for the regulation of TcRPEs activity, although further investigation will be necessary to unravel the physiological significance of these structural findings.

  17. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability.

    PubMed

    Child, Emma S; Mann, David J

    2006-06-01

    p21 was originally described as functioning as a cell cycle regulator via inhibition of both cyclin-dependent kinases and processive DNA replication. Nowadays it is recognized to play other fundamental roles including transcriptional regulation and the modulation of apoptosis. Each of these functions of p21 is achieved through direct p21/protein interactions and the subcellular localization of p21 plays an important part in dictating the binding partners to which p21 is exposed. Over recent years, a number of phosphorylation sites in p21 have been identified, these being targeted by several important intracellular signalling protein kinases. Here we review the state of our knowledge of p21 phosphorylation with respect to the kinases involved and the molecular biological effects of each phosphorylation event.

  18. Analysis of Hippo and TGFβ signaling in polarizing epithelial cells and mouse embryos.

    PubMed

    Narimatsu, Masahiro; Labibi, Batool; Wrana, Jeffrey L; Attisano, Liliana

    2016-01-01

    The Hippo signaling pathway is involved in numerous biological events ranging from early development to organogenesis and when disrupted, impacts various human diseases including cancer. The Hippo pathway also interacts with and controls the activity of other signaling pathways such as the TGFβ/Smad pathway, in which Hippo pathway activity influences the subcellular localization of Smad transcription factors. Here, we describe techniques for examining crosstalk between Hippo and TGFβ signaling in polarizing mammary epithelial cells. In addition, we provide detailed methods for analyzing the subcellular localization of the Hippo pathway effectors, Taz and Yap using both in vitro cultured epithelial cells and in vivo in pregastrulation mouse embryos. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts.

    PubMed

    Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi

    2003-09-25

    Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.

  20. Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    PubMed Central

    Ferrero, Macarena; Ferragud, Juan; Orlando, Leonardo; Valero, Luz; Sánchez del Pino, Manuel; Farràs, Rosa; Font de Mora, Jaime

    2011-01-01

    Background Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis. Methodology/Principal Findings Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell. Conclusions Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the transcriptional activity of AIB1. PMID:22163316

  1. Mapping the subcellular localization of Fe3O4@TiO2 nanoparticles by X-ray Fluorescence Microscopy.

    PubMed

    Yuan, Y; Chen, S; Gleber, S C; Lai, B; Brister, K; Flachenecker, C; Wanzer, B; Paunesku, T; Vogt, S; Woloschak, G E

    The targeted delivery of Fe 3 O 4 @TiO2 nanoparticles to cancer cells is an important step in their development as nanomedicines. We have synthesized nanoparticles that can bind the Epidermal Growth Factor Receptor, a cell surface protein that is overexpressed in many epithelial type cancers. In order to study the subcellular distribution of these nanoparticles, we have utilized the sub-micron resolution of X-ray Fluorescence Microscopy to map the locationof Fe 3 O4@TiO 2 NPs and other trace metal elements within HeLa cervical cancer cells. Here we demonstrate how the higher resolution of the newly installed Bionanoprobe at the Advanced Photon Source at Argonne National Laboratory can greatly improve our ability to distinguish intracellular nanoparticles and their spatial relationship with subcellular compartments.

  2. Unique subcellular distribution of phosphorylated Plk1 (Ser137 and Thr210) in mouse oocytes during meiotic division and pPlk1(Ser137) involvement in spindle formation and REC8 cleavage.

    PubMed

    Du, Juan; Cao, Yan; Wang, Qian; Zhang, Nana; Liu, Xiaoyu; Chen, Dandan; Liu, Xiaoyun; Xu, Qunyuan; Ma, Wei

    2015-01-01

    Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1(Ser137) and pPlk1(Thr210)) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1(Ser137) with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1(Thr210) was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1(Ser137) was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1(Thr210) was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1(Ser137) accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1(Ser137) and pPlk1(Thr210), as well as the subcellular distribution of pPlk1(Thr210), were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1(Ser137) is the action executor, in mouse oocytes during meiotic division.

  3. Difficulties in Generating Specific Antibodies for Immunohistochemical Detection of Nitrosylated Tubulins

    PubMed Central

    Kamnev, Anton; Muhar, Matthias; Preinreich, Martina; Ammer, Hermann; Propst, Friedrich

    2013-01-01

    Protein S-nitrosylation, the covalent attachment of a nitroso moiety to thiol groups of specific cysteine residues, is one of the major pathways of nitric oxide signaling. Hundreds of proteins are subject to this transient post-translational modification and for some the functional consequences have been identified. Biochemical assays for the analysis of protein S-nitrosylation have been established and can be used to study if and under what conditions a given protein is S-nitrosylated. In contrast, the equally desirable subcellular localization of specific S-nitrosylated protein isoforms has not been achieved to date. In the current study we attempted to specifically localize S-nitrosylated α- and β-tubulin isoforms in primary neurons after fixation. The approach was based on in situ replacement of the labile cysteine nitroso modification with a stable tag and the subsequent use of antibodies which recognize the tag in the context of the tubulin polypeptide sequence flanking the cysteine residue of interest. We established a procedure for tagging S-nitrosylated proteins in cultured primary neurons and obtained polyclonal anti-tag antibodies capable of specifically detecting tagged proteins on immunoblots and in fixed cells. However, the antibodies were not specific for tubulin isoforms. We suggest that different tagging strategies or alternative methods such as fluorescence resonance energy transfer techniques might be more successful. PMID:23840827

  4. In Situ Subcellular Imaging of Copper and Zinc in Contaminated Oysters Revealed by Nanoscale Secondary Ion Mass Spectrometry.

    PubMed

    Weng, Nanyan; Jiang, Haibo; Wang, Wen-Xiong

    2017-12-19

    Determining the in situ localization of trace elements at high lateral resolution levels in the biological system is very challenging, but critical for our understanding of metal sequestration and detoxification. Here, the cellular and subcellular distributions of Cu and Zn in contaminated oysters of Crassostrea hongkongensis were for the first time mapped using nanoscale secondary ion mass spectrometry (nanoSIMS). Three types of metal-containing cells were revealed in the gill and mantle of oysters, including Cu-specific hemocytes, Cu and Zn-containing granular hemocytes, and Cu and Zn-containing calcium cells. Obvious intercellular distribution of Cu was found in the gill tissue, indicating the potential role of hemolymph in the transportation of Cu in oysters. The distribution of Cu showed a strong colocalization with sulfur and nitrogen in Cu-specific hemocyte and intercellular hemolymph. In the Cu and Zn-containing granular hemocytes and calcium cells, the co-occurrence of Cu and Zn with phosphorus and calcium was also found. Different relationships of distributions between Cu/Zn and macronutrient elements (nitrogen, sulfur and phosphorus) implied the differential metal complexation in oysters. Interestingly, quantitative analysis of the ratios of 32 S - / 12 C 14 N - and 31 P - / 12 C 14 N - of metal-deposited sites suggested the dynamic process of transfer of Cu and Zn from the metabolized protein pool to a more thermodynamically stable and detoxified form.

  5. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    PubMed

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  6. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus

    PubMed Central

    Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.

    2014-01-01

    The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131

  7. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  8. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  9. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-02

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)*

    PubMed Central

    Orfanoudaki, Georgia; Economou, Anastassios

    2014-01-01

    Cell compartmentalization serves both the isolation and the specialization of cell functions. After synthesis in the cytoplasm, over a third of all proteins are targeted to other subcellular compartments. Knowing how proteins are distributed within the cell and how they interact is a prerequisite for understanding it as a whole. Surface and secreted proteins are important pathogenicity determinants. Here we present the STEP database (STEPdb) that contains a comprehensive characterization of subcellular localization and topology of the complete proteome of Escherichia coli. Two widely used E. coli proteomes (K-12 and BL21) are presented organized into thirteen subcellular classes. STEPdb exploits the wealth of genetic, proteomic, biochemical, and functional information on protein localization, secretion, and targeting in E. coli, one of the best understood model organisms. Subcellular annotations were derived from a combination of bioinformatics prediction, proteomic, biochemical, functional, topological data and extensive literature re-examination that were refined through manual curation. Strong experimental support for the location of 1553 out of 4303 proteins was based on 426 articles and some experimental indications for another 526. Annotations were provided for another 320 proteins based on firm bioinformatic predictions. STEPdb is the first database that contains an extensive set of peripheral IM proteins (PIM proteins) and includes their graphical visualization into complexes, cellular functions, and interactions. It also summarizes all currently known protein export machineries of E. coli K-12 and pairs them, where available, with the secretory proteins that use them. It catalogs the Sec- and TAT-utilizing secretomes and summarizes their topological features such as signal peptides and transmembrane regions, transmembrane topologies and orientations. It also catalogs physicochemical and structural features that influence topology such as abundance, solubility, disorder, heat resistance, and structural domain families. Finally, STEPdb incorporates prediction tools for topology (TMHMM, SignalP, and Phobius) and disorder (IUPred) and implements the BLAST2STEP that performs protein homology searches against the STEPdb. PMID:25210196

  11. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  12. Autoradiographic localization of specific (/sup 3/H)dexamethasone binding in fetal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, D.G.; Butley, M.S.; Cunha, G.R.

    1984-10-01

    The cellular and subcellular localization of specific (/sup 3/H)dexamethasone binding was examined in fetal mouse lung at various stages of development and in human fetal lung at 8 weeks of gestation using a rapid in vitro steroid incubation technique followed by thaw-mount autoradiography. Competition studies with unlabeled steroids demonstrate the specificity of (/sup 3/H)dexamethasone labeling, and indicate that fetal lung mesenchyme is a primary glucocorticoid target during lung development. Autoradiographs of (/sup 3/H)dexamethasone binding in lung tissue at early stages of development demonstrate that the mesenchyme directly adjacent to the more proximal portions of the bronchiolar network is heavily labeled.more » In contrast, the epithelium which will later differentiate into bronchi and bronchioles, is relatively unlabeled. Distal portions of the growing epithelium, destined to become alveolar ducts and alveoli, do show nuclear localization of (/sup 3/H)dexamethasone. In addition, by utilizing a technique which allows the simultaneous examination of extracellular matrix components and (/sup 3/H)dexamethasone binding, a relationship is observed between extensive mesenchymal (/sup 3/H)dexamethasone binding and extensive extracellular matrix accumulation. Since glucocorticoids stimulate the synthesis of many extracellular matrix components, these results suggest a role for these hormones in affecting mesenchymal-epithelial interactions during lung morphogenesis.« less

  13. Detection and Immunolabeling of Peroxisomal Proteins.

    PubMed

    Schrader, Tina A; Islinger, Markus; Schrader, Michael

    2017-01-01

    Peroxisomes are essential organelles in mammals which contribute to cellular lipid metabolism and redox homeostasis. The spectrum of their functions in human health and disease is far from being complete, and unexpected and novel roles of peroxisomes are being discovered. To date, those include novel biological roles in antiviral defence, as intracellular signaling platforms and as protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex network of interacting subcellular compartments which involves metabolic cooperation, cross-talk and membrane contacts. As potentially novel peroxisomal proteins are continuously discovered, there is great interest in the verification of their peroxisomal localization. Here, we present protocols used successfully in our laboratory for the detection and immunolabeling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and fluorescence-based techniques as well as reagents to determine peroxisome-specific targeting and localization of candidate proteins.

  14. The MB2 gene family of Plasmodium species has a unique combination of S1 and GTP-binding domains

    PubMed Central

    Romero, Lisa C; Nguyen, Thanh V; Deville, Benoit; Ogunjumo, Oluwasanmi; James, Anthony A

    2004-01-01

    Background Identification and characterization of novel Plasmodium gene families is necessary for developing new anti-malarial therapeutics. The products of the Plasmodium falciparum gene, MB2, were shown previously to have a stage-specific pattern of subcellular localization and proteolytic processing. Results Genes homologous to MB2 were identified in five additional parasite species, P. knowlesi, P. gallinaceum, P. berghei, P. yoelii, and P. chabaudi. Sequence comparisons among the MB2 gene products reveal amino acid conservation of structural features, including putative S1 and GTP-binding domains, and putative signal peptides and nuclear localization signals. Conclusions The combination of domains is unique to this gene family and indicates that MB2 genes comprise a novel family and therefore may be a good target for drug development. PMID:15222903

  15. Expression of Tocopherol-Associated Protein in Mast Cells

    PubMed Central

    Ikeda, Teruo; Murakami, Masaru; Funaba, Masayuki

    2004-01-01

    Tocopherol-associated protein (TAP) was expressed in mouse mast cells. TAP was predominantly localized in the cytoplasm, and the subcellular localization was not changed by α-tocopherol. The results suggest that the physiological role of TAP in mast cells is not regulation of tocopherol function but an as-yet-unidentified activity. PMID:15539527

  16. Neoplasia Driven by Mutant c-KIT Is Mediated by Intracellular, Not Plasma Membrane, Receptor Signaling▿

    PubMed Central

    Xiang, Zhifu; Kreisel, Frederike; Cain, Jennifer; Colson, AnnaLynn; Tomasson, Michael H.

    2007-01-01

    Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KITD816V (hKITD816V)-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKITD816V protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KITD816V targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKITD816V failed to induce disease in mice, while expression of either Golgi-localized HyKITD816V or cytosol-localized, ectodomain-deleted KITD816V uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KITD816V. PMID:17060458

  17. A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells*

    PubMed Central

    Boisvert, François-Michel; Ahmad, Yasmeen; Gierliński, Marek; Charrière, Fabien; Lamont, Douglas; Scott, Michelle; Barton, Geoff; Lamond, Angus I.

    2012-01-01

    Measuring the properties of endogenous cell proteins, such as expression level, subcellular localization, and turnover rates, on a whole proteome level remains a major challenge in the postgenome era. Quantitative methods for measuring mRNA expression do not reliably predict corresponding protein levels and provide little or no information on other protein properties. Here we describe a combined pulse-labeling, spatial proteomics and data analysis strategy to characterize the expression, localization, synthesis, degradation, and turnover rates of endogenously expressed, untagged human proteins in different subcellular compartments. Using quantitative mass spectrometry and stable isotope labeling with amino acids in cell culture, a total of 80,098 peptides from 8,041 HeLa proteins were quantified, and their spatial distribution between the cytoplasm, nucleus and nucleolus determined and visualized using specialized software tools developed in PepTracker. Using information from ion intensities and rates of change in isotope ratios, protein abundance levels and protein synthesis, degradation and turnover rates were calculated for the whole cell and for the respective cytoplasmic, nuclear, and nucleolar compartments. Expression levels of endogenous HeLa proteins varied by up to seven orders of magnitude. The average turnover rate for HeLa proteins was ∼20 h. Turnover rate did not correlate with either molecular weight or net charge, but did correlate with abundance, with highly abundant proteins showing longer than average half-lives. Fast turnover proteins had overall a higher frequency of PEST motifs than slow turnover proteins but no general correlation was observed between amino or carboxyl terminal amino acid identities and turnover rates. A subset of proteins was identified that exist in pools with different turnover rates depending on their subcellular localization. This strongly correlated with subunits of large, multiprotein complexes, suggesting a general mechanism whereby their assembly is controlled in a different subcellular location to their main site of function. PMID:21937730

  18. Subcellular localization of the five members of the human steroid 5α-reductase family.

    PubMed

    Scaglione, Antonella; Montemiglio, Linda Celeste; Parisi, Giacomo; Asteriti, Italia Anna; Bruni, Renato; Cerutti, Gabriele; Testi, Claudia; Savino, Carmelinda; Mancia, Filippo; Lavia, Patrizia; Vallone, Beatrice

    2017-06-01

    In humans the steroid 5alpha-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: Δ 4 -3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  19. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging.

    PubMed

    Wu, Kui; Jia, Feifei; Zheng, Wei; Luo, Qun; Zhao, Yao; Wang, Fuyi

    2017-07-01

    Secondary ion mass spectrometry, including nanoscale secondary ion mass spectrometry (NanoSIMS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), has emerged as a powerful tool for biological imaging, especially for single cell imaging. SIMS imaging can provide information on subcellular distribution of endogenous and exogenous chemicals, including metallodrugs, from membrane through to cytoplasm and nucleus without labeling, and with high spatial resolution and chemical specificity. In this mini-review, we summarize recent progress in the field of SIMS imaging, particularly in the characterization of the subcellular distribution of metallodrugs. We anticipate that the SIMS imaging method will be widely applied to visualize subcellular distributions of drugs and drug candidates in single cells, exerting significant influence on early drug evaluation and metabolism in medicinal and pharmaceutical chemistry. Recent progress of SIMS applications in characterizing the subcellular distributions of metallodrugs was summarized.

  20. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages.

    PubMed

    Beatty, W L; Russell, D G

    2000-12-01

    Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome.

  1. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites.

    PubMed

    Chou, Kuo-Chen; Shen, Hong-Bin

    2007-05-01

    One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from consideration or assumed even not existing. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. For instance, according to the Swiss-Prot database (version 50.7, released 19-Sept-2006), among the 33,925 eukaryotic protein entries that have experimentally observed subcellular location annotations, 2715 have multiple location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. Meanwhile, according to the same Swiss-Prot database, the number of total eukaryotic protein entries (except those annotated with "fragment" or those with less than 50 amino acids) is 90,909, meaning a gap of (90,909-33,925) = 56,984 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the blank, so far, all the existing methods for predicting eukaryotic protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Euk-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Euk-mPLoc is freely accessible to the public as a Web server at http://202.120.37.186/bioinf/euk-multi. Meanwhile, to support the people working in the relevant areas, Euk-mPLoc has been used to identify all eukaryotic protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited at the same Web site via a downloadable file prepared with Microsoft Excel and named "Tab_Euk-mPLoc.xls". Furthermore, to include new entries of eukaryotic proteins and reflect the continuous development of Euk-mPLoc in both the coverage scope and prediction accuracy, we will timely update the downloadable file as well as the predictor, and keep users informed by publishing a short note in the Journal and making an announcement in the Web Page.

  2. Quantitative Multispectral Analysis Of Discrete Subcellular Particles By Digital Imaging Fluorescence Microscopy (DIFM)

    NASA Astrophysics Data System (ADS)

    Dorey, C. K.; Ebenstein, David B.

    1988-10-01

    Subcellular localization of multiple biochemical markers is readily achieved through their characteristic autofluorescence or through use of appropriately labelled antibodies. Recent development of specific probes has permitted elegant studies in calcium and pH in living cells. However, each of these methods measured fluorescence at one wavelength; precise quantitation of multiple fluorophores at individual sites within a cell has not been possible. Using DIFM, we have achieved spectral analysis of discrete subcellular particles 1-2 gm in diameter. The fluorescence emission is broken into narrow bands by an interference monochromator and visualized through the combined use of a silicon intensified target (SIT) camera, a microcomputer based framegrabber with 8 bit resolution, and a color video monitor. Image acquisition, processing, analysis and display are under software control. The digitized image can be corrected for the spectral distortions induced by the wavelength dependent sensitivity of the camera, and the displayed image can be enhanced or presented in pseudocolor to facilitate discrimination of variation in pixel intensity of individual particles. For rapid comparison of the fluorophore composition of granules, a ratio image is produced by dividing the image captured at one wavelength by that captured at another. In the resultant ratio image, a granule which has a fluorophore composition different from the majority is selectively colored. This powerful system has been utilized to obtain spectra of endogenous autofluorescent compounds in discrete cellular organelles of human retinal pigment epithelium, and to measure immunohistochemically labelled components of the extracellular matrix associated with the human optic nerve.

  3. Characterization of a Rab11-like GTPase, EhRab11, of Entamoeba histolytica.

    PubMed

    McGugan, Glen C; Temesvari, Lesly A

    2003-07-01

    The Entamoeba histolytica Rab11 family of small molecular weight GTPases consists of three members, EhRab11, EhRab11B, and EhRab11C. The functions of these Rabs in Entamoeba have not been determined. Therefore, as an approach to elucidate the role of the Rab11 family of GTPases in Entamoeba, immunofluorescence microscopy was undertaken to define the subcellular localization of one member of this family, EhRab11. Under conditions of growth, EhRab11 displayed a punctate pattern in the cytoplasm of trophozoites. EhRab11 did not colocalize with markers for the Golgi apparatus, endoplasmic reticulum, pinosomes, phagosomes, or compartments formed by receptor-mediated endocytosis, suggesting that this Rab may not play a role in vesicle trafficking between these organelles. Under conditions of iron and serum starvation, EhRab11 was translocated to the periphery of the cell. The altered cellular localization was accompanied by multinucleation of the cells as well as the acquisition of detergent resistance by the cells, features that are characteristic of Entamoeba cysts. The translocation of EhRab11 to the periphery of the cell during iron and serum starvation was specific as the subcellular localizations of two other Rab GTPases, EhRab7 and EhRabA, were not altered under the same conditions. In addition, the formation of multinucleated cells by inhibition of cytokinesis was not sufficient to induce the translocation of EhRab11 to the cell periphery. Taken together, the data suggest that iron and serum starvation may induce encystation in E. histolytica and that EhRab11 may play a role in this process. Moreover, these studies are the first to describe a putative role for a Rab GTPase in encystation in Entamoeba sp.

  4. Protein kinase C ϵ stabilizes β-catenin and regulates its subcellular localization in podocytes.

    PubMed

    Duong, Michelle; Yu, Xuejiao; Teng, Beina; Schroder, Patricia; Haller, Hermann; Eschenburg, Susanne; Schiffer, Mario

    2017-07-21

    Kidney disease has been linked to dysregulated signaling via PKC in kidney cells such as podocytes. PKCα is a conventional isoform of PKC and a well-known binding partner of β-catenin, which promotes its degradation. β-Catenin is the main effector of the canonical Wnt pathway and is critical in cell adhesion. However, whether other PKC isoforms interact with β-catenin has not been studied systematically. Here we demonstrate that PKCϵ-deficient mice, which develop proteinuria and glomerulosclerosis, display lower β-catenin expression compared with PKC wild-type mice, consistent with an altered phenotype of podocytes in culture. Remarkably, β-catenin showed a reversed subcellular localization pattern: Although β-catenin exhibited a perinuclear pattern in undifferentiated wild-type cells, it predominantly localized to the nucleus in PKCϵ knockout cells. Phorbol 12-myristate 13-acetate stimulation of both cell types revealed that PKCϵ positively regulates β-catenin expression and stabilization in a glycogen synthase kinase 3β-independent manner. Further, β-catenin overexpression in PKCϵ-deficient podocytes could restore the wild-type phenotype, similar to rescue with a PKCϵ construct. This effect was mediated by up-regulation of P-cadherin and the β-catenin downstream target fascin1. Zebrafish studies indicated three PKCϵ-specific phosphorylation sites in β-catenin that are required for full β-catenin function. Co-immunoprecipitation and pulldown assays confirmed PKCϵ and β-catenin as binding partners and revealed that ablation of the three PKCϵ phosphorylation sites weakens their interaction. In summary, we identified a novel pathway for regulation of β-catenin levels and define PKCϵ as an important β-catenin interaction partner and signaling opponent of other PKC isoforms in podocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire

    PubMed Central

    Liu, Yunxiao; Lan, Xia; Song, Shiren; Yin, Ling; Dry, Ian B.; Qu, Junjie; Xiang, Jiang; Lu, Jiang

    2018-01-01

    Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs) were cloned from the P. viticola isolate “JL-7-2” genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83) could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria. PMID:29706971

  6. Expression, purification, characterization and subcellular localization of the goose parvovirus rep1 protein.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing

    2013-07-01

    The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.

  7. Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes.

    PubMed

    Long, Yujiao; Ni, Jinren; Wang, Zuhui

    2015-11-01

    Although the identification of effective oxidant species has been extensively studied, yet the subcellular mechanism of bacterial inactivation has never been clearly elucidated in electrochemical disinfection processes. In this study, subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection was revealed in terms of comprehensive factors such as cell morphology, total organic components, K(+) leakage, membrane permeability, lipid peroxidation, membrane potential, membrane proteins, intracellular enzyme, cellular ATP level and DNA. The electrolysis was conducted with boron-doped diamond anode in three electrolytes including chloride, sulfate and phosphate. Results demonstrated that cell inactivation was mainly attributed to damage to the intracellular enzymatic systems in chloride solution. In sulfate solution, certain essential membrane proteins like the K(+) ion transport systems were eliminated. Thus, the pronounced K(+) leakage from cytosol resulted in gradual collapse of the membrane potential, which would hinder the subcellular localization of cell division-related proteins as well as ATP synthesis and thereby lead to the bacterial inactivation. Remarkable lipid peroxidation was observed, while the intracellular damage was negligible. In phosphate solution, the cells sequentially underwent overall destruction as a whole cell with no captured intermediate state, during which the organic components of the cells were mostly subjected to mineralization. This study provided a thorough insight into the bacterial inactivation mechanism on the subcellular level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Yes-Associated Protein (YAP) Promotes the Nuclear Import of p73

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-01-01

    p73 has been identified as a structural and functional homolog of the tumor suppressor p53. However, mechanisms that regulate the localization of p73 have not been fully clarified. The Yes-associated protein (YAP) is a transcriptional coactivator. As a transcriptional coactivator, YAP needs to bind transcription factors to stimulate gene expression. p73 is a reported YAP target transcription factors and YAP has been shown to positively regulate p73 in promoting apoptosis. Previous studies show that p73 interacts with YAP through its PPPY motif, and increases p73 transactivation of apoptotic genes. In this study, we focused on YAP's regulation of the localization of p73. After transient transfection into Rat pheochromocytoma (PC12) cells and Human embryonic kidney 293T cells with GFP-YAP and/or YFP-p73, and incubated for 24 hours expression. p73 was fused to YFP to allow the examination of its subcellular localization. When expressed alone, YFP-p73 was distributed throughout the cell. When coexpressed with YAP, nuclear accumulation of YFP-p73 became evident. We quantitated the effect of YAP on the redistribution of YFP-p73 by counting cells with nuclear-only YFP signal. We found that YAP can influence the subcellular distribution of p73. Altogether, coexpression with YAP affected the subcellular distribution of the p73 protein. Our studies attribute a central role to YAP in regulating p73 accumulation and YAP, at least in part, might promote the nuclear import of p73.

  9. Subcellular localization of leptin and leptin receptor in breast cancer detected in an electron microscopic study.

    PubMed

    Al-Shibli, Saad M; Amjad, Nasser M; Al-Kubaisi, Muna K; Mizan, Shaikh

    2017-01-22

    Leptin (LEP) and leptin receptor (LEPR) have long been found associated with breast cancer. So far no high-resolution method such as electron microscopy has been used to investigate the subcellular localization of leptin and leptin receptor in breast cancer. We collected cancer and non-cancer breast tissues from 51 women with invasive ductal breast cancer. Leptin and leptin receptor in the tissues were estimated using immunohistochemistry (IHC). LEP and LEPR were localized at subcellular level by immunocytochemistry (ICC) using ultra-fine gold particle conjugated antibody, and visualized with transmission electron microscopy (TEM). IHC showed high presence of LEP and LEPR in 65% and 67% respectively of the breast cancer samples, 100% and 0% respectively of the adipose tissue samples, and no high presence in the non-cancer breast tissue samples. On TEM views both LEP and LEPR were found highly concentrated within the nucleus of the cancer cells, indicating that nucleus is the principal seat of action. However, presence of high concentration of LEP does not necessarily prove its over-expression, as often concluded, because LEP could be internalized from outside by LEPR in the cells. In contrast, LEPR is definitely over-expressed in the ductal breast cancer cells. Therefore, we hypothesize that over-expression of LEPR, rather than that of LEP has a fundamental role in breast carcinogenesis in particular, and probably for LEP-LEPR associated tumors in general. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion.

    PubMed

    Lasagni, Laura; Grepin, Renaud; Mazzinghi, Benedetta; Lazzeri, Elena; Meini, Claudia; Sagrinati, Costanza; Liotta, Francesco; Frosali, Francesca; Ronconi, Elisa; Alain-Courtois, Nathalie; Ballerini, Lara; Netti, Giuseppe Stefano; Maggi, Enrico; Annunziato, Francesco; Serio, Mario; Romagnani, Sergio; Bikfalvi, Andreas; Romagnani, Paola

    2007-05-15

    PF-4/CXCL4 is a member of the CXC chemokine family, which is mainly produced by platelets and known for its pleiotropic biological functions. Recently, the proteic product of a nonallelic variant gene of CXCL4 was isolated from human platelets and named as CXCL4L1. CXCL4L1 shows only 4.3% amino acid divergence in the mature protein, but exhibits a 38% amino acid divergence in the signal peptide region. We hypothesized that this may imply a difference in the cell type in which CXCL4L1 is expressed or a difference in its mode of secretion. In different types of transfected cells, CXCL4 and CXCL4L1 exhibited a distinct subcellular localization and a differential regulation of secretion, CXCL4 being stored in secretory granules and released in response to protein kinase C activation, whereas CXCL4L1 was continuously synthesized and secreted through a constitutive pathway. A protein kinase C-regulated CXCL4 secretion was observed also in lymphocytes, a cell type expressing mainly CXCL4 mRNA, whereas smooth muscle cells, which preferentially expressed CXCL4L1, exhibited a constitutive pathway of secretion. These results demonstrate that CXCL4 and CXCL4L1 exhibit a distinct subcellular localization and are secreted in a differentially regulated manner, suggesting distinct roles in inflammatory or homeostatic processes.

  11. Subcellular characteristics of functional intracellular renin–angiotensin systems☆

    PubMed Central

    Abadir, Peter M.; Walston, Jeremy D.; Carey, Robert M.

    2013-01-01

    The renin–angio tensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems. PMID:23032352

  12. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle.

    PubMed

    de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M

    2003-01-10

    The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.

  13. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species

    PubMed Central

    Bright, Lydia J.; Gout, Jean-Francois; Lynch, Michael

    2017-01-01

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. PMID:28251922

  14. How do bacteria localize proteins to the cell pole?

    PubMed Central

    Laloux, Géraldine; Jacobs-Wagner, Christine

    2014-01-01

    ABSTRACT It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles – the ends of rod-shaped cells – constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole ‘recognition’ can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization. PMID:24345373

  15. StPOTHR1, a NDR1/HIN1-like gene in Solanum tuberosum, enhances resistance against Phytophthora infestans.

    PubMed

    Chen, Qiansi; Tian, Zhendong; Jiang, Rui; Zheng, Xueao; Xie, Conghua; Liu, Jun

    2018-02-19

    A family of NDR1/HIN1-like (NHL) genes that shows homology to the nonrace-specific disease resistance (NDR1) and the tobacco (Nicotiana tabacum) harpin-induced (HIN1) genes is reported to be involved in defense. However, little information about NHL genes is available for the potato (Solanum tuberosum). Here, we report that the expression of StPOTHR1, a member of the NHL gene family, is associated with resistance in potato against Phytophthora infestans, and is specifically induced in inoculation sites. Overexpression of StPOTHR1 enhances resistance against P. infestans via restricting rapid pathogen proliferation. Further, suppression of StPOTHR1 does not compromise R-mediated cell death. Subcellular localization and posttranscription modifications (PTMs) analysis reveals that StPOTHR1 is localized in plasma membrane (PM) and undergoes multiple PTMs. Moreover, StPOTHR1 interacts with NbMKK5L, a component of the MAP kinase signaling cascade. Taken together, our results suggest that the PM-localized StPOTHR1 contributes to potato immunity against P. infestans and may be associated with the MAP kinase signaling cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Deciphering the roles of acyl-CoA-binding proteins in plant cells.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.

  17. Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tok

    Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were importantmore » for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.« less

  18. Techniques for the Cellular and Subcellular Localization of Endocannabinoid Receptors and Enzymes in the Mammalian Brain.

    PubMed

    Cristino, Luigia; Imperatore, Roberta; Di Marzo, Vincenzo

    2017-01-01

    This chapter attempts to piece together knowledge about new advanced microscopy techniques to study the neuroanatomical distribution of endocannabinoid receptors and enzymes at the level of cellular and subcellular structures and organelles in the brain. Techniques ranging from light to electron microscopy up to the new advanced LBM, PALM, and STORM super-resolution microscopy will be discussed in the context of their contribution to define the spatial distribution and organization of receptors and enzymes of the endocannabinoid system (ECS), and to better understand ECS brain functions. © 2017 Elsevier Inc. All rights reserved.

  19. Subcellular localization of transiently expressed fluorescent fusion proteins.

    PubMed

    Collings, David A

    2013-01-01

    The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.

  20. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome*

    PubMed Central

    Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K.; Moore, Dirk F.; Sleat, David E.; Lobel, Peter

    2017-01-01

    Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene. PMID:27923875

  1. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.

    PubMed

    Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K; Moore, Dirk F; Sleat, David E; Lobel, Peter

    2017-02-01

    Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less

  3. Subcellular Localization and Biochemical Comparison of Cytosolic and Secreted Cytokinin Dehydrogenase Enzymes from Maize

    USDA-ARS?s Scientific Manuscript database

    Cytokinin dehydrogenase (CKX, EC 1.5.99.12) degrades cytokinin hormones in plants. There are several differently targeted isoforms of CKX in cells of each plant. While most CKX enzymes appear to be localized in the apoplast or vacuoles, there is generally only one CKX per plant genome that lacks a t...

  4. Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging.

    PubMed

    Rocha, Danilo D; Espejo, Vinson R; Rainier, Jon D; La Clair, James J; Costa-Lotufo, Letícia V

    2015-09-01

    There is an ongoing need for fluorescent probes that specifically-target select organelles within mammalian cells. This study describes the development of probes for the selective labeling of the Golgi apparatus and offers applications for live cell and fixed cell imaging. The kapakahines, characterized by a common C(3)-N(1') dimeric tryptophan linkage, comprise a unique family of bioactive marine depsipeptide natural products. We describe the uptake and subcellular localization of fluorescently-labeled analogs of kapakahine E. Using confocal microscopy, we identify a rapid and selective localization within the Golgi apparatus. Comparison with commercial Golgi stains indicates a unique localization pattern, which differs from currently available materials, therein offering a new tool to monitor the Golgi in live cells without toxic side effects. This study identifies a fluorescent analog of kapakahine E that is rapidly uptaken in cells and localizes within the Golgi apparatus. The advance of microscopic methods is reliant on the parallel discovery of next generation molecular probes. This study describes the advance of stable and viable probe for staining the Golgi apparatus. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism.

    PubMed

    Stekhoven, Daniel J; Omasits, Ulrich; Quebatte, Maxime; Dehio, Christoph; Ahrens, Christian H

    2014-03-17

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion. The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases where in silico prediction methods do not provide any prediction. Avoiding a treatment with harsh conditions, cytoplasmic proteins tend to co-fractionate with proteins of the inner membrane fraction, indicative of close functional interactions. The spectral count proportion (SCP) of total membrane versus cytoplasmic fractions allowed us to obtain a good indication about the relative proximity of individual protein complex members to the inner membrane. Using principal component analysis and k-nearest neighbor approaches, we were able to extend the percentage of proteins with a predominant experimental localization to over 90% of all expressed proteins and identified a set of at least 74 outer membrane (OM) proteins. In general, OM proteins represent a rich source of candidates for the development of urgently needed new therapeutics in combat of resurgence of infectious disease and multi-drug resistant bacteria. Finally, by comparing the data from two infection biology relevant conditions, we conceptually explore methods to identify and visualize potential candidates that may partially change their SCL in these different conditions. The data are made available to researchers as a SCL compendium for Bhen and as an assistance in further improving in silico SCL prediction algorithms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    PubMed Central

    Bacellar, Isabel O. L.; Tsubone, Tayana M.; Pavani, Christiane; Baptista, Mauricio S.

    2015-01-01

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research. PMID:26334268

  7. Fundamental studies of adrenal retinoid-X-receptor: Protein isoform, tissue expression, subcellular distribution, and ligand availability.

    PubMed

    Cheng, Behling; Al-Shammari, Fatema H; Ghader, Isra'a A; Sequeira, Fatima; Thakkar, Jitendra; Mathew, Thazhumpal C

    2017-07-01

    Adrenal gland reportedly expresses many nuclear receptors that are known to heterodimerize with retinoid-X-receptor (RXR) for functions, but the information regarding the glandular RXR is not adequate. Studies of rat adrenal homogenate by Western blotting revealed three RXR proteins: RXRα (55kDa), RXRβ (47kDa) and RXR (56kDa). RXRγ was not detectable. After fractionation, RXRα was almost exclusively localized in the nuclear fraction. In comparison, substantial portions of RXRβ and RXR were found in both nuclear and post-nuclear particle fractions, suggesting genomic and non-genomic functions. Cells immunostained for RXRα were primarily localized in zona fasciculata (ZF) and medulla, although some stained cells were found in zona glomerulosa (ZG) and zona reticularis (ZR). In contrast, cells immunostained for RXRβ were concentrated principally in ZG, although some stained cells were seen in ZR, ZF, and medulla (in descending order, qualitatively). Analysis of adrenal lipid extracts by LC/MS did not detect 9-cis-retinoic acid (a potent RXR-ligand) but identified all-trans retinoic acid. Since C20 and C22 polyunsaturated fatty acids (PUFAs) can also activate RXR, subcellular availabilities of unesterified fatty acids were investigated by GC/MS. As results, arachidonic acid (C20:4), adrenic acid (C22:4), docosapentaenoic acid (C22:5), and cervonic acid (C22:6) were detected in the lipids extracted from each subcellular fraction. Thus, the RXR-agonizing PUFAs are available in all the main subcellular compartments considerably. The present findings not only shed light on the adrenal network of RXRs but also provide baseline information for further investigations of RXR heterodimers in the regulation of adrenal steroidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell

    PubMed Central

    Procházková Schrumpfová, Petra; Schořová, Šárka; Fajkus, Jiří

    2016-01-01

    Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms. PMID:27446102

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sai Kam; Ho, Sai Fan; Department of Biochemistry, Chinese University of Hong Kong, Shatin, N.T., Hong Kong

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven aminomore » acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated.« less

  10. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.

    PubMed

    Hernández-Sánchez, Itzell E; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P; Jiménez-Bremont, Juan F

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  11. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    PubMed Central

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  12. Geometric approach to segmentation and protein localization in cell culture assays.

    PubMed

    Raman, S; Maxwell, C A; Barcellos-Hoff, M H; Parvin, B

    2007-01-01

    Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large number of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial nonuniformity, shape, overlapping compartments and scale (size). A new technique and methodology has been developed and tested for delineating subcellular morphology and partitioning overlapping compartments at multiple scales. This system is packaged as an integrated software platform for quantifying images that are obtained through fluorescence microscopy. Proposed methods are model based, leveraging geometric shape properties of subcellular compartments and corresponding protein localization. From the morphological perspective, convexity constraint is imposed to delineate and partition nuclear compartments. From the protein localization perspective, radial symmetry is imposed to localize punctate protein events at submicron resolution. Convexity constraint is imposed against boundary information, which are extracted through a combination of zero-crossing and gradient operator. If the convexity constraint fails for the boundary then positive curvature maxima are localized along the contour and the entire blob is partitioned into disjointed convex objects representing individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments provide the context for protein localization, which may be diffuse or punctate. Punctate signal are localized through iterative voting and radial symmetries for improved reliability and robustness. The technique has been tested against 196 images that were generated to study centrosome abnormalities. Corresponding computed representations are compared against manual counts for validation.

  13. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity.

    PubMed

    Ben Khaled, Sara; Postma, Jelle; Robatzek, Silke

    2015-01-01

    A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

  14. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments.

    PubMed

    Fan, Yichong; Ai, Hui-wang

    2016-04-01

    We recently reported a redox-sensitive red fluorescent protein, rxRFP1, which is one of the first genetically encoded red-fluorescent probes for general redox states in living cells. As individual cellular compartments have different basal redox potentials, we hereby describe a group of rxRFP1 mutants, showing different midpoint redox potentials for detection of redox dynamics in various subcellular domains, such as mitochondria, the cell nucleus, and endoplasmic reticulum (ER). When these redox probes were expressed and subcellularly localized in human embryonic kidney (HEK) 293 T cells, they responded to membrane-permeable oxidants and reductants. In addition, a mitochondrially localized rxRFP1 mutant, Mito-rxRFP1.1, was used to detect mitochondrial oxidative stress induced by doxorubicin-a widely used cancer chemotherapy drug. Our work has expanded the fluorescent protein toolkit with new research tools for studying compartmentalized redox dynamics and oxidative stress under various pathophysiological conditions.

  15. Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.

    PubMed

    McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade

    2017-01-01

    Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.

  16. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles.

    PubMed

    Zhu, Hao; Fan, Jiangli; Du, Jianjun; Peng, Xiaojun

    2016-10-18

    Fluorescent probes have become powerful tools in biosensing and bioimaging because of their high sensitivity, specificity, fast response, and technical simplicity. In the last decades, researchers have made remarkable progress in developing fluorescent probes that respond to changes in microenvironments (e.g., pH, viscosity, and polarity) or quantities of biomolecules of interest (e.g., ions, reactive oxygen species, and enzymes). All of these analytes are specialized to carry out vital functions and are linked to serious disorders in distinct subcellular organelles. Each of these organelles plays a specific and indispensable role in cellular processes. For example, the nucleus regulates gene expression, mitochondria are responsible for aerobic metabolism, and lysosomes digest macromolecules for cell recycling. A certain organelle requires specific biological species and the appropriate microenvironment to perform its cellular functions, while breakdown of the homeostasis of biomolecules or microenvironmental mutations leads to organelle malfunctions, which further cause disorders or diseases. Fluorescent probes that can be targeted to both specific organelles and biochemicals/microenvironmental factors are capable of reporting localized bioinformation and are potentially useful for gaining insight into the contributions of analytes to both healthy and diseased states. In this Account, we review our recent work on the development of fluorescent probes for sensing and imaging within specific organelles. We present an overview of the design, photophysical properties, and biological applications of the probes, which can localize to mitochondria, lysosomes, the nucleus, the Golgi apparatus, and the endoplasmic reticulum. Although a diversity of organelle-specific fluorescent stains have been commercially available, our efforts place an emphasis on improvements in terms of low cytotoxicity, high photostability, near-infrared (NIR) emission, two-photon excitation, and long fluorescence lifetimes, which are crucial for long-time tracking of biological processes, tissue and body imaging with deep penetration and low autofluorescence, and time-resolved fluorescence imaging. Research on fluorescent probes with both analyte responsiveness and organelle targetability is a new and emerging area that has attracted increasing attention over the past few years. We have extended the diversity by developing organelle-specific responsive probes capable of detecting changes in biomolecular levels (reactive oxygen species, fluoride ion, hydrogen sulfide, zinc cation, thiol-containing amino acids, and cyclooxygenase-2) and the microenvironment (viscosity, polarity, and pH). Future research should give more considerations of the "low-concern" organelles, such as the Golgi apparatus, the endoplasmic reticulum, and ribosomes. In addition, given the tiny sizes of subcellular organelles (20-1000 nm), we anticipate that clearer visulization of the cellular events within specific organelles will rely on super-resolution optical microscopy with nanoscopic-scale resolution.

  17. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

    PubMed Central

    Ostrowski, Anja; Nordmeyer, Daniel; Boreham, Alexander; Holzhausen, Cornelia; Mundhenk, Lars; Graf, Christina; Meinke, Martina C; Vogt, Annika; Hadam, Sabrina; Lademann, Jürgen; Rühl, Eckart; Alexiev, Ulrike

    2015-01-01

    Summary The increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture. In this review we will describe and compare different imaging techniques for localizing inorganic as well as organic nanoparticles in tissues, cells and subcellular compartments. The visualization techniques include well-established methods, such as standard light, fluorescence, transmission electron and scanning electron microscopy as well as more recent developments, such as light and electron microscopic autoradiography, fluorescence lifetime imaging, spectral imaging and linear unmixing, superresolution structured illumination, Raman microspectroscopy and X-ray microscopy. Importantly, all methodologies described allow for the simultaneous visualization of nanoparticles and evaluation of cell and tissue changes that are of prime interest for toxicopathologic studies. However, the different approaches vary in terms of applicability for specific particles, sensitivity, optical resolution, technical requirements and thus availability, and effects of labeling on particle properties. Specific bottle necks of each technology are discussed in detail. Interpretation of particle localization data from any of these techniques should therefore respect their specific merits and limitations as no single approach combines all desired properties. PMID:25671170

  18. Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin.

    PubMed

    Schmucker, B; Ballhausen, W G; Kressel, M

    1997-01-01

    To elucidate the physiological function of the neurofibromatosis type 2 (NF2) tumor suppressor protein merlin/schwannomin, we studied the expression pattern and subcellular localization in human fibroblasts by Western blot analyses and immunofluorescence using a polyclonal antibody raised against the C-terminus of merlin. Three of the six merlin isoforms identified in this study (75 kDa, 58 kDa, 45 kDa) have been reported earlier and can be explained by alternative splicing. In addition, we detected higher molecular weight bands of about 110 kDa, 100 kDa and 84 kDa. Although the merlin bands of 100 kDa and 110 kDa may represent homo- or heterodimers, oligomerization due to formation of disulfide bonds was excluded. Furthermore, the isoforms of 84 kDa and 58 kDa were quantitatively extractable in Lubrol WX, indicating a localization in or close to the plasma membrane. The 45 kDa band, however, was not soluble in Lubrol WX compatible with a localization of this NF2 isoform in the endoplasmic reticulum. Applying confocal laser scanning microscopy, merlin was shown to be located in four subcellular compartments: (i) perinuclear in a compartment resembling endoplasmic reticulum, (ii) in ruffling membranes and at the leading edges, (iii) in filopodia, and (iv) at cell/substrate adhesion points. Codistribution of merlin and F-actin filaments was found in filopodia, ruffling membranes and at the insertion points of stress fibers at cell/substrate adhesion junctions as shown by phalloidin-rhodamine staining. Double immunofluorescence analyses of merlin and moesin revealed a colocalization in filopodia and ruffling membranes. The localization of merlin in the actin-rich cortical cytoskeleton corresponds to the ezrin-radixin-moesin family of proteins suggesting the NF2 protein to contribute to the regulation of cell growth by interaction with cytoskeleton-associated proteins.

  19. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    PubMed

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. © 2010 Japanese Cancer Association.

  20. Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae).

    PubMed

    Amrehn, Evelyn; Aschenbrenner, Anna-Katharina; Heller, Annerose; Spring, Otmar

    2016-03-01

    Capitate glandular trichomes (CGT) of sunflower, Helianthus annuus, synthesize bioactive sesquiterpene lactones (STLs) within a short period of only a few days during trichome development. In the current project, the subcellular localization of H. annuus germacrene A monooxygenase (HaGAO), a key enzyme of the STL biosynthesis in sunflower CGT, was investigated. A polyclonal antibody raised against this enzyme was used for immunolabelling. HaGAO was found in secretory and stalk cells of CGT. This correlated with the appearance of smooth endoplasmic reticulum in both cell types. Stalk cells and secretory cells differed in form, size and types of plastids, but both had structures necessary for secretion. No HaGAO-specific immunoreaction was found in sunflower leaf tissue outside of CGT or in developing CGT before the secretory phase had started. Our results indicated that not only secretory cells but also nearly all cells of the CGT were involved in the biosynthesis of STL and that this process was not linked to the presence or absence of a specific type of plastid.

  1. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    PubMed

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. © 2014 Wiley Periodicals, Inc.

  2. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  3. Intracellular Membrane Association of the Aplysia cAMP Phosphodiesterase Long and Short Forms via Different Targeting Mechanisms*

    PubMed Central

    Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin

    2014-01-01

    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. PMID:25077971

  4. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain.

    PubMed

    Heier, Christoph; Kien, Benedikt; Huang, Feifei; Eichmann, Thomas O; Xie, Hao; Zechner, Rudolf; Chang, Ping-An

    2017-11-17

    Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  6. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    PubMed

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  7. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    PubMed

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Identification of Mycobacterial Surface Proteins Released into Subcellular Compartments of Infected Macrophages

    PubMed Central

    Beatty, Wandy L.; Russell, David G.

    2000-01-01

    Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome. PMID:11083824

  9. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    PubMed

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Subcellular Fractionation and Localization Studies Reveal a Direct Interaction of the Fragile X Mental Retardation Protein (FMRP) with Nucleolin

    PubMed Central

    Taha, Mohamed S.; Nouri, Kazem; Milroy, Lech G.; Moll, Jens M.; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P.; Ahmadian, Mohammad R.

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. PMID:24658146

  11. Thiol Specific and Mitochondria Selective Fluorogenic Benzofurazan Sulfide for Live Cell Nonprotein Thiol Imaging and Quantification in Mitochondria.

    PubMed

    Wang, Shenggang; Yin, Huihui; Huang, Yue; Guan, Xiangming

    2018-06-11

    Cellular thiols are divided into two major categories: nonprotein thiols (NPSH) and protein thiols (PSH). Thiols are unevenly distributed inside the cell and compartmentalized in subcellular structures. Most of our knowledge on functions/dysfunctions of cellular/subcellular thiols is based on the quantification of cellular/subcellular thiols through homogenization of cellular/subcellular structures followed by a thiol quantification method. We would like to report a thiol-specific mitochondria-selective fluorogenic benzofurazan sulfide {7,7'-thiobis( N-rhodamine-benzo[c][1,2,5]oxadiazole-4-sulfonamide) (TBROS)} that can effectively image and quantify live cell NPSH in mitochondria through fluorescence intensity. Limited methods are available for imaging thiols in mitochondria in live cells especially in a quantitative manner. The thiol specificity of TBROS was demonstrated by its ability to react with thiols and inability to react with biologically relevant nucleophilic functional groups other than thiols. TBROS, with minimal fluorescence, formed strong fluorescent thiol adducts (λ ex = 550 nm, λ em = 580 nm) when reacting with NPSH confirming its fluorogenicity. TBROS failed to react with PSH from bovine serum albumin and cell homogenate proteins. The high mitochondrial thiol selectivity of TBROS was achieved by its mitochondria targeting structure and its higher reaction rate with NPSH at mitochondrial pH. Imaging of mitochondrial NPSH in live cells was confirmed by two colocalization methods and use of a thiol-depleting reagent. TBROS effectively imaged NPSH changes in a quantitative manner in mitochondria in live cells. The reagent will be a useful tool in exploring physiological and pathological roles of mitochondrial thiols.

  12. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  13. In silico cloning, expression of Rieske-like apoprotein gene and protein subcellular localization in the Pacific oyster, Crassostrea gigas.

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Ziniu

    2010-10-01

    Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5'- and 3'-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe-2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.

  14. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms.

    PubMed

    Ariotti, Nicholas; Hall, Thomas E; Rae, James; Ferguson, Charles; McMahon, Kerrie-Ann; Martel, Nick; Webb, Robyn E; Webb, Richard I; Teasdale, Rohan D; Parton, Robert G

    2015-11-23

    Reliable and quantifiable high-resolution protein localization is critical for understanding protein function. However, the time required to clone and characterize any protein of interest is a significant bottleneck, especially for electron microscopy (EM). We present a modular system for enzyme-based protein tagging that allows for improved speed and sampling for analysis of subcellular protein distributions using existing clone libraries to EM-resolution. We demonstrate that we can target a modified soybean ascorbate peroxidase (APEX) to any GFP-tagged protein of interest by engineering a GFP-binding peptide (GBP) directly to the APEX-tag. We demonstrate that APEX-GBP (1) significantly reduces the time required to characterize subcellular protein distributions of whole libraries to less than 3 days, (2) provides remarkable high-resolution localization of proteins to organelle subdomains, and (3) allows EM localization of GFP-tagged proteins, including proteins expressed at endogenous levels, in vivo by crossing existing GFP-tagged transgenic zebrafish lines with APEX-GBP transgenic lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. [Optimization of labeling and localizing bacterial membrane and nucleus with FM4-64 and Hoechst dyes].

    PubMed

    Wang, Jing; Han, Yanping; Yang, Ruifu; Zhao, Xingxu

    2015-08-04

    To observe cell membrane and nucleus in bacteria for subcellular localization. FM4-64 and Hoechst were dyed that can label cell membrane and nucleus, respectively. Both dyes were used to co-stain the membranes and nucleus of eight bacterial strains ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Yersinia pestis, Legionella pneumonia, Vibrio cholerae and Bacillus anthracis). E. coli was dyed with different dye concentrations and times and then observed by confocal fluorescence microscopic imaging. Fluorescence intensity of cell membrane and nucleus is affected by dye concentrations and times. The optimal conditions were determined as follows: staining cell membrane with 20 μg/mL FM4-64 for 1 min and cell nucleus with 20 μg/mL Hoechst for 20 min. Gram-negative bacteria were dyed better than gram-positive bacteria with FM4-64dye. FM4-64 and Hoechst can be used to stain membrane and nucleus in different types of bacteria. Co-staining bacterial membrane and nucleus provides the reference to observe cell structure in prokaryotes for studying subcellular localization.

  16. Xuhuai goat H-FABP gene clone, subcellular localization of expression products and the preparation of transgenic mice.

    PubMed

    Yin, Yan-hui; Li, Bi-chun; Wei, Guang-hui; Zhu, Cai-ye; Li, Wei; Zhang, Ya-ni; Du, Li-xin; Cao, Wen-guang

    2012-05-01

    The aim of this study was to clone the heart-type fatty acid binding protein (H-FABP) gene of Xuhuai goat, to explore it bioinformatically, and analyze the subcellular localization using enhanced green fluorescent protein (EGFP). The results showed that the coding sequence (CDS) length of Xuhuai goat H-FABP gene was 402 bp, encoding 133 amino acids (GenBank accession number AY466498.1). The H-FABP cDNA coding sequence was compared with the corresponding region of human, chicken, brown rat, cow, wild boar, donkey, and zebrafish. The similarity were 89%, 76%, 85%, 84%, 93%, 91%, 70%, respectively. For the corresponding amino acid sequences, the similarity were 90%, 79%, 88%, 97%, 95%, 94%, 72%, respectively. This study did not find the signal peptide region in the H-FABP protein; it revealed that H-FABP protein might be a nonsecreted protein. H-FABP expression was detected in vitro by reverse transcription-polymerase chain reaction (RT-PCR), and the EGFP-H-FABP fusion protein was localized to the cytoplasm. The gene could also be transiently and permanently expressed in mice.

  17. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

    PubMed

    Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N

    2012-06-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.

  18. A Physical Interaction between Viral Replicase and Capsid Protein Is Required for Genome-Packaging Specificity in an RNA Virus

    PubMed Central

    Seo, Jang-Kyun; Kwon, Sun-Jung

    2012-01-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity. PMID:22438552

  19. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

    PubMed

    Boyer, Patrick D; Ganesh, Sairaam; Qin, Zhao; Holt, Brian D; Buehler, Markus J; Islam, Mohammad F; Dahl, Kris Noel

    2016-02-10

    Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the modification of native cellular proteins as noncovalent dispersing agents to provide specific transport will open new possibilities to utilize both SWCNT and protein properties for multifunctional subcellular targeting applications. Specifically, nuclear targeting could allow delivery of anticancer therapies, genetic treatments, or DNA to the nucleus.

  20. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines.

    PubMed

    Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko

    2012-10-01

    Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1.

    PubMed

    Chang, Ji Suk; Huypens, Peter; Zhang, Yubin; Black, Chelsea; Kralli, Anastasia; Gettys, Thomas W

    2010-06-04

    Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1alpha interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1alpha is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1alpha, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1alpha is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1alpha as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.

  2. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs.more » Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.« less

  3. My career as an immunoglycobiologist.

    PubMed

    Marcus, Donald M

    2013-01-01

    The research program of my laboratory included three major topics: the structures and immunology of human carbohydrate blood group and glycosphingolipid antigens; the tissue distribution, subcellular localization and biosynthesis of glycosphingolipids; and the structural basis of the binding of carbohydrates by antibodies and lectins.

  4. A novel mechanism of E2F1 regulation via nucleocytoplasmic shuttling: determinants of nuclear import and export.

    PubMed

    Ivanova, Iordanka A; Vespa, Alisa; Dagnino, Lina

    2007-09-01

    E2F1 is a transcription factor central for cell survival, proliferation, and repair following genomic insult. Depending on the cell type and conditions, E2F1 can induce apoptosis in transformed cells, behaving as a tumour suppressor, or impart growth advantages favouring tumour formation. The pleiotropic functions of E2F1 are a likely consequence of its ability to transcriptionally control a wide variety of target genes, and require tight regulation of its activity at multiple levels. Although sequestration of proteins to particular cellular compartments is a well-established regulatory mechanism, virtually nothing is known about its contribution to modulation of E2F1 target gene expression. We have examined the subcellular trafficking of E2F1 and, contrary to the widely held notion that this factor is constitutively nuclear, we now demonstrate that it is subjected to continuous nucleocytoplasmic shuttling. We have also defined two nuclear localization domains and a nuclear export region, which mediates CRM1-dependent transit out of the nucleus. The predominant subcellular location of E2F1 is likely determined by the balance between the activity of nuclear import and export domains, and can be modulated by differentiation stimuli in epidermal cells. Thus, we have identified a hitherto unrecognized mechanism to control E2F1 function through modulation of its subcellular localization.

  5. Monitoring Interactions and Dynamics of Endogenous Beta-catenin With Intracellular Nanobodies in Living Cells*

    PubMed Central

    Traenkle, Bjoern; Emele, Felix; Anton, Roman; Poetz, Oliver; Haeussler, Ragna S.; Maier, Julia; Kaiser, Philipp D.; Scholz, Armin M.; Nueske, Stefan; Buchfellner, Andrea; Romer, Tina; Rothbauer, Ulrich

    2015-01-01

    β-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of β-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of β-catenin's role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of β-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous β-catenin complexes. In addition, we engineered intracellularly functional anti-β-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous β-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated β-catenin in response to compound treatment in real time using High Content Imaging. The anti-β-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular β-catenin in biochemical and cell biological assays. PMID:25595278

  6. Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity.

    PubMed

    Gong, Li; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A

    2004-01-01

    Nitric oxide has emerged as a ubiquitous signaling molecule subserving diverse pathophysiologic processes, including cardiovascular homeostasis and its decompensation in atherogenesis. Recent insights into molecular mechanisms regulating nitric oxide generation and the rich diversity of mechanisms by which it propagates signals reveal the role of this simple gas as a principle mediator of systems integration of oxygen balance. The molecular lexicon by which nitric oxide propagates signals encompasses the elements of posttranslational modification of proteins by redox-based nitrosylation of transition metal centers and free thiols. Spatial and temporal precision and specificity of signal initiation, amplification, and propagation are orchestrated by dynamic assembly of supramolecular complexes coupling nitric oxide production to upstream and downstream components in specific subcellular compartments. The concept of local paracrine signaling by nitric oxide over subcellular distances for short durations has expanded to include endocrine-like effects over anatomic spatial and temporal scales. From these insights emerges a role for nitric oxide in integrating system responses controlling oxygen supply and demand to defend cell integrity in the face of ischemic challenge. In this context, nitric oxide coordinates the respiratory cycle to acquire and deliver oxygen to target tissues by regulating hemoglobin function and vascular smooth muscle contractility and matches energy supply and demand by down-regulating energy-requiring functions while shifting metabolism to optimize energy production. Insights into mechanisms regulating nitric oxide production and signaling and their integration into responses mediating homeostasis place into specific relief the role of those processes in pathophysiology. Indeed, endothelial dysfunction associated with altered production of nitric oxide regulating tissue integrity contributes to the pathogenesis underlying atherogenesis. Moreover, this central role in pathophysiology identifies nitric oxide signaling as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with ischemic cardiovascular disease.

  7. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  8. Specialized Functional Diversity and Interactions of the Na,K-ATPase

    PubMed Central

    Matchkov, Vladimir V.; Krivoi, Igor I.

    2016-01-01

    Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its “classical” function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function. PMID:27252653

  9. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    PubMed

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling

    PubMed Central

    Sims, Joshua J.; Scavone, Francesco; Cooper, Eric M.; Kane, Lesley A.; Youle, Richard J.; Boeke, Jef D.; Cohen, Robert E.

    2012-01-01

    Polyubiquitin (polyUb) chain topology is thought to direct modified substrates to specific fates, but this function-topology relationship is poorly understood, as are the dynamics and subcellular locations of specific polyUb signals. Experimental access to these questions has been limited because linkage-specific inhibitors and in vivo sensors have been unavailable. Here we present a general strategy to track linkage-specific polyUb signals in yeast and mammalian cells, and to probe their functions. We designed several high-affinity lysine-63-polyUb-binding proteins and demonstrate their specificity both in vitro and in cells. We apply these tools as competitive inhibitors to dissect the polyUb-linkage dependence of NF-κB activation in several cell types, inferring the essential role of lysine-63-polyUb for signaling via the IL-1β and TNF-related weak inducer of apoptosis (TWEAK) but not TNF-α receptors. We anticipate live-cell imaging, proteomic, and biochemical applications for these tools, and extension of the design strategy to other polymeric ubiquitin-like protein modifications. PMID:22306808

  11. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio

    2006-04-15

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G{sub 1} and S. It becomes concentrated in punctuate and fibrillar structures in G{submore » 2} as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.« less

  12. Live-cell imaging of endogenous mRNAs with a small molecule.

    PubMed

    Sato, Shin-ichi; Watanabe, Mizuki; Katsuda, Yousuke; Murata, Asako; Wang, Dan Ohtan; Uesugi, Motonari

    2015-02-02

    Determination of subcellular localization and dynamics of mRNA is increasingly important to understanding gene expression. A new convenient and versatile method is reported that permits spatiotemporal imaging of specific non-engineered RNAs in living cells. The method uses transfection of a plasmid encoding a gene-specific RNA aptamer, combined with a cell-permeable synthetic small molecule, the fluorescence of which is restored only when the RNA aptamer hybridizes with its cognitive mRNA. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. Application of the technology to mRNAs of a total of 84 human cytoskeletal genes allowed us to observe cellular dynamics of several endogenous mRNAs including arfaptin-2, cortactin, and cytoplasmic FMR1-interacting protein 2. The RNA-imaging technology and its further optimization might permit live-cell imaging of any RNA molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CBL-CIPK network for calcium signaling in higher plants

    NASA Astrophysics Data System (ADS)

    Luan, Sheng

    Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.

  14. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis.

    PubMed

    Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva De Sousa Lopes, Susana M

    2018-02-01

    What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers associated with piRNAs biogenesis like the TDRDs and HENMT1 in fetal GC. Non-applicable. This study is limited by the restricted number of samples and consequently stages analyzed. In the germline, PIWILs ensure the integrity of the human genome protecting it from 'parasitic sequences'. This study offers novel insights on the expression dynamics of PIWILs during the window of epigenetic remodeling and meiosis, and highlights important differences between humans and mice, which may prove particularly important to understand causes of infertility and improve both diagnosis and treatment in humans. M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011]; N.H. by China Scholarship Council (CSC) [No. 201307040026] and F.W. by Medical Personnel Training Abroad Project of Henan Province [No. 2015022] and S.M.C.d.S.L. by the Netherlands Organization of Scientific Research (NWO) [ASPASIA 015.007.037] and the Interuniversity Attraction Poles-Phase VII [IUAP/PAI P7/14]. The authors have no conflicts of interest to declare. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  15. Modulatory compartments in cortex and local regulation of cholinergic tone.

    PubMed

    Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A

    2016-09-01

    Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    NASA Technical Reports Server (NTRS)

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  17. Live-cell visualization of intracellular interaction between a nuclear migration protein (hNUDC) and the thrombopoietin receptor (Mpl).

    PubMed

    Zheng, Yuan-Bin; Xiao, Ying-Ying; Tan, Peng; Zhang, Qing; Xu, Peilin

    2012-01-01

    We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC) to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER), Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami) resulted in increased levels of hNUDC or hNUDC(1-159) secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway.

  18. Live-Cell Visualization of Intracellular Interaction between a Nuclear Migration Protein (hNUDC) and the Thrombopoietin Receptor (Mpl)

    PubMed Central

    Zheng, Yuan-Bin; Xiao, Ying-Ying; Tan, Peng; Zhang, Qing; Xu, Peilin

    2012-01-01

    We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC) to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER), Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami) resulted in increased levels of hNUDC or hNUDC(1-159) secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway. PMID:23284788

  19. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.

    PubMed

    Beckmann, Anja; Grissmer, Alexander; Krause, Elmar; Tschernig, Thomas; Meier, Carola

    2016-03-01

    Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.

  20. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins

    PubMed Central

    Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle

    2017-01-01

    Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393

  1. Ubiquitination in the antiviral immune response.

    PubMed

    Davis, Meredith E; Gack, Michaela U

    2015-05-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Selective nuclear localization of siRNA by metallic versus semiconducting single wall carbon nanotubes in keratinocytes

    PubMed Central

    Huzil, John Torin; Saliaj, Evi; Ivanova, Marina V; Gharagozloo, Marjan; Loureiro, Maria Jimena; Lamprecht, Constanze; Korinek, Andreas; Chen, Ding Wen; Foldvari, Marianna

    2015-01-01

    Background: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. Results/Methodology: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. Conclusion: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages. PMID:28031892

  3. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives.

    PubMed

    MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J

    1999-11-01

    To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.

  4. Intracellular transport and compartmentation of phosphate in plants.

    PubMed

    Versaw, Wayne K; Garcia, L Rene

    2017-10-01

    Phosphate (Pi) is an essential macronutrient with structural and metabolic roles within every compartment of the plant cell. Intracellular Pi transporters direct Pi to each organelle and also control its exchange between subcellular compartments thereby providing the means to coordinate compartmented metabolic processes, including glycolysis, photosynthesis, and respiration. In this review we summarize recent advances in the identification and functional analysis of Pi transporters that localize to vacuoles, chloroplasts, non-photosynthetic plastids, mitochondria, and the Golgi apparatus. Electrical potentials across intracellular membranes and the pH of subcellular environments will also be highlighted as key factors influencing the energetics of Pi transport, and therefore pose limits for Pi compartmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dissecting DNA damage response pathways by analyzing protein localization and abundance changes during DNA replication stress

    PubMed Central

    Tkach, Johnny M.; Yimit, Askar; Lee, Anna Y.; Riffle, Michael; Costanzo, Michael; Jaschob, Daniel; Hendry, Jason A.; Ou, Jiongwen; Moffat, Jason; Boone, Charles; Davis, Trisha N.; Nislow, Corey; Brown, Grant W.

    2012-01-01

    Re-localization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein re-organization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by sub-cellular destination allows the identification of pathways that respond to replication stress. We analyzed pairwise combinations of GFP fusions and gene deletion mutants to define and order two novel DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways. PMID:22842922

  6. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumrejkanchanakij, Piyamas; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330; Eto, Kazuhiro

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, amore » process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.« less

  7. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells.

    PubMed

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  8. Axin localizes to mitotic spindles and centrosomes in mitotic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon

    2009-04-01

    Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3{beta}) without producing any notable changes inmore » cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3{beta} in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor.« less

  9. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons

    PubMed Central

    Soo Hoo, Linda; Banna, Chris D.; Radeke, Carolyn M.; Sharma, Nikunj; Albertolle, Mary E.; Low, Seng Hui; Weimbs, Thomas; Vandenberg, Carol A.

    2016-01-01

    Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons. PMID:27662481

  10. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons.

    PubMed

    Soo Hoo, Linda; Banna, Chris D; Radeke, Carolyn M; Sharma, Nikunj; Albertolle, Mary E; Low, Seng Hui; Weimbs, Thomas; Vandenberg, Carol A

    Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons.

  11. Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales.

    PubMed

    Rigato, Annafrancesca; Rico, Felix; Eghiaian, Frédéric; Piel, Mathieu; Scheuring, Simon

    2015-06-23

    In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T, and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young's moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.

  12. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation

    PubMed Central

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3′ UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type–specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3′ UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131

  13. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    PubMed

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  14. Monoterpene biosynthesis potential of plant subcellular compartments.

    PubMed

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization

    PubMed Central

    Ursell, Tristan S.; Nguyen, Jeffrey; Monds, Russell D.; Colavin, Alexandre; Billings, Gabriel; Ouzounov, Nikolay; Gitai, Zemer; Shaevitz, Joshua W.; Huang, Kerwyn Casey

    2014-01-01

    Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization. PMID:24550515

  16. Subcellular localization of acyl-CoA binding protein in Aspergillus oryzae is regulated by autophagy machinery.

    PubMed

    Kawaguchi, Kouhei; Kikuma, Takashi; Higuchi, Yujiro; Takegawa, Kaoru; Kitamoto, Katsuhiko

    2016-11-04

    In eukaryotic cells, acyl-CoA binding protein (ACBP) is important for cellular activities, such as in lipid metabolism. In the industrially important fungus Aspergillus oryzae, the ACBP, known as AoACBP, has been biochemically characterized, but its physiological function is not known. In the present study, although we could not find any phenotype of AoACBP disruptants in the normal growth conditions, we examined the subcellular localization of AoACBP to understand its physiological function. Using an enhanced green fluorescent protein (EGFP)-tagged AoACBP construct we showed that AoACBP localized to punctate structures in the cytoplasm, some of which moved inside the cells in a microtubule-dependent manner. Further microscopic analyses showed that AoACBP-EGFP co-localized with the autophagy marker protein AoAtg8 tagged with red fluorescent protein (mDsRed). Expression of AoACBP-EGFP in disruptants of autophagy-related genes revealed aggregation of AoACBP-EGFP fluorescence in the cytoplasm of Aoatg1, Aoatg4 and Aoatg8 disruptant cells. However, in cells harboring disruption of Aoatg15, which encodes a lipase for autophagic body, puncta of AoACBP-EGFP fluorescence accumulated in vacuoles, indicating that AoACBP is transported to vacuoles via the autophagy machinery. Collectively, these results suggest the existence of a regulatory mechanism between AoACBP localization and autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites.

    PubMed

    Shen, Hong-Bin; Chou, Kuo-Chen

    2007-04-20

    Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.

  18. Astrocytes express specific variants of CaM KII delta and gamma, but not alpha and beta, that determine their cellular localizations.

    PubMed

    Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q

    2000-04-01

    Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.

  19. Dephosphorylation of survival motor neurons (SMN) by PPM1G/PP2Cγ governs Cajal body localization and stability of the SMN complex

    PubMed Central

    Petri, Sebastian; Grimmler, Matthias; Over, Sabine; Fischer, Utz; Gruss, Oliver J.

    2007-01-01

    The survival motor neuron (SMN) complex functions in maturation of uridine-rich small nuclear ribonucleoprotein (RNP) particles. SMN mediates the cytoplasmic assembly of Sm proteins onto uridine-rich small RNAs, and then participates in targeting RNPs to nuclear Cajal bodies (CBs). Recent studies have suggested that phosphorylation might control localization and function of the SMN complex. Here, we show that the nuclear phosphatase PPM1G/PP2Cγ interacts with and dephosphorylates the SMN complex. Small interfering RNA knockdown of PPM1G leads to an altered phosphorylation pattern of SMN and Gemin3, loss of SMN from CBs, and reduced stability of SMN. Accumulation in CBs is restored upon overexpression of catalytically active, but not that of inactive, PPM1G. This demonstrates that PPM1G's phosphatase activity is necessary to maintain SMN subcellular distribution. Concomitant knockdown of unr interacting protein (unrip), a component implicated in cytoplasmic retention of the SMN complex, also rescues the localization defects. Our data suggest that an interplay between PPM1G and unrip determine compartment-specific phosphorylation patterns, localization, and function of the SMN complex. PMID:17984321

  20. Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply

    PubMed Central

    Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong

    2016-01-01

    The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301

  1. Proteomic analysis of synaptoneurosomes highlights the relevant role of local translation in the hippocampus.

    PubMed

    Benito, Itziar; Casañas, Juan José; Montesinos, María Luz

    2018-06-19

    Several proteomic analyses have been performed on synaptic fractions isolated from cortex or even total brain, resulting in preparations with a high synaptic heterogeneity and complexity. Synaptoneurosomes (SNs) are subcellular membranous elements that contain sealed pre- and post-synaptic components. They are obtained by subcellular fractionation of brain homogenates and serve as a suitable model to study many aspects of the synapse physiology. Here we report the proteomic content of SNs isolated from hippocampus of adult mice, a brain region involved in memory that presents lower synaptic heterogeneity than cortex. Interestingly, in addition to pre- and post-synaptic proteins, we found that proteins involved in RNA binding and translation were overrepresented in our preparation. These results validate the protocol we previously reported for SNs isolation, and, as reported by other authors, highlight the relevance of local synaptic translation for hippocampal physiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Uses of Ku70

    DOEpatents

    Li, Gloria C.; Cordon-Cardo, Carlos; Ouyang, Honghai

    2004-10-26

    This invention provides a method of diagnosing a predisposition to cancer in a subject comprising: (a) obtaining a nucleic acid sample from the subject; and; (b) determining whether one or more of the subject's Ku70 alleles or regulatory regions to those alleles are deleted or different from the wild type so as to reduce or eliminate the subject's expression of polypeptide having tumor suppressor activity. This invention also provides a method of assessing the severity of cancer in a subject comprising: (a) obtaining a nucleic acid sample from the subject; and (b) determining whether one or more of the subject's Ku70 alleles or regulatory regions to those alleles are deleted or different from the wild type so as to reduce or eliminate the subject's expression of polypeptide having tumor suppressor activity. This invention also provides a method of assessing the severity of cancer in a subject comprising: determining the subcellular localization of Ku70 in the subject, wherein an abnormal subcellular localization of Ku70 indicates a predisposition to cancer.

  3. Cellular Pathway(S) of Antigen Processing and Presentation in Fish APC: Endosomal Involvement and Cell-Free Antigen Presentation

    PubMed Central

    Vallejo, Abbe N.; Miller, Norman W.; Harvey, Nancy E.; Cuchens, Marvin A.; Warr, Gregory W.

    1992-01-01

    Studies were conducted to address further the role(s) of antigen processing and presentation in the induction of immune responses in a phylogenetically lower vertebrate, specifically a teleost, the channel catfish. In particular, studies were aimed at determining the subcellular compartments involved in antigen degradation by channel catfish antigen-presenting cells (APC) as well as ascertaining the reexpression of immunogenic peptides on the surfaces of APC. The results showed that exogenous protein antigens were actively endocytosed by APC as detected by flow cytometry. Use of radiolabeled antigen and subcellular fractionation protocols also showed that antigen localized in endosomes/lysosomes. Furthermore, there was an apparent redistribution of antigen between these organelles and the plasma membrane during the course of antigen pulsing. Functional assays for the induction of in vitro antigen-specific proliferation of immune catfish peripheral blood leukocytes (PBL) showed that membrane preparations from antigen-pulsed autologous APC were highly stimulatory. The magnitude of responses elicited with such membrane preparations was very similar to that of PBL cultures stimulated with native antigen-pulsed and fixed intact APC or prefixed intact APC incubated with a peptide fragment of the nominal antigen. Current data further corroborate our previous findings that steps akin to antigen processing and presentation are clearly important in the induction of immune responses in lower vertebrates like fish, in a manner similar to that seen in mammalian systems. Consequently, it would appear that many immune functions among the diverse taxa of vertebrates are remarkably conserved. PMID:1343103

  4. Plk1 is essential for proper chromosome segregation during meiosis I/meiosis II transition in pig oocytes.

    PubMed

    Zhang, Zixiao; Chen, Changchao; Ma, Liying; Yu, Qiuchen; Li, Shuai; Abbasi, Benazir; Yang, Jiayi; Rui, Rong; Ju, Shiqiang

    2017-08-29

    Polo-like kinase 1 (Plk1), as a characteristic regulator in meiosis, organizes multiple biological events of cell division. Although Plk1 has been implicated in various functions in somatic cell mitotic processes, considerably less is known regarding its function during the transition from metaphase I (MI) to metaphase II (MII) stage in oocyte meiotic progression. In this study, the possible role of Plk1 during the MI-to-MII stage transition in pig oocytes was addressed. Initially, the spatiotemporal expression and subcellular localization pattern of Plk1 were revealed in pig oocytes from MI to MII stage using indirect immunofluorescence and confocal microscopy imaging techniques combined with western blot analyses. Moreover, a highly selective Plk1 inhibitor, GSK461364, was used to determine the potential role of Plk1 during this MI-to-MII transition progression. Upon expression, Plk1 exhibited a specific dynamic intracellular localization, and co-localization of Plk1 with α-tubulin was revealed in the meiotic spindle of pig oocyte during the transition from MI to MII stage. GSK461364 treatment significantly blocked the first polar body (pbI) emission in a dose-dependent manner and resulted in a failure of meiotic maturation, with a larger percentage of the GSK461364-treated oocytes arresting in the anaphase-telophase I (ATI) stage. Further subcellular structure examination results showed that inhibition of Plk1 with GSK461364 had no visible effect on spindle assembly but caused a significantly higher proportion of the treated oocytes to have obvious defects in homologous chromosome segregation at ATI stage. Thus, these results indicate that Plk1 plays an essential role during the meiosis I/meiosis II transition in porcine oocytes, and the regulation is associated with Plk1's effects on homologous chromosome segregation in the ATI stage.

  5. UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy

    PubMed Central

    Nickerson, Michael L.; Kostiha, Brittany N.; Brandt, Wolfgang; Fredericks, William; Xu, Ke-Ping; Yu, Fu-Shin; Gold, Bert; Chodosh, James; Goldberg, Marc; Lu, Da Wen; Yamada, Masakazu; Tervo, Timo M.; Grutzmacher, Richard; Croasdale, Chris; Hoeltzenbein, Maria; Sutphin, John; Malkowicz, S. Bruce; Wessjohann, Ludger; Kruth, Howard S.; Dean, Michael; Weiss, Jayne S.

    2010-01-01

    Background Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure. Methodology/Principal Findings We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules. Conclusions/Significance Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly conserved function that, at least in humans, is involved in cholesterol metabolism in a novel manner. PMID:20505825

  6. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal

    PubMed Central

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS. PMID:28824680

  7. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal.

    PubMed

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.

  8. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1more » viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.« less

  9. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Periplasmic localization of a GroES homologue in Escherichia coli transformed with groESx cloned from Legionella-like endosymbionts in Amoeba proteus.

    PubMed

    Lee, J E; Ahn, T I

    2000-10-01

    Escherichia coli MC4100 transformed with a groE homologous operon cloned from X-bacteria accumulated large amounts of the gene product when cultured at 30 or 37 degrees C. Heat shock for 10-30 min at 42 degrees C or ethanol (5%) shock for 2 h increased GroESx levels to about twice that in E. coli grown at 30 degrees C. The subcellular localization of GroESx in transformed E. coli was determined by several subcellular fractionation methods, by the analysis of extracted proteins in SDS polyacrylamide gels and by assays of marker enzymes. The GroESx protein was detected in both the periplasmic and cytoplasmic extracts and a large amount of the protein was accumulated in the periplasm. The GroEL protein and recombinant beta-galactosidase were exclusively localized in the cytoplasmic fraction, eliminating the possibility that periplasmic GroESx might be due to simple overproduction. N-terminal amino acid sequencing confirmed that the protein resolved on a 2-D gel was GroESx. This work represents the first report of the periplasmic location of GroES homologues in E. coli.

  11. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida.

    PubMed

    Jones, John T; Kumar, Amar; Pylypenko, Liliya A; Thirugnanasambandam, Amarnath; Castelli, Lydia; Chapman, Sean; Cock, Peter J A; Grenier, Eric; Lilley, Catherine J; Phillips, Mark S; Blok, Vivian C

    2009-11-01

    In this article, we describe the analysis of over 9000 expressed sequence tags (ESTs) from cDNA libraries obtained from various life cycle stages of Globodera pallida. We have identified over 50 G. pallida effectors from this dataset using bioinformatics analysis, by screening clones in order to identify secreted proteins up-regulated after the onset of parasitism and using in situ hybridization to confirm the expression in pharyngeal gland cells. A substantial gene family encoding G. pallida SPRYSEC proteins has been identified. The expression of these genes is restricted to the dorsal pharyngeal gland cell. Different members of the SPRYSEC family of proteins from G. pallida show different subcellular localization patterns in plants, with some localized to the cytoplasm and others to the nucleus and nucleolus. Differences in subcellular localization may reflect diverse functional roles for each individual protein or, more likely, variety in the compartmentalization of plant proteins targeted by the nematode. Our data are therefore consistent with the suggestion that the SPRYSEC proteins suppress host defences, as suggested previously, and that they achieve this through interaction with a range of host targets.

  12. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    PubMed Central

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may entail important implications for muscle function and fatigue resistance. PMID:25996774

  13. Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans

    PubMed Central

    Markina-Iñarrairaegui, Ane; Etxebeste, Oier; Herrero-García, Erika; Araújo-Bazán, Lidia; Fernández-Martínez, Javier; Flores, Jairo A.; Osmani, Stephen A.; Espeso, Eduardo A.

    2011-01-01

    Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most deletants indicates redundant roles for these nuclear receptors. Subcellular distribution studies of these carriers show three main distributions: nuclear, nucleocytoplasmic, and in association with the nuclear envelope. These locations are not specific to predicted roles as exportins or importins but indicate that bidirectional transport may occur coordinately in all nuclei of a syncytium. Coinciding with mitotic NPC rearrangements, transporters dynamically modified their localizations, suggesting supplementary roles to nucleocytoplasmic transport specifically during mitosis. Loss of transportin-SR and Mex/TAP from the nuclear envelope indicates absence of RNA transport during the partially open mitosis of Aspergillus, whereas nucleolar accumulation of Kap121 and Kap123 homologues suggests a role in nucleolar disassembly. This work provides new insight into the roles of nuclear transporters and opens an avenue for future studies of the molecular mechanisms of transport among nuclei within a common cytoplasm, using A. nidulans as a model organism. PMID:21880896

  14. Aldehyde Dehydrogenase 2 in Aplastic Anemia, Fanconi Anemia and Hematopoietic Stem Cells

    PubMed Central

    Van Wassenhove, Lauren D.; Mochly-Rosen, Daria; Weinberg, Kenneth I.

    2016-01-01

    Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35–45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi Anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. PMID:27650066

  15. Constraints imposed by non-functional protein–protein interactions on gene expression and proteome size

    PubMed Central

    Zhang, Jingshan; Maslov, Sergei; Shakhnovich, Eugene I

    2008-01-01

    Crowded intracellular environments present a challenge for proteins to form functional specific complexes while reducing non-functional interactions with promiscuous non-functional partners. Here we show how the need to minimize the waste of resources to non-functional interactions limits the proteome diversity and the average concentration of co-expressed and co-localized proteins. Using the results of high-throughput Yeast 2-Hybrid experiments, we estimate the characteristic strength of non-functional protein–protein interactions. By combining these data with the strengths of specific interactions, we assess the fraction of time proteins spend tied up in non-functional interactions as a function of their overall concentration. This allows us to sketch the phase diagram for baker's yeast cells using the experimentally measured concentrations and subcellular localization of their proteins. The positions of yeast compartments on the phase diagram are consistent with our hypothesis that the yeast proteome has evolved to operate closely to the upper limit of its size, whereas keeping individual protein concentrations sufficiently low to reduce non-functional interactions. These findings have implication for conceptual understanding of intracellular compartmentalization, multicellularity and differentiation. PMID:18682700

  16. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    PubMed Central

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  17. Amyloid beta precursor protein and ubiquitin epitopes in human and experimental dystrophic axons. Ultrastructural localization.

    PubMed Central

    Bacci, B.; Cochran, E.; Nunzi, M. G.; Izeki, E.; Mizutani, T.; Patton, A.; Hite, S.; Sayre, L. M.; Autilio-Gambetti, L.; Gambetti, P.

    1994-01-01

    Dystrophic axons (DA) represent a major pathological feature of several neurodegenerative disorders, including infantile neuroaxonal dystrophy (INAD) and Alzheimer disease. We have previously presented evidence that amyloid beta precursor protein (BPP) and ubiquitin (Ub) are present in DA of different origin. We have now characterized the immunoreactivity of DA experimentally induced in rat by the administration of parabromophenylacetylurea (BPAU) and examined the subcellular localization of Ub and BPP in BPAU-induced DA and in DA present in subjects affected by INAD. BPAU-induced DA strongly immunoreacted with antisera to Ub and to COOH- and NH2-terminal regions of BPP. Immunoblots of DA-enriched brain regions were consistent with an increase in the amount of Ub and BPP in DA. Moreover, BPAU-induced DA immunoreacted with antibodies to PGP 9.5, a neuronal-specific Ub COOH-terminal hydrolase, and to the inducible heat shock protein 70. Antigenic characterization also indicated that the tubulovesicular membranes within DA derived largely from the smooth endoplasmic reticulum rather than from the Golgi system or the synaptic vesicles. Subcellular immunolocalization of Ub and BPP in both INAD- and BPAU-induced DA revealed that Ub and BPP colocalize in granulovesicular material in both conditions. In INAD DA intense Ub immunoreactivity was also detected in nonmembranous electron dense structures that were present only in these DA, probably because of the chronic course of INAD. Although BPP immunostaining may be related to accumulation of BPP-containing membranes in DA, Ub immunostaining is likely to result from activation of the Ub system by the neuron in the attempt to remove excessive and possibly abnormal proteins. A similar pathogenesis can be postulated for DA of Alzheimer disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7512790

  18. Amyloid precursor protein and Presenilin 1 interaction studied by FRET in human H4 cells.

    PubMed

    Nizzari, Mario; Venezia, Valentina; Bianchini, Paolo; Caorsi, Valentina; Diaspro, Alberto; Repetto, Emanuela; Thellung, Stefano; Corsaro, Alessandro; Carlo, Pia; Schettini, Gennaro; Florio, Tullio; Russo, Claudio

    2007-01-01

    The mayor pathologic hallmarks of Alzheimer's disease (AD) are senile plaque and neurofibrillary tangles. Senile plaque are primarily made up of deposits of amyloid-beta protein, a proteolytic product derived from the amyloid precursor protein (APP). APP is a transmembrane protein detected into the endoplasmic reticulum, in the Golgi apparatus, at the cell surface, recycled by endocytosis to endosomes, whose physiological function is unclear. Presenilins (PS), are a component of gamma-secretase complex that cleave alpha-CTFs (carboxy-terminal fragment), or beta-CTFs, leaving 40 or 42 amino acids amyloid-beta peptides and 58 or 56 amino acids intracellular domains (AICD). Where the amyloid-beta peptides is generated is not clear. The study of APP-PS interaction in specific cell compartments provides a good opportunity to light upon the molecular mechanisms regulating the activity of the "gamma-secretase complex," and where beta-amyloid is generated. In our study we used a biophysical assay of protein proximity: fluorescence resonance energy transfer (FRET), that can provide information about molecular interactions when two proteins are in the close proximity (<10 nm), to examine the subcellular localization and interaction between APP and PS1 in human neuroglioma cells (H4). Confocal microscopic analysis reveals extensive colocalization in different cells' compartment, and centrosomal or microtubule organizing center (MTOC) localization of APP and PS1, but not necessarily a close molecular interaction. We used FRET to determine if APP and PS1 interact at the cell centrosome. FRET data suggest a close interaction between APP and PS1 in subcellular compartments and at the centrosome of H4 cells. Using this approach we show that APP and PS1 are closely associated in the centrosomes of the H4 cell.

  19. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells.

    PubMed

    Stubbs, M; Aiston, S; Agius, L

    2000-12-01

    We investigated the subcellular localization, mobility, and activity of glucokinase in MIN6 cells, a glucose-responsive insulin-secreting beta-cell line. Glucokinase is present in the cytoplasm and a vesicular/granule compartment that is partially colocalized with insulin granules. The granular staining of glucokinase is preserved after permeabilization of the cells with digitonin. There was no evidence for changes in distribution of glucokinase between the cytoplasm and the granule compartment during incubation of the cells with glucose. The rate of release of glucokinase and of phosphoglucoisomerase from digitonin-permeabilized cells was slower when cells were incubated at an elevated glucose concentration (S0.5 approximately 15 mmol/l). This effect of glucose was counteracted by competitive inhibitors of glucokinase (5-thioglucose and mannoheptulose) but was unaffected by fructose analogs and may be due to changes in cell shape or conformation of the cytoskeleton that are secondary to glucose metabolism. Based on the similar release of glucokinase and phosphoglucoisomerase, we found no evidence for specific binding of cytoplasmic digitonin-extractable glucokinase. The affinity of beta-cells for glucose is slightly lower than that in cell extracts and, unlike that in hepatocytes, is unaffected by fructose, tagatose, or a high-K+ medium, which is consistent with the lack of change in glucokinase distribution or release. We conclude that glucokinase is present in two locations, cytoplasm and the granular compartment, and that it does not translocate between them. This conclusion is consistent with the lack of adaptive changes in the glucose phosphorylation affinity. The glucokinase activity associated with the insulin granules may have a role in either direct or indirect coupling between glucose phosphorylation and insulin secretion.

  20. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    PubMed Central

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  1. Controlling subcellular delivery to optimize therapeutic effect

    PubMed Central

    Mossalam, Mohanad; Dixon, Andrew S; Lim, Carol S

    2010-01-01

    This article focuses on drug targeting to specific cellular organelles for therapeutic purposes. Drugs can be delivered to all major organelles of the cell (cytosol, endosome/lysosome, nucleus, nucleolus, mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes and proteasomes) where they exert specific effects in those particular subcellular compartments. Delivery can be achieved by chemical (e.g., polymeric) or biological (e.g., signal sequences) means. Unidirectional targeting to individual organelles has proven to be immensely successful for drug therapy. Newer technologies that accommodate multiple signals (e.g., protein switch and virus-like delivery systems) mimic nature and allow for a more sophisticated approach to drug delivery. Harnessing different methods of targeting multiple organelles in a cell will lead to better drug delivery and improvements in disease therapy. PMID:21113240

  2. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    PubMed

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division.

    PubMed

    Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S

    2017-07-15

    Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.

  4. Single-copy gene detection using branched DNA (bDNA) in situ hybridization.

    PubMed

    Player, A N; Shen, L P; Kenny, D; Antao, V P; Kolberg, J A

    2001-05-01

    We have developed a branched DNA in situ hybridization (bDNA ISH) method for detection of human papillomavirus (HPV) DNA in whole cells. Using human cervical cancer cell lines with known copies of HPV DNA, we show that the bDNA ISH method is highly sensitive, detecting as few as one or two copies of HPV DNA per cell. By modifying sample pretreatment, viral mRNA or DNA sequences can be detected using the same set of oligonucleotide probes. In experiments performed on mixed populations of cells, the bDNA ISH method is highly specific and can distinguish cells with HPV-16 from cells with HPV-18 DNA. Furthermore, we demonstrate that the bDNA ISH method provides precise localization, yielding positive signals retained within the subcellular compartments in which the target nucleic acid sequences are localized. As an effective and convenient means for nucleic acid detection, the bDNA ISH method is applicable to the detection of cancers and infectious agents. (J Histochem Cytochem 49:603-611, 2001)

  5. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    PubMed

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  7. Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein.

    PubMed

    Bullido, R; Gómez-Puertas, P; Albo, C; Portela, A

    2000-01-01

    A systematic analysis was carried out to identify the amino acid signals that regulate the nucleo-cytoplasmic transport of the influenza A virus nucleoprotein (NP). The analysis involved determining the intracellular localization of eight deleted recombinant NP proteins and 14 chimeric proteins containing the green fluorescent protein fused to different NP fragments. In addition, the subcellular distribution of NP derivatives that contained specific substitutions at serine-3, which is the major phosphorylation site of the A/Victoria/3/75 NP, were analysed. From the results obtained, it is concluded that the NP contains three signals involved in nuclear accumulation and two regions that cause cytoplasmic accumulation of the fusion proteins. One of the karyophilic signals was located at the N terminus of the protein, and the data obtained suggest that the functionality of this signal can be modified by phosphorylation at serine-3. These findings are discussed in the context of the transport of influenza virus ribonucleoprotein complexes into and out of the nucleus.

  8. Specific binding of Ulex europaeus agglutinin I lectin to sarcolemma of distal myopathy with rimmed vacuole formation.

    PubMed

    Yatabe, K; Kawai, M

    1997-08-01

    Ulex europaeus agglutinin I (UEA I) binding was studied in 83 patients with various neuromuscular disorders. UEA I labelled endomysial capillaries and endothelial cells of perimysial blood vessels in all the examined muscles. There was no UEA I binding to muscle fibres except for all (9) cases of distal myopathy with rimmed vacuole formation (DMRV), 1 of 5 cases of inclusion body myositis and 1 of 36 cases of inflammatory myopathies. The UEA I binding was completely eliminated by preincubation of UEA I solution with L-fucose. Using electron microscopy, the UEA I binding was localized to sarcolemma and intrasarco-plasmic membranous organelles other than mitochondria. Myosatellite cells were not labelled. These findings revealed the existence of fucosylated proteins or lipids in a subset of skeletal muscles suffering from DMRV. Biochemical identification of the fucosylated substance and further detailed study on subcellular localization of UEA I binding may yield important clues to the unknown pathogenesis of DMRV.

  9. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  10. Prediction of protein subcellular locations by GO-FunD-PseAA predictor.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-Dong

    2004-08-06

    The localization of a protein in a cell is closely correlated with its biological function. With the explosion of protein sequences entering into DataBanks, it is highly desired to develop an automated method that can fast identify their subcellular location. This will expedite the annotation process, providing timely useful information for both basic research and industrial application. In view of this, a powerful predictor has been developed by hybridizing the gene ontology approach [Nat. Genet. 25 (2000) 25], functional domain composition approach [J. Biol. Chem. 277 (2002) 45765], and the pseudo-amino acid composition approach [Proteins Struct. Funct. Genet. 43 (2001) 246; Erratum: ibid. 44 (2001) 60]. As a showcase, the recently constructed dataset [Bioinformatics 19 (2003) 1656] was used for demonstration. The dataset contains 7589 proteins classified into 12 subcellular locations: chloroplast, cytoplasmic, cytoskeleton, endoplasmic reticulum, extracellular, Golgi apparatus, lysosomal, mitochondrial, nuclear, peroxisomal, plasma membrane, and vacuolar. The overall success rate of prediction obtained by the jackknife cross-validation was 92%. This is so far the highest success rate performed on this dataset by following an objective and rigorous cross-validation procedure.

  11. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    PubMed

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optimization of immunostaining on flat-mounted human corneas.

    PubMed

    Forest, Fabien; Thuret, Gilles; Gain, Philippe; Dumollard, Jean-Marc; Peoc'h, Michel; Perrache, Chantal; He, Zhiguo

    2015-01-01

    In the literature, immunohistochemistry on cross sections is the main technique used to study protein expression in corneal endothelial cells (ECs), even though this method allows visualization of few ECs, without clear subcellular localization, and is subject to the staining artifacts frequently encountered at tissue borders. We previously proposed several protocols, using fixation in 0.5% paraformaldehyde (PFA) or in methanol, allowing immunostaining on flatmounted corneas for proteins of different cell compartments. In the present study, we further refined the technique by systematically assessing the effect of fixative temperature. Last, we used optimized protocols to further demonstrate the considerable advantages of immunostaining on flatmounted intact corneas: detection of rare cells in large fields of thousands of ECs and epithelial cells, and accurate subcellular localization of given proteins. The staining of four ubiquitous proteins, ZO-1, hnRNP L, actin, and histone H3, with clearly different subcellular localizations, was analyzed in ECs of organ-cultured corneas. Whole intact human corneas were fixed for 30 min in 0.5% paraformaldehyde or pure methanol at four temperatures (4 °C for PFA, -20 °C for methanol, and 23, 37, and 50 °C for both). Experiments were performed in duplicate and repeated on three corneas. Standardized pictures were analyzed independently by two experts. Second, optimized immunostaining protocols were applied to fresh corneas for three applications: identification of rare cells that express KI67 in the endothelium of specimens with Fuch's endothelial corneal dystrophy (FECD), the precise localization of neural cell adhesion molecules (NCAMs) in normal ECs and of the cytokeratin pair K3/12 and CD44 in normal epithelial cells, and the identification of cells that express S100b in the normal epithelium. Temperature strongly influenced immunostaining quality. There was no ubiquitous protocol, but nevertheless, room temperature may be recommended as first-line temperature during fixation, instead of the conventional -20 °C for methanol and 4 °C for PFA. Further optimization may be required for certain target proteins. Optimized protocols allowed description of two previously unknown findings: the presence of a few proliferating ECs in FECD specimens, suggesting ineffective compensatory mechanisms against premature EC death, and the localization of NCAMs exclusively in the lateral membranes of ECs, showing hexagonal organization at the apical pole and an irregular shape with increasing complexity toward the basal pole. Optimized protocols were also effective for the epithelium, allowing clear localization of cytokeratin 3/12 and CD44 in superficial and basal epithelial cells, respectively. Finally, S100b allowed identification of clusters of epithelial Langerhans cells near the limbus and more centrally. Fixative temperature is a crucial parameter in optimizing immunostaining on flatmounted intact corneas. Whole-tissue overview and precise subcellular staining are significant advantages over conventional immunohistochemistry (IHC) on cross sections. This technique, initially developed for the corneal endothelium, proved equally suitable for the corneal epithelium and could be used for other superficial mono- and multilayered epithelia.

  13. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance

    PubMed Central

    Herburger, Klaus; Holzinger, Andreas

    2015-01-01

    Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780

  14. Emory University: "LC-MS analysis of PRAS40 protein-protein interactions" | Office of Cancer Genomics

    Cancer.gov

    This study focuses on subcellular localization and interactome of nuclear PRAS40 in HeLa cells.  Read the abstract.  Experimental Approaches Read the detailed Experimental Approaches. If you cannot access the manuscript, or if you have additional questions, please email Andrei Ivanov.

  15. [Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, R.

    1989-01-01

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  16. Status epilepticus-induced changes in the subcellular distribution and activity of calcineurin in rat forebrain.

    PubMed

    Kurz, Jonathan E; Rana, Annu; Parsons, J Travis; Churn, Severn B

    2003-12-01

    This study was performed to determine the effect of prolonged status epilepticus on the activity and subcellular location of a neuronally enriched, calcium-regulated enzyme, calcineurin. Brain fractions isolated from control animals and rats subjected to pilocarpine-induced status epilepticus were subjected to differential centrifugation. Specific subcellular fractions were tested for both calcineurin activity and enzyme content. Significant, status epilepticus-induced increases in calcineurin activity were found in homogenates, nuclear fractions, and crude synaptic membrane-enriched fractions isolated from both cortex and hippocampus. Additionally, significant increases in enzyme levels were observed in crude synaptic fractions as measured by Western analysis. Immunohistochemical studies revealed a status epilepticus-induced increase in calcineurin immunoreactivity in dendritic structures of pyramidal neurons of the hippocampus. The data demonstrate a status epilepticus-induced increase in calcineurin activity and concentration in the postsynaptic region of forebrain pyramidal neurons.

  17. Intracellular And Subcellular Partitioning Of Nickel In Aureococcus Anophagefferens

    NASA Astrophysics Data System (ADS)

    Wang, B.; Axe, L.; Wei, L.; Bagheri, S.; Michalopoulou, Z.

    2008-12-01

    Brown tides are caused by Aureococcus anophagefferens, a species of Pelagophyceae, and have been observed in NY/NJ waterways effecting ecosystems by attenuating light, changing water color, reducing eelgrass beds, decreasing shellfisheries, and further impacting the food web by reducing phytoplankton. Although the impact of macronutrients and iron on A. anophagefferens has been well studied, contaminants, and specifically trace metals have not. In long-term experiments designed to investigate the growth and toxicity, Cd, Cu, Ni, and Zn exposure was evaluated over 10-13 to 10-7 M for the free metal ion. While growth was inhibited or terminated from exposure to Cd and Cu, nickel addition ([Ni2+]: 10-11.23 to 10-10.23 M) promoted A. anophagefferens growth. Short-term experiments are being conducted to better understand mechanistically nickel speciation and distribution. Both total intracellular and subcellular metal concentrations are being assessed with radio-labeled 63Ni. Subcellular fractions are defined as metal-sensitive fractions (MSF) constituting organelles, cell debris, and heat-denatured protein [HDP] and biologically detoxified metal comprising heat-stabilized protein [HSP] and metal-rich granules [MRG]. Based on subcellular distribution, aqueous [Ni2+] concentrations, and A. anophagefferens growth rates, potential reaction pathways promoting A. anophagefferens growth can be addressed.

  18. Identification of an immunogenic protein of Actinobacillus seminis that is present in microvesicles

    PubMed Central

    2006-01-01

    Abstract Actinobacillus seminis is a gram-negative bacterium of the Pasteurellaceae family that is involved in ovine epididymitis. Looking for a protein specific to this species, we determined the protein profile of subcellular fractions of A. seminis (American Type Culture Collection number 15768): proteins from the outer membrane (OMPs), inner membrane (IMPs), and cytoplasm (CPs). These profiles provide the first data, to our knowledge, regarding subcellular fractions of A. seminis. In the OMP fraction, we identified a protein with a molecular mass of 75 kDa that proved to be immunogenic and apparently specific for A. seminis. This conclusion was based on the reaction of hyperimmune serum of rabbits inoculated with whole cells of A. seminis that was tested against sonicated complete cells of reference strains and field isolates of Brucella ovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. No protein of these bacteria cross-reacted with the 75-kDa protein of A. seminis. Furthermore, when each type of hyperimmune serum was tested against the sonicated cells and each of the subcellular fractions of A. seminis, it did not recognize the A. seminis 75-kDa protein. We also isolated and identified this protein in microvesicles released to the culture supernatant. The results suggest that the 75-kDa protein could be used to establish a diagnostic test specific for ovine epididymitis caused by A. seminis. PMID:16548331

  19. Development of a novel set of Gateway-compatible vectors for live imaging in insect cells.

    PubMed

    Maroniche, G A; Mongelli, V C; Alfonso, V; Llauger, G; Taboga, O; del Vas, Mariana

    2011-10-01

    Insect genomics is a growing area of research. To exploit fully the genomic data that are being generated, high-throughput systems for the functional characterization of insect proteins and their interactomes are required. In this work, a Gateway-compatible vector set for expression of fluorescent fusion proteins in insect cells was developed. The vector set was designed to express a protein of interest fused to any of four different fluorescent proteins [green fluorescent protein (GFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP) and mCherry] by either the C-terminal or the N-terminal ends. Additionally, a collection of organelle-specific fluorescent markers was assembled for colocalization with fluorescent recombinant proteins of interest. Moreover, the vector set was proven to be suitable for simultaneously detecting up to three proteins by multiple labelling. The use of the vector set was exemplified by defining the subcellular distribution of Mal de Río Cuarto virus (MRCV) outer coat protein P10 and by analysing the in vivo self-interaction of the MRCV viroplasm matrix protein P9-1 in Förster resonance energy transfer (FRET) experiments. In conclusion, we have developed a valuable tool for high-throughput studies of protein subcellular localization that will aid in the elucidation of the function of newly described insect and virus proteins. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  20. Fluorescent sensors of protein kinases: from basics to biomedical applications.

    PubMed

    Nhu Ngoc Van, Thi; Morris, May C

    2013-01-01

    Protein kinases constitute a major class of enzymes underlying essentially all biological processes. These enzymes present similar structural folds, yet their mechanism of action and of regulation vary largely, as well as their substrate specificity and their subcellular localization. Classical approaches to study the function/activity of protein kinases rely on radioactive endpoint assays, which do not allow for characterization of their dynamic activity in their native environment. The development of fluorescent biosensors has provided a whole new avenue for studying protein kinase behavior and regulation in living cells in real time with high spatial and temporal resolution. Two major classes of biosensors have been developed: genetically encoded single-chain fluorescence resonance energy transfer biosensors and peptide/protein biosensors coupled to small synthetic fluorophores which are sensitive to changes in their environment. In this review, we discuss the developments in fluorescent biosensor technology related to protein kinase sensing and the different strategies employed to monitor protein kinase activity, conformation, or relative abundance, as well as kinase regulation and subcellular dynamics in living cells. Moreover, we discuss their application in biomedical settings, for diagnostics and therapeutics, to image disease progression and monitor response to therapeutics, in drug discovery programs, for high-throughput screening assays, for postscreen characterization of drug candidates, and for clinical evaluation of novel drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Small glutamine-rich tetratricopeptide repeat-containing protein alpha is present in human ovaries but may not be differentially expressed in relation to polycystic ovary syndrome.

    PubMed

    Butler, Miriam S; Yang, Xing; Ricciardelli, Carmela; Liang, Xiaoyan; Norman, Robert J; Tilley, Wayne D; Hickey, Theresa E

    2013-06-01

    To evaluate the expression and function of small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), an androgen receptor (AR) molecular chaperone, in human ovarian tissues. Examine the effect of SGTA on AR subcellular localization in granulosa tumor cells (KGN) and SGTA expression in ovarian tissues. University-based research laboratory. Archived tissues from premenopausal women and granulosa cells from infertile women receiving assisted reproduction. None. AR subcellular localization and SGTA protein or mRNA levels. SGTA and AR proteins were expressed in the cytoplasm of KGN cells and exposure to androgen stimulated AR nuclear localization. SGTA protein knockdown increased AR nuclear localization at low (0-0.1 nmol/L) but not high (1-10 nmol/L) concentrations of androgen hormone. In ovarian tissues, SGTA was localized to the cytoplasm of granulosa cells at all stages of folliculogenesis and in thecal cells of antral follicles. SGTA protein levels were similar when comparing primordial and primary follicles within core biopsies (n = 40) from women with and without polycystic ovary syndrome (PCOS). Likewise, SGTA mRNA levels were not significantly different in granulosa cells from preovulatory follicles after hyperstimulation of women with and without PCOS. SGTA is present in human ovaries and has the potential to modulate AR signalling, but it may not be differentially expressed in PCOS. Copyright © 2013 American Society for Reproductive Medicine. All rights reserved.

  2. Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity

    PubMed Central

    2012-01-01

    Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels. PMID:22534096

  3. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation.

    PubMed

    Csukai, M; Mochly-Rosen, D

    1999-04-01

    Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.

  4. Emory University: "LC-MS analysis of PRAS40 protein-protein interactions" | Office of Cancer Genomics

    Cancer.gov

    This study focuses on subcellular localization and interactome of nuclear PRAS40 in HeLa cells.  Read the abstract.  Experimental Approaches Read the detailed Experimental Approaches. If you cannot access the manuscript, or if you have additional questions, please email Andrei Ivanov. Data

  5. Nuclear glutaredoxin 3 is critical for protection against oxidative stress-induced cell death

    USDA-ARS?s Scientific Manuscript database

    Mammalian glutaredoxin 3 (Grx3) has been shown to be critical in maintaining redox homeostasis and regulating cell survival pathways in cancer cells. However, the regulation of Grx3 is not fully understood. In the present study, we investigate the subcellular localization of Grx3 under normal growth...

  6. [Regulation of terpene metabolism]. Annual progress report, March 15, 1988--March 14, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, R.

    1989-12-31

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamunusinghe, Devinka, E-mail: dbamu001@ucr.ed; Hemenway, Cynthia L., E-mail: cindy_hemenway@ncsu.ed; Nelson, Richard S., E-mail: rsnelson@noble.or

    Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER atmore » the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.« less

  8. Local structure of subcellular input retinotopy in an identified visual interneuron

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Gabbiani, Fabrizio; Fabrizio Gabbiani's lab Team

    2015-03-01

    How does the spatial layout of the projections that a neuron receives impact its synaptic integration and computation? What is the mapping topography of subcellular wiring at the single neuron level? The LGMD (lobula giant movement detector) neuron in the locust is an identified neuron that responds preferentially to objects approaching on a collision course. It receives excitatory inputs from the entire visual hemifield through calcium-permeable nicotinic acetylcholine receptors. Previous work showed that the projection from the locust compound eye to the LGMD preserved retinotopy down to the level of a single ommatidium (facet) by employing in vivo widefield calcium imaging. Because widefield imaging relies on global excitation of the preparation and has a relatively low resolution, previous work could not investigate this retinotopic mapping at the level of individual thin dendritic branches. Our current work employs a custom-built two-photon microscope with sub-micron resolution in conjunction with a single-facet stimulation setup that provides visual stimuli to the single ommatidium of locust adequate to explore the local structure of this retinotopy at a finer level. We would thank NIMH for funding this research.

  9. Expression and subcellular localization of ORC1 in Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-10-10

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levelsmore » have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.« less

  10. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  11. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins.

    PubMed

    Chanoca, Alexandra; Burkel, Brian; Kovinich, Nik; Grotewold, Erich; Eliceiri, Kevin W; Otegui, Marisa S

    2016-12-01

    Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τ m ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τ m than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Localization of arginine decarboxylase in tobacco plants.

    PubMed

    Bortolotti, Cristina; Cordeiro, Alexandra; Alcázar, Rubén; Borrell, Antoni; Culiañez-Macià, Francisco A.; Tiburcio, Antonio F.; Altabella, Teresa

    2004-01-01

    The lack of knowledge about the tissue and subcellular distribution of polyamines (PAs) and the enzymes involved in their metabolism remains one of the main obstacles in our understanding of the biological role of PAs in plants. Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We have characterized a cDNA coding for ADC from Nicotiana tabacum L. cv. Petit Havana SR1. The deduced ADC polypeptide had 721 amino acids and a molecular mass of 77 kDa. The ADC cDNA was overexpressed in Escherichia coli, and the ADC fusion protein obtained was used to produce polyclonal antibodies. Using immunological methods, we demonstrate the presence of the ADC protein in all plant organs analysed: flowers, seeds, stems, leaves and roots. Moreover, depending on the tissue, the protein is localized in two different subcellular compartments, the nucleus and the chloroplast. In photosynthetic tissues, ADC is located mainly in chloroplasts, whereas in non-photosynthetic tissues the protein appears to be located in nuclei. The different compartmentation of ADC may be related to distinct functions of the protein in different cell types.

  13. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  14. Hematoporphyrin derivative induced photodamage to brain tumor cells: Alterations in subcellular membranes

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.

    1997-01-01

    Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.

  15. Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use

    PubMed Central

    Tenuta, Tiziana; Monopoli, Marco P.; Kim, JongAh; Salvati, Anna; Dawson, Kenneth A.; Sandin, Peter; Lynch, Iseult

    2011-01-01

    Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of labile dye even following extensive cleaning by dialysis. Polyacrylamide gel electrophoresis (PAGE) can be used to monitor the elution of unbound fluorescent probes from nanoparticles, either commercially available or synthesized in-house, and to ensure their complete purification for biological studies, including cellular uptake and sub-cellular localisation. Very different fluorescence distribution within cells is observed after short dialysis times versus following extensive dialysis against a solvent in which the free dye is more soluble, due to the contribution from free dye. In the absence of an understanding of the presence of residual free dye in (most) labeled nanoparticle solutions, the total fluorescence intensity in cells following exposure to nanoparticle solutions could be mis-ascribed to the presence of nanoparticles through the cell, rather than correctly assigned to either a combination of free-dye and nanoparticle-bound dye, or even entirely to free dye depending on the exposure conditions (i.e. aggregation of the particles etc). Where all of the dye is nanoparticle-bound, the particles are highly localized in sub-cellular organelles, likely lysosomes, whereas in a system containing significant amounts of free dye, the fluorescence is distributed through the cell due to the free diffusion of the molecule dye across all cellular barriers and into the cytoplasm. PMID:21998668

  16. Alterations in the characteristic size distributions of subcellular scatterers at the onset of apoptosis: effect of Bcl-xL and Bax/Bak

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Yi; Boustany, Nada N.

    2010-07-01

    Optical scatter imaging is used to estimate organelle size distributions in immortalized baby mouse kidney cells treated with 0.4 μM staurosporine to induce apoptosis. The study comprises apoptosis competent iBMK cells (W2) expressing the proapoptotic proteins Bax/Bak, apoptosis resistant Bax/Bak null cells (D3), and W2 and D3 cells expressing yellow fluorescent protein (YFP) or YFP fused to the antiapoptotic protein Bcl-xL (YFP-Bcl-xL). YFP expression is diffuse within the transfected cells, while YFP-Bcl-xL is localized to the mitochondria. Our results show a significant increase in the mean subcellular particle size from approximately 1.1 to 1.4 μm in both Bax/Bak expressing and Bax/Bak null cells after 60 min of STS treatment compared to DMSO-treated control cells. This dynamic is blocked by overexpression of YFP-Bcl-xL in Bax/Bak expressing cells, but is less significantly inhibited by YFP-Bcl-xL in Bax/Bak null cells. Our data suggest that the increase in subcellular particle size at the onset of apoptosis is modulated by Bcl-xL in the presence of Bax/Bak, but it occurs upstream of the final commitment to programmed cell death. Mitochondrial localization of YFP-Bcl-xL and the finding that micron-sized particles give rise to the scattering signal further suggest that alterations in mitochondrial morphology may underlie the observed changes in light scattering.

  17. The PP1 binding code: a molecular-lego strategy that governs specificity.

    PubMed

    Heroes, Ewald; Lesage, Bart; Görnemann, Janina; Beullens, Monique; Van Meervelt, Luc; Bollen, Mathieu

    2013-01-01

    Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo. © 2012 The Authors Journal compilation © 2012 FEBS.

  18. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity.

    PubMed

    Kouno, Takahide; Silvas, Tania V; Hilbert, Brendan J; Shandilya, Shivender M D; Bohn, Markus F; Kelch, Brian A; Royer, William E; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A

    2017-04-28

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.

  19. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less

  20. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation.

    PubMed

    Kruse, Janis; Meier, Doreen; Zenk, Fides; Rehders, Maren; Nellen, Wolfgang; Hammann, Christian

    2016-10-02

    The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

Top