Sample records for specific subunit polypeptides

  1. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  2. Structural analysis of photosystem I polypeptides using chemical crosslinking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Thylakoid membranes, obtained from leaves of 14 d soybean (Glycine max L. cv. Williams) plants, were treated with the chemical crosslinkers glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to investigate the structural organization of photosystem I. Polypeptides were resolved using lithium dodecyl sulfate polyacrylamide gel electrophoresis, and were identified by western blot analysis using a library of polyclonal antibodies specific for photosystem I subunits. An electrophoretic examination of crosslinked thylakoids revealed numerous crosslinked products, using either glutaraldehyde or EDC. However, only a few of these could be identified by western blot analysis using subunit-specific polyclonal antibodies. Several glutaraldehyde dependent crosslinked species were identified. A single band was identified minimally composed of PsaC and PsaD, documenting the close interaction between these two subunits. The most interesting aspect of these studies was a crosslinked species composed of the PsaB subunit observed following EDC treatment of thylakoids. This is either an internally crosslinked species, which will provide structural information concerning the topology of the complex PsaB protein, a linkage with a polypeptide for which we do not yet have an immunological probe, or a masking of epitopes by the EDC linkage at critical locations in the peptide which is linked to PsaB.

  3. Topography of succinate dehydrogenase in the mitochondrial inner membrane. A study using limited proteolysis and immunoblotting.

    PubMed Central

    Clarkson, G H; Neagle, J; Lindsay, J G

    1991-01-01

    The arrangement of the large (70,000-Mr) and small (30,000-Mr) subunits of succinate dehydrogenase in the mitochondrial inner membrane was investigated by immunoblot analysis of bovine heart mitochondria (right-side-out, outer membrane disrupted) or submitochondrial particles (inside-out) that had been subjected to surface-specific proteolysis. Both subunits were resistant to proteinase treatment provided that the integrity of the inner membrane was preserved, suggesting that neither subunit is exposed at the cytoplasmic surface of the membrane. The bulk of the small subunit appears to protrude into the matrix compartment, since the 30,000-Mr polypeptide is degraded extensively during limited proteolysis of submitochondrial particles without the appearance of an immunologically reactive membrane-associated fragment: moreover, a soluble 27,000-Mr peptide derived from this subunit is observed transiently on incubation with trypsin. Similar data obtained from the large subunit suggest that this polypeptide interacts with the matrix side of the inner membrane via two distinct domains; these are detected as stable membrane-associated fragments of 32,000 Mr and 27,000 Mr after treatment of submitochondrial particles with papain or proteinase K, although the 27,000-Mr fragment can be degraded further to low-Mr peptides with trypsin or alpha-chymotrypsin. A stable 32,000-34,000-Mr fragment is generated by a variety of specific and non-specific proteinases, indicating that it may be embedded largely within the lipid bilayer, or is inaccessible to proteolytic attack owing to its proximity to the surface of the intact membrane, possibly interacting with the hydrophobic membrane anchoring polypeptides of the succinate: ubiquinone reductase complex. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1996968

  4. Immunochemical Proof that a Novel Rearranging Gene Encodes the T Cell Receptor δ Subunit

    NASA Astrophysics Data System (ADS)

    Band, Hamid; Hochstenbach, Frans; McLean, Joanne; Hata, Shingo; Krangel, Michael S.; Brenner, Michael B.

    1987-10-01

    The T cell receptor (TCR) δ protein is expressed as part of a heterodimer with TCR γ , in association with the CD3 polypeptides on a subset of functional peripheral blood T lymphocytes, thymocytes, and certain leukemic T cell lines. A monoclonal antibody directed against TCR δ was produced that binds specifically to the surface of several TCR γ δ cell lines and immunoprecipitates the TCR γ δ as a heterodimer from Triton X-100 detergent lysates and also immunoprecipitates the TCR δ subunit alone after chain separation. A candidate human TCR δ complementary DNA clone (IDP2 O-240/38), reported in a companion paper, was isolated by the subtractive library approach from a TCR γ δ cell line. This complementary DNA clone was used to direct the synthesis of a polypeptide that is specifically recognized by the monoclonal antibody to TCR δ . This complementary DNA clone thus corresponds to the gene that encodes the TCR δ subunit.

  5. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  6. Purification and characterization of the glycogen-bound protein phosphatase from rat liver.

    PubMed

    Wera, S; Bollen, M; Stalmans, W

    1991-01-05

    Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.

  7. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity.

    PubMed

    Higgins, N P; Peebles, C L; Sugino, A; Cozzarelli, N R

    1978-04-01

    Extensively purified DNA gyrase from Escherichia coli is inhibited by nalidixic acid and by novobiocin. The enzyme is composed of two subunits, A and B, which were purified as separate components. Subunit A is the product of the gene controlling sensitivity to nalidixic acid (nalA) because: (i) the electrophoretic mobility of subunit A in the presence of sodium dodecyl sulfate is identical to that of the 105,000-dalton nalA gene product; (ii) mutants that are resistant to nalidixic acid (nalA(r)) produce a drug-resistant subunit A; and (iii) wild-type subunit A confers drug sensitivity to in vitro synthesis of varphiX174 DNA directed by nalA(r) mutants. Subunit B contains a 95,000-dalton polypeptide and is controlled by the gene specifying sensitivity to novobiocin (cou) because cou(r) mutants produce a novobiocin-resistant subunit B and novobiocin-resitant gyrase is made drug sensitive by wild-type subunit B. Subunits A and B associate, so that gyrase was also purified as a complex containing 105,000- and 95,000-dalton polypeptides. This enzyme and gyrase reconstructed from subunits have the same drug sensitivity, K(m) for ATP, and catalytic properties. The same ratio of subunits gives efficient reconstitution of the reactions intrinsic to DNA gyrase, including catalysis of supercoiling of closed duplex DNA, relaxation of supercoiled DNA in the absence of ATP, and site-specific cleavage of DNA induced by sodium dodecyl sulfate.

  8. Specific antibodies against Go isoforms reveal the early expression of the Go2 alpha subunit and appearance of Go1 alpha during neuronal differentiation.

    PubMed

    Rouot, B; Charpentier, N; Chabbert, C; Carrette, J; Zumbihl, R; Bockaert, J; Homburger, V

    1992-02-01

    We have previously identified two isoforms of Go alpha in membranes of N1E-115 neuroblastoma cells, using an antibody raised against the purified Go alpha subunit; one isoform of the Go alpha subunit (pI 5.80) is present in undifferentiated cells, whereas a more acidic isoform (pI 5.55) appears during differentiation [J. Neurochem. 54:1310-1320 (1990)]. Recently, the Go alpha gene has been shown to encode, by alternative splicing, two polypeptides, Go1 alpha and Go2 alpha, which differ only in their carboxyl-terminal part. To determine unambiguously whether the two Go alpha subunits detected in neuroblastoma cells were actually the products of different mRNAs, rabbit polyclonal antibodies were generated against synthetic peptides (amino acids 291-302) of both sequences. Specificity of the two affinity-purified antipeptide antibodies was assessed on Western blots by comparing their immunoreactivities with those of other G alpha antibodies. On a blotted mixture of purified brain guanine nucleotide-binding proteins, the anti-alpha o1 and anti-alpha o2 peptide antibodies only recognized the 39-kDa Go alpha subunit. Furthermore, the immunological recognition of brain membranes from 15-day-old mouse fetuses by antipeptide antibodies could be specifically blocked by addition of the corresponding antigen. When membrane proteins from differentiated neuroblastoma cells and mouse fetus brain were blotted after two-dimensional gel electrophoresis, the anti-alpha o1 and anti-alpha o2 peptide antibodies labeled a 39-kDa subunit focused at a pI value of 5.55 or 5.80, respectively. Study of the ontogenesis of both Go alpha subunits revealed the predominance of Go2 alpha in the frontal cortex at day 15 of gestation. Thereafter, there was a progressive decline of the Go2 alpha polypeptide to a very low level, concomitant with an increase in the Go1 alpha protein, which plateaued about 15 days after birth to a level 8 times higher than at gestational day 15. Similarly, on neuroblastoma cells, the Go2 alpha subunit was almost exclusively present in undifferentiated cells, and differentiation induced the appearance of the Go1 alpha subunit, with a reduction in the amount of Go2 alpha polypeptide. Thus, the evolution of the two Go alpha subunits during cell differentiation, unambiguously identified with specific antibodies, suggests that neuronal differentiation is responsible for the on/off switch of the expression of the Go alpha isoforms and indicates that Go1 alpha, rather than Go2 alpha, is involved in neurotransmission.

  9. Amino acid sequence of the human fibronectin receptor

    PubMed Central

    1987-01-01

    The amino acid sequence deduced from cDNA of the human placental fibronectin receptor is reported. The receptor is composed of two subunits: an alpha subunit of 1,008 amino acids which is processed into two polypeptides disulfide bonded to one another, and a beta subunit of 778 amino acids. Each subunit has near its COOH terminus a hydrophobic segment. This and other sequence features suggest a structure for the receptor in which the hydrophobic segments serve as transmembrane domains anchoring each subunit to the membrane and dividing each into a large ectodomain and a short cytoplasmic domain. The alpha subunit ectodomain has five sequence elements homologous to consensus Ca2+- binding sites of several calcium-binding proteins, and the beta subunit contains a fourfold repeat strikingly rich in cysteine. The alpha subunit sequence is 46% homologous to the alpha subunit of the vitronectin receptor. The beta subunit is 44% homologous to the human platelet adhesion receptor subunit IIIa and 47% homologous to a leukocyte adhesion receptor beta subunit. The high degree of homology (85%) of the beta subunit with one of the polypeptides of a chicken adhesion receptor complex referred to as integrin complex strongly suggests that the latter polypeptide is the chicken homologue of the fibronectin receptor beta subunit. These receptor subunit homologies define a superfamily of adhesion receptors. The availability of the entire protein sequence for the fibronectin receptor will facilitate studies on the functions of these receptors. PMID:2958481

  10. Polypeptide composition of fraction 1 protein of the somatic hybrid between Petunia parodii and Petunia parviflora.

    PubMed

    Kumar, A; Wilson, D; Cocking, E C

    1981-04-01

    The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived form the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationship is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.

  11. Hydrogenase polypeptide and methods of use

    DOEpatents

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  12. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein.

    PubMed

    Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro

    2008-12-23

    Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.

  13. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end.

    PubMed

    Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N

    1994-12-02

    Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.

  14. Thylakoid membrane protein topography: transmembrane orientation of the chloroplast cytochrome b-559 psbE gene product.

    PubMed

    Tae, G S; Black, M T; Cramer, W A; Vallon, O; Bogorad, L

    1988-12-27

    Protease accessibility and antibody to a COOH-terminal peptide were used as probes for the in situ topography of the Mr 10,000 psbE gene product (alpha subunit) of the chloroplast cytochrome b-559. Exposure of thylakoid membranes to trypsin or Staphylococcus aureus V8 protease cleaved the alpha subunit to a slightly smaller polypeptide (delta Mr approximately -1000) as detected on Western blots, without loss of reactivity to COOH-terminal antibody. The disappearance of the parent Mr 10,000 polypeptide from thylakoids in the presence of trypsin correlated with the appearance of the smaller polypeptide with delta Mr = -750, the conversion having a half-time of approximately 15 min. Exposure of inside-out vesicles to trypsin resulted in almost complete loss of reactivity to the antibody, showing that the COOH terminus is exposed on the lumenal side of the membrane. Removal of the extrinsic polypeptides of the oxygen-evolving complex resulted in an increase of the accessibility of the alpha subunit to trypsin. These data establish that the alpha subunit of cytochrome b-559 crosses the membrane once, as predicted from its single, 26-residue, hydrophobic domain. The NH2 terminus of the alpha polypeptide is on the stromal side of the membrane, where it is accessible, most likely at Arg-7 or Glu-6/Asp-11, to trypsin or V8 protease, respectively. As a consequence of this orientation, the single histidine residue in the alpha subunit is located on the stromal side of the hydrophobic domain.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.

    1990-03-25

    Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.

  16. Type II restriction modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Newby, Deborah T.; Lacey, Jeffrey A.

    2018-02-13

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  17. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2013-10-29

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  18. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2015-05-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  19. Type II restriction modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D.; Newby, Deborah T.; Lacey, Jeffrey A.; Thompson, David N.; Thompson, Vicki S.; Apel, William A.; Roberto, Francisco F.; Reed, David W.

    2017-02-14

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  20. Purification and chemical characterisation of a cell wall-associated β-galactosidase from mature sweet cherry (Prunus avium L.) fruit.

    PubMed

    Gerardi, Carmela; Blando, Federica; Santino, Angelo

    2012-12-01

    Using four different chromatographic steps, β-galactosidase was purified from the ripe fruit of sweet cherry to apparent electrophoretic homogeneity with approximately 131-fold purification. The Prunus avium β-galactosidase showed an apparent molecular mass of about 100 kDa and consisted of four different active polypeptides with pIs of about 7.9, 7.4, 6.9 and 6.4 as estimated by native IEF and β-galactosidase-activity staining. The active polypeptides were individually excised from the gel and subjected to SDS-PAGE. Each of the four native enzymes showing β-galactosidase activity was composed of two polypeptides with an estimated mass of 54 and 33 kDa. Both of these polypeptides were subjected to N-terminal amino acid sequence analysis. The 54 kDa polypeptide of sweet cherry β-galactosidase showed a 43% identity with the 44 kDa subunit of persimmon and apple β-galactosidases and the 48 kDa subunit of carambola galactosidase I. The sweet cherry β-galactosidase exhibited a strict specificity towards p-nitrophenyl β-D-galactopyranoside, a pH optimum of 4.0 and K(m) and V(max) values of 0.42 mM and 4.12 mmol min(-1) mg(-1) of protein respectively with this substrate. The enzyme was also active towards complex glycans. Taken together the results of this study prompted a role for this class of enzymes on sweet cherry fruit ripening and softening. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Biosensor compositions and methods of use

    DOEpatents

    Bayley, Hagan P.; Howorka, Stefan G.; Movileanu, Liviu

    2005-07-12

    Provided are pore-subunit polypeptides covalently linked to one or more sensing moieties, and uses of these modified polypeptides to detect and/or measure analytes or physical characteristics within a given sample.

  2. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    PubMed

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.

  3. Possible cleavage sites of glutelin partial degradation confirmed by immunological analysis in globulin-less mutants of rice (Oryza sativa L.).

    PubMed

    Khan, Nadar; Yamaguchi, Satoru; Katsube-Tanaka, Tomoyuki

    2017-10-01

    Proteolytic cleavage or partial degradation of proteins is one of the important post-translational modifications for various biological processes, but it is difficult to analyze. Previously, we demonstrated that some subunits of the major rice (Oryza sativa L.) seed storage protein glutelin are partially degraded to produce newly identified polypeptides X1-X5 in mutants in which another major seed storage protein globulin is absent. In this study, the new polypeptides X3 and X4/X5 were immunologically confirmed to be derived from GluA3 and GluA1/GluA2 subunits, respectively. Additionally, the new polypeptides X1 and X2 were at least in part the α polypeptides of the GluB4 subunit partially degraded at the C-terminus. Simulated 2D-PAGE migration patterns of intact and partially degraded α polypeptides based on the calculation of their MWs and pIs enabled us to narrow or predict the possible locations of cleavage sites. The predicted cleavage sites were also verified by the comparison of 2D-PAGE patterns between seed-extracted and E. coli-expressed proteins of the intact and truncated α polypeptides. The results and methodologies demonstrated here would be useful for analyses of partial degradation of proteins and the structure-function relationships of rice seed protein bodies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. X. Immunochemical properties of the Lubrol-solubilized enzume and its constituent polypeptides.

    PubMed

    Jean, D H; Albers, R W; Koval, G J

    1975-02-10

    Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.

  5. Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase.

    PubMed

    Weiss-Brummer, B; Guba, R; Haid, A; Schweyen, R J

    1979-12-01

    Genetic and biochemical studies have been performed with 110 mutants which are defective in cytochrome a·a3 and map in the regions on mit DNA previously designated OXI1 and OXI2. With 88 mutations allocated to OXI1 fine structure mapping was achieved by the analysis of rho (-) deletions. The order of six groups of mutational sites (A 1, A2, B 1, B2, C 1, C2) thus determined was confirmed by oxi i x oxi j recombination analysis.Analysis of mitochondrially translated polypeptides of oxil mutants by SDS-polyacrylamide electrophoresis reveals three classes of mutant patterns: i) similar to wild-tpye (19 mutants); ii) lacking SU II of cytochrome c oxidase (53 mutants); iii) lacking this subunit and exhibiting a single new polypeptide of lower Mr (16 mutants). Mutations of each of these classes are scattered over the OXI1 region without any detectable clustering; this is consistent with the assumption that all oxil mutations studied are within the same gene.New polypeptides observed in oxil mutants of class iii) vary in Mr in the range from 10,500 to 33,000. Those of Mr 17,000 to 33,000 are shown to be antigenically related to subunit II of cytochrome c oxidase. Colinearity is established between the series of new polypeptides of Mr values increasing from 10,500 to 31,500 and the order of the respective mutational sites on the map, e.g. mutations mapping in A 1 generate the smallest and mutations mapping in C2 the largest mutant fragments.From these data we conclude that i) all mutations allocated to the OXI1 region are in the same gene; ii) this gene codes for subunit II of cytochrome c oxidase; iii) the direction of translation is from CAP to 0X12. Out of 19 mutants allocated to OXI2 three exhibit a new polypeptide; these and all the other oxi2 mutants lack subunit III of cytochrome oxidase. This result provides preliminary evidence that the OXI2 region harbours the structural gene for this subunit III.

  6. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  7. Expression and immunogenic analysis of recombinant polypeptides derived from capsid protein VP1 for developing subunit vaccine material against hepatitis A virus.

    PubMed

    Jang, Kyoung Ok; Park, Jong-Hwa; Lee, Hyun Ho; Chung, Dae Kyun; Kim, Wonyong; Chung, In Sik

    2014-08-01

    Three recombinant polypeptides, VP1-His, VP1-3N-His, and 3D2-His, were produced by Escherichia coli expression system. Recombinant VP1-His, VP1-3N-His, and 3D2-His were expressed as bands with molecular weights of 32, 38, and 30 kDa, respectively. These were purified by affinity chromatography using Ni-NTA Fast-flow resin and/or ion-exchange chromatography using DEAE-Sepharose Fast-flow resin. Intraperitoneal immunizations of recombinant polypeptides successfully elicited the productions of VP1-His, VP1-3N-His, and 3D2-His specific IgG antibodies (IgG subclass distribution of IgG1>IgG2a>IgG2b>IgG3) in sera and induced the secretions of cytokines IFN-γ and IL-6 in spleen cells. Sera from recombinant VP1-His-, VP1-3N-His-, and 3D2-His-immunized mice neutralized the propagation of HAV. The highest neutralizing activity was shown in sera from recombinant VP1-3N-His-immunized mice. These results suggest that recombinant VP1-3N-His can be a useful source for developing hepatitis A virus (HAV) subunit vaccine candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A saposin-like domain influences the intracellular localization, stability, and catalytic activity of human acyloxyacyl hydrolase.

    PubMed

    Staab, J F; Ginkel, D L; Rosenberg, G B; Munford, R S

    1994-09-23

    Acyloxyacyl hydrolase, a leukocyte enzyme that acts on bacterial lipopolysaccharides (LPSs) and many glycerolipids, is synthesized as a precursor polypeptide that undergoes internal disulfide linkage before being proteolytically processed into two subunits. The larger subunit contains an amino acid sequence (Gly-X-Ser-X-Gly) that is found at the active sites of many lipases, while the smaller subunit has amino acid sequence similarity to saposins (sphingolipid activator proteins), cofactors for sphingolipid glycohydrolases. We show here that both acyloxyacyl hydrolase subunits are required for catalytic activity toward LPS and glycerophosphatidylcholine. In addition, mutations that truncate or delete the small subunit have profound effects on the intracellular localization, proteolytic processing, and stability of the enzyme in baby hamster kidney cells. Remarkably, proteolytic cleavage of the precursor protein increases the activity of the enzyme toward LPS by 10-20-fold without altering its activity toward glycerophosphatidylcholine. Proper orientation of the two subunits thus seems very important for the substrate specificity of this unusual enzyme.

  9. DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insdorf, N.F.; Bogenhagen, D.F.

    1989-12-25

    DNA polymerase gamma has been purified over 10,000-fold from mitochondria of Xenopus laevis ovaries. We have developed a novel technique which specifically photolabels DNA polymerases. This procedure, the DNA polymerase trap, was used to identify a catalytic subunit of 140,000 Da from X. laevis DNA polymerase gamma. Additional catalytically active polypeptides of 100,000 and 55,000 Da were identified in the highly purified enzyme. These appear to be products of degradation of the 140,000-Da subunit. The DNA polymerase trap, which does not require large amounts of enzyme or renaturation from sodium dodecyl sulfate, is an alternative to the classic activity gel.

  10. Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ~550 kDa polypeptide

    PubMed Central

    2010-01-01

    Background The allosteric respiratory protein hemocyanin occurs in gastropods as tubular di-, tri- and multimers of a 35 × 18 nm, ring-like decamer with a collar complex at one opening. The decamer comprises five subunit dimers. The subunit, a 400 kDa polypeptide, is a concatenation of eight paralogous functional units. Their exact topology within the quaternary structure has recently been solved by 3D electron microscopy, providing a molecular model of an entire didecamer (two conjoined decamers). Here we study keyhole limpet hemocyanin (KLH2) tridecamers to unravel the exact association mode of the third decamer. Moreover, we introduce and describe a more complex type of hemocyanin tridecamer discovered in fresh/brackish-water cerithioid snails (Leptoxis, Melanoides, Terebralia). Results The "typical" KLH2 tridecamer is partially hollow, whereas the cerithioid tridecamer is almost completely filled with material; it was therefore termed "mega-hemocyanin". In both types, the staggering angle between adjoining decamers is 36°. The cerithioid tridecamer comprises two typical decamers based on the canonical 400 kDa subunit, flanking a central "mega-decamer" composed of ten unique ~550 kDa subunits. The additional ~150 kDa per subunit substantially enlarge the internal collar complex. Preliminary oxygen binding measurements indicate a moderate hemocyanin oxygen affinity in Leptoxis (p50 ~9 mmHg), and a very high affinity in Melanoides (~3 mmHg) and Terebralia (~2 mmHg). Species-specific and individual variation in the proportions of the two subunit types was also observed, leading to differences in the oligomeric states found in the hemolymph. Conclusions In cerithioid hemocyanin tridecamers ("mega-hemocyanin") the collar complex of the central decamer is substantially enlarged and modified. The preliminary O2 binding curves indicate that there are species-specific functional differences in the cerithioid mega-hemocyanins which might reflect different physiological tolerances of these gill-breathing animals. The observed differential expression of the two subunit types of mega-hemocyanin might allow individual respiratory acclimatization. We hypothesize that mega-hemocyanin is a key character supporting the adaptive radiation and invasive capacity of cerithioid snails. PMID:20465844

  11. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis.

    PubMed

    Sato, T; Oeller, P W; Theologis, A

    1991-02-25

    The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, S.; Ruff, V.; DuBrul, E.F.

    The pyruvate dehydrogenase complex (PDC) plays a pivotal role in the anaerobic metabolism of Ascaris suum mitochondria. They have initiated a series of studies on the in vitro synthesis and mitochondrial import of PDC. PDC has been purified from adult Ascaris body wall muscle, fully phosphorylated in vitro, and separated into its component subunits on SDS/PAGE. The individual components were electroeluted from the gels and used to immunize rabbits. IgG's to the individual subunits were prepared from antisera and their specificities were verified by immuno-blotting. Each IgG identified a single specific band at the appropriate location in extracts of adultmore » Ascaris body wall muscle mitochondria. Poly A/sup +/-RNA was prepared from body wall muscle and translated in a reticylocyte lysate system using /sup 35/S-methionine. Translation products were immunoprecipitated with specific IgG's, electrophoresed, and fluorographed. Each immunoprecipitation gave rise to a single radioactive polypeptide that was slightly larger than the specific PDC subunit isolated from the adult mitochondria. This system has demonstrated its feasibility for the study of mitochondrial import of a multienzyme complex that is critical for the anaerobic mitochondrial metabolism of Ascaris suum.« less

  13. Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes.

    PubMed

    Duperray, A; Berthier, R; Chagnon, E; Ryckewaert, J J; Ginsberg, M; Plow, E; Marguerie, G

    1987-06-01

    Platelet membrane glycoprotein IIb-IIIa forms a calcium-dependent heterodimer and constitutes the fibrinogen receptor on stimulated platelets. GPIIb is a two-chain protein containing disulfide-linked alpha and beta subunits. GPIIIa is a single chain protein. These proteins are synthesized in the bone marrow by megakaryocytes, but the study of their synthesis has been hampered by the difficulty in obtaining enriched population of megakaryocytes in large numbers. To examine the biosynthesis and processing of GPIIb-IIIa, purified human megakaryocytes were isolated from liquid cultures of cryopreserved leukocytes stem cell concentrates from patients with chronic myelogenous leukemia. Immunoprecipitation of [35S]methionine pulse-chase-labeled cell extracts by antibodies specific for the alpha or beta subunits of GPIIb indicated that GPIIb was derived from a precursor of Mr 130,000 that contains the alpha and beta subunits. This precursor was converted to GPIIb with a half-life of 4-5 h. No precursor form of GPIIIa was detected. The glycosylation of GPIIb-IIIa was examined in megakaryocytes by metabolic labeling in the presence of tunicamycin, monensin, or treatment with endoglycosidase H. The polypeptide backbones of the GPIIb and the GPIIIa have molecular masses of 120 and 90 kD, respectively. High-mannose oligosaccharides are added to these polypeptide backbones co-translationally. The GPIIb precursor is then processed with conversion of high-mannose to complex type carbohydrates yielding the mature subunits GPIIb alpha (Mr 116,000) and GPIIb beta (Mr 25,000). No posttranslational processing of GPIIIa was detected.

  14. Proteomics of a new esophageal cancer cell line established from Persian patient.

    PubMed

    Moghanibashi, Mehdi; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2012-05-25

    Although the highest incidence of esophageal squamous cell carcinoma (ESCC) has repeatedly been reported from Persia (Iran), nevertheless the so far proteomic published reports were limited to one study on tissue specimens. Here we report the proteome of a newly established cell line from Persian ESCC patients and compare it with the normal primary cell proteome. Among polypeptides, whose expression was different in cell line sixteen polypeptides were identified by MALDI/TOF/TOF spectrometry. S100-A8 protein, annexin A1, annexin A2, regulatory subunit of calpain, subunit alpha type-3 of proteasome and glutamate dehydrogenase 1 were proteins down-regulated in cell line while peroxiredoxin-5, non-muscle myosin light polypeptide 6, keratin 1, annexin A4, keratin 8, tropomyosin 3, stress-induced-phosphoprotein 1 and albumin were found to be subject of up-regulation in cell line compared to the primary normal cells. The proteomic results were further verified by western blotting and RT-PCR on annexin A1 and keratin 8. In addition, among the aforementioned proteins, glutamate dehydrogenase 1, regulatory subunit of calpain, subunit alpha of type-3 proteasome and annexin A4 are proteins whose deregulation in ESCC is reported for the first time by this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Heterotetrameric composition of aquaporin-4 water channels.

    PubMed

    Neely, J D; Christensen, B M; Nielsen, S; Agre, P

    1999-08-24

    Aquaporin (AQP) water channel proteins are tetrameric assemblies of individually active approximately 30 kDa subunits. AQP4 is the predominant water channel protein in brain, but immunoblotting of native tissues has previously yielded multiple poorly resolved bands. AQP4 is known to encode two distinct mRNAs with different translation initiating methionines, M1 or M23. Using SDS-PAGE urea gels and immunoblotting with anti-peptide antibodies, four polypeptides were identified in brain and multiple other rat tissues with the following levels of expression: 32 kDa > 34 kDa > 36 kDa > 38 kDa. The 34 and 38 kDa polypeptides react with an antibody specific for the N-terminus of the M1 isoform, and 32 and 36 kDa correspond to the shorter M23 isoform. Immunogold electron microscopic studies with rat cerebellum cryosections demonstrated that the 34 kDa polypeptide colocalizes in perivascular astrocyte endfeet where the 32 kDa polypeptide is abundantly expressed. Velocity sedimentation, cross-linking, and immunoprecipitation analyses of detergent-solubilized rat brain revealed that the 32 and 34 kDa polypeptides reside within heterotetramers. Immunoprecipitation of AQP4 expressed in Xenopus laevis oocytes demonstrated that heterotetramer formation reflects the relative expression levels of the 32 and 34 kDa polypeptides; however, tetramers containing different compositions of the two polypeptides exhibit similar water permeabilities. These studies demonstrate that AQP4 heterotetramers are formed from two overlapping polypeptides and indicate that the 22-amino acid sequence at the N-terminus of the 34 kDa polypeptide does not influence water permeability but may contribute to membrane trafficking or assembly of arrays.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.; Nakata, P.A.; Anderson, J.M.

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tubermore » subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.« less

  17. Uncoordinated (UNC)119: coordinating the trafficking of myristoylated proteins.

    PubMed

    Constantine, Ryan; Zhang, Houbin; Gerstner, Cecilia D; Frederick, Jeanne M; Baehr, Wolfgang

    2012-12-15

    The mechanism by which myristoylated proteins are targeted to specific subcellular membrane compartments is poorly understood. Two novel acyl-binding proteins, UNC119A and UNC119B, have been shown recently to function as chaperones/co-factors in the transport of myristoylated G protein α-subunits and src-type tyrosine kinases. UNC119 polypeptides feature an immunoglobulin-like β-sandwich fold that forms a hydrophobic pocket capable of binding lauroyl (C12) and myristoyl (C14) side chains. UNC119A in rod photoreceptors facilitates the transfer of transducin α subunits (Tα) from inner segment to outer segment membranes by forming an intermediate diffusible UNC119-Tα complex. Similar complexes are formed in other sensory neurons, as the G proteins ODR-3 and GPA-13 in Caenorhabditis elegans unc-119 mutants traffic inappropriately. UNC119B knockdown in IMCD3 cells prevents trafficking ofmyristoylated nephrocystin-3 (NPHP3), a protein associated with nephronophthisis, to cilia. Further, UNC119A was shown to transport myristoylated src-type tyrosine kinases to cell membranes and to affect T-cell receptor (TCR) and interleukin-5 receptor (IL-5R) activities. These interactions establish UNC119 polypeptides as novel lipid-binding chaperones with specificity for a diverse subset of myristoylated proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Uncoordinated (UNC)119: Coordinating the Trafficking of Myristoylated Proteins

    PubMed Central

    Constantine, Ryan; Zhang, Houbin; Gerstner, Cecilia D.; Frederick, Jeanne M.; Baehr, Wolfgang

    2012-01-01

    The mechanism by which myristoylated proteins are targeted to specific subcellular membrane compartments is poorly understood. Two novel acyl-binding proteins, UNC119A and UNC119B, have been shown recently to function as chaperones/co-factors in the transport of myristoylated G protein α-subunits and src-type tyrosine kinases. UNC119 polypeptides feature an immunoglobulin-like β-sandwich fold that forms a hydrophobic pocket capable of binding lauroyl (C12) and myristoyl (C14) side chains. UNC119A in rod photoreceptors facilitates the transfer of transducin α subunits (Tα) from inner segment to outer segment membranes by forming an intermediate diffusible UNC119-Tα complex. Similar complexes are formed in other sensory neurons, as the G proteins ODR-3 and GPA-13 in C. elegans unc-119 mutants traffic inappropriately. UNC119B knockdown in IMCD3 cells prevents trafficking of myristoylated nephrocystin-3 (NPHP3), a protein associated with nephronophthisis, to cilia. Further, UNC119A was shown to transpot myristoylated src-type tyrosine kinases to cell membranes and to affect T-cell receptor (TCR) and interleukin-5 receptor (IL-5R) activities. These interactions establish UNC119 polypeptides as novel lipid-binding chaperones with specificity for a diverse subset of myristoylated proteins. PMID:23000199

  19. Two ways of legumin-precursor processing in conifers. Characterization and evolutionary relationships of Metasequoia cDNAs representing two divergent legumin gene subfamilies.

    PubMed

    Häger, K P; Wind, C

    1997-06-15

    Subunit monomers and oligomers of crystalloid-type legumins are major components of SDS-soluble fractions from Metasequoia glyptostroboides (Dawn redwood, Taxodiaceae) seed proteins. The subunits are made up of disulfide linked alpha-polypeptides and beta-polypeptides with molecular masses of 33 kDa and 23-25 kDa, respectively. Unusually for legumins, those from Metasequoia are glycosylated and the carbohydrate moieties are residing in the C-terminal region of the respective beta-polypeptides. A Metasequoia endosperm cDNA library has been constructed and legumin-encoding transcripts representing two divergent gene subfamilies have been characterized. Intersubfamily comparisons reveal 75% identity at the amino acid level and the values range from 53-35% when the legumin precursors deduced were compared with those from angiosperms. The predicted sequences together with data from amino acid sequencing prove that post-translational processing of Metasequoia prolegumins is directed to two different processing sites, each of them specific for one of the legumin subfamilies. The sites involved differ in their relative position and in the junction to be cleaved: Metasequoia legumin precursors MgLeg18 and MgLeg26 contain the conventional post-translational Asn-Gly processing site, which is generally regarded as highly conserved. In contrast, the MgLeg4 precursor is lacking this site and post-translational cleavage is directed to an unusual Asn-Thr processing site located in its hypervariable region, causing N-terminal extension of the beta-polypeptide relative to those hitherto known. Evidence is given that the unusual variant of processing also occurs in other conifers. Phylogenetic analysis reveals the precursors concerned as representatives of a distinct legumin subfamily, originating from duplication of an ancestral gene prior to or at the beginning of Taxodiaceae diversification.

  20. Analysis using fluorescence labeling and mass spectrometry of disulfide-mediated interactions of soy protein when heated.

    PubMed

    Ruan, Qijun; Chen, Yeming; Kong, Xiangzhen; Hua, Yufei

    2015-04-08

    It is well-known that disulfide-mediated interactions are important when soy protein is heated, in which soy proteins are dissociated and rearranged to some new forms. In this study, the disulfide bond (SS) linked polymer, which was composed of the acidic (A) polypeptides of glycinin, basic (B) polypeptides of glycinin, and a small amount of α' and α of β-conglycinin, was formed as the major product, accompanied by the formation of SS-linked dimer of B and monomer of A as minor products. The role of sulfhydryl (SH) of different subunits/polypeptides for forming intermolecular SS was investigated. The SH of B in glycinin (Cys298 of G1, Cys289 of G2, Cys440 of G4) was transformed into SS in polymer identified by mass spectrometry analysis. The SH content of polymer was lower than that of glycinin and β-conglycinin subunits when heated. The SH content of B in polymer was lower than that in glycinin subunit, and both of them were decreased by heating. The SH content of A in polymer was increased and higher than that of B in polymer and A in glycinin subunit when heated. These results indicated that the SH of B in glycinin subunit was subjected to not only SH oxidation but also SH-SS exchange (with SS of A) for forming intermolecular SS of polymer. The SH oxidation and SH-SS exchange were proven by the change of SH content for the first time. The SH of B was suggested to be reactive for forming intermolecular SS of polymer.

  1. Ferritins: dynamic management of biological iron and oxygen chemistry.

    PubMed

    Liu, Xiaofeng; Theil, Elizabeth C

    2005-03-01

    Ferritins are spherical, cage-like proteins with nanocavities formed by multiple polypeptide subunits (four-helix bundles) that manage iron/oxygen chemistry. Catalytic coupling yields diferric oxo/hydroxo complexes at ferroxidase sites in maxi-ferritin subunits (24 subunits, 480 kDa; plants, animals, microorganisms). Oxidation occurs at the cavity surface of mini-ferritins/Dps proteins (12 subunits, 240 kDa; bacteria). Oxidation products are concentrated as minerals in the nanocavity for iron-protein cofactor synthesis (maxi-ferritins) or DNA protection (mini-ferritins). The protein cage and nanocavity characterize all ferritins, although amino acid sequences diverge, especially in bacteria. Catalytic oxidation/di-iron coupling in the protein cage (maxi-ferritins, 480 kDa; plants, bacteria and animal cell-specific isoforms) or on the cavity surface (mini-ferritins/Dps proteins, 280 kDa; bacteria) initiates mineralization. Gated pores (eight or four), symmetrically arranged, control iron flow. The multiple ferritin functions combine pore, channel, and catalytic functions in compact protein structures required for life and disease response.

  2. URF6, Last Unidentified Reading Frame of Human mtDNA, Codes for an NADH Dehydrogenase Subunit

    NASA Astrophysics Data System (ADS)

    Chomyn, Anne; Cleeter, Michael W. J.; Ragan, C. Ian; Riley, Marcia; Doolittle, Russell F.; Attardi, Giuseppe

    1986-10-01

    The polypeptide encoded in URF6, the last unassigned reading frame of human mitochondrial DNA, has been identified with antibodies to peptides predicted from the DNA sequence. Antibodies prepared against highly purified respiratory chain NADH dehydrogenase from beef heart or against the cytoplasmically synthesized 49-kilodalton iron-sulfur subunit isolated from this enzyme complex, when added to a deoxycholate or a Triton X-100 mitochondrial lysate of HeLa cells, specifically precipitated the URF6 product together with the six other URF products previously identified as subunits of NADH dehydrogenase. These results strongly point to the URF6 product as being another subunit of this enzyme complex. Thus, almost 60% of the protein coding capacity of mammalian mitochondrial DNA is utilized for the assembly of the first enzyme complex of the respiratory chain. The absence of such information in yeast mitochondrial DNA dramatizes the variability in gene content of different mitochondrial genomes.

  3. Genetic expansion of chaperonin-containing TCP-1 (CCT/TRiC) complex subunits yields testis-specific isoforms required for spermatogenesis in planarian flatworms.

    PubMed

    Counts, Jenna T; Hester, Tasha M; Rouhana, Labib

    2017-12-01

    Chaperonin-containing Tail-less complex polypeptide 1 (CCT) is a highly conserved, hetero-oligomeric complex that ensures proper folding of actin, tubulin, and regulators of mitosis. Eight subunits (CCT1-8) make up this complex, and every subunit has a homolog expressed in the testes and somatic tissue of the planarian flatworm Schmidtea mediterranea. Gene duplications of four subunits in the genomes of S. mediterranea and other planarian flatworms created paralogs to CCT1, CCT3, CCT4, and CCT8 that are expressed exclusively in the testes. Functional analyses revealed that each CCT subunit expressed in the S. mediterranea soma is essential for homeostatic integrity and survival, whereas sperm elongation defects were observed upon knockdown of each individual testis-specific paralog (Smed-cct1B; Smed-cct3B; Smed-cct4A; and Smed-cct8B), regardless of potential redundancy with paralogs expressed in both testes and soma (Smed-cct1A; Smed-cct3A; Smed-cct4B; and Smed-cct8A). Yet, no detriment was observed in the number of adult somatic stem cells (neoblasts) that maintain differentiated tissue in planarians. Thus, expression of all eight CCT subunits is required to execute the essential functions of the CCT complex. Furthermore, expression of the somatic paralogs in planarian testes is not sufficient to complete spermatogenesis when testis-specific paralogs are knocked down, suggesting that the evolution of chaperonin subunits may drive changes in the development of sperm structure and that correct CCT subunit stoichiometry is crucial for spermiogenesis. © 2017 Wiley Periodicals, Inc.

  4. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome

    PubMed Central

    Ahmed, Tofayel; Yin, Zhan; Bhushan, Shashi

    2016-01-01

    Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features. PMID:27762343

  5. Isolation and properties of the subunit form EF-1C of elongation factor 1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gałasiński, W

    1993-01-01

    EF-1C is a component of the aggregate EF-1B, consisting of the subunit forms EF-1A.EF-1C; it was isolated by dissociation of this aggregate in the presence of GTP. The subunit form EF-1C stimulates binding of aminoacyl-tRNA to ribosomes, catalysed by EF-1A, similarly as EF-1 beta gamma which stimulates the activity of EF-1 in other eukaryotic cells. EF-1C in the presence of 6 M urea was separated into two polypeptides. Polypeptide of molecular mass 32,000 Da is responsible for regeneration of the EF-1A.GTP active complex. Thermal sensitivity of EF-1A was much higher than that of EF-1B, thus a protective role of EF-1C in the EF-1A.EF-1C complex is suggested.

  6. Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.

    PubMed

    Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H

    1995-12-01

    gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct the intact structure of gamma-glutamyltranspeptidase than the association of the separated large and small subunits.

  7. Human endomembrane H+ pump strongly resembles the ATP-synthetase of Archaebacteria.

    PubMed Central

    Südhof, T C; Fried, V A; Stone, D K; Johnston, P A; Xie, X S

    1989-01-01

    Preparations of mammalian H+ pumps that acidify intracellular vesicles contain eight or nine polypeptides, ranging in size from 116 to 17 kDa. Biochemical analysis indicates that the 70- and 58-kDa polypeptides are subunits critical for ATP hydrolysis. The amino acid sequences of the major catalytic subunits (58 and 70 kDa) of the endomembrane H+ pump are unknown from animal cells. We report here the complete sequence of the 58-kDa subunit derived from a human kidney cDNA clone and partial sequences of the 70- and 58-kDa subunits purified from clathrin-coated vesicles of bovine brain. The amino acid sequences of both proteins strongly resemble the sequences of the corresponding subunits of the vacuolar H+ pumps of Archaebacteria, plants, and fungi. The archaebacterial enzyme is believed to use a H+ gradient to synthesize ATP. Thus, a common ancestral protein has given rise to a H+ pump that synthesizes ATP in one organism and hydrolyzes it in another and is highly conserved from prokaryotes to humans. The same pump appears to mediate the acidification of intracellular organelles, including coated vesicles, lysosomes, and secretory granules, as well as extracellular fluids such as urine. PMID:2527371

  8. Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea

    PubMed Central

    Sack, David A.

    2015-01-01

    Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development. PMID:26135975

  9. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants.

    PubMed

    He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F

    2014-04-04

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants*

    PubMed Central

    He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904

  11. Purification and properties of the heterogeneous subunits of elongation factor EF-1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gajko, A; Gałasiński, W

    1991-01-01

    Elongation factor EF-1 from Guerin epithelioma was separated into two subunit forms EF-1A and EF-1B by chromatography in the presence of 25% glycerol, successively on CM-Sephadex and DEAE-Sephadex. It was shown that EF-1A is a thermolabile, single polypeptide which catalyses the binding of aminoacyl-tRNA to ribosomes, similarly as eukaryotic EF-1 alpha or prokaryotic EF-Tu. EF-1B was characterized as a complex composed of at least two polypeptides. One of them is EF-1A, the other EF-1C, which stimulates EF-1A activity and protects this elongation factor from thermal inactivation.

  12. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  13. Characterization of auxin-binding proteins from zucchini plasma membrane.

    PubMed

    Hicks, G R; Rice, M S; Lomax, T L

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  14. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-,more » and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.« less

  15. The bark of Robinia pseudoacacia contains a complex mixture of lectins.Characterization of the proteins and the cDNA clones.

    PubMed Central

    Van Damme, E J; Barre, A; Smeets, K; Torrekens, S; Van Leuven, F; Rougé, P; Peumans, W J

    1995-01-01

    Two lectins were isolated from the inner bark of Robinia pseudoacacia (black locust). The first (and major) lectin (called RPbAI) is composed of five isolectins that originate from the association of 31.5- and 29-kD polypeptides into tetramers. In contrast, the second (minor) lectin (called RPbAII) is a hometetramer composed of 26-kD subunits. The cDNA clones encoding the polypeptides of RPbAI and RPbAII were isolated and their sequences determined. Apparently all three polypeptides are translated from mRNAs of approximately 1.2 kb. Alignment of the deduced amino acid sequences of the different clones indicates that the 31.5- and 29-kD RPbAI polypeptides show approximately 80% sequence identity and are homologous to the previously reported legume seed lectins, whereas the 26-kD RPbAII polypeptide shows only 33% sequence identity to the previously described legume lectins. Modeling the 31.5-kD subunit of RPbAI predicts that its three-dimensional structure is strongly related to the three-dimensional models that have been determined thus far for a few legume lectins. Southern blot analysis of genomic DNA isolated from Robinia has revealed that the Robinia bark lectins are the result of the expression of a small family of lectin genes. PMID:7716244

  16. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  17. Both α and β Subunits of Human Choriogonadotropin Photoaffinity Label the Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Ji, Inhae; Ji, Tae H.

    1981-09-01

    It has been shown that a photoactivable derivative of human choriogonadotropin (hCG) labels the lutropin receptor on porcine granulosa cells [Ji, I. & Ji, T. H. (1980) Proc. Natl. Acad. Sci. USA 77, 7167-7170]. In an attempt to identify which of the hCG subunits labeled the receptor, three sets of different hCG derivatives were prepared. In the first set, hCG was coupled to the N-hydroxysuccinimide ester of 4-azidobenzoylglycine and radioiodinated. In the second set, only one of the subunits was radioiodinated, but both subunits were allowed to react with the reagent. In the third set, both the reagent and [125I]iodine were coupled to only one of the subunits. The binding activity of each hormone derivative was comparable to that of 125I-labeled hCG. After binding of these hormone derivatives to the granulosa cell surface, they were photolyzed. After solubilization, autoradiographs of sodium dodecyl sulfate/polyacrylamide gels of each sample revealed a number of labeled bands; the hCG derivatives containing 125I-labeled alpha subunit produced four bands (molecular weights 120,000 +/- 6,000, 96,000 +/- 5,000, 76,000 +/- 4,000, and 73,000 +/- 4,000) and those containing 125I-labeled beta subunit produced three bands (molecular weights 106,000 +/- 6,000, 88,000 +/- 5,000, and 83,000 +/- 4,000). Results were the same when the hormone-receptor complexes were solubilized in 0.5% Triton X-100 and then photolyzed or when the hormone was derivatized with a family of reagents having arms of various lengths. We conclude that both the alpha subunit and the beta subunit of hCG photoaffinity labeled certain membrane polypeptides and that these polypeptides are related to the hormone receptor.

  18. Eukaryotic polypeptide elongation system and its sensitivity to the inhibitory substances of plant origin.

    PubMed

    Gałasiński, W

    1996-05-01

    The structural and functional characteristics of the elongation system (ribosomes and elongation factors) are presented. The immunochemical and diagnostic meaning of the ribosome investigations is considered. Evidence of the participation of ribosomes in the first step of protein glycosylation is presented. The heterogeneous elongation factor eEF-1, isolated from Guerin epithelioma, can be separated into three fractions: one of them functionally corresponds to EF-1 alpha, the second on to EF-1 beta gamma, and the third is an unidentified, active aggregate named EF-1B, which contains the subunit forms EF-1 alpha and EF-1 beta gamma, and other polypeptides showing protein kinase activity. The aggregate EF-1B can be autophosphorylated, while the subunit forms EF-1 alpha and EF-1 beta gamma can neither become autophosphorylated nor phosphorylate other polypeptides. The subunit form EF-beta gamma consists from two polypeptides of 32 and 51 kDa, corresponding to other eukaryotic beta and gamma polypeptides, respectively. EF-1 beta gamma is thermostable and protects against thermal inactivation of EF-1 alpha in the EF-1 alpha-EF-1 beta gamma complex. Pure eEF-2 preparations isolated from normal and neoplastic tissues show different structural features. The existence of eEF-2 in multiple forms, differing in molecular mass, have been found. The eEF-2 with molecular weight of about 100 kDa can be phosphorylated, while eEF-2 of about 65 kDa was not phosphorylated by protein kinase eEF-2. The phosphorylated eEF-2 lost its activity, and this effect was reversed by dephosphorylation. The eEF-2 (65 kDa) was isolated from the active polyribosomes, and it may directly participate in the translocation step of the peptide elongation. It was noted that the components of elongation system can be inhibited, in separate steps, by the substances isolated from various sources of plant origin. Alkaloids emetine and cepheline, cardiac remedy digoxin, saponin glycoside, and its aglycon directly inactivated ribosomes. Quercetin inhibited eEF-1 activity by directly influencing its subunit form EF-1 alpha. eEF-2 was shown to be a target site of the inhibitory action of the glycoside isolated from Melissa officinalis leaves.

  19. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce anmore » immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.« less

  20. Cholera toxin B-subunit gene enhances mucosal immunoglobulin A, Th1-type, and CD8+ cytotoxic responses when coadministered intradermally with a DNA vaccine.

    PubMed

    Sanchez, Alba E; Aquino, Guillermo; Ostoa-Saloma, Pedro; Laclette, Juan P; Rocha-Zavaleta, Leticia

    2004-07-01

    A plasmid vector encoding the cholera toxin B subunit (pCtB) was evaluated as an intradermal genetic adjuvant for a model DNA vaccine expressing the human papillomavirus type 16 L1 capsid gene (p16L1) in mice. p16L1 was coadministered with plasmid pCtB or commercial polypeptide CtB as a positive control. Coadministration of pCtB induced a significant increment of specific anti-L1 immunoglobulin A (IgA) antibodies in cervical secretions (P < 0.05) and fecal extracts (P < 0.005). Additionally, coadministration of pCtB enhanced the production of interleukin-2 and gamma interferon by spleen cells but did not affect the production of interleukin-4, suggesting a Th1-type helper response. Furthermore, improved CD8+ T-cell-mediated cytotoxic activity was observed in mice vaccinated with the DNA vaccine with pCtB as an adjuvant. This adjuvant effect was comparable to that induced by the CtB polypeptide. These results indicate that intradermal coadministration of pCtB is an adequate means to enhance the mucosa-, Th1-, and CD8(+)-mediated cytotoxic responses induced by a DNA vaccine.

  1. Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the beta'-subunit of RNA polymerase.

    PubMed Central

    Cozens, A L; Walker, J E

    1986-01-01

    The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249

  2. Molecular Cloning of Pituitary Glycoprotein α-Subunit and Follicle Stimulating Hormone and Chorionic Gonadotropin β-Subunits from New World Squirrel Monkey and Owl Monkey

    PubMed Central

    Scammell, Jonathan G.; Funkhouser, Jane D.; Moyer, Felricia S.; Gibson, Susan V.; Willis, Donna L.

    2008-01-01

    The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone α-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature β subunits of follicle stimulating hormone (FSHβ) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHβ. New World primate glycoprotein hormone α-polypeptides and FSHβ subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the β-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the β-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGβ are 143 and 144 amino acids in length and 77% homologous with human CGβ. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGβ, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGβs. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG. PMID:17897645

  3. Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey.

    PubMed

    Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L

    2008-02-01

    The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.

  4. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase.

    PubMed

    Tabor, C W; Tabor, H

    1987-11-25

    We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).

  5. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain.

    PubMed

    Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi

    2013-02-01

    Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.

  6. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    PubMed

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  7. Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro

    PubMed Central

    Grantham, Julie; Ruddock, Lloyd W.; Roobol, Anne; Carden, Martin J.

    2002-01-01

    We have previously observed that subunits of the chaperonin required for actin production (type-II chaperonin containing T-complex polypeptide 1 [CCT]) localize at sites of microfilament assembly. In this article we extend this observation by showing that substantially substoichiometric CCT reduces the initial rate of pyrene-labeled actin polymerization in vitro where eubacterial chaperonin GroEL had no such effect. CCT subunits bound selectively to F-actin in cosedimentation assays, and CCT reduced elongation rates from both purified actin filament “seeds” and the short and stabilized, minus-end blocked filaments in erythrocyte membrane cytoskeletons. These observations suggest CCT might remain involved in biogenesis of the actin cytoskeleton, by acting at filament (+) ends, beyond its already well-established role in producing new actin monomers. PMID:12482199

  8. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product.

    PubMed

    Thornton, D J; Khan, N; Mehrotra, R; Howard, M; Veerman, E; Packer, N H; Sheehan, J K

    1999-03-01

    The MG1 population of mucins was isolated from human whole salivas by gel chromatography followed by isopycnic density gradient centrifugation. The reduced and alkylated MG1 mucins, separated by anion exchange chromatography, were of similar size (radius of gyration 55-64 nm) and molecular weight (2.5-2.9 x 10(6) Da). Two differently-charged populations of MG1 subunits were observed which showed different reactivity with monoclonal antibodies to glycan epitopes. Monosaccharide and amino acid compositional analyses indicated that the MG1 subunits had similar glycan structures on the same polypeptide. An antiserum recognizing the MUC5B mucin was reactive across the entire distribution, whereas antisera raised against the MUC2 and MUC5AC mucins showed no reactivity. Western blots of agarose gel electrophoresis of fractions across the anion exchange distribution indicated that the polypeptide underlying the mucins was the product of the MUC5B gene. Amino acid analysis and peptide mapping performed on the fragments produced by trypsin digestion of the two MG1 populations yielded data similar to that obtained for MUC5B mucin subunits prepared from respiratory mucus (Thornton et al., 1997) and confirmed that the MUC5B gene product was the predominant mucin polypeptide present. Isolation of the MG1 mucins from the secretions of the individual salivary glands (palatal, sublingual, and submandibular) indicate that the palatal gland is the source of the highly charged population of the MUC5B mucin.

  9. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  10. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility

    PubMed Central

    Yang, Yong; Wang, Zhongjiang; Wang, Rui; Sui, Xiaonan; Qi, Baokun; Han, Feifei; Li, Yang; Jiang, Lianzhou

    2016-01-01

    In the present study, in vitro digestibility and structure of soybean protein isolates (SPIs) prepared from five soybean varieties were investigated in simulated gastric fluid (SGF), using FT-IR microspectroscopy and SDS-PAGE. The result indicated that β-conformations were prone to be hydrolyzed by pepsin preferentially and transformed to unordered structure during in vitro digestion, followed by the digestion of α-helix and unordered structure. A negative linear correlation coefficient was found between the β-conformation contents of five SPIs and their in vitro digestibility values. The intensities of the protein bands corresponding to 7S and 11S fractions were decreased and many peptide bands appeared at 11~15 kDa during enzymatic hydrolysis. β-conglycinin was poorly hydrolyzed with pepsin, especially the β-7S subunit. On the other hand, basic polypeptides of glycinin degraded slower than acidic polypeptides and represented a large proportion of the residual protein after digestion. 11S-A3 of all SPIs disappeared after 1 h digestion. Moreover, a significant negative linear correlation coefficient (r = −0.89) was found between the β-7S contents of five SPIs and their in vitro digestibility values. These results are useful for further studies of the functional properties and bioactive properties of these varieties and laid theoretical foundations for the development of the specific functional soy protein isolate. PMID:27298825

  11. Cross-linking of hCG to luteal receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, T.H.; Ji, I.

    1985-01-01

    Photoaffinity labeling of the lutropin/choriogonadotropin (LH/hCG) receptor system on porcine granulosa cells has demonstrated that both the ..cap alpha.. and ..beta.. subunits of hCG directly photoaffinity label the hormone receptor. Three new bands appear on SDS-PAGE as a consequence of photoaffinity labeling by each subunit: the molecular weights of the three bands (106K, 88K, and 83K) produced by the subunit are larger by approximately 10K than those of the three bands (96K, 76K, and 73K) labeled by the ..cap alpha.. subunit. Although it could be a coincidence that the molecular weight of the ..beta.. subunit is approximately 10K larger thanmore » that of the ..cap alpha.. subunit, the similarity in these differences suggests the possibility that both the ..cap alpha.. and ..beta.. subunits have labeled the same polypeptides.« less

  12. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis.

    PubMed Central

    Silverman, P M; Eoyang, L

    1987-01-01

    Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site. Images PMID:3294793

  13. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    PubMed

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  14. Wild-type isopropylmalate isomerase in Salmonella typhimurium is composed of two different subunits.

    PubMed Central

    Fultz, P N; Kemper, J

    1981-01-01

    The isopropylmalate isomerase in Salmonella typhimurium is the second enzyme specific for leucine biosynthesis. It is a complex enzyme composed of two subunits which are coded for by two genes of the leucine operon, leuC and leuD. The two polypeptides have been shown to copurify through successive ammonium sulfate fractionations and have been identified on sodium dodecyl sulfate-polyacrylamide gels as having molecular weights of 51,000 (leuC gene product) and 23,500 (leuD gene product). They have also been shown to be fairly stable, since in vitro complementation of cell-free extracts of leuC and leuD mutant strains was demonstrated, with only a 40% loss of activity 16 h after preparation of the extracts. The native isopropylmalate isomerase was shown to have a Km for its substrate alpha-isopropylmalate of 3 x 10(-4)M. Images PMID:7026530

  15. GTP analogues promote release of the alpha subunit of the guanine nucleotide binding protein, Gi2, from membranes of rat glioma C6 BU1 cells.

    PubMed Central

    Milligan, G; Mullaney, I; Unson, C G; Marshall, L; Spiegel, A M; McArdle, H

    1988-01-01

    The major pertussis-toxin-sensitive guanine nucleotide-binding protein of rat glioma C6 BU1 cells corresponded immunologically to Gi2. Antibodies which recognize the alpha subunit of this protein indicated that it has an apparent molecular mass of 40 kDa and a pI of 5.7. Incubation of membranes of these cells with guanosine 5'-[beta gamma-imido]triphosphate, or other analogues of GTP, caused release of this polypeptide from the membrane in a time-dependent manner. Analogues of GDP or of ATP did not mimic this effect. The GTP analogues similarly caused release of the alpha subunit of Gi2 from membranes of C6 cells in which this G-protein had been inactivated by pretreatment with pertussis toxin. The beta subunit was not released from the membrane under any of these conditions, indicating that the release process was a specific response to the dissociation of the G-protein after binding of the GTP analogue. Similar nucleotide profiles for release of the alpha subunits of forms of Gi were noted for membranes of both the neuroblastoma x glioma hybrid cell line NG108-15 and of human platelets. These data provide evidence that: (1) pertussis-toxin-sensitive G-proteins, in native membranes, do indeed dissociate into alpha and beta gamma subunits upon activation; (2) the alpha subunit of 'Gi-like' proteins need not always remain in intimate association with the plasma membrane; and (3) the alpha subunit of Gi2 can still dissociate from the beta/gamma subunits after pertussis-toxin-catalysed ADP-ribosylation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3140801

  16. Amino Acids 257 to 288 of Mouse p48 Control the Cooperation of Polyomavirus Large T Antigen, Replication Protein A, and DNA Polymerase α-Primase To Synthesize DNA In Vitro

    PubMed Central

    Kautz, Armin R.; Weisshart, Klaus; Schneider, Annerose; Grosse, Frank; Nasheuer, Heinz-Peter

    2001-01-01

    Although p48 is the most conserved subunit of mammalian DNA polymerase α-primase (pol-prim), the polypeptide is the major species-specific factor for mouse polyomavirus (PyV) DNA replication. Human and murine p48 contain two regions (A and B) that show significantly lower homology than the rest of the protein. Chimerical human-murine p48 was prepared and coexpressed with three wild-type subunits of pol-prim, and four subunit protein complexes were purified. All enzyme complexes synthesized DNA on single-stranded (ss) DNA and replicated simian virus 40 DNA. Although the recombinant protein complexes physically interacted with PyV T antigen (Tag), we determined that the murine region A mediates the species specificity of PyV DNA replication in vitro. More precisely, the nonconserved phenylalanine 262 of mouse p48 is crucial for this activity, and pol-prim with mutant p48, h-S262F, supports PyV DNA replication in vitro. DNA synthesis on RPA-bound ssDNA revealed that amino acid (aa) 262, aa 266, and aa 273 to 288 are involved in the functional cooperation of RPA, pol-prim, and PyV Tag. PMID:11507202

  17. GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.

    PubMed

    Has, Ahmad Tarmizi Che; Chebib, Mary

    2018-05-15

    GABAA receptors (GABAARs) are members of the Cys-loop ligand-gated ion channel (LGIC) superfamily, which includes nicotinic acetylcholine, glycine, and serotonin (5HT3) receptors [1,2,3,4]. LGICs typically mediate fast synaptic transmission via the movement of ions through channels gated by neurotransmitters, such as acetylcholine for nicotinic receptors and GABA for GABAARs [5]. The term Cys-loop receptors originates from the presence of a conserved disulphide bond (or bridge) which holds together two cysteine amino acids of the loop that forms from the structure of polypeptides in the extracellular domain of the receptor's subunit [6]. GABAARs are pentameric transmembrane protein complexes consisting of five subunits from a variety of polypeptide subunits [7,8]. All of these subunits are pseudo-symmetrically organized in the plane of the membrane, with a Cl--selective channel in the middle of the complex. To date, nineteen GABAAR subunits have been identified and categorized into eight classes, α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3, but their variety is further broadened by the existence of several splice forms for certain subunits (e.g., α6, β2 and γ2) [9,10,11,12]. The subunits within each class have an amino acid sequence homology of 70% or more, whereas those with a sequence homology of 30% or less are grouped into different classes [13,14]. A subunit consists of four transmembrane domains (TM1-TM4), each forming an α-helix; a large extracellular N-terminal domain that incorporates part of the orthosteric agonist/antagonist binding site; a large intracellular loop between the TM3 and TM4; a small intracellular loop between TM1 and TM2; a small extracellular loop between TM2 and TM3; and a C-terminal extracellular domain [15,16]. Each subunit is arranged in such a way as to create principal and complementary interfaces with the other subunits, and in a position such that the TM2 of each subunit forms the wall of the channel pore [17,18,19]. The major subunit combination found in the brain comprises α1, β2 and γ2 subunits with the stoichiometry 2α1:2β2:1γ2 [18,20]. For the GABAA α1β2γ2 receptors, the subunits form a specific arrangement in which α1 and β2 subunits alternate with each other and are connected by a γ2 subunit (Figure A) [16,20,21]. For minor subtypes, different α and β subunits have been detected to co-exist as proven by the existence of GABAARs containing α1α2, α1α3, α1α5, α2α3, α3α5, α4α1, α4α2 and α4α3 in the central nervous system [22,23]. Meanwhile, the same pattern has been detected with β and γ subunits, at least the co-occurrence of β in the same GABAAR as well as γ2 with γ3, indicating that these subunits have the capacity to co-exist with each other [24,25,26]. Since different subunits can actually occur in one receptor, GABAARs are considered to exist in a multi-subunit arrangement, leading to ambiguity in the determination of a receptor's stoichiometry. In this review, we first briefly discuss the different subunit arrangements of α1 and β3 subunits in the binary α1β3 receptors. Then we review the GABAA ε-containing receptors predominantly in terms of the ability of ε subunit to present in different position in the ternary α1β3ε receptors, which introduce distinct populations of receptor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Differential Protein Composition and Gene Expression in Leaf Mesophyll Cells and Bundle Sheath Cells of the C(4) Plant Digitaria sanguinalis (L.) Scop.

    PubMed

    Potter, J W; Black, C C

    1982-08-01

    The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo(35)S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major (35)S-labeled proteins. The major incorporation of (35)S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major (35)S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the (35)S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.

  19. Improving flavour and quality of tomatoes by expression of synthetic gene encoding sweet protein monellin.

    PubMed

    Reddy, Chinreddy Subramanyam; Vijayalakshmi, Muvva; Kaul, Tanushri; Islam, Tahmina; Reddy, Malireddy K

    2015-05-01

    Monellin a sweet-tasting protein exists naturally as a heterodimer of two non-covalently linked subunits chain A and B, which loses its sweetness on denaturation. In this study, we validated the expression of a synthetic monellin gene encoding a single polypeptide chain covalently linking the two subunits under T7 and fruit-ripening-specific promoters in Escherichia coli and tomato fruits, respectively. Purified recombinant monellin protein retained its sweet flavour at 70 °C and pH 2. We developed 15 transgenic T0 tomato plants overexpressing monellin, which were devoid of any growth penalty or phenotypic abnormalities during greenhouse conditions. T-DNA integration and fruit-specific heterologous expression of monellin had occurred in these transgenic tomato lines. ELISA revealed that expression of monellin was 4.5% of the total soluble fruit protein. Functional analyses of transgenic tomatoes of T2-5 and T2-14 lines revealed distinctly strong sweetness compared with wild type. Monellin a potential non-carbohydrate sweetener, if expressed in high amounts in fruits and vegetables, would enhance their flavour and quality.

  20. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest–specific gene product

    PubMed Central

    Rupp, Gerald; Porter, Mary E.

    2003-01-01

    The dynein regulatory complex (DRC) is an important intermediate in the pathway that regulates flagellar motility. To identify subunits of the DRC, we characterized a Chlamydomonas motility mutant obtained by insertional mutagenesis. The pf2-4 mutant displays an altered waveform that results in slow swimming cells. EM analysis reveals defects in DRC structure that can be rescued by reintroduction of the wild-type PF2 gene. Immunolocalization studies show that the PF2 protein is distributed along the length of the axoneme, where it is part of a discrete complex of polypeptides. PF2 is a coiled-coil protein that shares significant homology with a mammalian growth arrest–specific gene product (Gas11/Gas8) and a trypanosome protein known as trypanin. PF2 and its homologues appear to be universal components of motile axonemes that are required for DRC assembly and the regulation of flagellar motility. The expression of Gas8/Gas11 transcripts in a wide range of tissues may also indicate a potential role for PF2-related proteins in other microtubule-based structures. PMID:12847082

  1. moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.J.; Lidstrom, M.E.

    The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome c/sub L/. In this study, four polypeptides of M/sub r/, 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement ofmore » the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the M/sub r/-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the M/sub r/-20,000 polypeptide, was identified as mature cytochrome c/sub L/, and the product of moxI, the M/sub r/-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the M/sub r/-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the M/sub r/-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the M/sub r/-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the M/sub r/-60,000 MeDH polypeptide. Our data suggest that both the M/sub r/-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.« less

  2. Site-Specific S-Glutathiolation of Mitochondrial NADH Ubiquinone Reductase

    PubMed Central

    Chen, Chwen-Lih; Zhang, Liwen; Yeh, Alexander; Chen, Chun-An; Green-Church, Kari B.; Zweier, Jay L.; Chen, Yeong-Renn

    2008-01-01

    The generation of reactive oxygen species in mitochondria acts as a redox signal in triggering cellular events such as apoptosis, proliferation, and senescence. Overproduction of superoxide (O2·-) and O2·--derived oxidants change the redox status of the mitochondrial GSH pool. An electron transport protein, Mitochondrial Complex I, is the major host of reactive/regulatory protein thiols. An important response of protein thiols to oxidative stress is to reversibly form protein mixed disulfide via S-glutathiolation. Exposure of Complex I to oxidized GSH, GSSG, resulted in specific S-glutathiolation at the 51 kDa and 75 kDa subunits. Here, to investigate the molecular mechanism of S-glutathiolation of Complex I, we prepared isolated bovine Complex I under non-reducing conditions and employed the techniques of mass spectrometry and EPR spin trapping for analysis. LC/MS/MS analysis of tryptic digests of the 51 kDa and 75 kDa polypeptides from glutathiolated Complex I (GS-NQR) revealed that two specific cysteines (C206 and C187) of the 51 kDa subunit and one specific cysteine (C367) of the 75 kDa subunit were involved in redox modifications with GS binding. The electron transfer activity (ETA) of GS-NQR in catalyzing NADH oxidation by Q1 was significantly enhanced. However, O2·- generation activity (SGA) mediated by GS-NQR suffered a mild loss as measured by EPR spin trapping, suggesting the protective role of S-glutathiolation in the intact Complex I. Exposure of NADH dehydrogenase (NDH), the flavin subcomplex of Complex I, to GSSG resulted in specific S-glutathiolation on the 51 kDa subunit. Both ETA and SGA of S-glutathiolated NDH (GS-NDH) decreased in parallel as the dosage of GSSG increased. LC/MS/MS analysis of a tryptic digest of the 51 kDa subunit from GS-NDH revealed that C206, C187, and C425 were glutathiolated. C425 of the 51 kDa subunit is a ligand residue of the 4Fe-4S N3 center, suggesting that destruction of 4Fe-4S is the major mechanism involved in the inhibiton of NDH. The result also implies that S-glutathiolation of the 75 kDa subunit may play a role in protecting the 4Fe-4S cluster of the 51 kDa subunit from redox modification when Complex I is exposed to redox change in the GSH pool. PMID:17444656

  3. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  4. Cooperative Subunit Refolding of a Light-Harvesting Protein through a Self-Chaperone Mechanism.

    PubMed

    Laos, Alistair J; Dean, Jacob C; Toa, Zi S D; Wilk, Krystyna E; Scholes, Gregory D; Curmi, Paul M G; Thordarson, Pall

    2017-07-10

    The fold of a protein is encoded by its amino acid sequence, but how complex multimeric proteins fold and assemble into functional quaternary structures remains unclear. Here we show that two structurally different phycobiliproteins refold and reassemble in a cooperative manner from their unfolded polypeptide subunits, without biological chaperones. Refolding was confirmed by ultrafast broadband transient absorption and two-dimensional electronic spectroscopy to probe internal chromophores as a marker of quaternary structure. Our results demonstrate a cooperative, self-chaperone refolding mechanism, whereby the β-subunits independently refold, thereby templating the folding of the α-subunits, which then chaperone the assembly of the native complex, quantitatively returning all coherences. Our results indicate that subunit self-chaperoning is a robust mechanism for heteromeric protein folding and assembly that could also be applied in self-assembled synthetic hierarchical systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular analysis of a phytohemagglutinin-defective cultivar of Phaseolus vulgaris L.

    PubMed

    Vitale, A; Ceriotti, A; Bollini, R

    1985-10-01

    The seeds of Phaseolus vulgaris cv. Pinto III are known to lack detectable amounts of phytohemagglutinin (PHA) and to accumulate very reduced levels of PHA mRNA compared with normal cultivars. Using PHA complementary-DNA clones and monospecific antibodies we analyzed cv. Pinto III genomic DNA and cotyledonary proteins synthesized both in vitro and in vivo. We detected genomic DNA sequences that hybridize with complementary-DNA clones for the two different classes of PHA polypeptides (PHA-E and PHA-L), at levels comparable to a normal bean cultivar. This indicates that the cv. Pinto III phenotype is not the result of a large deletion of the PHA structural genes. Messenger RNA isolated from cv. Pinto III developing cotyledons synthesizes in vitro very small amounts of a protein which is recognized by antibodies specific for PHA, and gives, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a single band with molecular weight similar but not identical to that of PHA-L polypeptides. This protein is also synthesized in vivo at a very reduced level, less than 1% compared with PHA in normal cultivars, and has mitogenic activity comparable to that of the PHA-L subunit, while it shows very weak erythroagglutinating activity. The initial steps in the synthesis and processing of this protein are identical to those already identified for PHA polypeptides. The cv. Pinto III protein could be either a PHA-L polypeptide whose synthesis is not affected by the mutation or a PHA-like lectin present normally at low levels in P. vulgaris.

  6. A mitochondrial DNA variant, identified in Leber hereditary optic neuropathy patients, which extends the amino acid sequence of cytochrome c oxidase subunit I.

    PubMed Central

    Brown, M D; Yang, C C; Trounce, I; Torroni, A; Lott, M T; Wallace, D C

    1992-01-01

    A G-to-A transition at nucleotide pair (np) 7444 in the mtDNA was found to correlate with Leber hereditary optic neuropathy (LHON). The mutation eliminates the termination codon of the cytochrome c oxidase subunit I (COI) gene, extending the COI polypeptide by three amino acids. The mutation was discovered as an XbaI restriction-endonuclease-site loss present in 2 (9.1%) of 22 LHON patients who lacked the np 11778 LHON mutation and in 6 (1.1%) of 545 unaffected controls. The mutant polypeptide has an altered mobility on SDS-PAGE, suggesting a structural alteration, and the cytochrome c oxidase enzyme activity of patient lymphocytes is reduced approximately 40% relative to that in controls. These data suggest that the np 7444 mutation results in partial respiratory deficiency and thus contributes to the onset of LHON. Images Figure 1 Figure 3 PMID:1322638

  7. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    PubMed

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  8. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost,more » a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.« less

  9. From the Macro to the Micro: Gel Mapping to Differentiate between Sporozoites of Two Immunologically Distinct Strains of Eimeria maxima (Strains M6 and Guelph)

    PubMed Central

    Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John

    2015-01-01

    Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3–10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima. PMID:26641262

  10. From the Macro to the Micro: Gel Mapping to Differentiate between Sporozoites of Two Immunologically Distinct Strains of Eimeria maxima (Strains M6 and Guelph).

    PubMed

    El-Ashram, Saeed; Yin, Qing; Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John

    2015-01-01

    Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3-10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima.

  11. Isolation and characterization of spinach photosystem II membrane-associated catalase and polyphenol oxidase.

    PubMed

    Sheptovitsky, Y G; Brudvig, G W

    1996-12-17

    Photosystem II (PSII) membranes exhibit catalase and polyphenol oxidase (PPO) activities. Mild heat treatment of PSII membranes for 90 min at 30 degrees C releases most of these enzyme activities into the supernatant, accompanied by a 7-fold activation of PPO. In contrast, mild heat treatment of thylakoid membranes does not release significant amounts of either activity, indicating that both enzymes are bound to the luminal surface of the thylakoid membrane. The heat-released PSII membrane-associated catalase and PPO have been purified and characterized. Catalase activity was correlated with a 63 kDa polypeptide which was purified by batch adsorption to anion-exchange beads followed by gel filtration. The PSII membrane-associated catalase is unstable in solution, probably due to irreversible aggregation. The enzyme was characterized in terms of molecular and subunit size, amino-acid composition, UV-visible absorption, heme content, pH optimum, inhibitor sensitivity, and K(m) value for H2O2. Its properties indicate that the PSII membrane-associated catalase is a luminal thylakoid membrane-bound heme enzyme that has not been identified previously. The residual catalase activity of PSII membranes after mild heat treatment is irreversibly inhibited with 3-amino-1,2,4-triazole, a specific inhibitor of heme catalases, without inhibition of O2-evolution activity. This result indicates that little, if any, of the catalase activity from PSII membranes in the dark is catalyzed by the O2-evolving center of PSII. PPO activity was correlated with a 48 kDa polypeptide. However, the 48 kDa polypeptide and another heat-released polypeptide of 72 kDa have the same N-terminal sequence, which is also identical to that of a known 64 kDa protein [Hind, G., Marshak, D. R., & Coughlan, S. J. (1995) Biochemistry 34, 8157-8164]. During heat treatment of PSII membranes and further manipulations it was found that the 72 kDa polypeptide was largely converted into the 48 kDa polypeptide. Thus, the 72 kDa polypeptide appears to be a latent precursor of the active 48 kDa PPO. The PSII membrane-associated PPO was purified by anion-exchange chromatography and was characterized in terms of substrate specificity, pH optimum, inhibitor sensitivity and native molecular weight. The heat-released PPO appears to be identical to the enzyme previously isolated from spinach thylakoid membranes [Golbeck, J. H., & Cammarata, K. V. (1981) Plant Physiol. 67, 977-984].

  12. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kap; Pullalarevu, Sadhana; Surabian, Karen Talin

    2010-03-12

    Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg{sup 2+}-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, {alpha} and {beta}, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GK{beta} encodes a peptide that is different in sequence and is 16 amino acids longermore » than that encoded by the N-terminal exon of GK{alpha}. The crystal structures of recombinant GK{alpha}{beta} and GK{beta}{beta} from Namalycastis sp. were determined at 2.6 and 2.4 {angstrom} resolution, respectively. In addition, the structure of the GK{beta}{beta} was determined at 2.3 {angstrom} resolution in complex with a transition state analogue, Mg{sup 2+}-ADP-NO{sub 3}{sup -}-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GK{alpha}{beta} are structurally defined, and the longer N-terminus of the {beta} subunit is anchored at the dimer interface. In GK{beta}{beta} the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GK{alpha}{beta} amino acids involved in the interface formation were optimized once a heterodimer emerged as the physiological form of the enzyme. As a consequence, the homodimer interface (either solely {alpha} or solely {beta} chains) has been corrupted. In the unbound state, GK exhibits an open conformation analogous to that observed with ligand-free CK or AK. Upon binding the transition state analogue, both subunits of GK undergo the same closure motion that clasps the transition state analogue, in contrast to the transition state analogue complexes of CK, where the corresponding transition state analogue occupies only one subunit, which undergoes domain closure. The active site environments of the GK, CK, and AK at the bound states reveal the structural determinants of substrate specificity. Despite the equivalent binding in both active sites of the GK dimer, the conformational asymmetry of the N-termini is retained. Thus, the coupling between the structural asymmetry and negative cooperativity previously proposed for CK is not supported in the case of GK.« less

  13. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Y.; Li, H.; Li, Hua

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less

  14. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    PubMed Central

    Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.

    2009-01-01

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066

  15. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  16. Polypeptide synthesis induced in Nicotiana clevelandii protoplasts by infection with raspberry ringspot nepovirus.

    PubMed

    Acosta, O; Mayo, M A

    1993-01-01

    Infection of Nicotiana clevelandii protoplasts by raspberry ringspot nepovirus resulted in the accumulation of about 24 polypeptides that differed in M(r) and pI from polypeptides accumulating in mock-inoculated protoplasts. Similar polypeptides accumulated in protoplasts infected with the S and E strains of RRV but different infection-specific polypeptides were detected in protoplasts infected with tobacco ringspot nepovirus. The M(r) of RRV-specific polypeptides ranged from 210,000 to 18,000 and most are presumed to be derived from others by proteolytic cleavage. No evidence was found for marked changes in polypeptide abundance with time after inoculation or for any virus-specific polypeptide becoming disproportionately abundant in the medium during culture.

  17. Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits.

    PubMed

    De Ioannes, Pablo; Moltedo, Bruno; Oliva, Harold; Pacheco, Rodrigo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2004-06-18

    We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca(2+) and/or Mg(2+) in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4 degrees C, increases at 37 degrees C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg(2+) is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.

  18. Site directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the photosystem II complex.

    PubMed Central

    Pakrasi, H B; De Ciechi, P; Whitmarsh, J

    1991-01-01

    Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII. Images PMID:1904816

  19. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit swapping interactions that will need to be taken into account in experimental applications of single-chain chemoreceptors. PMID:26709829

  20. Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein

    PubMed Central

    2012-01-01

    Background Dynactin is a large multisubunit protein complex that enhances the processivity of cytoplasmic dynein and acts as an adapter between dynein and the cargo. It is composed of eleven different polypeptides of which eight are unique to this complex, namely dynactin1 (p150Glued), dynactin2 (p50 or dynamitin), dynactin3 (p24), dynactin4 (p62), dynactin5 (p25), dynactin6 (p27), and the actin-related proteins Arp1 and Arp10 (Arp11). Results To reveal the evolution of dynactin across the eukaryotic tree the presence or absence of all dynactin subunits was determined in most of the available eukaryotic genome assemblies. Altogether, 3061 dynactin sequences from 478 organisms have been annotated. Phylogenetic trees of the various subunit sequences were used to reveal sub-family relationships and to reconstruct gene duplication events. Especially in the metazoan lineage, several of the dynactin subunits were duplicated independently in different branches. The largest subunit repertoire is found in vertebrates. Dynactin diversity in vertebrates is further increased by alternative splicing of several subunits. The most prominent example is the dynactin1 gene, which may code for up to 36 different isoforms due to three different transcription start sites and four exons that are spliced as differentially included exons. Conclusions The dynactin complex is a very ancient complex that most likely included all subunits in the last common ancestor of extant eukaryotes. The absence of dynactin in certain species coincides with that of the cytoplasmic dynein heavy chain: Organisms that do not encode cytoplasmic dynein like plants and diplomonads also do not encode the unique dynactin subunits. The conserved core of dynactin consists of dynactin1, dynactin2, dynactin4, dynactin5, Arp1, and the heterodimeric actin capping protein. The evolution of the remaining subunits dynactin3, dynactin6, and Arp10 is characterized by many branch- and species-specific gene loss events. PMID:22726940

  1. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain.

    PubMed

    Rhodes, Kenneth J; Carroll, Karen I; Sung, M Amy; Doliveira, Lisa C; Monaghan, Michael M; Burke, Sharon L; Strassle, Brian W; Buchwalder, Lynn; Menegola, Milena; Cao, Jie; An, W Frank; Trimmer, James S

    2004-09-08

    Voltage-gated potassium (Kv) channels from the Kv4, or Shal-related, gene family underlie a major component of the A-type potassium current in mammalian central neurons. We recently identified a family of calcium-binding proteins, termed KChIPs (Kv channel interacting proteins), that bind to the cytoplasmic N termini of Kv4 family alpha subunits and modulate their surface density, inactivation kinetics, and rate of recovery from inactivation (An et al., 2000). Here, we used single and double-label immunohistochemistry, together with circumscribed lesions and coimmunoprecipitation analyses, to examine the regional and subcellular distribution of KChIPs1-4 and Kv4 family alpha subunits in adult rat brain. Immunohistochemical staining using KChIP-specific monoclonal antibodies revealed that the KChIP polypeptides are concentrated in neuronal somata and dendrites where their cellular and subcellular distribution overlaps, in an isoform-specific manner, with that of Kv4.2 and Kv4.3. For example, immunoreactivity for KChIP1 and Kv4.3 is concentrated in the somata and dendrites of hippocampal, striatal, and neocortical interneurons. Immunoreactivity for KChIP2, KChIP4, and Kv4.2 is concentrated in the apical and basal dendrites of hippocampal and neocortical pyramidal cells. Double-label immunofluorescence labeling revealed that throughout the forebrain, KChIP2 and KChIP4 are frequently colocalized with Kv4.2, whereas in cortical, hippocampal, and striatal interneurons, KChIP1 is frequently colocalized with Kv4.3. Coimmunoprecipitation analyses confirmed that all KChIPs coassociate with Kv4 alpha subunits in brain membranes, indicating that KChIPs 1-4 are integral components of native A-type Kv channel complexes and are likely to play a major role as modulators of somatodendritic excitability.

  2. Organization of K88ac-encoded polypeptides in the Escherichia coli cell envelope: use of minicells and outer membrane protein mutants for studying assembly of pili.

    PubMed

    Dougan, G; Dowd, G; Kehoe, M

    1983-01-01

    Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.

  3. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.

    PubMed

    Eberhard, D; Tora, L; Egly, J M; Grummt, I

    1993-09-11

    TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity.

  4. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.

    PubMed Central

    Eberhard, D; Tora, L; Egly, J M; Grummt, I

    1993-01-01

    TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity. Images PMID:8414971

  5. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.

    PubMed

    Fukui, Naoya; Araki, Kiho; Hongo, Kunihiro; Mizobata, Tomohiro; Kawata, Yasushi

    2016-11-25

    The isolated apical domain of the Escherichia coli GroEL subunit displays the ability to suppress the irreversible fibrillation of numerous amyloid-forming polypeptides. In previous experiments, we have shown that mutating Gly-192 (located at hinge II that connects the apical domain and the intermediate domain) to a tryptophan results in an inactive chaperonin whose apical domain is disoriented. In this study, we have utilized this disruptive effect of Gly-192 mutation to our advantage, by substituting this residue with amino acid residues of varying van der Waals volumes with the intent to modulate the affinity of GroEL toward fibrillogenic peptides. The affinities of GroEL toward fibrillogenic polypeptides such as Aβ(1-40) (amyloid-β(1-40)) peptide and α-synuclein increased in accordance to the larger van der Waals volume of the substituent amino acid side chain in the G192X mutants. When we compared the effects of wild-type GroEL and selected GroEL G192X mutants on α-synuclein fibril formation, we found that the effects of the chaperonin on α-synuclein fibrillation were different; the wild-type chaperonin caused changes in both the initial lag phase and the rate of fibril extension, whereas the effects of the G192X mutants were more specific toward the nucleus-forming lag phase. The chaperonins also displayed differential effects on α-synuclein fibril morphology, suggesting that through mutation of Gly-192, we may induce changes to the intermolecular affinities between GroEL and α-synuclein, leading to more efficient fibril suppression, and in specific cases, modulation of fibril morphology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Cloning of the chaperonin t-complex polypeptide 1 gene from Schistosoma mansoni and studies of its expression levels under heat shock and oxidative stress.

    PubMed

    Campos, E G; Hamdan, F F

    2000-03-01

    The protein TCP-1 (t-complex polypeptide 1) is a subunit of the hetero-oligomeric complex CCT (chaperonin containing TCP- 1) present in the eukaryotic cytosol. Chaperone function may be critical for the development and survival of the different life stages of Schistosoma mansoni, a parasite that is exposed to drastic environmental changes during its development. We isolated a full-length S. mansoni TCP-1 cDNA (SmTCP-1A) encoding a protein highly homologous with TCP-1. The deduced SmTCP-1A amino-acid sequence shows up to 65% identity with other eukaryotic CCT family members. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that the mRNA expression levels of SmTCP-1A in adult S. mansoni were down-regulated in worms subjected to heat shock and oxidative stress conditions. This down-regulation of SmTCP-1A mRNA may reflect a switch in CCT subunits as an adaptive response to heat shock and oxidative stress conditions.

  7. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed

    Espinar-Marchena, Francisco; Rodríguez-Galán, Olga; Fernández-Fernández, José; Linnemann, Jan; de la Cruz, Jesús

    2018-05-18

    The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.

  8. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae

    PubMed Central

    Espinar-Marchena, Francisco; Rodríguez-Galán, Olga; Fernández-Fernández, José; Linnemann, Jan; de la Cruz, Jesús

    2018-01-01

    Abstract The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits. PMID:29788267

  9. Identification of the bombesin receptor on murine and human cells by cross-linking experiments.

    PubMed

    Kris, R M; Hazan, R; Villines, J; Moody, T W; Schlessinger, J

    1987-08-15

    The bombesin receptor present on the surface of murine and human cells was identified using 125I-labeled gastrin-releasing peptide as a probe, the cross-linking agent disuccinimidyl suberate, and sodium dodecyl sulfate gels. A clone of NIH-3T3 cells which possesses approximately 80,000 bombesin receptors/cell with a single binding constant of approximately 1.9 X 10(-9) M was used in these studies. In addition, we used Swiss 3T3 cells and a human glioma cell line which possesses approximately 100,000 and approximately 55,000 bombesin receptors/cell, respectively. Under conditions found optimal for binding, it is demonstrated that 125I-labeled gastrin-releasing peptide can be cross-linked specifically to a glycoprotein of apparent molecular mass of 65,000 daltons on the surface of the NIH-3T3 cells. Similar results were obtained when the cross-linked product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions. Moreover, the cross-linking reaction is specific and saturable and the 65,000-dalton polypeptide is not observed when the cross-linking experiments were performed with a NIH-3T3 cell line which is devoid of bombesin receptors. Interestingly, glycoproteins with apparent molecular weights of 75,000 were labeled specifically by 125I-labeled gastrin-releasing peptide when similar experiments were performed with Swiss 3T3 cells and with human glioma cell line GM-340. These different molecular weights may indicate differential glycosylation as treatment with the enzyme N-glycanase reduced the apparent molecular weight of the cross-linked polypeptide to 45,000. On the basis of these results it is concluded that the cross-linked polypeptides represent the bombesin receptor or the ligand-binding subunit of a putative larger bombesin receptor expressed on the surface of these cells.

  10. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digestsmore » of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.« less

  11. The role of aromatic phenylalanine residues in binding carotenoid to light-harvesting model and wild-type complexes.

    PubMed

    García-Martín, A; Pazur, A; Wilhelm, B; Silber, M; Robert, B; Braun, P

    2008-09-26

    The mode of carotenoid (Crt) binding to polypeptide and specifying its function is as yet largely unknown. Statistical analysis of major photosystems I and II suggests that aromatic residues make up a significant part of the Crt binding pockets. Phenylalanine residues ensure approximately 25%--at some carbon atoms even up to 40%--of the total contacts with Crts. By use of an alanine-leucine model transmembrane helix that replaces the native helix of the bacterial light-harvesting complex 2 (LH2) alpha-subunit, we study the effects of polypeptide residues on cofactor binding in a model sequence context. Here, it is shown that phenylalanine residues located in the close vicinity of the Crts' polyene backbone significantly contribute to the binding of the Crt to the model protein. The replacement of a phenylalanine with leucine in the model helix results in significant reduction in the complexes' Crt content. This effect is strongly enhanced by the removal of a second phenylalanine in close vicinity to the Crt, i.e., of the wild-type (WT) beta-subunit. Remarkably, the mutation of only two phenylalanine residues in the LH2 WT sequence, alpha-Phe at position -12 and beta-Phe at -8, results in the loss of nearly 50% of functional Crt. Resonance Raman spectra indicate that the Crt conformation is fundamentally altered by the absence of the phenylalanines' aromatic side chains, suggesting that they lock the Crt into a precise, well-defined configuration. Thus, binding and specific functionalisation of Crt in the model and WT light-harvesting complex is reliant on the aromatic residue phenylalanine. The use of the light-harvesting complex as a model system thus substantiates the notion that the aromatic residue phenylalanine is a key factor for the binding of Crt to transmembrane proteins.

  12. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma membrane coated vesicles.

    PubMed Central

    Beltzer, J P; Spiess, M

    1991-01-01

    The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897

  13. The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity

    PubMed Central

    Pagliano, Cristina; La Rocca, Nicoletta; Andreucci, Flora; Deák, Zsuzsanna; Vass, Imre; Rascio, Nicoletta; Barbato, Roberto

    2009-01-01

    Background and Aims Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca2+ and Cl− as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl− and Ca2+, but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides. Methods Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT–PCR and time-resolved chlorophyll fluorescence were used. Key Results Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein. Conclusions In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII. PMID:19033288

  14. Effective simulations of gas diffusion through kinetically accessible tunnels in multisubunit proteins: O2 pathways and escape routes in T-state deoxyhemoglobin.

    PubMed

    Shadrina, Maria S; English, Ann M; Peslherbe, Gilles H

    2012-07-11

    The diffusion of small gases to special binding sites within polypeptide matrices pivotally defines the biochemical specificity and reactivity of proteins. We investigate here explicit O(2) diffusion in adult human hemoglobin (HbA) as a case study employing the recently developed temperature-controlled locally enhanced sampling (TLES) method and vary the parameters to greatly increase the simulation efficiency. The method is carefully validated against standard molecular dynamics (MD) simulations and available experimental structural and kinetic data on ligand diffusion in T-state deoxyHbA. The methodology provides a viable alternative approach to traditional MD simulations and/or potential of mean force calculations for: (i) characterizing kinetically accessible diffusion tunnels and escape routes for light ligands in porous proteins; (ii) very large systems when realistic simulations require the inclusion of multiple subunits of a protein; and (iii) proteins that access short-lived conformations relative to the simulation time. In the case of T-state deoxyHbA, we find distinct ligand diffusion tunnels consistent with the experimentally observed disparate Xe cavities in the α- and β-subunits. We identify two distal barriers including the distal histidine (E7) that control access to the heme. The multiple escape routes uncovered by our simulations call for a review of the current popular hypothesis on ligand escape from hemoglobin. Larger deviations from the crystal structure during simulated diffusion in isolated α- and β-subunits highlight the dampening effects of subunit interactions and the importance of including all subunits of multisubunit proteins to map realistic kinetically accessible diffusion tunnels and escape routes.

  15. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae.

    PubMed

    Roosendaal, E; Boots, M; de Graaf, F K

    1987-08-11

    The nucleotide sequence of the region located transcriptionally upstream of the K99 fimbrial subunit gene (fanC) was determined. Several putative transcription signals and two open reading frames, designated fanA and fanB, became apparent. Frameshift mutations in fanA and fanB reduced K99 fimbriae expression 8-fold and 16-fold, respectively. Complementation of the mutants in trans restored the K99 expression to about 75% of the wild type level, indicating that fanA and fanB code for transacting polypeptides involved in the biogenesis of K99 fimbriae. The fanA and fanB gene products FanA and FanB were not detectable in minicell preparations, indicating that both polypeptides are synthesized in very small amounts. However, in an in vitro DNA directed translation system FanA and FanB could be identified. The deduced amino acid sequences of FanA and FanB showed that both polypeptides contain no signal peptides, indicating a cytoplasmic location. Furthermore, the polypeptides are very hydrophilic, mainly basic, and exhibit remarkable homology to each other and to a regulatory protein (papB) encoded by the pap-operon (1). Some of these features are characteristics of nucleic acid binding proteins, which suggests that FanA and FanB have a regulatory function in the synthesis of FanC and the auxiliary polypeptides FanD-H.

  16. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain.

    PubMed Central

    Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K

    1992-01-01

    The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169

  17. Differences in α and β polypeptide chains of tubulin resolved by electron microscopy with image reconstruction

    PubMed Central

    Crepeau, Richard H.; McEwen, Bruce; Edelstein, Stuart J.

    1978-01-01

    Electron microscopic techniques have been used to reveal two classes of subunits of tubulin in ordered arrays. Presumably the two classes correspond to the α and β polypeptide chains of tubulin that have been distinguished by chemical criteria. The two types of subunits alternate along individual protofilaments in microtubules, microtubule-precursor sheets, and extended zinc-tubulin sheets. The resolution of the two types of polypeptide chains is achieved by improved negative staining methods which produce micrographs with layer lines at 28 Å-1 and 84 Å-1 in optical or computed transforms, in addition to the layer lines at 21 Å-1 and 42 Å-1 described previously [Crepeau, R. H., McEwen, B., Dykes, G. & Edelstein, S. J. (1977) J Mol. Biol. 116, 301-315]. In microtubules or microtubule-precursor sheets, adjacent protofilaments are staggered by about 10 Å, but parallel, in the sense that the α-β vector points in the same direction for all of the protofilaments of the microtubule. However, for the sheets assembled in the presence of zinc, adjacent protofilaments are staggered by about 21 Å and oriented in an antiparallel arrangement with alternate protofilaments related by a 2-fold screw axis. The antiparallel alignment of the protofilaments in the zinc-tubulin sheets accounts for their planarity (no tubular structures are found in the presence of moderate concentrations of zinc), since the intrinsic curvature found with parallel alignment of protofilaments in the absence of zinc would be cancelled by the antiparallel arrangement. Images PMID:283410

  18. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation

    PubMed Central

    Zhang, Yi; Ng, Huck-Hui; Erdjument-Bromage, Hediye; Tempst, Paul; Bird, Adrian; Reinberg, Danny

    1999-01-01

    ATP-dependent nucleosome remodeling and core histone acetylation and deacetylation represent mechanisms to alter nucleosome structure. NuRD is a multisubunit complex containing nucleosome remodeling and histone deacetylase activities. The histone deacetylases HDAC1 and HDAC2 and the histone binding proteins RbAp48 and RbAp46 form a core complex shared between NuRD and Sin3-histone deacetylase complexes. The histone deacetylase activity of the core complex is severely compromised. A novel polypeptide highly related to the metastasis-associated protein 1, MTA2, and the methyl-CpG-binding domain-containing protein, MBD3, were found to be subunits of the NuRD complex. MTA2 modulates the enzymatic activity of the histone deacetylase core complex. MBD3 mediates the association of MTA2 with the core histone deacetylase complex. MBD3 does not directly bind methylated DNA but is highly related to MBD2, a polypeptide that binds to methylated DNA and has been reported to possess demethylase activity. MBD2 interacts with the NuRD complex and directs the complex to methylated DNA. NuRD may provide a means of gene silencing by DNA methylation. PMID:10444591

  19. Steady-state fluorescence and phosphorescence spectroscopic studies of bacterial luciferase tryptophan mutants.

    PubMed

    Li, Z; Meighen, E A

    1994-09-01

    Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.

  20. Topology of subunits of the mammalian cytochrome c oxidase: Relationship to the assembly of the enzyme complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.

    The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less

  1. SM50 Repeat-Polypeptides Self-Assemble into Discrete Matrix Subunits and Promote Appositional Calcium Carbonate Crystal Growth during Sea Urchin Tooth Biomineralization

    PubMed Central

    Mao, Yelin; Satchell, Paul G.; Luan, Xianghong; Diekwisch, Thomas G.H.

    2015-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth. PMID:26194158

  2. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    PubMed

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1.

    PubMed

    Kida, Hiroshi; Sugano, Yuri; Iizuka, Ryo; Fujihashi, Masahiro; Yohda, Masafumi; Miki, Kunio

    2008-11-14

    Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of alpha and beta subunits and forms a "jellyfish-like" structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two alpha and two beta subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of alpha (alpha1 and alpha2) and beta subunits (beta1 and beta2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD beta1 subunit at 1.9 A resolution and its functional analysis. TsPFD beta1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The beta hairpin linkers of beta1 subunits assemble to form a beta barrel "body" around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the beta1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric beta1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD beta1 subunits act as molecular chaperones in living cells of some archaea.

  4. Combinatorial discovery of enzymes with utility in biomass transformation

    DOEpatents

    Fox, Brian G; Elsen, Nathaniel L

    2015-02-03

    Methods for the cell-free identification of polypeptide and polypeptide combinations with utility in biomass transformation, as well as specific novel polypeptides and cell-free systems containing polypeptide combinations discovered by such methods are disclosed.

  5. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits

    PubMed Central

    Jakovljevic, Jelena; Ohmayer, Uli; Gamalinda, Michael; Talkish, Jason; Alexander, Lisa; Linnemann, Jan; Milkereit, Philipp; Woolford, John L.

    2012-01-01

    Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA3 to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA3 pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A3 assembly factors and for proper assembly of the neighborhoods containing domains I and II. PMID:22893726

  6. Mutations in the sigma subunit of E. coli RNA polymerase which affect positive control of transcription.

    PubMed

    Hu, J C; Gross, C A

    1985-01-01

    The sigma subunits of bacterial RNA polymerases are required for the selective initiation of transcription. We have isolated and characterized mutations in rpoD, the gene which encodes the major form of sigma in E. coli, which affect the selectivity of transcription. These mutations increase the expression of araBAD up to 12-fold in the absence of CAP-cAMP. Expression of lac is unaffected, while expression of malT-activated operons is decreased. We determined the DNA sequence of 17 independently isolated mutations, and found that they consist of three different changes in a single CGC arginine codon at position 596 in the sigma polypeptide.

  7. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    PubMed

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  8. Controlled conformational transitions in the MVM virion expose the VP1 N-terminus and viral genome without particle disassembly.

    PubMed

    Cotmore, S F; D'abramo, A M; Ticknor, C M; Tattersall, P

    1999-02-01

    Antisera were raised against peptides corresponding to the N-termini of capsid proteins VP1 and VP2 from the parvovirus minute virus of mice. Epitopes in the 142-amino-acid VP1-specific region were not accessible in the great majority of newly released viral particles, and sera directed against them failed to neutralize virus directly or deplete stocks of infectious virions. However, brief exposure to temperatures of 45 degreesC or more induced a conformational transition in a population of full virions, but not in empty viral particles, in which VP1-specific sequences became externally accessible. In contrast, the VP2 N-terminus was antibody-accessible in all full, but not empty, particles without prior treatment. An electrophoretic mobility shift assay, in which particles were heat-treated and/or preincubated with antibodies prior to electrophoresis, confirmed this pattern of epitope accessibility, showing that the heat-induced conformational transition produces a retarded form of virion that can be supershifted by incubation with VP1-specific sera. The proportion of virions undergoing transition increased with temperature, but at all temperatures up to 70 degreesC viral particles retained structure-specific antigenic determinants and remained essentially intact, without shedding individual polypeptide species or subunits. However, despite the apparent integrity of its protective coat, the genome became accessible to externally applied enzymes in an increasing proportion of virions through this temperature range, suggesting that the conformational transitions that expose VP1 likely also allow access to the genome. Heating particles to 80 degreesC or above finally induced disassembly to polypeptide monomers. Copyright 1999 Academic Press.

  9. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.

    PubMed

    O'Leary, Brendan; Park, Joonho; Plaxton, William C

    2011-05-15

    PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO(2) during C(4) and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C(4)-C(6) carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO(2)-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.

  10. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II

    PubMed Central

    1986-01-01

    A collection of 17 monoclonal antibodies elicited against the light- harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC- II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b. PMID:3528171

  11. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  12. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex

    PubMed Central

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.

    2014-01-01

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383

  13. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  14. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Kiess, Michael; Getzlaff, Rita; Wöstemeyer, Johannes; Frank, Ronald

    2010-09-01

    The cell wall of the unicellular green alga Chlamydomonas reinhardtii exclusively consists of hydroxyproline-containing glycoproteins. Protein chemical analysis of its polypeptide constituents was hindered by their cross-linking via peroxidase-catalysed intermolecular isodityrosine formation and transaminase-dependent processes. To overcome this problem, we have identified putative soluble precursors using polyclonal antibodies raised against deglycosylation products of the highly purified insoluble wall fraction and analysed their amino acid sequence. The occurrence of the corresponding polypeptide in the insoluble glycoprotein framework was finally probed by epitope mapping of the polyclonal antibodies using overlapping scan peptides which, together, cover the whole amino acid sequence of the putative precursor. As a control, peptide fragments released from the insoluble wall fraction by trypsin treatment were analysed by mass spectroscopy. By this approach, the heterodimeric, chaotrope-soluble glycoprotein GP3 proved to be a constituent of the insoluble extracellular matrix of Chlamydomonas reinhardtii. Furthermore, we have shown that the polypeptide backbones of both GP3 subunits are encoded by the same gene and differ by a C-terminal truncation in the case of GP3A. © 2010 Blackwell Publishing Ltd.

  15. Characterization and ecology of a type A influenzavirus isolated from a shearwater

    PubMed Central

    Downie, Jean C.; Webster, R. G.; Schild, G. C.; Dowdle, Walter R.; Laver, W. G.

    1973-01-01

    An influenzavirus isolated from a shearwater bird nesting on Tryon Island on the Australian Great Barrier Reef in 1971 has been more extensively characterized. Haemagglutinin subunits were isolated from the shearwater virus and from the antigenically related avian influenzaviruses A/turkey/Mass./65 (Hav6N2) and A/duck/Penn./69 (Hav6N1). Maps of the tryptic peptides from the heavy polypeptides (HA1) of the haemagglutinin subunits of the three viruses showed a number of differences, but peptide maps of the light polypeptides (HA2) were almost identical, suggesting that these had almost the same amino acid sequence. Extensive tests confirmed that the neuraminidase of the shearwater virus was not related antigenically to any known neuraminidase. The sera collected from pelagic birds nesting on islands in the Capricorn—Bunker group in 1970 were devoid of any antibodies to the shearwater virus, while a high proportion of the sera collected from birds on the same islands in 1972 (one year after the isolation of the shearwater virus) had antibodies to the haemagglutinin and neuraminidase of the shearwater virus, some to a high titre. Thus, the shearwater virus appeared to have only recently been introduced into the area from where it was isolated. ImagesFig. 1Fig. 2Fig. 3 PMID:4548383

  16. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  17. Chromosome localization of human genes for clathrin adaptor polypeptides AP2{beta} and AP50 and the clathrin-binding protein, VCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druck, T.; Gu, Y.; Prabhala, G.

    1995-11-01

    Clathrin-coated vesicles, involved in endocytosis and Golgi processing, have a surface lattice containing clathrin triskelia and stoichiometric amounts of additional components termed {open_quotes}assembly proteins,{close_quotes} or APs. The AP form at the plasma membrane, AP2, is composed of two large subunits of 100-115 kDa, denoted AP2{alpha} and AP2{beta}, a medium chain of 50 kDa, designated AP50, and a small chain. We have determined human chromosomal locations of genes for a large AP2{beta} (CLAPB1) and a medium (CLAPM1) AP subunit and of a novel clathrin-binding protein, VCP, that binds clathrin simultaneously with A1`s. Chromosomal in situ hybridization of a human genomic clonemore » demonstrated that the CLAPM1 gene mapped to chromosome region 3q28. The gene for the CLAPB1 large subunit was mapped to 17q11.2-q12 by PCR amplification of an AP2{beta} fragment from a panel of rodent-human hybrid DNAs. To map the human VCP sequence, a human-specific probe was made by RT-PCR of human mRNA using oligonucleotide primers from conserved regions of the porcine sequence. The amplified human fragment served as probe on Southern blots of hybrid DNAs to determine that the human VCP locus maps to chromosome region 9pter-q34. 13 refs., 2 figs.« less

  18. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia.

    PubMed

    Hershey, H P; Schwartz, L J; Gale, J P; Abell, L M

    1999-07-01

    Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.

  19. First comparative characterization of three distinct ferritin subunits from a teleost: Evidence for immune-responsive mRNA expression and iron depriving activity of seahorse (Hippocampus abdominalis) ferritins.

    PubMed

    Oh, Minyoung; Umasuthan, Navaneethaiyer; Elvitigala, Don Anushka Sandaruwan; Wan, Qiang; Jo, Eunyoung; Ko, Jiyeon; Noh, Gyeong Eon; Shin, Sangok; Rho, Sum; Lee, Jehee

    2016-02-01

    Ferritins play an indispensable role in iron homeostasis through their iron-withholding function in living beings. In the current study, cDNA sequences of three distinct ferritin subunits, including a ferritin H, a ferritin M, and a ferritin L, were identified from big belly seahorse, Hippocampus abdominalis, and molecularly characterized. Complete coding sequences (CDS) of seahorse ferritin H (HaFerH), ferritin M (HaFerM), and ferritin L (HaFerL) subunits were comprised of 531, 528, and 522 base pairs (bp), respectively, which encode polypeptides of 177, 176, and 174 amino acids, respectively, with molecular masses of ∼20-21 kDa. Our in silico analyses demonstrate that these three ferritin subunits exhibit the typical characteristics of ferritin superfamily members including iron regulatory elements, domain signatures, and reactive centers. The coding sequences of HaFerH, M, and L were cloned and the corresponding proteins were overexpressed in a bacterial system. Recombinantly expressed HaFer proteins demonstrated detectable in vivo iron sequestrating (ferroxidase) activity, consistent with their putative iron binding capability. Quantification of the basal expression of these three HaFer sequences in selected tissues demonstrated a gene-specific ubiquitous spatial distribution pattern, with abundance of mRNA in HaFerM in the liver and predominant expression of HaFerH and HaFerL in blood. Interestingly, the basal expression of all three ferritin genes was found to be significantly modulated against pathogenic stress mounted by lipopolysaccharides (LPS), poly I:C, Streptococcus iniae, and Edwardsiella tarda. Collectively, our findings suggest that the three HaFer subunits may be involved in iron (II) homeostasis in big belly seahorse and that they are important in its host defense mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Brassicaceae Express Multiple Isoforms of Biotin Carboxyl Carrier Protein in a Tissue-Specific Manner1

    PubMed Central

    Thelen, Jay J.; Mekhedov, Sergei; Ohlrogge, John B.

    2001-01-01

    Plastidial acetyl-coenzyme A carboxylase from most plants is a multi-enzyme complex comprised of four different subunits. One of these subunits, the biotin carboxyl carrier protein (BCCP), was previously proposed to be encoded by a single gene in Arabidopsis. We report and characterize here a second Arabidopsis BCCP (AtBCCP2) cDNA with 42% amino acid identity to AtBCCP1 and 75% identity to a class of oilseed rape (Brassica napus) BCCPs. Both Arabidopsis BCCP isoforms were expressed in Escherichia coli and found to be biotinylated and supported carboxylation activity when reconstituted with purified, recombinant Arabidopsis biotin carboxylase. In vitro translated AtBCCP2 was competent for import into pea (Pisum sativum) chloroplasts and processed to a 25-kD polypeptide. Extracts of Arabidopsis seeds contained biotinylated polypeptides of 35 and 25 kD, in agreement with the masses of recombinant AtBCCP1 and 2, respectively. AtBCCP1 protein was present in developing tissues from roots, leaves, flowers, siliques, and seeds, whereas AtBCCP2 protein was primarily expressed in 7 to 10 d-after-flowering seeds at levels approximately 2-fold less abundant than AtBCCP1. AtBCCP1 transcript reflected these protein expression profiles present in all developing organs and highest in 14-d leaves and siliques, whereas AtBCCP2 transcript was present in flowers and siliques. In protein blots, four different BCCP isoforms were detected in developing seeds from oilseed rape. Of these, a 35-kD BCCP was detected in immature leaves and developing seeds, whereas developing seeds also contained 22-, 25-, and 37-kD isoforms highly expressed 21 d after flowering. These data indicate that oilseed plants in the family Brassicaceae contain at least one to three seed-up-regulated BCCP isoforms, depending upon genome complexity. PMID:11299381

  1. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    PubMed

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H 2 O 2 ) induced changes in the gene expression have been reported, but efforts to detect H 2 O 2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H 2 O 2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  2. Phagosome maturation in unicellular eukaryote Paramecium: the presence of RILP, Rab7 and LAMP-2 homologues.

    PubMed

    Wyroba, E; Surmacz, L; Osinska, M; Wiejak, J

    2007-01-01

    Phagosome maturation is a complex process enabling degradation of internalised particles. Our data obtained at the gene, protein and cellular level indicate that the set of components involved in this process and known up to now in mammalian cells is functioning in unicellular eukaryote. Rab7-interacting partners: homologues of its effector RILP (Rab-interacting lysosomal protein) and LAMP-2 (lysosomal membrane protein 2) as well as alpha7 subunit of the 26S proteasome were revealed in Paramecium phagolysosomal compartment. We identified the gene/transcript fragments encoding RILP-related proteins (RILP1 and RILP2) in Paramecium by PCR/RT-PCR and sequencing. The deduced amino acid sequences of RILP1 and RILP2 show 60.5% and 58.3% similarity, respectively, to the region involved in regulating of lysosomal morphology and dynein-dynactin recruitment of human RILP. RILP colocalised with Rab7 in Paramecium lysosomes and at phagolysosomal membrane during phagocytosis of both the latex beads and bacteria. In the same compartment LAMP-2 was present and its expression during latex internalisation was 2.5-fold higher than in the control when P2 protein fractions (100,000 x g) of equal load were quantified by immunoblotting. LAMP-2 cross-reacting polypeptide of approximately106 kDa was glycosylated as shown by fluorescent and Western analysis of the same blot preceded by PNGase F treatment. The alpha7 subunit of 26S proteasome was detected close to the phagosomal membrane in the small vesicles, in some of which it colocalised with Rab7. Immunoblotting confirmed presence of RILP-related polypeptide and a7 subunit of 26S proteasome in Paramecium protein fractions. These results suggest that Rab7, RILP and LAMP-2 may be involved in phagosome maturation in Paramecium.

  3. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure

    PubMed Central

    Hasan, S. Saif; Cramer, William A.

    2012-01-01

    Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b6f and the yeast bc1 complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b6f complex overlap four sites in the Chlamydomonas reinhardtii algal b6f complex and four in the yeast bc1 complex. The proposed lipid functions include: (i) interfacial–interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron–sulphur protein (ISP), and four small subunits in the boundary ‘picket fence’); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a ‘latch’ to photosystem I provided by the β-carotene chain protruding through the ‘picket fence’; (v) presence of a lipid and chlorophyll a chlorin ring in b6f in place of the eighth helix in the bc1 cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b6f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization. PMID:23148267

  4. The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, Pichia farinosa.

    PubMed

    Suzuki, C; Nikkuni, S

    1994-01-28

    A halotolerant yeast, Pichia farinosa KK1 strain, produces a unique killer toxin termed SMK toxin (salt-mediated killer toxin) which shows its maximum killer activity in the presence of 2 M NaCl. The toxin consists of two distinct subunits, alpha and beta, which are tightly linked without a disulfide bond under acidic conditions, even in the presence of 6 M urea. Under neutral conditions, however, the alpha subunit precipitates, resulting in the dissociation of the subunits and the loss of killer activity. The nucleotide sequence of the SMK1 gene predicts a 222 amino acid preprotoxin with a typical signal sequence, the hydrophobic alpha, an interstitial gamma polypeptide with a putative glycosylation site, and the hydrophilic beta. Amino acid sequence analyses of peptide fragments including the carboxyl-terminal peptides fragments including the carboxyl-terminal peptides from each subunit suggest that the alpha and beta subunits consist of amino acid residues 19-81 and 146-222 of the preprotoxin, respectively, and the molecular weight of the mature alpha beta dimer is 14,214. The KEX2-like endopeptidase and KEX1-like carboxypeptidase may be involved in the stepwise processing of the SMK preprotoxin. The maturation process and the functions of the SMK toxin are compared with the K1 toxin of Saccharomyces cerevisiae.

  5. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  6. A differential scanning calorimetric study of the effects of metal ions, substrate/product, substrate analogues and chaotropic anions on the thermal denaturation of yeast enolase 1.

    PubMed

    Brewer, J M; Wampler, J E

    2001-03-14

    The thermal denaturation of yeast enolase 1 was studied by differential scanning calorimetry (DSC) under conditions of subunit association/dissociation, enzymatic activity or substrate binding without turnover and substrate analogue binding. Subunit association stabilizes the enzyme, that is, the enzyme dissociates before denaturing. The conformational change produced by conformational metal ion binding increases thermal stability by reducing subunit dissociation. 'Substrate' or analogue binding additionally stabilizes the enzyme, irrespective of whether turnover is occurring, perhaps in part by the same mechanism. More strongly bound metal ions also stabilize the enzyme more, which we interpret as consistent with metal ion loss before denaturation, though possibly the denaturation pathway is different in the absence of metal ion. We suggest that some of the stabilization by 'substrate' and analogue binding is owing to the closure of moveable polypeptide loops about the active site, producing a more 'closed' and hence thermostable conformation.

  7. Ordered Nanostructures Made Using Chaperonin Polypeptides

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan; McMillan, Robert; Paavola, Chad; Mogul, Rakesh; Kagawa, Hiromi

    2004-01-01

    A recently invented method of fabricating periodic or otherwise ordered nanostructures involves the use of chaperonin polypeptides. The method is intended to serve as a potentially superior and less expensive alternative to conventional lithographic methods for use in the patterning steps of the fabrication of diverse objects characterized by features of the order of nanometers. Typical examples of such objects include arrays of quantum dots that would serve as the functional building blocks of future advanced electronic and photonic devices. A chaperonin is a double-ring protein structure having a molecular weight of about 60 plus or minus 5 kilodaltons. In nature, chaperonins are ubiquitous, essential, subcellular structures. Each natural chaperonin molecule comprises 14, 16, or 18 protein subunits, arranged as two stacked rings approximately 16 to 18 nm tall by approximately 15 to 17 nm wide, the exact dimensions depending on the biological species in which it originates. The natural role of chaperonins is unknown, but they are believed to aid in the correct folding of other proteins, by enclosing unfolded proteins and preventing nonspecific aggregation during assembly. What makes chaperonins useful for the purpose of the present method is that under the proper conditions, chaperonin rings assemble themselves into higher-order structures. This method exploits such higher-order structures to define nanoscale devices. The higher-order structures are tailored partly by choice of chemical and physical conditions for assembly and partly by using chaperonins that have been mutated. The mutations are made by established biochemical techniques. The assembly of chaperonin polypeptides into such structures as rings, tubes, filaments, and sheets (two-dimensional crystals) can be regulated chemically. Rings, tubes, and filaments of some chaperonin polypeptides can, for example, function as nano vessels if they are able to absorb, retain, protect, and release gases or chemical reagents, including reagents of medical or pharmaceutical interest. Chemical reagents can be bound in, or released from, such structures under suitable controlled conditions. In an example of a contemplated application, a two-dimensional crystal of chaperonin polypeptides would be formed on a surface of an inorganic substrate and used to form a planar array of nanoparticles or quantum dots. Through genetic engineering of the organisms used to manufacture the chaperonins, specific sites on the chaperonin molecules and, thus, on the two-dimensional crystals can be chemically modified to react in a specific manner so as to favor the deposition of the material of the desired nanoparticles or quantum dots. A mutation that introduces a cysteine residue at the desired sites on a chaperonin of Sulfolobus shibatae was used to form planar arrays of gold nanoparticles (see figure).

  8. Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen.

    PubMed

    Mossabeb, Roschanak; Seiberler, Susanne; Mittermann, Irene; Reininger, Renate; Spitzauer, Susanne; Natter, Susanne; Verdino, Petra; Keller, Walter; Kraft, Dietrich; Valenta, Rudolf

    2002-10-01

    The nascent polypeptide-associated complex is required for intracellular translocation of newly synthesized polypeptides in eukaryotic cells. It may also act as a transcriptional coactivator in humans and various eukaryotic organisms and binds to nucleic acids. Recently, we provided evidence that a component of nascent polypeptide-associated complex, alpha-nascent polypeptide-associated complex, represents an IgE-reactive autoantigen for atopic dermatitis patients. By oligonucleotide screening we isolated a complete cDNA coding for a so far unknown alpha-nascent polypeptide-associated complex isoform from a human epithelial cDNA library. Southern blot hybridization experiments provided further evidence that alpha-nascent polypeptide-associated complex is encoded by a gene family. Recombinant alpha-nascent polypeptide-associated complex was expressed in Escherichia coli as a soluble, His-tagged protein, and purified via nickel affinity chromatography. By circular dichroism analysis it is demonstrated that purified recombinant alpha-nascent polypeptide-associated complex represents a folded protein of mixed alpha-helical and beta-sheet conformation with unusual high thermal stability and remarkable refolding capacity. Complete recombinant alpha-nascent polypeptide-associated complex (215 amino acids) and its 86 amino acid C-terminal fragment specifically bound IgE autoantibodies. Recombinant alpha-nascent polypeptide-associated complex also inhibited IgE binding to natural alpha-nascent polypeptide-associated complex, demonstrating the presence of common IgE epitopes between the recombinant and natural protein. Furthermore, recombinant alpha-nascent polypeptide-associated complex induced specific lymphoproliferative responses in peripheral blood mononuclear cells of a sensitized atopic dermatitis patient. As has been proposed for environmental allergens it is possible that T cell responses to IgE-defined autoantigens may contribute to the chronic skin manifestations in atopic dermatitis.

  9. Multifunctional cellulase and hemicellulase

    DOEpatents

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  10. Purification and properties of a beta-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides.

    PubMed

    Balasubramaniam, Sumathi; Lee, Heng Chin; Lazan, Hamid; Othman, Roohaida; Ali, Zainon Mohd

    2005-01-01

    beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.

  11. Isolation and characterization of a Treponema pallidum major 60-kilodalton protein resembling the groEL protein of Escherichia coli.

    PubMed Central

    Houston, L S; Cook, R G; Norris, S J

    1990-01-01

    A native structure containing the major 60-kilodalton common antigen polypeptide (designated TpN60) was isolated from Treponema pallidum subsp. pallidum (Nichols strain) through a combination of differential centrifugation and sucrose density gradient sedimentation. Gel filtration chromatography indicated that this structure is a high-molecular-weight homo-oligomer of TpN60. Antisera to TpN60 reacted with the groEL polypeptide of Escherichia coli, as determined by immunoperoxidase staining of two-dimensional electroblots. Electron microscopy of the isolated complex revealed a ringlike structure with a diameter of approximately 16 nm which was very similar in appearance to the groEL protein. Comparison of the N-terminal amino acid sequence of TpN60 with the deduced sequences of the E. coli groEL protein, related chaperonin proteins from mycobacteria and Coxiella burnetti, the hsp60 protein of Saccharomyces cerevisiae, the wheat ribulose bisphosphate carboxylase-oxygenase-subunit-binding protein (alpha subunit), and the human P1 mitochondrial protein indicated sequence identity at 8 of 22 to 10 of 22 residues (36 to 45% identity). We conclude that the oligomer of TpN60 is homologous to the groEL protein and related chaperonins found in a wide variety of procaryotes and eucaryotes and thus may represent a heat shock protein involved in protein folding and assembly. Images PMID:1971618

  12. Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato.

    PubMed Central

    Millar, A H; Knorpp, C; Leaver, C J; Hill, S A

    1998-01-01

    The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands with apparent molecular masses of 78, 60, 58, 55, 43, 41 and 37 kDa. N-terminal sequencing revealed that the 78 kDa protein was dihydrolipoamide transacetylase (E2), the 58 kDa protein was dihydrolipoamide dehydrogenase (E3), the 43 and 41 kDa proteins were alpha subunits of pyruvate dehydrogenase, and the 37 kDa protein was the beta subunit of pyruvate dehydrogenase. N-terminal sequencing of the 55 kDa protein band yielded two protein sequences: one was another E3; the other was similar to the sequence of E2 from plant and yeast sources but was distinctly different from the sequence of the 78 kDa protein. Incubation of the mPDC with [2-14C]pyruvate resulted in the acetylation of both the 78 and 55 kDa proteins. PMID:9729464

  13. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harter, C.; Baechi, T.S.; Semenza, G.

    1988-03-22

    To investigate the molecular basis of the low-pH-mediated interaction of the bromelain-solubilized ectodomain of influenza virus hemagglutinin (BHA) with membranes, we have photolabeled BHA in the presence of liposomes with the two carbene-generating, membrane-directed reagents 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) and a new analogue of a phospholipid, 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-/sup 3/H) undecanoyl)-sn-glycero-3-phosphocholine ((/sup 3/H)-PTPC/11). With the latter reagent, BHA was labeled in a strictly pH-dependent manner, i.e., at pH 5 only, whereas with (/sup 125/I)TID, labeling was seen also at pH 7. In all experiments, the label was selectively incorporated into the BHA2 polypeptide, demonstrating that the interaction of BHA with membranes ismore » mediated through this subunit, possibly via its hydrophobic N-terminal segment. Similar experiments with a number of other water-soluble proteins (ovalbumin, carbonic anhydrase, alpha-lactalbumin, trypsin, and soybean trypsin inhibitor) indicate that the ability to interact with liposomes at low pH is not a property specific for BHA but is observed with other, perhaps most, proteins.« less

  14. Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.

    PubMed

    Ma, Zheng; Fung, Victor; D'Orso, Iván

    2017-01-26

    The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.

  15. Dysfunctional C8 beta chain in patients with C8 deficiency.

    PubMed

    Tschopp, J; Penea, F; Schifferli, J; Späth, P

    1986-12-01

    Two sera from unrelated individuals, each lacking C8 activity, were examined by Western blot analysis. Using antisera raised against whole C8, the two sera are shown to lack the C8 beta chain, indicating a C8 beta deficiency, which is frequently observed in cases of dysfunctional C8. In contrast, by means of a specific anti-C8-beta antiserum, a C8 beta-like polypeptide chain of apparently identical molecular weight compared to normal C8 beta was detected. Digestion of normal and dysfunctional C8 beta with Staphylococcus aureus V8 protease revealed distinct differences in the enzymatic digestion pattern. We conclude that the dysfunction in the C8 protein in these two patients resides in the dysfunctional C8 beta chain, and that this form of C8 deficiency is distinct from C8 deficiencies previously reported, in which one or both C8 subunits are lacking.

  16. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    PubMed

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  17. Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones

    PubMed Central

    Keefer, Kathryn M.; True, Heather L.

    2016-01-01

    The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders. PMID:27828954

  18. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.

    PubMed

    Manolson, M F; Proteau, D; Preston, R A; Stenbit, A; Roberts, B T; Hoyt, M A; Preuss, D; Mulholland, J; Botstein, D; Jones, E W

    1992-07-15

    Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.

  19. Structure, Subunit Topology, and Actin-binding Activity of the Arp2/3 Complex from Acanthamoeba

    PubMed Central

    Mullins, R. Dyche; Stafford, Walter F.; Pollard, Thomas D.

    1997-01-01

    The Arp2/3 complex, first isolated from Acanthamoeba castellani by affinity chromatography on profilin, consists of seven polypeptides; two actinrelated proteins, Arp2 and Arp3; and five apparently novel proteins, p40, p35, p19, p18, and p14 (Machesky et al., 1994). The complex is homogeneous by hydrodynamic criteria with a Stokes' radius of 5.3 nm by gel filtration, sedimentation coefficient of 8.7 S, and molecular mass of 197 kD by analytical ultracentrifugation. The stoichiometry of the subunits is 1:1:1:1:1:1:1, indicating the purified complex contains one copy each of seven polypeptides. In electron micrographs, the complex has a bilobed or horseshoe shape with outer dimensions of ∼13 × 10 nm, and mathematical models of such a shape and size are consistent with the measured hydrodynamic properties. Chemical cross-linking with a battery of cross-linkers of different spacer arm lengths and chemical reactivities identify the following nearest neighbors within the complex: Arp2 and p40; Arp2 and p35; Arp3 and p35; Arp3 and either p18 or p19; and p19 and p14. By fluorescent antibody staining with anti-p40 and -p35, the complex is concentrated in the cortex of the ameba, especially in linear structures, possibly actin filament bundles, that lie perpendicular to the leading edge. Purified Arp2/3 complex binds actin filaments with a K d of 2.3 μM and a stoichiometry of approximately one complex molecule per actin monomer. In electron micrographs of negatively stained samples, Arp2/3 complex decorates the sides of actin filaments. EDC/NHS cross-links actin to Arp3, p35, and a low molecular weight subunit, p19, p18, or p14. We propose structural and topological models for the Arp2/3 complex and suggest that affinity for actin filaments accounts for the localization of complex subunits to actinrich regions of Acanthamoeba. PMID:9015304

  20. The two subunits of the human asialoglycoprotein receptor have different fates when expressed alone in fibroblasts

    PubMed Central

    Shia, Michael A.; Lodish, Harvey F.

    1989-01-01

    Two related polypeptides, H1 and H2, comprise the human asialoglycoprotein receptor (ASGP-R). Stable lines of murine NIH 3T3 fibroblasts expressing H1 alone or H2 alone do not bind or internalize the ligand asialoorosomucoid (ASOR), which contains triantennary oligosaccharides. In contrast, cells expressing H1 and H2 together bind and degrade ASOR with properties indistinguishable from those of the ASPG-R in human hepatoma HepG2 cells. Whether or not H2 is coexpressed, H1 is synthesized as a 40-kDa precursor bearing high-mannose oligosaccharides, processed to its mature 46-kDa form, and transported to the cell surface. In cells expressing only H1, homodimers and -trimers of H1 are formed. In contrast, when expressed in 3T3 cells without H1, H2 is synthesized as its 43-kDa precursor, bearing high-mannose oligosaccharides, but is rapidly degraded. When H1 and H2 are coexpressed in the same cell, the H1 polypeptide “rescues” the H2 polypeptide; H2 is processed to its characteristic 50-kDa mature form and is transported to the surface. We conclude that the human ASGP-R is a multichain heterooligomer, probably a trimer of H1 molecules in noncovalent association with one, two, or three H2 molecules, and that the two polypeptides normally interact early in biosynthesis. Images PMID:2919187

  1. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis.

    PubMed

    Piñol-Roma, S

    1999-01-01

    rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

  2. Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TFIIH.

    PubMed Central

    Marinoni, J C; Roy, R; Vermeulen, W; Miniou, P; Lutz, Y; Weeda, G; Seroz, T; Gomez, D M; Hoeijmakers, J H; Egly, J M

    1997-01-01

    TFIIH is a multiprotein factor involved in transcription and DNA repair and is implicated in DNA repair/transcription deficiency disorders such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Eight out of the nine genes encoding the subunits forming TFIIH have already been cloned. We report here the identification, cDNA cloning and gene structure of the 52 kDa polypeptide and its homology with the yeast counterpart TFB2. This protein, along with p89/XPB, p62, p44 and p34, forms the core of TFIIH. Moreover, using in vitro reconstituted transcription and nucleotide excision repair (NER) assays and microinjection experiments, we demonstrate that p52 is directly involved in both transcription and DNA repair mechanisms in vitro and in vivo. PMID:9118947

  3. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

    PubMed Central

    Miles, John J.; Tan, Mai Ping; Dolton, Garry; Galloway, Sarah A.E.; Laugel, Bruno; Makinde, Julia; Matthews, Katherine K.; Watkins, Thomas S.; Wong, Yide; Clark, Richard J.; Pentier, Johanne M.; Attaf, Meriem; Lissina, Anya; Ager, Ann; Gallimore, Awen; Gras, Stephanie; Rossjohn, Jamie; Burrows, Scott R.; Cole, David K.; Price, David A.

    2018-01-01

    Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery. PMID:29528337

  4. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.

    PubMed Central

    Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C

    2004-01-01

    An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509

  5. O-mannosylation of the Mycobacterium tuberculosis Adhesin Apa Is Crucial for T Cell Antigenicity during Infection but Is Expendable for Protection

    PubMed Central

    Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Fang, Sunan; McDonald, Melissa A.; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V.; Plikaytis, Bonnie B.; Posey, James E.; Amara, Rama Rao

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis. PMID:24130497

  6. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Fang, Sunan; McDonald, Melissa A; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V; Plikaytis, Bonnie B; Posey, James E; Amara, Rama Rao; Sable, Suraj B

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.

  7. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate.

    PubMed

    Chang, J Y

    1985-09-02

    alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing thrombin cleavage.

  8. Purification of the active C5a receptor from human polymorphonuclear leukocytes as a receptor - G sub i complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, T.E.; Siciliano, S.; Kobayashi, S.

    1991-02-01

    The authors have isolated, in an active state, the C5a receptor from human polymorphonuclear leukocytes. The purification was achieved in a single step using a C5a affinity column in which the C5a molecule was coupled to the resin through its N terminus. The purified receptor, like the crude solubilized molecule, exhibited a single class of high-affinity binding sites with a K{sub d} of 30 pM. Further, the binding of C5a retained its sensitivity to guanine nucleotides, implying that the purified receptor contained a guanine nucleotide-binding protein (G protein). SDS/PAGE revealed the presence of three polypeptides with molecular masses of 42,more » 40, and 36 kDa, which were determined to be the C5a-binding subunit and the {alpha} and {beta} subunits of G{sub i}, respectively. The 36- and 40-kDa polypeptides were identified by immunoblotting and by the ability of pertussis toxin to ADP-ribosylate the 40-kDa molecule. These results confirm their earlier hypothesis that the receptor exists as a complex with a G protein in the presence or absence of C5a. The tight coupling between the receptor and G protein should make possible the identification of the G protein(s) involved in the transduction pathways used by C5a to produce its many biological effects.« less

  9. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    PubMed

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  10. Purification and characterization of an antibacterial and anti-inflammatory polypeptide from Arca subcrenata.

    PubMed

    Chen, Yuyan; Li, Chunlei; Zhu, Jianhua; Xie, Wangshi; Hu, Xianjing; Song, Liyan; Zi, Jiachen; Yu, Rongmin

    2017-03-01

    A polypeptide coded as PGC was isolated from Arca subcrenata muscle using ion exchange, Sephadex G-50 gel chromatography and RP-HPLC. PGC was identified to be a homogeneous compound by Native-PAGE and the purity was more than 98.9% measured by HPLC. The isoelectric point of PGC was determined to be 9.76 by IEF-PAGE. The molecular weight was determined to be 15,973.0Da by ESI-MS/MS. The conformational structure of PGC was characterized by UV-vis, FT-IR and CD spectroscopy. N terminal amino acid sequence of PGC was shown as PSVYDAAAQLTADVKKDLRDSWKVIGGDKKGNGVA by Edman degradation. The results demonstrated that there is a high degree of homology between PGC and the subunit from hemoglobin, and proposed that PGC is the depolymerized polypeptide of Hemoglobin I (HbI) from A. subcrenata. The evaluation of biological activities showed that the diameters of the inhibitory ring of PGC on Escherichia coli and Staphylococcus aureus were 14.5±0.44mm and 16.5±1.15mm, respectively. The IC 50 of inhibition rate for PGC on NO production was 9.60±0.71μg/mL. Therefore, PGC might be developed as one of potential antibacterial and anti-inflammatory agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rubisco Accumulation Factor 1 from Thermosynechococcus elongatus participates in the final stages of ribulose-1,5-bisphosphate carboxylase/oxygenase assembly in Escherichia coli cells and in vitro.

    PubMed

    Kolesinski, Piotr; Belusiak, Iwona; Czarnocki-Cieciura, Mariusz; Szczepaniak, Andrzej

    2014-09-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) biosynthesis is a multi-step process in which specific chaperones are involved. Recently, a novel polypeptide, Rubisco Accumulation Factor 1 (RAF1), has been identified as a protein that is necessary for proper assembly of this enzyme in maize cells (Zea mays). However, neither its specific function nor its mode of action have as yet been determined. The results presented here show that the prokaryotic homolog of RAF1 from Thermosynechococcus elongatus is expressed in cyanobacterial cells and interacts with a large Rubisco subunit (RbcL). Using a heterologous expression system, it was demonstrated that this protein promotes Rubisco assembly in Escherichia coli cells. Moreover, when co-expressed with RbcL alone, a stable RbcL-RAF1 complex is formed. Molecular mass determination for this Rubisco assembly intermediate by size-exclusion chromatography coupled with multi-angle light scattering indicates that it consists of an RbcL dimer and two RAF1 molecules. A purified RbcL-RAF1 complex dissociated upon addition of a small Rubisco subunit (RbcS), leading to formation of the active holoenzyme. Moreover, titration of the octameric (RbcL8) core of Rubisco with RAF1 results in disassembly of such a stucture and creation of an RbcL-RAF1 intermediate. The results presented here are the first attempt to elucidate the role of cyanobacterial Rubisco Accumulation Factor 1 in the Rubisco biosynthesis process. © 2014 FEBS.

  12. Proteolytic processing of the pro beta chain of beta-hexosaminidase occurs at basic residues contained within an exposed disulfide loop structure.

    PubMed

    Sagherian, C; Poroszlay, S; Vavougios, G; Mahuran, D

    1993-01-01

    Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes, Hex A (alpha beta) and Hex B (beta beta). The alpha and beta subunits are encoded by the HEXA and HEXB genes, respectively. Extensive homology in both the gene structures and deduced primary sequences demonstrate their common evolutionary origin. While undergoing similar proteolytic modifications in the lysosome, the pro beta polypeptide is additionally cleaved internally to produce the mature 24-30 kilodalton beta b and beta a chains. Previous data have suggested that this processing event occurs somewhere between residues Ser311 and Lys315. In this report we demonstrate that this area is located in a hydrophilic disulfide-loop structure (between Cys309 and Cys360). The cleavage event is prevented by the deletion through in vitro mutagenesis of the Arg312-Gln-Asn-Lys tetrapeptide or by its substitution with the aligned alpha residues (Gly-Ser-Glu-Pro). Reintroduction of either Arg312 or Lys315 reinstates the processing. Furthermore, we show that this area is not involved in lysosomal targeting of pro-Hex B, or in the increased stability or the variation in substrate specificity of the beta as compared with the alpha subunit. Our data suggest the presence of a novel lysosomal endoprotease. Like other endoproteases it is specific for basic amino acids; however, it cleaves on the amino-terminal side rather than the conventional carboxy-terminal side of such residues and then only if they are fully exposed to the lysosomal environment.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Three-dimensional structure of human electron transfer flavoprotein to 2.1-Å resolution

    PubMed Central

    Roberts, David L.; Frerman, Frank E.; Kim, Jung-Ja P.

    1996-01-01

    Mammalian electron transfer flavoproteins (ETF) are heterodimers containing a single equivalent of flavin adenine dinucleotide (FAD). They function as electron shuttles between primary flavoprotein dehydrogenases involved in mitochondrial fatty acid and amino acid catabolism and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. The structure of human ETF solved to 2.1-Å resolution reveals that the ETF molecule is comprised of three distinct domains: two domains are contributed by the α subunit and the third domain is made up entirely by the β subunit. The N-terminal portion of the α subunit and the majority of the β subunit have identical polypeptide folds, in the absence of any sequence homology. FAD lies in a cleft between the two subunits, with most of the FAD molecule residing in the C-terminal portion of the α subunit. Alignment of all the known sequences for the ETF α subunits together with the putative FixB gene product shows that the residues directly involved in FAD binding are conserved. A hydrogen bond is formed between the N5 of the FAD isoalloxazine ring and the hydroxyl side chain of αT266, suggesting why the pathogenic mutation, αT266M, affects ETF activity in patients with glutaric acidemia type II. Hydrogen bonds between the 4′-hydroxyl of the ribityl chain of FAD and N1 of the isoalloxazine ring, and between αH286 and the C2-carbonyl oxygen of the isoalloxazine ring, may play a role in the stabilization of the anionic semiquinone. With the known structure of medium chain acyl-CoA dehydrogenase, we hypothesize a possible structure for docking the two proteins. PMID:8962055

  14. NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits.

    PubMed Central

    Fearnley, I M; Finel, M; Skehel, J M; Walker, J E

    1991-01-01

    The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859

  15. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing.

    PubMed

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L

    2013-02-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.

  16. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing

    PubMed Central

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L.

    2013-01-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2. PMID:23268442

  17. ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides.

    PubMed

    Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai

    2013-12-01

    High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs. © 2013.

  18. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins--towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation.

    PubMed

    Daskalova, Sasha M; Radder, Josiah E; Cichacz, Zbigniew A; Olsen, Sam H; Tsaprailis, George; Mason, Hugh; Lopez, Linda C

    2010-08-24

    Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.

  19. Architecture of the TIM23 inner mitochondrial translocon and interactions with the matrix import motor.

    PubMed

    Ting, See-Yeun; Schilke, Brenda A; Hayashi, Masaya; Craig, Elizabeth A

    2014-10-10

    Translocation of proteins from the cytosol across the mitochondrial inner membrane is driven by action of the matrix-localized multi-subunit import motor, which is associated with the TIM23 translocon. The architecture of the import apparatus is not well understood. Here, we report results of site-specific in vivo photocross-linking along with genetic and coimmunoprecipitation analyses dissecting interactions between import motor subunits and the translocon. The translocon is composed of the two integral membrane proteins Tim23 and Tim17, each containing four membrane-spanning segments. We found that Tim23 having a photoactivatable cross-linker in the matrix exposed loop between transmembrane domains 1 and 2 (loop 1) cross-linked to Tim44. Alterations in this loop destabilized interaction of Tim44 with the translocon. Analogously, Tim17 having a photoactivatable cross-linker in the matrix exposed loop between transmembrane segments 1 and 2 (loop 1) cross-linked to Pam17. Alterations in this loop caused destabilization of the interaction of Pam17 with the translocon. Substitution of individual photoactivatable residues in Tim44 and Pam17 in regions we previously identified as important for translocon association resulted in cross-linking to Tim23 and Tim17, respectively. Our results are consistent with a model in which motor association is achieved via interaction of Tim23 with Tim44, which serves as a scaffold for association of other motor components, and of Tim17 with Pam17. As both Tim44 and Pam17 have been implicated as regulatory subunits of the motor, this positioning is conducive for responding to conformational changes in the translocon upon a translocating polypeptide entering the channel. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Peptidergic innervation of the human male genital tract.

    PubMed

    Gu, J; Polak, J M; Probert, L; Islam, K N; Marangos, P J; Mina, S; Adrian, T E; McGregor, G P; O'Shaughnessy, D J; Bloom, S R

    1983-08-01

    Four peptides--vasoactive intestinal polypeptide, substance P, somatostatin and a peptide-like avian pancreatic polypeptide--have been found in nerves of the human male genitalia using highly sensitive and specific methods of immunocytochemistry and radioimmunoassay. Five other peptides (met-enkephalin, leu-enkephalin, neurotensin, bombesin and cholecystokinin-8) were absent. Vasoactive intestinal polypeptide was the most abundant peptide, its highest concentration being in the proximal corpus cavernosum. Immunoelectron microscopy localized this peptide to large (97 +/- 20 nm), round, electron-dense granules of p-type nerve terminals. Vasoactive intestinal polypeptide-immunoreactive neuronal cell bodies were found in the prostate gland and the root of the corpus cavernosum. Substance P immunoreactive material was present in smaller concentration and was mainly localized in nerves around the corpuscular receptors of the glans penis. Somatostatin immunoreactive nerves were associated mainly with the smooth muscle of the seminal vesicle and the vas deferens. When antiserum to avian pancreatic polypeptide was applied, certain nerves were stained, particularly in the vas deferens, the prostate gland and the seminal vesicle. However, chromatography detected no pure avian pancreatic polypeptide suggesting the presence of a structurally related substance, possibly neuropeptide Y, which cross-reacts with the avian pancreatic polypeptide antiserum. Similar distributions between vasoactive intestinal polypeptide-immunoreactive and acetylcholinesterase-positive nerves and between avian pancreatic polypeptide-immunoreactive and adrenergic nerves were observed. A general neuronal marker, neuron-specific enolase, was used to investigate the general pattern of the organ's innervation. The abundance and distribution patterns of these peptide-immunoreactive nerves indicate that they may play important roles in the male sexual physiology.

  1. Analysis of polypeptide composition and antigenic components of Rickettsia tsutsugamushi by polyacrylamide gel electrophoresis and immunoblotting.

    PubMed Central

    Tamura, A; Ohashi, N; Urakami, H; Takahashi, K; Oyanagi, M

    1985-01-01

    Polyacrylamide gel electrophoresis of lysates of purified Rickettsia tsutsugamushi revealed as many as 30 polypeptide bands, including major bands corresponding to molecular sizes of 70, 60, 54 to 56, and 46 to 47 kilodaltons. Compared with the polypeptide composition of the rickettsiae of Gilliam, Karp, and Kato strains and a newly isolated Shimokoshi strain, the major polypeptide in the Kato strain (54-56K) and in the Karp strain (46-47K) migrated a little faster and slower, respectively, than the corresponding polypeptides in the other strains. The largest major polypeptide (54-56K) was digestible by the treatment of intact rickettsiae with trypsin and variable in content in separate preparations, suggesting that the polypeptide exists on the rickettsial surface and is easily degraded during the handling of these microorganisms. Several surface polypeptides of rickettsiae, including the 54-56K and 46-47K polypeptides, were detected by radioiodination of intact rickettsiae followed by polyacrylamide gel electrophoresis of the lysate; however, the 70K and 60K polypeptides were not labeled. Immunoblotting experiments with hyperimmune sera prepared in guinea pigs against each strain demonstrated that the 70K, 54-56K, and 46-47K polypeptides showed antigenic activities. The 54-56K polypeptide appeared to be strain specific, whereas the 70K and 46-47K polypeptides cross-reacted with the heterologous antisera. Images PMID:3922893

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraibar, Martin A.; Muhoberac, Barry B.; Garringer, Holly J.

    Mutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length. The structure was determined and refined to 2.85 {angstrom} resolution and was very similar to the wild type betweenmore » residues Ile-5 and Arg-154. However, instead of the E-helices normally present in wild type ferritin, the C-terminal sequences of all 24 mutant subunits showed substantial amounts of disorder, leading to multiple C-terminal polypeptide conformations and a large disruption of the normally tiny 4-fold axis pores. Functional studies underscored the importance of the mutant C-terminal sequence in iron-induced precipitation and revealed iron mishandling by soluble mutant FTL homopolymers in that only wild type incorporated iron when in direct competition in solution with mutant ferritin. Even without competition, the amount of iron incorporation over the first few minutes differed severalfold. Our data suggest that disruption at the 4-fold pores may lead to direct iron mishandling through attenuated iron incorporation by the soluble form of mutant ferritin and that the disordered C-terminal polypeptides may play a major role in iron-induced precipitation and formation of ferritin inclusion bodies in hereditary ferritinopathy.« less

  3. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms

    PubMed Central

    1992-01-01

    We analyzed the production of Torpedo marmorata acetylcholinesterase (AChE) in transfected COS cells. We report that the presence of an aspartic acid at position 397, homologous to that observed in other cholinesterases and related enzymes (Krejci, E., N. Duval, A. Chatonnet, P. Vincens, and J. Massoulie. 1991. Proc. Natl. Acad. Sci. USA. 88:6647-6651), is necessary for catalytic activity. The presence of an asparagine in the previously reported cDNA sequence (Sikorav, J.L., E. Krejci, and J. Massoulie. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1865-1873) was most likely due to a cloning error (codon AAC instead of GAC). We expressed the T and H subunits of Torpedo AChE, which differ in their COOH-terminal region and correspond respectively to the collagen-tailed asymmetric forms and to glycophosphatidylinositol-anchored dimers of Torpedo electric organs, as well as a truncated T subunit (T delta), lacking most of the COOH- terminal peptide. The transfected cells synthesized similar amounts of AChE immunoreactive protein at 37 degrees and 27 degrees C. However AChE activity was only produced at 27 degrees C and, even at this temperature, only a small proportion of the protein was active. We analyzed the molecular forms of active AChE produced at 27 degrees C. The H polypeptides generated glycophosphatidylinositol-anchored dimers, resembling the corresponding natural AChE form. The cells also released non-amphiphilic dimers G2na. The T polypeptides generated a series of active forms which are not produced in Torpedo electric organs: G1a, G2a, G4a, and G4na cellular forms and G2a and G4na secreted forms. The amphiphilic forms appeared to correspond to type II forms (Bon, S., J. P. Toutant, K. Meflah, and J. Massoulie. 1988. J. Neurochem. 51:776- 785; Bon, S., J. P. Toutant, K. Meflah, and J. Massoulie. 1988. J. Neurochem. 51:786-794), which are abundant in the nervous tissue and muscles of higher vertebrates (Bon, S., T. L. Rosenberry, and J. Massoulie. 1991. Cell. Mol. Neurobiol. 11:157-172). The H and T catalytic subunits are thus sufficient to account for all types of known AChE forms. The truncated T delta subunit yielded only non- amphiphilic monomers, demonstrating the importance of the T COOH- terminal peptide in the formation of oligomers, and in the hydrophobic character of type II forms. PMID:1639848

  4. ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-Induced Modification of the Large Subunit of RNA Polymerase II

    PubMed Central

    Long, Melissa C.; Leong, Vivian; Schaffer, Priscilla A.; Spencer, Charlotte A.; Rice, Stephen A.

    1999-01-01

    Herpes simplex virus type 1 (HSV-1) infection alters the phosphorylation of the large subunit of RNA polymerase II (RNAP II), resulting in the depletion of the hypophosphorylated and hyperphosphorylated forms of this polypeptide (known as IIa and IIo, respectively) and induction of a novel, alternatively phosphorylated form (designated IIi). We previously showed that the HSV-1 immediate-early protein ICP22 is involved in this phenomenon, since induction of IIi and depletion of IIa are deficient in cells infected with 22/n199, an HSV-1 ICP22 nonsense mutant (S. A. Rice, M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer, J. Virol. 69:5550–5559, 1995). However, depletion of IIo still occurs in 22/n199-infected cells. This suggests either that another viral gene product affects the RNAP II large subunit or that the truncated ICP22 polypeptide encoded by 22/n199 retains residual activity which leads to IIo depletion. To distinguish between these possibilities, we engineered an HSV-1 ICP22 null mutant, d22-lacZ, and compared it to 22/n199. The two mutants are indistinguishable in their effects on the RNAP II large subunit, suggesting that an additional viral gene product is involved in altering RNAP II. Two candidates are UL13, a protein kinase which has been implicated in ICP22 phosphorylation, and the virion host shutoff (Vhs) factor, the expression of which is positively regulated by ICP22 and UL13. To test whether UL13 is involved, a UL13-deficient viral mutant, d13-lacZ, was engineered. This mutant was defective in IIi induction and IIa depletion, displaying a phenotype very similar to that of d22-lacZ. In contrast, a Vhs mutant had effects that were indistinguishable from wild-type HSV-1. Therefore, UL13 but not the Vhs function plays a role in modifying the RNAP II large subunit. To study the potential role of UL13 in viral transcription, we carried out nuclear run-on transcription analyses in infected human embryonic lung cells. Infections with either UL13 or ICP22 mutants led to significantly reduced amounts of viral genome transcription at late times after infection. Together, our results suggest that ICP22 and UL13 are involved in a common pathway that alters RNAP II phosphorylation and that in some cell lines this change promotes viral late transcription. PMID:10364308

  5. Identification of polypeptides necessary for chemotaxis in Escherichia coli.

    PubMed Central

    Silverman, M; Simon, M

    1977-01-01

    Molecular cloning techniques were used to construct Escherichia coli-lambda hybrids that contained many of the genes necessary for flagellar rotation and chemotaxis. The properties of specific hybrids that carried the classical "cheA" and "cheB" loci were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the hybrids redefined the "cheA" and "cheB" regions. Six genes were resolved: cheA, cheW, cheX, cheB, cheY, and cheZ. They directed the synthesis of specific polypeptides with the following apparent molecular weights: cheA, 76,000 and 66,000; cheW, 12,000; cheX, 28,000; cheB, 38,000; cheY, 8,000; and cheZ, 24,000. The presence of another gene, cheM, was inferred from the protein synthesis experiments. The cheM gene directed the synthesis of polypeptides with apparent molecular weights of 63,000, 61,000, and 60,000. The synthesis of all of these polypeptides is regulated by the same mechanisms that regulate the synthesis of flagellar-related structural components. Images PMID:324984

  6. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain.

    PubMed

    Parcej, D N; Scott, V E; Dolly, J O

    1992-11-17

    Neuronal acceptors for alpha-dendrotoxin (alpha-DTX) have recently been purified from mammalian brain and shown to consist of two classes of subunit, a larger (approximately 78,000 M(r)) protein (alpha) whose N-terminal sequence is identical to that of a cloned, alpha-DTX-sensitive K+ channel, and a novel M(r) 39,000 (beta) polypeptide of unknown function. However, little information is available regarding the oligomeric composition of these native molecules. By sedimentation analysis of alpha-DTX acceptors isolated from bovine cortex, two species have been identified. A minority of these oligomers contain only the larger protein, while the vast majority possess both subunits. Based on accurate determination of the molecular weights of these two forms it is proposed that alpha-DTX-sensitive K+ channels exist as alpha 4 beta 4 complexes because this combination gives the best fit to the experimental data.

  7. Ribosome rearrangements at the onset of translational bypassing

    PubMed Central

    Agirrezabala, Xabier; Samatova, Ekaterina; Klimova, Mariia; Zamora, Miguel; Gil-Carton, David; Rodnina, Marina V.; Valle, Mikel

    2017-01-01

    Bypassing is a recoding event that leads to the translation of two distal open reading frames into a single polypeptide chain. We present the structure of a translating ribosome stalled at the bypassing take-off site of gene 60 of bacteriophage T4. The nascent peptide in the exit tunnel anchors the P-site peptidyl-tRNAGly to the ribosome and locks an inactive conformation of the peptidyl transferase center (PTC). The mRNA forms a short dynamic hairpin in the decoding site. The ribosomal subunits adopt a rolling conformation in which the rotation of the small subunit around its long axis causes the opening of the A-site region. Together, PTC conformation and mRNA structure safeguard against premature termination and read-through of the stop codon and reconfigure the ribosome to a state poised for take-off and sliding along the noncoding mRNA gap. PMID:28630923

  8. Characterization of Ether-à-go-go Channels Present in Photoreceptors Reveals Similarity to IKx, a K+ Current in Rod Inner Segments

    PubMed Central

    Frings, Stephan; Brüll, Nicole; Dzeja, Claudia; Angele, Albert; Hagen, Volker; Kaupp, U. Benjamin; Baumann, Arnd

    1998-01-01

    In this study, we describe two splice variants of an ether-à-go-go (EAG) K+ channel cloned from bovine retina: bEAG1 and bEAG2. The bEAG2 polypeptide contains an additional insertion of 27 amino acids in the extracellular linker between transmembrane segments S3 and S4. The heterologously expressed splice variants differ in their activation kinetics and are differently modulated by extracellular Mg2+. Cooperativity of modulation by Mg2+ suggests that each subunit of the putative tetrameric channel binds a Mg2+ ion. The channels are neither permeable to Ca2+ ions nor modulated by cyclic nucleotides. In situ hybridization localizes channel transcripts to photoreceptors and retinal ganglion cells. Comparison of EAG currents with IKx, a noninactivating K+ current in the inner segment of rod photoreceptors, reveals an intriguing similarity, suggesting that EAG polypeptides are involved in the formation of Kx channels. PMID:9524140

  9. Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast.

    PubMed Central

    Oblong, J E; Lamppa, G K

    1992-01-01

    Two proteins of 145 and 143 kDa were identified in pea which co-purify with a chloroplast processing activity that cleaves the precursor for the major light-harvesting chlorophyll binding protein (preLHCP). Antiserum generated against the 145/143 kDa doublet recognizes only these two polypeptides in a chloroplast soluble extract. In immunodepletion experiments the antiserum removed the doublet, and there was a concomitant loss of cleavage of preLHCP as well as of precursors for the small subunit of Rubisco and the acyl carrier protein. The 145 and 143 kDa proteins co-eluted in parallel with the peak of processing activity during all fractionation procedures, but they were not detectable as a homo- or heterodimeric complex. The 145 and 143 kDa proteins were used separately to affinity purify immunoglobulins; each preparation recognized both polypeptides, indicating that they are antigenically related. Wheat chloroplasts contain a soluble species similar in size to the 145/143 kDa doublet. Images PMID:1385116

  10. Proteins in Relation to Vigor and Viability of White Lupin (Lupinus albus L.) Seed Stored for 26 Years

    PubMed Central

    Dobiesz, Malwina; Piotrowicz-Cieślak, Agnieszka I.

    2017-01-01

    The aim of the study was to evaluate the vigor and viability as well as to determine and compare the contents of selected protein fractions of white lupin (Lupinus albus L.) seeds stored for 26 years at temperatures of -14°C and +20°C. The seeds stored at -14°C germinated in 86.3%, while the seeds stored at +20°C did not germinate at all. The viability evaluation was confirmed by the measuring electroconductivity of seed exudates. In seeds stored at -14°C the contents of γ, δ, and β conglutin were 14, 4 and 69 mg g-1 fresh mass, respectively, while in seed stored at +20°C they were 15.5, 3, 65 mg g-1 fresh mass, respectively. One-dimensional electrophoresis of γ and δ conglutin fractions indicated the presence of several intense polypeptide bands with molecular weights from 23.0 to 10.3 kDa. Polypeptide bands with a molecular weight of 22.4 and 19.8 kDa exhibited almost two times higher expression in the seeds stored at -14°C compared to the seeds stored at +20°C. Electrophoresis revealed 310 protein spots on the maps generated for seeds stored at -14°C, and 228 spots for seeds stored at +20°C. In seeds stored at +20°C most polypeptide subunits had a pI ranging from 4.5 to 7 and a molecular weight of 10–97 kDa. The greatest differences in the contents of polypeptides between the analyzed variants was observed within the range of 20–45 kDa (-14°C: 175, +20°C: 115 protein spots) and within the range of 65–97 kDa (-14°C: 103, +20°C: 75 protein spots). In seeds stored at +20°C, a clear decline in basic (8–10 pI) polypeptides was observed. The study demonstrated that the polypeptides identified as γ and δ conglutins are probably closely related to vigor and viability of seeds. PMID:28848591

  11. A quantitative telomeric chromatin isolation protocol identifies different telomeric states

    NASA Astrophysics Data System (ADS)

    Grolimund, Larissa; Aeby, Eric; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; Lingner, Joachim

    2013-11-01

    Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.

  12. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  13. Secretion of pancreatic polypeptide in patients with pancreatic endocrine tumors.

    PubMed

    Adrian, T E; Uttenthal, L O; Williams, S J; Bloom, S R

    1986-07-31

    Pancreatic polypeptide is often secreted by pancreatic endocrine tumors and is considered a marker for such tumors. To investigate the diagnostic value of this marker, we studied 323 patients with proved pancreatic endocrine tumors. We found plasma concentrations of pancreatic polypeptide to be elevated (more than 300 pmol per liter) in 144 patients (diagnostic sensitivity, 45 percent). However, plasma levels of pancreatic polypeptide can also be elevated in the absence of a pancreatic tumor. To ascertain whether the administration of atropine could distinguish between normal and tumor-associated polypeptide secretion, we studied 30 patients with pancreatic tumors and high plasma levels of pancreatic polypeptide, 18 patients without tumors who had elevated levels of pancreatic polypeptide, and eight normal controls. Polypeptide levels in the 18 patients without tumors were substantially lower than in the 30 patients with tumors. Atropine (1 mg intramuscularly) did not suppress polypeptide levels in patients with tumors, but did suppress plasma levels by more than 50 percent in all subjects without tumors. Thus, although its diagnostic sensitivity is low, pancreatic polypeptide appears to be a useful adjunctive marker of many pancreatic endocrine tumors, and the atropine suppression test can be used to distinguish normal from tumor-related secretion of the polypeptide. Identification of the type of pancreatic endocrine tumor still requires measurement of the hormone that is specific for the tumor.

  14. Expression of the nuclear gene TaF(A)d is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm.

    PubMed

    Xu, Pei; Yang, Yuwen; Zhang, Zhengzhi; Chen, Weihua; Zhang, Caiqin; Zhang, Lixia; Zou, Sixiang; Ma, Zhengqiang

    2008-01-01

    Alterations of mitochondrial-encoded subunits of the F(o)F(1)-ATP synthase are frequently associated with cytoplasmic male sterility (CMS) in plants; however, little is known about the relationship of the nuclear encoded subunits of this enzyme with CMS. In the present study, the full cDNA of the gene TaF(A)d that encodes the putative F(A)d subunit of the F(o)F(1)-ATP synthase was isolated from the wheat (Triticum aestivum) fertility restorer '2114' for timopheevii cytoplasm-based CMS. The deduced 238 amino acid polypeptide is highly similar to its counterparts in dicots and other monocots but has low homology to its mammalian equivalents. TaF(A)d is a single copy gene in wheat and maps to the short arm of the group 6 chromosomes. Transient expression of the TaF(A)d-GFP fusion in onion epidermal cells demonstrated TaF(A)d's mitochondrial location. TaF(A)d was expressed abundantly in stem, leaf, anther, and ovary tissues of 2114. Nevertheless, its expression was repressed in anthers of CMS plants with timopheevii cytoplasm. Genic male sterility did not affect its expression in anthers. The expression of the nuclear gene encoding the 20 kDa subunit of F(o) was down-regulated in a manner similar to TaF(A)d in the T-CMS anthers while that of genes encoding the 6 kDa subunit of F(o) and the gamma subunit of F(1) was unaffected. These observations implied that TaF(A)d is under mitochondrial retrograde regulation in the anthers of CMS plants with timopheevii cytoplasm.

  15. Dissecting substrate specificities of the mitochondrial AFG3L2 protease.

    PubMed

    Ding, Bojian; Martin, Dwight W; Rampello, Anthony J; Glynn, Steven E

    2018-06-22

    Human AFG3L2 is a compartmental AAA+ protease that performs ATP-fueled degradation at the matrix face of the inner mitochondrial membrane. Identifying how AFG3L2 selects substrates from the diverse complement of matrix-localized proteins is essential for understanding mitochondrial protein biogenesis and quality control. Here, we create solubilized forms of AFG3L2 to examine the enzyme's substrate specificity mechanisms. We show that conserved residues within the pre-sequence of the mitochondrial ribosomal protein, MrpL32, target the subunit to the protease for processing into a mature form. Moreover, these residues can act as a degron, delivering diverse model proteins to AFG3L2 for degradation. By determining the sequence of degra-dation products from multiple substrates using mass spectrometry, we construct a peptidase specificity pro-file that displays constrained product lengths and is dominated by the identity of the residue at the P1' posi-tion, with a strong preference for hydrophobic and small polar residues. This specificity profile is validated by examining the cleavage of both fluorogenic reporter peptides and full polypeptide substrates bearing different P1' residues. Together, these results demonstrate that AFG3L2 contains multiple modes of specificity, dis-criminating between potential substrates by recognizing accessible degron sequences, and performing peptide bond cleavage at preferred patterns of residues within the compartmental chamber.

  16. DNA-dependent RNA polymerase II from Candida species is a multiple zinc-containing metalloenzyme.

    PubMed

    Patturajan, M; Sevugan, M; Chatterji, D

    1999-08-01

    We have purified DNA-dependent RNA polymerase II from Candida albicans, a human pathogenic yeast. The enzyme consists of 9 polypeptides that are unique to C. albicans, their mobility on SDS-PAGE being different from the mobility of the corresponding subunits of RNA polymerase II from Saccharomyces cerevisiae or C. utilis. In the present study we also demonstrate that RNA pol II from C. albican and C. utilis are metalloproteins containing approximately 5 mol of zinc per mole of enzyme. Although prolonged dialysis in 10 or 20 mM EDTA failed to remove Zn(II) from the C. albicans enzyme, in the C. utilis enzyme 3 Zn(II) ions could be removed and then reconstituted in the presence of excess Zn(II). o-Phenanthroline (5 mM) removed Zn(II) from C. albicans enzyme irreversibly in a time-dependent fashion with concomitant loss of enzyme activity. Circular dichroism studies revealed structural changes on removal of zinc, thus suggesting a role for Zn in maintenance of structural stability. Further, we demonstrate that the largest subunit of the C. utilis enzyme and the 3 large subunits of the C. albicans enzyme can bind radioactive zinc.

  17. Molecular characterization of the alpha subunit of complement component C8 (GcC8α) in the nurse shark (Ginglymostoma cirratum)

    PubMed Central

    Aybar, Lydia; Shin, Dong-Ho; Smith, Sylvia L.

    2009-01-01

    Target cell lysis by complement is achieved by the assembly and insertion of the membrane attack complex (MAC) composed of glycoproteins C5b through C9. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. Mammalian C8 is composed of α, β, and γ subunits. The subunit structure of shark C8 is not known. This report describes a 2341 nucleotide sequence that translates into a polypeptide of 589 amino acid residues, orthologue to mammalian C8α and has the same modular architecture with conserved cysteines forming the peptide bond backbone. The C8γ-binding cysteine is conserved in the perforin-like domain. Hydrophobicity profile indicates the presence of hydrophobic residues essential for membrane insertion. It shares 41.1% and 47.4 % identity with human and Xenopus C8α respectively. Southern blot analysis showed GcC8α exists as a single copy gene expressed in most tissues except the spleen with the liver being the main site of synthesis. Phylogenetic analysis places it in a clade with C8α orthologs and as a sister taxa to the Xenopus. PMID:19524681

  18. Pancreatic polypeptide and calcitonin secretion from a pancreatic tumour-clinical improvement after hepatic artery embolization.

    PubMed Central

    Manche, A.; Wood, S. M.; Adrian, T. E.; Welbourn, R. B.; Bloom, S. R.

    1983-01-01

    We present a case in which plasma pancreatic polypeptide and calcitonin were found to be raised in association with an islet cell tumour of the pancreas and its hepatic metastases. In this patient, no specific endocrine syndrome was found. Therapeutic hepatic artery embolization improved the general health of the patient with no change in plasma pancreatic polypeptide, but a fall in calcitonin. PMID:6308585

  19. Pancreatic polypeptide and calcitonin secretion from a pancreatic tumour-clinical improvement after hepatic artery embolization.

    PubMed

    Manche, A; Wood, S M; Adrian, T E; Welbourn, R B; Bloom, S R

    1983-05-01

    We present a case in which plasma pancreatic polypeptide and calcitonin were found to be raised in association with an islet cell tumour of the pancreas and its hepatic metastases. In this patient, no specific endocrine syndrome was found. Therapeutic hepatic artery embolization improved the general health of the patient with no change in plasma pancreatic polypeptide, but a fall in calcitonin.

  20. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs

    PubMed Central

    Skoberne, Mojca; Cardin, Rhonda; Lee, Alexander; Kazimirova, Ana; Zielinski, Veronica; Garvie, Danielle; Lundberg, Amy; Larson, Shane; Bravo, Fernando J.; Bernstein, David I.; Flechtner, Jessica B.

    2013-01-01

    Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4+ and CD8+ T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease. PMID:23365421

  1. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas; Ruf, Stephanie; Wang, Yanliang; Skaugen, Morten; Bock, Ralph; Clarke, Jihong Liu

    2016-07-01

    Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.

  2. Cloning of a methanol-inducible moxF promoter and its analysis in moxB mutants of Methylobacterium extorquens AM1rif.

    PubMed Central

    Morris, C J; Lidstrom, M E

    1992-01-01

    In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436

  3. Subunit assembly of hemoglobin: an important determinant of hematologic phenotype.

    PubMed

    Bunn, H F

    1987-01-01

    Hemoglobin's physiologic properties depend on the orderly assembly of its subunits in erythropoietic cells. The biosynthesis of alpha- and beta-globin polypeptide chains is normally balanced. Heme rapidly binds to the globin subunit, either during translation or shortly thereafter. The formation of the alpha beta-dimer is facilitated by electrostatic attraction of a positively charged alpha-subunit to a negatively charged beta-subunit. The alpha beta-dimer dissociates extremely slowly. The difference between the rate of dissociation of alpha beta- and alpha gamma-dimers with increasing pH explains the well-known alkaline resistance of Hb F. Two dimers combine to form the functioning alpha 2 beta 2-tetramer. This model of hemoglobin assembly explains the different levels of positively charged and negatively charged mutant hemoglobins that are encountered in heterozygotes and the effect of alpha-thalassemia and heme deficiency states in modifying the level of the variant hemoglobin as well as Hb A2. Electrostatic interactions also affect the binding of hemoglobin to the cytoplasmic surface of the red cell membrane and may underlie the formation of target cells. Enhanced binding of positively charged variants such as S and C trigger a normally dormant pathway for potassium and water loss. Thus, the positive charge on beta c is responsible for the two major contributors to the pathogenesis of Hb SC disease: increased proportion of Hb S and increased intracellular hemoglobin concentration. It is likely that electrostatic interactions play an important role in the assembly of a number of other multisubunit macromolecules, including membrane receptors, cytoskeletal proteins, and DNA binding proteins.

  4. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy.

    PubMed Central

    Musumeci, O; Andreu, A L; Shanske, S; Bresolin, N; Comi, G P; Rothstein, R; Schon, E A; DiMauro, S

    2000-01-01

    We report an unusual molecular defect in the mitochondrially encoded ND1 subunit of NADH ubiquinone oxidoreductase (complex I) in a patient with mitochondrial myopathy and isolated complex I deficiency. The mutation is an inversion of seven nucleotides within the ND1 gene, which maintains the reading frame. The inversion, which alters three highly conserved amino acids in the polypeptide, was heteroplasmic in the patient's muscle but was not detectable in blood. This is the first report of a pathogenic inversion mutation in human mtDNA. PMID:10775530

  5. Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858).

    PubMed

    Armesto, Paula; Infante, Carlos; Cousin, Xavier; Ponce, Marian; Manchado, Manuel

    2015-04-01

    In the present work, seven genes encoding Na(+),K(+)-ATPase (NKA) β-subunits in the teleost Solea senegalensis are described for the first time. Sequence analysis of the predicted polypeptides revealed a high degree of conservation with those of other vertebrate species and maintenance of important motifs involved in structure and function. Phylogenetic analysis clustered the seven genes into four main clades: β1 (atp1b1a and atp1b1b), β2 (atp1b2a and atp1b2b), β3 (atp1b3a and atp1b3b) and β4 (atp1b4). In juveniles, all paralogous transcripts were detected in the nine tissues examined albeit with different expression patterns. The most ubiquitous expressed gene was atp1b1a whereas atp1b1b was mainly detected in osmoregulatory organs (gill, kidney and intestine), and atp1b2a, atp1b2b, atp1b3a, atp1b3b and atp1b4 in brain. An expression analysis in three brain regions and pituitary revealed that β1-type transcripts were more abundant in pituitary than the other β paralogs with slight differences between brain regions. Quantification of mRNA abundance in gills after a salinity challenge showed an activation of atp1b1a and atp1b1b at high salinity water (60 ppt) and atp1b3a and atp1b3b in response to low salinity (5 ppt). Transcriptional analysis during larval development showed specific expression patterns for each paralog. Moreover, no differences in the expression profiles between larvae cultivated at 10 and 35 ppt were observed except for atp1b4 with higher mRNA levels at 10 than 35 ppt at 18 days post hatch. Whole-mount in situ hybridization analysis revealed that atp1b1b was mainly localized in gut, pronephric tubule, gill, otic vesicle, and chordacentrum of newly hatched larvae. All these data suggest distinct roles of NKA β subunits in tissues, during development and osmoregulation with β1 subunits involved in the adaptation to hyperosmotic conditions and β3 subunits to hypoosmotic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Biochemical and Physical Properties of the Methanococcus jannaschii 20S Proteasome and PAN, a Homolog of the ATPase (Rpt) Subunits of the Eucaryal 26S Proteasome†

    PubMed Central

    Wilson, Heather L.; Ou, Mark S.; Aldrich, Henry C.; Maupin-Furlow, Julie

    2000-01-01

    The 20S proteasome is a self-compartmentalized protease which degrades unfolded polypeptides and has been purified from eucaryotes, gram-positive actinomycetes, and archaea. Energy-dependent complexes, such as the 19S cap of the eucaryal 26S proteasome, are assumed to be responsible for the recognition and/or unfolding of substrate proteins which are then translocated into the central chamber of the 20S proteasome and hydrolyzed to polypeptide products of 3 to 30 residues. All archaeal genomes which have been sequenced are predicted to encode proteins with up to ∼50% identity to the six ATPase subunits of the 19S cap. In this study, one of these archaeal homologs which has been named PAN for proteasome-activating nucleotidase was characterized from the hyperthermophile Methanococcus jannaschii. In addition, the M. jannaschii 20S proteasome was purified as a 700-kDa complex by in vitro assembly of the α and β subunits and has an unusually high rate of peptide and unfolded-polypeptide hydrolysis at 100°C. The 550-kDa PAN complex was required for CTP- or ATP-dependent degradation of β-casein by archaeal 20S proteasomes. A 500-kDa complex of PAN(Δ1–73), which has a deletion of residues 1 to 73 of the deduced protein and disrupts the predicted N-terminal coiled-coil, also facilitated this energy-dependent proteolysis. However, this deletion increased the types of nucleotides hydrolyzed to include not only ATP and CTP but also ITP, GTP, TTP, and UTP. The temperature optimum for nucleotide (ATP) hydrolysis was reduced from 80°C for the full-length protein to 65°C for PAN(Δ1–73). Both PAN protein complexes were stable in the absence of ATP and were inhibited by N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid. Kinetic analysis reveals that the PAN protein has a relatively high Vmax for ATP and CTP hydrolysis of 3.5 and 5.8 μmol of Pi per min per mg of protein as well as a relatively low affinity for CTP and ATP with Km values of 307 and 497 μM compared to other proteins of the AAA family. Based on electron micrographs, PAN and PAN(Δ1–73) apparently associate with the ends of the 20S proteasome cylinder. These results suggest that the M. jannaschii as well as related archaeal 20S proteasomes require a nucleotidase complex such as PAN to mediate the energy-dependent hydrolysis of folded-substrate proteins and that the N-terminal 73 amino acid residues of PAN are not absolutely required for this reaction. PMID:10692374

  7. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    PubMed

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Transcriptional regulation of the cytosolic chaperonin theta subunit gene, Cctq, by Ets domain transcription factors Elk-1, Sap-1a, and Net in the absence of serum response factor.

    PubMed

    Yamazaki, Yuji; Kubota, Hiroshi; Nozaki, Masami; Nagata, Kazuhiro

    2003-08-15

    The chaperonin-containing t-complex polypeptide 1 (CCT) is a molecular chaperone that facilitates protein folding in eukaryotic cytosol, and the expression of CCT is highly dependent on cell growth. We show here that transcription of the gene encoding the theta subunit of mouse CCT, Cctq, is regulated by the ternary complex factors (TCFs), Elk-1, Sap-1a, and Net (Sap-2). Reporter gene assay using HeLa cells indicated that the Cctq gene promoter contains a cis-acting element of the CCGGAAGT sequence (CQE1) at -36 bp. The major CQE1-binding proteins in HeLa cell nuclear extract was recognized by anti-Elk-1 or anti-Sap-1a antibodies in electrophoretic mobility shift assay, and recombinant Elk-1, Sap-1a, or Net specifically recognized CQE1. The CQE1-dependent transcriptional activity in HeLa cells was virtually abolished by overexpression of the DNA binding domains of TCFs. Overexpression of full-length TCFs with Ras indicated that exogenous TCFs can regulate the CQE1-dependent transcription in a Ras-dependent manner. PD98059, an inhibitor of MAPK, significantly repressed the CQE1-dependent transcription. However, no serum response factor was detected by electrophoretic mobility shift assay using the CQE1 element. These results indicate that transcription of the Cctq gene is regulated by TCFs under the control of the Ras/MAPK pathway, probably independently of serum response factor.

  9. Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells

    PubMed Central

    Theil, Arjan F; Mari, Pierre-Olivier; Hoogstraten, Deborah; Ng, Jessica M. Y; Dinant, Christoffel; Hoeijmakers, Jan H. J

    2006-01-01

    Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER. PMID:16669699

  10. Clinical experience with respiratory syncytial virus vaccines.

    PubMed

    Piedra, Pedro A

    2003-02-01

    Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines.

  11. Regulated transport into the nucleus of herpesviridae DNA replication core proteins.

    PubMed

    Gualtiero, Alvisi; Jans, David A; Camozzi, Daria; Avanzi, Simone; Loregian, Arianna; Ripalti, Alessandro; Palù, Giorgio

    2013-09-16

    The Herpesvirdae family comprises several major human pathogens belonging to three distinct subfamilies. Their double stranded DNA genome is replicated in the nuclei of infected cells by a number of host and viral products. Among the latter the viral replication complex, whose activity is strictly required for viral replication, is composed of six different polypeptides, including a two-subunit DNA polymerase holoenzyme, a trimeric primase/helicase complex and a single stranded DNA binding protein. The study of herpesviral DNA replication machinery is extremely important, both because it provides an excellent model to understand processes related to eukaryotic DNA replication and it has important implications for the development of highly needed antiviral agents. Even though all known herpesviruses utilize very similar mechanisms for amplification of their genomes, the nuclear import of the replication complex components appears to be a heterogeneous and highly regulated process to ensure the correct spatiotemporal localization of each protein. The nuclear transport process of these enzymes is controlled by three mechanisms, typifying the main processes through which protein nuclear import is generally regulated in eukaryotic cells. These include cargo post-translational modification-based recognition by the intracellular transporters, piggy-back events allowing coordinated nuclear import of multimeric holoenzymes, and chaperone-assisted nuclear import of specific subunits. In this review we summarize these mechanisms and discuss potential implications for the development of antiviral compounds aimed at inhibiting the Herpesvirus life cycle by targeting nuclear import of the Herpesvirus DNA replicating enzymes.

  12. A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.

    PubMed Central

    Enrich, C; Bachs, O; Evans, W H

    1988-01-01

    The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436

  13. Synthesis of Globulins in Maize Embryos 1

    PubMed Central

    Kriz, Alan L.; Schwartz, Drew

    1986-01-01

    The two major components of the globulin fraction in Zea mays embryos are specified by the Prot gene. Pulse-chase analysis of protein synthesis in cultured, immature embryos indicates that the smaller Prot-specific polypeptide, PROT, is derived from the larger polypeptide, PROT'. These experiments also demonstrate that PROT' is derived from a short-lived precursor polypeptide, prePROT'. The primary Prot-specific translation product, as detected by in vitro translation of immature embryo RNA, is of a lower apparent molecular weight than pre-PROT', suggesting the involvement of co- and/or post-translational modification in the production of prePROT'. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16665136

  14. Enzymes that cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravit, Nancy G.; Schmidt, Katherine A.

    The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.

  15. Sequential detection of different antigens induced by Epstein-Barr virus and herpes simplex virus in the same Western blot by using dual antibody probes.

    PubMed

    Lin, J C; Pagano, J S

    1986-08-01

    A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.

  16. Synthesis of hemoglobin Gun Hill: increased synthesis of the heme-free βGH globin chain and subunit exchange with a free α-chain pool

    PubMed Central

    Rieder, Ronald F.

    1971-01-01

    Hemoglobin Gun Hill is an unstable mutant hemoglobin associated with mild compensated hemolysis. This abnormal protein has a deletion of five amino acids in the β-chains. The deletion includes the heme-binding proximal histidine at position 92. The β-chains of hemoglobin Gun Hill lack heme groups. Approximately 32% of the circulating hemoglobin in heterozygous subjects consists of the mutant hemoglobin. When reticulocytes were incubated with radioactive amino acid the specific activity of hemoglobin Gun Hill was three to six times that of hemoglobin A. Total incorporation of radioactivity into hemoglobin Gun Hill was two to three times that into hemoglobin A. There were 20-50% more total counts in β-Gun Hill (βGH) than in βA. These results indicate that in reticulocytes there was greater synthesis of the abnormal β-chains than βA-chains. The ratio of the specific activities of the α-chains of hemoglobin Gun Hill to the α-chains of hemoglobin A was 20: 1. There was evidence of a free pool of α-chains in the reticulocytes containing hemoglobin Gun Hill. After 10 min of incubation approximately 40% of the total α-chain radioactivity was in the free pool. When protein synthesis was blocked by incubation of reticulocytes with puromycin, the specific activity of the α-chains of hemoglobin Gun Hill continued to increase due to direct exchange of α-subunits between the free pool and preformed hemoglobin Gun Hill. Studies of the assembly of βA and βGH revealed that the rates of translation of the two polypeptide chains were equal and uniform. No evidence was obtained for the existence of “slow points” in the process of globin chain assembly. The studies also suggest that lack of strong heme-globin binding does not hinder the synthesis of globin chains. PMID:5540175

  17. Semisynthetic protein nanoreactor for single-molecule chemistry

    PubMed Central

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203

  18. The Ribosome-Bound Chaperones RAC and Ssb1/2p Are Required for Accurate Translation in Saccharomyces cerevisiae

    PubMed Central

    Rakwalska, Magdalena; Rospert, Sabine

    2004-01-01

    The chaperone homologs RAC (ribosome-associated complex) and Ssb1/2p are anchored to ribosomes; Ssb1/2p directly interacts with nascent polypeptides. The absence of RAC or Ssb1/2p results in a similar set of phenotypes, including hypersensitivity against the aminoglycoside paromomycin, which binds to the small ribosomal subunit and compromises the fidelity of translation. In order to understand this phenomenon we measured the frequency of translation termination and misincorporation in vivo and in vitro with a novel reporter system. Translational fidelity was impaired in the absence of functional RAC or Ssb1/2p, and the effect was further enhanced by paromomycin. The mutant strains suffered primarily from a defect in translation termination, while misincorporation was compromised to a lesser extent. Consistently, a low level of soluble translation termination factor Sup35p enhanced growth defects in the mutant strains. Based on the combined data we conclude that RAC and Ssb1/2p are crucial in maintaining translational fidelity beyond their postulated role as chaperones for nascent polypeptides. PMID:15456889

  19. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae.

    PubMed

    Rakwalska, Magdalena; Rospert, Sabine

    2004-10-01

    The chaperone homologs RAC (ribosome-associated complex) and Ssb1/2p are anchored to ribosomes; Ssb1/2p directly interacts with nascent polypeptides. The absence of RAC or Ssb1/2p results in a similar set of phenotypes, including hypersensitivity against the aminoglycoside paromomycin, which binds to the small ribosomal subunit and compromises the fidelity of translation. In order to understand this phenomenon we measured the frequency of translation termination and misincorporation in vivo and in vitro with a novel reporter system. Translational fidelity was impaired in the absence of functional RAC or Ssb1/2p, and the effect was further enhanced by paromomycin. The mutant strains suffered primarily from a defect in translation termination, while misincorporation was compromised to a lesser extent. Consistently, a low level of soluble translation termination factor Sup35p enhanced growth defects in the mutant strains. Based on the combined data we conclude that RAC and Ssb1/2p are crucial in maintaining translational fidelity beyond their postulated role as chaperones for nascent polypeptides.

  20. Auxin-Regulated Polypeptide Changes at Different Stages of Strawberry Fruit Development 1

    PubMed Central

    Veluthambi, K.; Poovaiah, B. W.

    1984-01-01

    The pattern of polypeptides at different stages of strawberry (Fragaria ananassa Duch. cv Ozark Beauty) fruit development was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An 81,000-dalton polypeptide appeared between 5 and 10 days after pollination. Polypeptides with molecular weights of 76,000 and 37,000 daltons were formed after 10 days. The control exerted by auxin in the stage-specific formation of polypeptides was investigated by stopping fruit growth after removing the achenes and reinitiating fruit growth by the application of a synthetic auxin, α-naphthaleneacetic acid (NAA). When the achenes were removed from the 5- and 10-day-old fruits, the fruits failed to grow, the 81,000 dalton polypeptide was not formed between 5 and 10 days, and the 76,000- and 37,000-dalton polypeptides were not formed between 10 and 20 days. Application of NAA to fruits deprived of auxin by removal of achenes resulted in the resumption of growth and also in the appearance of these polypeptides. Removal of achenes of the 5- or 10-day-old fruits and growing them without auxin resulted in the formation of 52,000- and 57,000-dalton polypeptides. These two polypeptides were not formed when NAA was applied to fruits after removal of achenes. Supply of NAA to auxin-deprived fruits 5 days after removal of achenes resulted in resumption of growth and also in the disappearance of these two polypeptides, pointing out their possible relation to the inhibition of fruit growth. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663624

  1. Structure and function of archaeal prefoldin, a co-chaperone of group II chaperonin.

    PubMed

    Ohtaki, Akashi; Noguchi, Keiichi; Yohda, Masafumi

    2010-01-01

    Molecular chaperones are key cellular components involved in the maintenance of protein homeostasis and other unrelated functions. Prefoldin is a chaperone that acts as a co-factor of group II chaperonins in eukaryotes and archaea. It assists proper folding of protein by capturing nonnative proteins and delivering it to the group II chaperonin. Eukaryotic prefoldin is a multiple subunit complex composed of six different polypeptide chains. Archaeal prefoldin, on the other hand, is a heterohexameric complex composed of two alpha and four beta subunits, and forms a double beta barrel assembly with six long coiled coils protruding from it like a jellyfish with six tentacles. Based on the structural information of the archaeal prefoldin, substrate recognition and prefoldin-chaperonin binding mechanisms have been investigated. In this paper, we review a series of studies on the molecular mechanisms of archaeal PFD function. Particular emphasis will be placed on the molecular structures revealed by X-ray crystallography and molecular dynamics induced by binding to nonnative protein substrates.

  2. Expression of glutathione peroxidase I gene in selenium-deficient rats.

    PubMed Central

    Reddy, A P; Hsu, B L; Reddy, P S; Li, N Q; Thyagaraju, K; Reddy, C C; Tam, M F; Tu, C P

    1988-01-01

    We have characterized a cDNA pGPX1211 encoding rat glutathione peroxidase I. The selenocysteine in the protein corresponded to a TGA codon in the coding region of the cDNA, similar to earlier findings in mouse and human genes, and a gene encoding the formate dehydrogenase from E. coli, another selenoenzyme. The rat GSH peroxidase I has a calculated subunit molecular weight of 22,155 daltons and shares 95% and 86% sequence homology with the mouse and human subunits, respectively. The 3'-noncoding sequence (greater than 930 bp) in pGPX1211 is much longer than that of the human sequences. We found that glutathione peroxidase I mRNA, but not the polypeptide, was expressed under nutritional stress of selenium deficiency where no glutathione peroxidase I activity can be detected. The failure of detecting any apoprotein for the glutathione peroxidase I under selenium deficiency and results published from other laboratories supports the proposal that selenium may be incorporated into the glutathione peroxidase I co-translationally. Images PMID:2838821

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rejda, J.M.; Johal, S.; Chollet, R.

    Homogeneous preparations of ribulose 1,5-bisphosphate carboxylase/oxygenase were isolated from several diploid and tetraploid cultivars of perennial ryegrass by three different purification protocols. The apparent K/sub m/ values for substrate CO/sub 2/ were essentially identical for the fully CO/sub 2//Mg/sup 2 +/-activated diploid and tetraploid enzymes, as were the kinetics for deactivation and activation of the CO/sub 2//Mg/sup 2 +/-activated and -depleted carboxylases, respectively. Similarly, virtually indistinguishable electrophoretic properties were observed for both the native and dissociated diploid and tetraploid ryegrass proteins, including native and subunit molecular weights and the isoelectric points of the native proteins and the large and smallmore » subunit component polypeptides. The quantity of carboxylase protein or total soluble leaf protein did not differ significantly between the diploid and tetraploid cultivars. Contrary to a previous report, these results indicate that increased ploidy level has had essentially no effect on the quantity or enzymic and physicochemical properties of ribulosebisphosphate carboxylase/oxygenase in perennial ryegrass.« less

  4. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  5. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin.

    PubMed

    Hicks, G R; Rayle, D L; Jones, A M; Lomax, T L

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  6. Plasmodium falciparum polypeptides released during in vitro cultivation*

    PubMed Central

    Da Silva, L. Rodriguez; Loche, M.; Dayal, R.; Perrin, L. H.

    1983-01-01

    Synchronous cultures of Plasmodium falciparum were successively labelled with (35S)-methionine and both the supernatants and the pellets of infected red blood cells were collected. The release of TCA-precipitable material in the culture supernatants was low during the development of ring forms and trophozoites, increased during schizogony, and was maximum at the time of schizont rupture and merozoite reinvasion. Analysis of the supernatants by SDS — PAGE and autoradiography showed that both polypeptides common to the various developmental stages of the parasite and schizont/merozoite-specific polypeptides were released. Polypeptides of relative molecular mass 140 000, 82 000 and, to a lower degree, 41 000 were present in high amounts in the culture supernatants. These polypeptides have been shown to be the target of monoclonal antibodies that are able to inhibit the growth of P. falciparum cultures, and may be involved in protective immunity. The released polypeptides may also be used as target antigens in immunodiagnostic tests aiming at the detection of malaria infection. ImagesFig. 2AFig. 2BFig. 3 PMID:6340846

  7. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.

  8. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  9. Chaperonin containing T-complex polypeptide subunit eta is a potential marker of joint contracture: an experimental study in the rat.

    PubMed

    He, Ronghan; Wang, Zhe; Lu, Yunxiang; Huang, Junqi; Ren, Jianhua; Wang, Kun

    2015-11-01

    Joint contracture is a fibroproliferative disorder that restricts joint mobility, resulting in tissue degeneration and deformity. However, the etiology of joint contracture is still unknown. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta) is reported to increase in fibrotic diseases. The purpose of this study was to investigate whether CCT-eta is implicated in joint contracture and to determine the role of CCT-eta in the progression of joint contracture by analyzing a rat model. We immobilized the left knee joint of rat by internal fixation for 8 weeks. The non-immobilized right leg served as a control. The range of motion (ROM) of the knee was investigated. Fibroblasts were obtained from the posterior joint capsule of the joints. The outcome was followed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, fibroblast migration assay, and collagen assay. The effect of CCT-eta on the functions of fibroblasts was observed by utilizing a short inhibitory RNA (siRNA) targeting CCT-eta. The ROM of the immobilized joints was significantly limited compared to the contralateral joints (p < 0.05). Fibroblasts derived from the contractive joints showed higher mRNA and protein expressions of CCT-eta in parallel with alpha-smooth muscle actin (α-SMA) compared to the cells from the contralateral knees (p < 0.05). siRNA-mediated downregulation of CCT-eta inhibited the expressions of both CCT-eta and α-SMA. Moreover, the reduction of CCT-eta also significantly decreased fibroblast functions such as cell mobility and collagen synthesis (all p < 0.05). Our findings indicate that CCT-eta appears to be a potential marker of joint contracture disease.

  10. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability.

    PubMed

    Peters, J; Nitsch, M; Kühlmorgen, B; Golbik, R; Lupas, A; Kellermann, J; Engelhardt, H; Pfander, J P; Müller, S; Goldie, K

    1995-01-27

    The surface (S-) layer of the hyperthermophilic archaebacterium Staphylothermus marinus was isolated, dissected into separate domains by chemical and proteolytic methods, and analyzed by spectroscopic, electron microscopic and biochemical techniques. The S-layer is formed by a poorly ordered meshwork of branched, filiform morphological subunits resembling dandelion seed-heads. A morphological subunit (christened by us tetrabrachion) consists of a 70 nm long, almost perfectly straight stalk ending in four straight arms of 24 nm length that provide lateral connectivity by end-to-end contacts. At 32 nm from the branching point, tetrabrachion carries two globular particles of 10 nm diameter that have both tryptic and chymotryptic protease activity. Tetrabrachion is built by a tetramer of M(r) 92,000 polypeptides that form a parallel, four-stranded alpha-helical rod and separate at one end into four strands. These strands interact in a 1:1 stoichiometry with polypeptides of M(r) 85,000 to form the arms. The arms are composed entirely of beta-sheets. All S-layer components contain bound carbohydrates (glucose, mannose, and glucosamine) at a ratio of 38 g/100 g protein for the complete tetrabrachion-protease complex. The unique structure of tetrabrachion is reflected in an extreme thermal stability in the presence of strong denaturants (1% (w/v) SDS of 6M guanidine): the arms, which are stabilized by intramolecular disulphide bridges, melt around 115 degrees C under non-reducing conditions, whereas the stalk sustains heating up to about 130 degrees C. Complete denaturation of the stalk domain requires treatment with 70% (v/v) sulfuric acid or with fuming trifluoromethanesulfonic acid. The globular protease can be heated to 90 degrees C in 6M guanidine and to 120 degrees C in 1% SDS and represents one of the most stable proteases characterized to date.

  11. Creatine kinase is physically associated with the cardiac ATP-sensitive k+ channel in vivo

    PubMed Central

    Crawford, Russell M.; Ranki, Harri J.; Botting, Catherine H.; Budas, Grant R.; Jovanovic, Aleksandar

    2007-01-01

    Cardiac sarcolemmal ATP-sensitive K+ (KATP) channels, composed of Kir6.2 and SUR2A subunits, couple the metabolic status of cells with the membrane excitability. Based on previous functional studies, we have hypothesized that creatine kinase (CK) may be a part of the sarcolemmal KATP channel protein complex. The inside-out and whole cell patch clamp electrophysiology applied on guinea pig cardiomyocytes showed that substrates of CK regulate KATP channels activity. Following immunoprecipitation of guinea-pig cardiac membrane fraction with the anti-SUR2 antibody, Coomassie blue staining revealed, besides Kir6.2 and SUR2A, a polypeptide at ∼48 kDa. Western blotting analysis confirmed the nature of putative Kir6.2 and SUR2A, whereas matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis identified p48 kDa as a muscle form of CK. In addition, the CK activity was found in the anti-SUR2A immunoprecipitate and the cross reactivity between an anti-CK antibody and the anti-SUR2A immunoprecipitate was observed as well as vice verse. Further results obtained at the level of recombinant channel subunits demonstrated that CK is directly physically associated with the SUR2A, but not the Kir6.2, subunit. All together, these results suggest that the CK is associated with SUR2A subunit in vivo, which is an integral part of the sarcolemmal KATP channel protein complex. PMID:11729098

  12. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  13. Pseudo-merohedral twinning and noncrystallographic symmetry in orthorhombic crystals of SIVmac239 Nef core domain bound to different-length TCRζ fragments

    PubMed Central

    Kim, Walter M.; Sigalov, Alexander B.; Stern, Lawrence J.

    2010-01-01

    HIV/SIV Nef mediates many cellular processes through interactions with various cytoplasmic and membrane-associated host proteins, including the signalling ζ subunit of the T-­cell receptor (TCRζ). Here, the crystallization strategy, methods and refinement procedures used to solve the structures of the core domain of the SIVmac239 isolate of Nef (Nefcore) in complex with two different TCRζ fragments are described. The structure of SIVmac239 Nefcore bound to the longer TCRζ polypeptide (Leu51–Asp93) was determined to 3.7 Å resolution (R work = 28.7%) in the tetragonal space group P43212. The structure of SIVmac239 Nefcore in complex with the shorter TCRζ polypeptide (Ala63–Arg80) was determined to 2.05 Å resolution (R work = 17.0%), but only after the detection of nearly perfect pseudo-merohedral crystal twinning and proper assignment of the orthorhombic space group P212121. The reduction in crystal space-group symmetry induced by the truncated TCRζ polypeptide appears to be caused by the rearrangement of crystal-contact hydrogen-bonding networks and the substitution of crystallographic symmetry operations by similar noncrystallographic symmetry (NCS) operations. The combination of NCS rotations that were nearly parallel to the twin operation (k, h, −l) and a and b unit-cell parameters that were nearly identical predisposed the P212121 crystal form to pseudo-merohedral twinning. PMID:20124696

  14. Molecular characterization of the alpha subunit of complement component C8 (GcC8alpha) in the nurse shark (Ginglymostoma cirratum).

    PubMed

    Aybar, Lydia; Shin, Dong-Ho; Smith, Sylvia L

    2009-09-01

    Target cell lysis by complement is achieved by the assembly and insertion of the membrane attack complex (MAC) composed of glycoproteins C5b through C9. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. Mammalian C8 is composed of alpha, beta, and gamma subunits. The subunit structure of shark C8 is not known. This report describes a 2341 nucleotide sequence that translates into a polypeptide of 589 amino acid residues, orthologue to mammalian C8alpha and has the same modular architecture with conserved cysteines forming the peptide bond backbone. The C8gamma-binding cysteine is conserved in the perforin-like domain. Hydrophobicity profile indicates the presence of hydrophobic residues essential for membrane insertion. It shares 41.1% and 47.4% identity with human and Xenopus C8alpha respectively. Southern blot analysis showed GcC8alpha exists as a single copy gene expressed in most tissues except the spleen with the liver being the main site of synthesis. Phylogenetic analysis places it in a clade with C8alpha orthologs and as a sister taxa to the Xenopus. 2009 Elsevier Ltd.

  15. L-type Ca2+ channels in the heart: structure and regulation.

    PubMed

    Treinys, Rimantas; Jurevicius, Jonas

    2008-01-01

    This review analyzes the structure and regulation mechanisms of voltage-dependent L-type Ca(2+) channel in the heart. L-type Ca(2+) channels in the heart are composed of four different polypeptide subunits, and the pore-forming subunit alpha(1) is the most important part of the channel. In cardiac myocytes, Ca(2+) enter cell cytoplasm from extracellular space mainly through L-type Ca(2+) channels; these channels are very important system in heart Ca(2+) uptake regulation. L-type Ca(2+) channels are responsible for the activation of sarcoplasmic reticulum channels (RyR2) and force of muscle contraction generation in heart; hence, activity of the heart depends on L-type Ca(2+) channels. Phosphorylation of channel-forming subunits by different kinases is one of the most important ways to change the activity of L-type Ca(2+) channel. Additionally, the activity of L-type Ca(2+) channels depends on Ca(2+) concentration in cytoplasm. Ca(2+) current in cardiac cells can facilitate, and this process is regulated by phosphorylation of L-type Ca(2+) channels and intracellular Ca(2+) concentration. Disturbances in cellular Ca(2+) transport and regulation of L-type Ca(2+) channels are directly related to heart diseases, life quality, and life span.

  16. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    PubMed

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  17. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.).

    PubMed

    Zhu, Jiantang; Hao, Pengchao; Chen, Guanxing; Han, Caixia; Li, Xiaohui; Zeller, Friedrich J; Hsam, Sai L K; Hu, Yingkao; Yan, Yueming

    2014-10-01

    The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.

  18. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    PubMed Central

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  19. The Origins of Specificity in the Microcin-Processing Protease TldD/E.

    PubMed

    Ghilarov, Dmitry; Serebryakova, Marina; Stevenson, Clare E M; Hearnshaw, Stephen J; Volkov, Dmitry S; Maxwell, Anthony; Lawson, David M; Severinov, Konstantin

    2017-10-03

    TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through β sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a "molecular pencil sharpener": unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    PubMed

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  1. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    PubMed Central

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  2. Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.

    Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less

  3. A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization.

    PubMed

    Wang, Hualei; Li, Guinan; Li, Mingyang; Wei, Dongzhi; Wang, Xuedong

    2014-01-01

    In this study, a novel nitrilase gene from Rhodobacter sphaeroides was cloned and overexpressed in Escherichia coli. The open reading frame of the nitrilase gene includes 969 base pairs, which encodes a putative polypeptide of 322 amino acid residues. The molecular weight of the purified native nitrilase was about 560 kDa determined by size exclusion chromatography. This nitrilase showed one single band on SDS-PAGE with a molecular weight of 40 kDa. This suggested that the native nitrilase consisted of 14 subunits with identical size. The optimal pH and temperature of the purified enzyme were 7.0 and 40 °C, respectively. The kinetic parameters V max and K m toward 3-cyanopyridine were 77.5 μmol min(-1) mg(-1) and 73.1 mmol/l, respectively. The enzyme can easily convert aliphatic nitrile and aromatic nitriles to their corresponding acids. Furthermore, this enzyme demonstrated regioselectivity in hydrolysis of aliphatic dinitriles. This specific characteristic makes this nitrilase have a great potential for commercial production of various cyanocarboxylic acids by hydrolyzing readily available dinitriles.

  4. Systems for the expression of orthogonal translation components in eubacterial host cells

    DOEpatents

    Ryu, Youngha; Schultz, Peter G.

    2013-01-22

    The invention related to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural acids at genetically-programmed positions.

  5. Tumor suppressor molecules and methods of use

    DOEpatents

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  6. Systems for the expression of orthogonal translation components in eubacterial host cells

    DOEpatents

    Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2011-06-14

    The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.

  7. Systems for the expression of orthogonal translation components eubacterial host cells

    DOEpatents

    Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-12

    The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.

  8. Isolation and properties of the leukocytosis- and lymphocytosis- promoting factor of Bordetella pertussis

    PubMed Central

    1976-01-01

    The leukocytosis- and lymphocytosis-promoting factor (LPF) of Bordetella pertussis has been isolated to near homogeneity by physical, chemical, and electron microscopical criteria. LPF contains 14.5% nitrogen and is lipid and carbohydrate free. It is apparently composed of four polypeptide subunits. LPF caused leukocytosis and lymphocytosis in "nude" as well as in normal mice. In addition, purified LPF also induced histamine sensitization and hypoglycemia and refractoriness to the hyperglycemic effect of epinephrine. A monospecific LPF antiserum blocked these reactions as well as leukocytosis and lymphocytosis. LPF is clearly distinct from the hemagglutinating pili of B. pertussis. PMID:58054

  9. Yolk proteins during ovary and egg development of mature female freshwater crayfish (Cherax quadricarinatus).

    PubMed

    Serrano-Pinto, Vania; Vazquez-Boucard, Celia; Villarreal-Colmenares, Humberto

    2003-01-01

    Vitellins from ovaries and eggs at different stages of development in freshwater crayfish (Cherax quadricarinatus) were examined by chromatography, PAGE and SDS-PAGE. With these methods, two forms of vitellin (Vt1 and Vt2) were observed in ovaries and eggs (stages I and V). In ovaries in secondary vitellogenesis, native molecular mass was 470 (Vt1) and 440 (Vt2) kDa. The electrophoretic pattern of the eggs proved to be more complex. The protein molecular mass depend on the development stage of the egg: stage I, 650 kDa (Vt1) and 440 kDa (Vt2); stage V, 390 kDa (Vt1) and 340 kDa (Vt2). The identified vitellins appear to be lipo-glycocarotenoprotein. A similar vitellin polypeptide composition was observed in the two forms of vitellin from ovaries and eggs in stage V. In ovaries the SDS-PAGE analysis showed four subunits with molecular weights of approximately 180, 120, 95 and 80 kDa (Vt1 and Vt2). The polypeptide composition in the two forms of vitellins in stage I and stage III eggs were different at 195, 190, 130 and 110 kDa (Vt1) and 116 and 107 kDa (Vt2). On the other hand, in stage V eggs, 110, 95, 87 and 75 kDa (Vt1 and Vt2) were identified. Two antibodies (Ab1 and Ab2) were prepared against the purified proteins of stage V eggs and their specificity was demonstrated by radial immunoprecipitation, and Western blotting analysis. Two forms of vitellins were also found in stage V eggs after chromatography on Sepharose CL-2B column and hydroxylapatite and polyacrylamide gel electrophoresis.

  10. Charybdotoxin is a new member of the K sup + channel toxin family that includes dendrotoxin I and mast cell degranulating peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweitz, H.; Bidard, J.N.; Lazdunski, M.

    1989-12-12

    A polypeptide was identified in the venom of the scorpion Leiurus quinquestriatus hebraeus by its potency to inhibit the high affinity binding of the radiolabeled snake venom toxin dendrotoxin I ({sup 125}I-DTX{sub I}) to its receptor site. It has been purified, and its properties investigated by different techniques were found to be similar to those of MCD and DTX{sub I}, two polypeptide toxins active on a voltage-dependent K{sup +} channel. However, its amino acid sequence was determined, and it was shown that this toxin is in fact charybdotoxin (ChTX), a toxin classically used as a specific tool to block onemore » class of Ca{sup 2+}-activated K{sup +} channels. ChTX, DTX{sub I}, and MCD are potent convulsants and are highly toxic when injected intracerebroventricularly in mice. Their toxicities correlate well with their affinities for their receptors in rat brain. These three structurally different toxins release ({sup 3}H)GABA from preloaded synaptosomes, the efficiency order being DTX{sub I} > ChTX > MCD. Both binding and cross-linking experiments of ChTX to rat brain membranes and to the purified MCD/DTX{sub I} binding protein have shown that the {alpha}-subunit of the MCD/DTX{sub I}-sensitive K{sup +} channel protein also contains the ChTX binding sites. Binding sites for DTX{sub I}, MCD, and ChTX are in negative allosteric interaction. The results show that charybdotoxin belongs to the family of toxins which already includes the dendrotoxins and MCD, which are blockers of voltage-sensitive K{sup +} channels. ChTX is clearly not selective for Ca{sup 2+}-activated K{sup +} channel.« less

  11. Conserved small mRNA with an unique, extended Shine-Dalgarno sequence

    PubMed Central

    Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald

    2017-01-01

    ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614

  12. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    PubMed

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes

    PubMed Central

    Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell

    2014-01-01

    ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. PMID:25210190

  14. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2008-04-08

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  15. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2010-10-05

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  16. Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli.

    PubMed

    Nakamura, K; Yamaki, M; Sarada, M; Nakayama, S; Vibat, C R; Gennis, R B; Nakayashiki, T; Inokuchi, H; Kojima, S; Kita, K

    1996-01-05

    Complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli is composed of four nonidentical subunits encoded by the sdhCDAB operon. Gene products of sdhC and sdhD are small hydrophobic subunits that anchor the hydrophilic catalytic subunits (flavoprotein and iron-sulfur protein) to the cytoplasmic membrane and are believed to be the components of cytochrome b556 in E. coli complex II. In the present study, to elucidate the role of two hydrophobic subunits in the heme b ligation and functional assembly of complex II, plasmids carrying portions of the sdh gene were constructed and introduced into E. coli MK3, which lacks succinate dehydrogenase and fumarate reductase activities. The expression of polypeptides with molecular masses of about 19 and 17 kDa was observed when sdhC and sdhD were introduced into MK3, respectively, indicating that sdhC encodes the large subunit (cybL) and sdhD the small subunit (cybS) of cytochrome b556. An increase in cytochrome b content was found in the membrane when sdhD was introduced, while the cytochrome b content did not change when sdhC was introduced. However, the cytochrome b expressed by the plasmid carrying sdhD differed from cytochrome b556 in its CO reactivity and red shift of the alpha absorption peak to 557.5 nm at 77 K. Neither hydrophobic subunit was able to bind the catalytic portion to the membrane, and only succinate dehydrogenase activity, not succinate-ubiquinone oxidoreductase activity, was found in the cytoplasmic fractions of the cells. In contrast, significantly higher amounts of cytochrome b556 were expressed in the membrane when sdhC and sdhD genes were both present, and the catalytic portion was found to be localized in the membrane with succinate-ubiquitnone oxidoreductase and succinate oxidase activities. These results strongly suggest that both hydrophobic subunits are required for heme insertion into cytochrome b556 and are essential for the functional assembly of E. coli complex II in the membrane. Accumulation of the catalytic portion in the cytoplasm was found when sdhCDAB was introduced into a heme synthesis mutant, suggesting the importance of heme in the assembly of E. coli complex II.

  17. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like.

  18. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  19. Partial characterization of red gram (Cajanus cajan L. Millsp) polypeptides recognized by patients exhibiting rhinitis and bronchial asthma.

    PubMed

    Misra, Amita; Kumar, Rahul; Mishra, Vivek; Chaudhari, Bhushan P; Tripathi, Anurag; Das, Mukul; Dwivedi, Premendra D

    2010-10-01

    We sought to assess the allergenic potential of red gram by identifying and characterizing the responsible proteins. Immunoblotting was performed to detect IgE binding proteins. Identities of these proteins were confirmed by mass spectrometry. To evaluate allergenic potential, BALB/c mice were sensitized with red gram proteins and levels of specific immunoglobulins, histamine, Th2 cytokines were measured. Allergenic response was evident by significant increase in specific IgE, IgG1, histamine and Th2 cytokine levels. Prominent anaphylactic symptoms, discernible histopathological responses and down regulation of IFN-gamma levels give strong support towards allergenicity of red gram proteins. IgE immunoblot detected five proteins; one of 66 kDa, three of 45 kDa (pI of approximately 5.3, 5.9 and 6.6) and one of 30 kDa. All these proteins showed homology to known allergens of soybean (different subunits of beta-conglycinin), lentil (Len c1 and Len c2), peanut (Ara h1) and pea (vicilin). In conclusion, five novel IgE binding proteins (namely Caj c1, Caj c2, Caj c3, Caj c4 and Caj c5) were identified as putative clinically relevant allergens. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. [Collagens: why such a structural complexity?].

    PubMed

    Borel, J P; Monboisse, J C

    1993-01-01

    The collagens are a family of extracellular fibrillar proteins, characterized by the presence of one or several domains termed "triple helix", that are made of three polypeptide chains folded around each other. They elicit a huge worldwide research activity, marked every year by the publishing of dozens of books and thousands of papers. This family is presently represented by more than 16 individualized types, all differing by their molecular structure and by the way helical and globular domains are arranged. In any case, however, at least one triple helical domain exists. It is formed by the association of three polypeptide chains, each of them containing a glycine every three residues and many proline or hydroxyproline residues, and attests for the belonging of the protein to the collagen group. These multiple molecular forms and their specific architecture raise questions that remain unsolved. Why is this triple helix structure adopted in the case of collagens? Is it because the simple alpha helix of protein cannot extend over more than a few nanometers and is not solid enough? Why not a double helix like that of DNA? It would probably not be rigid enough. Why are there many globular domains interspersed between fibrillar ones? Probably these domains are useful for the association of peptide chains in register prior to their folding, then they participate in the transport of the elementary molecules from the synthesizing cells to their final place in the connective tissue and, finally, they insert the molecules into their specific place inside the growing fibrils. Collagen fibres as they are evidenced by histological methods, for instance in tendons, are of complex structure. Most of their constituting sub-units are type I tropocollagen molecules but they also contain in their center a filament of type V collagen that seems to serve as a guide during their edification. On the surface of the fibres are molecules of type III collagen that limit the growth in diameter and also type XII molecules that serve to bind the fibres to the surrounding substances. The collagen type multiplicity is explained by their various functions (mechanical role for tendons and ligaments, functions of wrapping around muscle cells, basement membrane role as a support for endothelial cells, function of glomerular filter, etc.). The fact that every collagen type contains several different polypeptide chains remains poorly explained. It may serve for the orientation of every elementary molecule inside the complex array of the polymer.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. PucC and LhaA direct efficient assembly of the light‐harvesting complexes in Rhodobacter sphaeroides

    PubMed Central

    Mothersole, David J.; Jackson, Philip J.; Vasilev, Cvetelin; Tucker, Jaimey D.; Brindley, Amanda A.; Dickman, Mark J.

    2015-01-01

    Summary The mature architecture of the photosynthetic membrane of the purple phototroph R hodobacter sphaeroides has been characterised to a level where an atomic‐level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light‐harvesting LH2 and reaction centre‐light‐harvesting1‐PufX (RC‐LH1‐PufX) photosystem complexes using spectroscopy, pull‐downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lha A and puc C mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in Δlha A mutants assemble to form normal RC‐LH1‐PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG‐SecDF‐YajC‐YidC assembly machinery, thereby co‐ordinating pigment delivery, the co‐translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes. PMID:26419219

  2. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath.

    PubMed Central

    Zahn, J A; Duncan, C; DiSpirito, A A

    1994-01-01

    An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline. Images PMID:7928947

  3. A Laboratory Exercise Illustrating the Sensitivity and Specificity of Western Blot Analysis

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; Lovett, Janice

    2011-01-01

    Western blot analysis, commonly known as "Western blotting," is a standard tool in every laboratory where proteins are analyzed. It involves the separation of polypeptides in polyacrylamide gels followed by the electrophoretic transfer of the separated polypeptides onto a nitrocellulose or polyvinylidene fluoride membrane. A replica of the…

  4. Engineering M13 for phage display.

    PubMed

    Sidhu, S S

    2001-09-01

    Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.

  5. A Novel Family in Medicago truncatula Consisting of More Than 300 Nodule-Specific Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs1[w

    PubMed Central

    Mergaert, Peter; Nikovics, Krisztina; Kelemen, Zsolt; Maunoury, Nicolas; Vaubert, Danièle; Kondorosi, Adam; Kondorosi, Eva

    2003-01-01

    Transcriptome analysis of Medicago truncatula nodules has led to the discovery of a gene family named NCR (nodule-specific cysteine rich) with more than 300 members. The encoded polypeptides were short (60–90 amino acids), carried a conserved signal peptide, and, except for a conserved cysteine motif, displayed otherwise extensive sequence divergence. Family members were found in pea (Pisum sativum), broad bean (Vicia faba), white clover (Trifolium repens), and Galega orientalis but not in other plants, including other legumes, suggesting that the family might be specific for galegoid legumes forming indeterminate nodules. Gene expression of all family members was restricted to nodules except for two, also expressed in mycorrhizal roots. NCR genes exhibited distinct temporal and spatial expression patterns in nodules and, thus, were coupled to different stages of development. The signal peptide targeted the polypeptides in the secretory pathway, as shown by green fluorescent protein fusions expressed in onion (Allium cepa) epidermal cells. Coregulation of certain NCR genes with genes coding for a potentially secreted calmodulin-like protein and for a signal peptide peptidase suggests a concerted action in nodule development. Potential functions of the NCR polypeptides in cell-to-cell signaling and creation of a defense system are discussed. PMID:12746522

  6. Antigenic Cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of Goat.

    PubMed

    Jas, Ruma; Ghosh, Joydeb; DAS, Kinsuk

    2016-01-01

    Cross antigenicity is the major problem in developing a reliable tool for immunodiagnosis and immunoprophylaxis of parasitic diseases. Mixed infection due to different types of gastrointestinal parasites is more common than single species infection under field condition. The present study was undertaken to detect antigenic cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of goats by SDS-PAGE and western blot analysis using hyperimmune sera (HIS) rose in rabbit separately against the antigens of the three nematode species. Thirteen, 16 and 14 polypeptides in crude somatic antigen (CSAg) of H. contortus (CSAg-Hc), O. columbianum (CSAg-Oc) and T. ovis (CSAg-To), respectively, were resolved in SDS PAGE analyses. It was revealed that 54 kDa peptide was shared by H.contortus and O. columbianum , whereas 47 kDa peptide was shared by O. columbianum and T. ovis . Western blot analyses revealed that three immunogenic polypeptides (MW 54, 49 and 42 kDa) in CSAg-Hc, five in CSAg-Oc (54, 47, 44, 38 and 35.5 kDa) and CSAg-To and five polypeptides (90, 51, 47, 39.5 and 31 kDa) in CSAg-To cross-reacted with the heterologous HIS. Four species-specific immunoreactive polypeptides (92, 85, 65 and 39 kDa) of H. contortus and two (72 & 26 kDa) in O. columbianum were also identified in the study. The shared polypeptides and species-specific polypeptides might be evaluated as protective antigen and subsequently exploitation for developing immunodiagnostic and for immunoprophylactic tools of for these common nematode species.

  7. Antigenic Cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of Goat

    PubMed Central

    JAS, Ruma; GHOSH, Joydeb; DAS, Kinsuk

    2016-01-01

    Background: Cross antigenicity is the major problem in developing a reliable tool for immunodiagnosis and immunoprophylaxis of parasitic diseases. Mixed infection due to different types of gastrointestinal parasites is more common than single species infection under field condition. Methods: The present study was undertaken to detect antigenic cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of goats by SDS-PAGE and western blot analysis using hyperimmune sera (HIS) rose in rabbit separately against the antigens of the three nematode species. Results: Thirteen, 16 and 14 polypeptides in crude somatic antigen (CSAg) of H. contortus (CSAg-Hc), O. columbianum (CSAg-Oc) and T. ovis (CSAg-To), respectively, were resolved in SDS PAGE analyses. It was revealed that 54 kDa peptide was shared by H.contortus and O. columbianum, whereas 47 kDa peptide was shared by O. columbianum and T. ovis. Western blot analyses revealed that three immunogenic polypeptides (MW 54, 49 and 42 kDa) in CSAg-Hc, five in CSAg-Oc (54, 47, 44, 38 and 35.5 kDa) and CSAg-To and five polypeptides (90, 51, 47, 39.5 and 31 kDa) in CSAg-To cross-reacted with the heterologous HIS. Four species-specific immunoreactive polypeptides (92, 85, 65 and 39 kDa) of H. contortus and two (72 & 26 kDa) in O. columbianum were also identified in the study. Conclusion: The shared polypeptides and species-specific polypeptides might be evaluated as protective antigen and subsequently exploitation for developing immunodiagnostic and for immunoprophylactic tools of for these common nematode species. PMID:28127366

  8. Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae.

    PubMed Central

    Shpakovski, G V; Acker, J; Wintzerith, M; Lacroix, J F; Thuriaux, P; Vigneron, M

    1995-01-01

    Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit. PMID:7651387

  9. Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily.

    PubMed

    Tateno, H; Saneyoshi, A; Ogawa, T; Muramoto, K; Kamiya, H; Saneyoshi, M

    1998-07-24

    Two L-rhamnose-binding lectins named STL1 and STL2 were isolated from eggs of steelhead trout (Oncorhynchus mykiss) by affinity chromatography and ion exchange chromatography. The apparent molecular masses of purified STL1 and STL2 were estimated to be 84 and 68 kDa, respectively, by gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry of these lectins revealed that STL1 was composed of noncovalently linked trimer of 31.4-kDa subunits, and STL2 was noncovalently linked trimer of 21.5-kDa subunits. The minimum concentrations of STL1, a major component, and STL2, a minor component, needed to agglutinate rabbit erythrocytes were 9 and 0.2 microg/ml, respectively. The most effective saccharide in the hemagglutination inhibition assay for both STL1 and STL2 was L-rhamnose. Saccharides possessing the same configuration of hydroxyl groups at C2 and C4 as that in L-rhamnose, such as L-arabinose and D-galactose, also inhibited. The amino acid sequence of STL2 was determined by analysis of peptides generated by digestion of the S-carboxamidomethylated protein with Achromobacter protease I or Staphylococcus aureus V8 protease. The STL2 subunit of 195 amino acid residues proved to have a unique polypeptide architecture; that is, it was composed of two tandemly repeated homologous domains (STL2-N and STL2-C) with 52% internal homology. These two domains showed a sequence homology to the subunit (105 amino acid residues) of D-galactoside-specific sea urchin (Anthocidaris crassispina) egg lectin (37% for STL2-N and 46% for STL2-C, respectively). The N terminus of the STL1 subunit was blocked with an acetyl group. However, a partial amino acid sequence of the subunit showed a sequence similarity to STL2. Moreover, STL2 also showed a sequence homology to the ligand binding domain of the vitellogenin receptor. We have also employed surface plasmon resonance biosensor methodology to investigate the interactions between STL2 and major egg yolk proteins from steelhead trout, lipovitellin, and beta'-component, which are known as vitellogenin digests. Interestingly, STL2 showed distinct interactions with both egg yolk proteins. The estimated values for the affinity constant (Ka) of STL2 to lipovitellin and beta' component were 3.44 x 10(6) and 4.99 x 10(6), respectively. These results suggest that the fish egg lectins belong to a new family of animal lectin structurally related to the low density lipoprotein receptor super- family.

  10. Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins.

    PubMed

    Ohtaki, Akashi; Kida, Hiroshi; Miyata, Yusuke; Ide, Naoki; Yonezawa, Akihiro; Arakawa, Takatoshi; Iizuka, Ryo; Noguchi, Keiichi; Kita, Akiko; Odaka, Masafumi; Miki, Kunio; Yohda, Masafumi

    2008-02-29

    Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 A resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the beta subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove.

  11. Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases

    PubMed Central

    Castillo, Virginia; Ventura, Salvador

    2009-01-01

    Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882

  12. Biochemical composition and immunological comparison of select pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars.

    PubMed

    Venkatachalam, Mahesh; Kshirsagar, Harshal H; Seeram, Navindra P; Heber, David; Thompson, Tommy E; Roux, Kenneth H; Sathe, Shridhar K

    2007-11-28

    On an edible portion basis, pecan moisture, protein, lipid, total soluble sugars, and ash contents ranged from 2.1% to 6.4%, 6.0% to 11.3%, 65.9% to 78.0%, 3.3% to 5.3%, and 1.2% to 1.8%, respectively. With the exception of a high tannin (2.7%) Texas seedling, pecan tannin content was in a narrow range (0.6-1.85%). Unsaturated fatty acids (>90%) dominated pecan lipid composition with oleic (52.52-74.09%) and linoleic (17.69-37.52%) acids as the predominant unsaturated fatty acids. Location significantly influenced pecan biochemical composition. Pecan lipid content was negatively correlated with protein (r = -0.663) and total sugar (r = -0.625). Among the samples tested using SDS-PAGE a common pattern, with minor differences, in subunit polypeptide profiles was revealed. Rabbit polyclonal antibody-based immunoblotting experiments (Western blot) also illustrated the similarity in polypeptide profiles with respect to immunoreactivity. All tested cultivars registered similar immunoreactivity when their protein extracts (each at 1 mg/mL) were assessed using inhibition ELISAs (mean +/- standard deviation = 0.89 +/- 0.20; n = 27) with the USDA "Desirable" cultivar as the reference standard (immunoreactivity designated as 1.0).

  13. Changes in Protein Synthesis in Rapeseed (Brassica napus) Seedlings during a Low Temperature Treatment 1

    PubMed Central

    Meza-Basso, Luis; Alberdi, Miren; Raynal, Monique; Ferrero-Cadinanos, Maria-Luz; Delseny, Michel

    1986-01-01

    Changes induced by cold treatment in young rapeseed (Brassica napus) seedlings were investigated at the molecular level. Following germination at 18°C for 48 hours, one half of the seedlings was transferred to 0°C for another 48 hour period, the other half being kept at 18°C as a control. Newly synthesized proteins were labeled for the last 6 hours of incubation with [35S]methionine. The different polypeptides were separated by two-dimensional electrophoresis in polyacrylamide gels. Newly synthesized proteins were revealed by fluorography. Protein synthesis clearly continues at 0°C and some polypeptides preferentially accumulate at this temperature. On the other hand, synthesis of several others is repressed while many are insensitive to cold treatment. Similar changes are also observed when mRNA is prepared from cold treated seedlings, translated in vitro in a reticulocyte cell free system and compared with the products of mRNA extracted from control samples. Among the genes which are repressed we identified the small subunit of ribulose 1,6-bisphosphate carboxylase. These changes are also detectable after shorter treatments. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665102

  14. Immunolocalization of integrin-like proteins in Arabidopsis and Chara

    NASA Technical Reports Server (NTRS)

    Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.

    1997-01-01

    Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.

  15. Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons

    PubMed Central

    Cole, Douglas G.; Diener, Dennis R.; Himelblau, Amy L.; Beech, Peter L.; Fuster, Jason C.; Rosenbaum, Joel L.

    1998-01-01

    We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979–992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia. PMID:9585417

  16. The complete amino acid sequence of echinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Homologies with mammalian and insect lectins.

    PubMed

    Giga, Y; Ikai, A; Takahashi, K

    1987-05-05

    The complete amino acid sequence of echinoidin, the proposed name for a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina, has been determined by sequencing the peptides obtained from tryptic, Staphylococcus aureus V8 protease, chymotryptic, and thermolysin digestions. Echinoidin is a multimeric protein (Giga, Y., Sutoh, K., and Ikai, A. (1985) Biochemistry 24, 4461-4467) whose subunit consists of a total of 147 amino acid residues and one carbohydrate chain attached to Ser38. The molecular weight of the polypeptide without carbohydrate was calculated to be 16,671. Each polypeptide chain contains seven half-cystines, and six of them form three disulfide bonds in the single polypeptide chain (Cys3-Cys14, Cys31-Cys141, and Cys116-Cys132), while Cys2 is involved in an interpolypeptide disulfide linkage. From secondary structure prediction by the method of Chou and Fasman (Chou, P. Y., and Fasman, G. D. (1974) Biochemistry 13, 211-222) the protein appears to be rich in beta-sheet and beta-turn structures and poor in alpha-helical structure. The sequence of the COOH-terminal half of echinoidin is highly homologous to those of the COOH-terminal carbohydrate recognition portions of rat liver mannose-binding protein and several other hepatic lectins. This COOH-terminal region of echinoidin is also homologous to the central portion of the lectin from the flesh fly Sarcophaga peregrina. Moreover, echinoidin contains an Arg-Gly-Asp sequence which has been proposed to be a basic functional unit in cellular recognition proteins.

  17. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    USDA-ARS?s Scientific Manuscript database

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  18. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    PubMed

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo

    Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less

  20. An all sulfur analogue of the smallest subunit of F420-non-reducing hydrogenase from Methanococcus voltae--metal binding and structure.

    PubMed

    Pfeiffer, M; Klein, A; Steinert, P; Schomburg, D

    The 25 amino acid long subunit VhuU of the F420-non-reducing hydrogenase from Methanococcus voltae contains selenocysteine within the consensus sequence of known [NiFe] hydrogenases DP(C or U)CxxCxxH (U = selenocysteine). The sulfur-analogue VhuUc was chemically synthesized, purified and its metal binding capability, the catalytic properties, and structural features were investigated. The polypeptide was able to bind nickel, but did not catalyse the heterolytic activation of H2. 2D-NMR spectroscopy revealed an alpha-helical secondary structure for the 15 N-terminal amino acids in 50% TFE. Nickel only binds to the C-terminus, which contains the conserved amino acid motif. Structures derived from the NMR data are compatible with the participation of both sulfur atoms from the conserved cysteine residues in a metal ion binding. Structures obtained from the data sets for Ni.VhuUc as well as Zn.VhuUc showed no further ligands. The informational value for Ni.VhuUc was low due to paramagnetism.

  1. A second cistron in the CACNA1A gene encodes a transcription factor that mediates cerebellar development and SCA6

    PubMed Central

    Du, Xiaofei; Wang, Jun; Zhu, Haipeng; Rinaldo, Lorenzo; Lamar, Kay-Marie; Palmenberg, Ann C.; Hansel, Christian; Gomez, Christopher M.

    2014-01-01

    SUMMARY The CACNA1A gene, encoding the voltage-gated calcium channel subunit α1A, is involved in pre- and postsynaptic Ca2+ signaling, gene expression, and several genetic neurological disorders. We found that CACNA1A employs a novel strategy to directly coordinate a gene expression program, using a bicistronic mRNA bearing a cryptic internal ribosomal entry site (IRES). The first cistron encodes the well-characterized α1A subunit. The second expresses a newly-recognized transcription factor, α1ACT, that coordinates expression of a program of genes involved in neural and Purkinje cell development. α1ACT also contains the polyglutamine (polyQ) tract that, when expanded, causes spinocerebellar ataxia type 6 (SCA6). When expressed as an independent polypeptide, α1ACT, bearing an expanded polyQ tract, lacks transcription factor function and neurite outgrowth properties, causes cell death in culture, and leads to ataxia and cerebellar atrophy in transgenic mice. Suppression of CACNA1A IRES function in SCA6 may be a potential therapeutic strategy. PMID:23827678

  2. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE

    DOE PAGES

    Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo; ...

    2018-03-05

    Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less

  3. Supramolecular "Step Polymerization" of Preassembled Micelles: A Study of "Polymerization" Kinetics.

    PubMed

    Yang, Chaoying; Ma, Xiaodong; Lin, Jiaping; Wang, Liquan; Lu, Yingqing; Zhang, Liangshun; Cai, Chunhua; Gao, Liang

    2018-03-01

    In nature, sophisticated functional materials are created through hierarchical self-assembly of nanoscale motifs, which has inspired the fabrication of man-made materials with complex architectures for a variety of applications. Herein, a kinetic study on the self-assembly of spindle-like micelles preassembled from polypeptide graft copolymers is reported. The addition of dimethylformamide and, subsequently, a selective solvent (water) can generate a "reactive point" at both ends of the spindles as a result of the existence of structural defects, which induces the "polymerization" of the spindles into nanowires. Experimental results combined with dissipative particle dynamics simulations show that the polymerization of the micellar subunits follows a step-growth polymerization mechanism with a second-order reaction characteristic. The assembly rate of the micelles is dependent on the subunit concentration and on the activity of the reactive points. The present work reveals a law governing the self-assembly kinetics of micelles with structural defects and opens the door for the construction of hierarchical structures with a controllable size through supramolecular step polymerization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  5. Identification of Novel Mitochondrial Protein Components of Chlamydomonas reinhardtii. A Proteomic Approach1

    PubMed Central

    van Lis, Robert; Atteia, Ariane; Mendoza-Hernández, Guillermo; González-Halphen, Diego

    2003-01-01

    Pure mitochondria of the photosynthetic alga Chlamydomonas reinhardtii were analyzed using blue native-polyacrylamide gel electrophoresis (BN-PAGE). The major oxidative phosphorylation complexes were resolved: F1F0-ATP synthase, NADH-ubiquinone oxidoreductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase. The oligomeric states of these complexes were determined. The F1F0-ATP synthase runs exclusively as a dimer, in contrast to the C. reinhardtii chloroplast enzyme, which is present as a monomer and subcomplexes. The sequence of a 60-kD protein, associated with the mitochondrial ATP synthase and with no known counterpart in any other organism, is reported. This protein may be related to the strong dimeric character of the algal F1F0-ATP synthase. The oxidative phosphorylation complexes resolved by BN-PAGE were separated into their subunits by second dimension sodium dodecyl sulfate-PAGE. A number of polypeptides were identified mainly on the basis of their N-terminal sequence. Core I and II subunits of complex III were characterized, and their proteolytic activities were predicted. Also, the heterodimeric nature of COXIIA and COXIIB subunits in cytochrome c oxidase was demonstrated. Other mitochondrial proteins like the chaperone HSP60, the alternative oxidase, the aconitase, and the ADP/ATP carrier were identified. BN-PAGE was also used to approach the analysis of the major chloroplast protein complexes of C. reinhardtii. PMID:12746537

  6. Analysis of the internal nuclear matrix. Oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds.

    PubMed

    Fields, A P; Kaufmann, S H; Shaper, J H

    1986-05-01

    When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.

  7. Redox changes accompanying storage protein mobilization in moist chilled and warm incubated walnut kernels prior to germination.

    PubMed

    Shahmoradi, Zeynab; Tamaskani, Fatemeh; Sadeghipour, Hamid Reza; Abdolzadeh, Ahmad

    2013-01-01

    Alterations in the redox state of storage proteins and the associated proteolytic processes were investigated in moist-chilled and warm-incubated walnut (Juglans regia L.) kernels prior to germination. The kernel total protein labeling with a thiol-specific fluorochrome i.e. monobromobimane (mBBr) revealed more reduction of 29-32 kDa putative glutelins, while in the soluble proteins, both putative glutelins and 41, 55 and 58 kDa globulins contained reduced disulfide bonds during mobilization. Thus, the in vivo more reduced disulfide bonds of storage proteins corresponds to greater solubility. After the in vitro reduction of walnut kernel proteins pre-treated by N-ethyl maleimide (NEM) with dithioerythrethiol (DTT) and bacterial thioredoxin, the 58 kDa putative globulin and a 6 kDa putative albumin were identified as disulfide proteins. Thioredoxin stimulated the reduction of the H(2)O(2)-oxidized 6 kDa polypeptide, but not the 58 kDa polypeptide by DTT. The solubility of 6 kDa putative albumin, 58 and 19-24 kDa putative globulins and glutelins, respectively, were increased by DTT. The in vitro specific mobilization of the 58 kDa polypeptide that occurred at pH 5.0 by the kernel endogenous protease was sensitive to the serine-protease inhibitor phenylmethylsulfonyl fluoride (PMSF) and stimulated by DTT. The specific degradation of the 58 kDa polypeptide might be achieved through thioredoxin-mediated activation of a serine protease and/or reductive unfolding of its 58 kDa polypeptide substrate. As redox changes in storage proteins occurred equally in both moist chilled and warm incubated walnut kernels, the regulatory functions of thioredoxins in promoting seed germination may be due to other germination related processes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Biopanning of polypeptides binding to bovine ephemeral fever virus G1 protein from phage display peptide library.

    PubMed

    Hou, Peili; Zhao, Guimin; He, Chengqiang; Wang, Hongmei; He, Hongbin

    2018-01-04

    The bovine ephemeral fever virus (BEFV) glycoprotein neutralization site 1 (also referred as G 1 protein), is a critical protein responsible for virus infectivity and eliciting immune-protection, however, binding peptides of BEFV G 1 protein are still unclear. Thus, the aim of the present study was to screen specific polypeptides, which bind BEFV G 1 protein with high-affinity and inhibit BEFV replication. The purified BEFV G 1 was coated and then reacted with the M13-based Ph.D.-7 phage random display library. The peptides for target binding were automated sequenced after four rounds of enrichment biopanning. The amino acid sequences of polypeptide displayed on positive clones were deduced and the affinity of positive polypeptides with BEFV G 1 was assayed by ELISA. Then the roles of specific G 1 -binding peptides in the context of BEFV infection were analyzed. The results showed that 27 specific peptide ligands displaying 11 different amino acid sequences were obtained, and the T18 and T25 clone had a higher affinity to G 1 protein than the other clones. Then their antiviral roles of two phage clones (T25 and T18) showed that both phage polypeptide T25 and T18 exerted inhibition on BEFV replication compared to control group. Moreover, synthetic peptide based on T18 (HSIRYDF) and T25 (YSLRSDY) alone or combined use on BEFV replication showed that the synthetic peptides could effectively inhibit the formation of cytopathic plaque and significantly inhibit BEFV RNA replication in a dose-dependent manner. Two antiviral peptide ligands binding to bovine ephemeral fever virus G 1 protein from phage display peptide library were identified, which may provide a potential research tool for diagnostic reagents and novel antiviral agents.

  9. Zonadhesin D3-Polypeptides Vary among Species but Are Similar in Equus Species Capable of Interbreeding1

    PubMed Central

    Tardif, Steve; Brady, Heidi A.; Breazeale, Kelly R.; Bi, Ming; Thompson, Leslie D.; Bruemmer, Jason E.; Bailey, Laura B.; Hardy, Daniel M.

    2009-01-01

    Zonadhesin is a rapidly evolving protein in the sperm acrosome that confers species specificity to sperm-zona pellucida adhesion. Though structural variation in zonadhesin likely contributes to its species-specific function, the protein has not previously been characterized in organisms capable of interbreeding. Here we compared properties of zonadhesin in several animals, including the horse (Equus caballus), donkey (E. asinus), and Grevy's zebra (E. grevyi) to determine if variation in zonadhesin correlates with ability of gametes to cross-fertilize. Zonadhesin localized to the apical acrosomes of spermatozoa from all three Equus species, similar to its localization in other animals. Likewise, in horse and donkey testis, zonadhesin was detected only in germ cells, first in the acrosomal granule of round spermatids and then in the developing acrosomes of elongating spermatids. Among non-Equus species, D3-domain polypeptides of mature, processed zonadhesin varied markedly in size and detergent solubility. However, zonadhesin D3-domain polypeptides in horse, donkey, and zebra spermatozoa exhibited identical electrophoretic mobility and detergent solubility. Equus zonadhesin D3-polypeptides (p110/p80 doublet) were most similar in size to porcine and bovine zonadhesin D3-polypeptides (p105). Sequence comparisons revealed that the horse zonadhesin precursor's domain content and arrangement are similar to those of zonadhesin from other large animals. Partial sequences of horse and donkey zonadhesin were much more similar to each other (>99% identity) than they were to orthologous sequences of human, pig, rabbit, and mouse zonadhesin (52%–72% identity). We conclude that conservation of zonadhesin D3-polypeptide properties correlates with ability of Equus species to interbreed. PMID:19794156

  10. Reinventing Cell Penetrating Peptides Using Glycosylated Methionine Sulfonium Ion Sequences.

    PubMed

    Kramer, Jessica R; Schmidt, Nathan W; Mayle, Kristine M; Kamei, Daniel T; Wong, Gerard C L; Deming, Timothy J

    2015-05-27

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.

  11. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess lowmore » cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.« less

  12. Purification and characterization of human pancreatic polypeptide expressed in E. coli.

    PubMed

    Griko, Y V; Kapanadze, M D

    1995-08-04

    The region of cDNA encoding human pancreatic polypeptide (hPP) was obtained by polymerase chain reaction (PCR) and subcloned into an expression vector. The pancreatic polypeptide gene was expressed in Escherichia coli in two versions: as a cleavable fusion protein with IgG-binding synthetic ZZ domains of protein A from Staphylococcus aureus or with the 1-48 fragment of lambda Cro repressor. Site-specific hydrolysis by hydroxylamine was used to cleave the fusion protein, releasing the human polypeptide. The structure of the obtained hPP has been studied by scanning microcalorimetry and circular dichroism spectrometry. It has been shown that hPP in solutions close to neutral has a compact and unique spatial structure with an extended hydrophobic core. This structure is stable at 20 degrees C and co-operatively breaks down upon heating from this temperature.

  13. Chlorophyll Proteins of Photosystem I 1

    PubMed Central

    Mullet, John E.; Burke, John J.; Arntzen, Charles J.

    1980-01-01

    Data are presented which suggest the existence of a light-harvesting pigment-protein complex which is functionally and structurally associated with photosystem I (PSI) reaction centers. These observations are based on techniques which allow isolation of PSI using minimal concentrations of Triton X-100. Properties of density and self aggregation allowed purification of a “native” PSI complex. The isolated PSI particles appear as 106 Å spherical subunits when viewed by freeze fracture microscopy. When incorporated into phosphatidyl choline vesicles, the particles lose self-aggregation properties and disperse uniformly within the lipid membrane. The isolated PSI preparation contains 100 ± 10 chlorophylls/P700 (Chl a/b ratio greater than 18); this represents a recovery of 27% of the original chloroplast membrane Chl. These particles were enriched in Chl a forms absorbing at 701 to 710 nm. Chl fluorescence at room temperature exhibited a maximum at 690 nm with a pronounced shoulder at 710 nm. At 77 K, peak fluorescence emission was at 736 nm; in the presence of dithionite an additional fluorescence maximum at 695 nm was obtained at 77 K. This dual fluorescence emission peak for the PSI particles is evidence for at least two Chl populations within the PSI membrane subunit. The fluorescence emission observed at 695 nm was identified as arising from the core of PSI which contains 40 Chl/P700 (PSI-40). This core complex, derived from native PSI particles, was enriched in Chl a absorbing at 680 and 690 nm and fluorescing with maximal emission at 694 nm at 77 K. PSI particles consisting of the PSI core complex plus 20 to 25 Chl antennae (65 Chl/P700) could also be derived from native PSI complexes. These preparations were enriched in Chl a forms absorbing at 697 nm and exhibited a 77 K fluorescence emission maximum at 722 nm. A comparison of native PSI particles which contain 110 Chl/P700 (PSI-110) and PSI particles containing 65 Chl/P700 (PSI-65) provides evidence for the existence of a peripheral Chl-protein complex tightly associated in the native PSI complex. The native PSI subunits contain polypeptides of 22,500 to 24,500 daltons which are not found in the PSI-65 or PSI-40 subfractions. It is suggested that these polypeptides function to bind 40 to 45 Chl per structural complex, including the Chl which emits fluorescence at 736 nm. A model for the organization of Chl forms is presented in which the native PSI membrane subunit consists of a reaction center core complex plus two regions of associated light-harvesting antennae. The presence of energy “sinks” within the antennae is discussed. Images PMID:16661288

  14. Facilitating protein solubility by use of peptide extensions

    DOEpatents

    Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason

    2013-09-17

    Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.

  15. Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene.

    PubMed

    Soria-Guerra, Ruth Elena; Rosales-Mendoza, Sergio; Márquez-Mercado, Crisóforo; López-Revilla, Rubén; Castillo-Collazo, Rosalba; Alpuche-Solís, Angel Gabriel

    2007-07-01

    A current priority of vaccinology is the development of multicomponent vaccines that protect against several pathogens. The diphtheria-pertussis-tetanus (DPT) vaccine prevents the symptoms of three serious and often fatal diseases due to the exotoxins produced by Corynebacterium diphteriae, Bordetella pertussis and Clostridium tetani. We are attempting to develop an edible DPT multicomponent vaccine in plants, based on the fusion of protective exotoxin epitopes encoded by synthetic genes. By means of Agrobacterium mediated transformation we generated transgenic tomatoes with a plant-optimised synthetic gene encoding a novel polypeptide containing two adjuvant and six DPT immunoprotective exotoxin epitopes joined by peptide linkers. In transformed tomato plants, integration of the synthetic DPT (sDPT) gene detected by PCR was confirmed by Southern blot, and specific transcripts of the expected molecular size were detected by RT-PCR. Expression of the putative polypeptide encoded by the sDPT gene was detected by immunoassay with specific antibodies to the diphtheria, pertussis and tetanus exotoxins. The sDPT gene is therefore integrated, transcribed and translated as the expected recombinant sDPT multiepitope polypeptide in transgenic tomatoes that constitute a potential edible vaccine.

  16. Three polypeptides screened from phage display random peptide library may be the receptor polypeptide of Mycoplasma genitalium adhesion protein.

    PubMed

    Deng, Xiangying; Zhu, Youcong; Dai, Pei; Yu, Minjun; Chen, Liesong; Zhu, Cuiming; You, Xiaoxing; Li, Lingling; Zeng, Yanhua

    2018-04-28

    Mycoplasma genitalium adhesion protein (MgPa) is a major adhesin of M. genitalium, a human pathogen associated with a series of genitourinary tract diseases. MgPa plays a very important role in M. genitalium adhering to the host cells. However, the exact receptor peptides or proteins of MgPa are still poorly understood so far. Three polypeptides (V-H-W-D-F-R-Q-W-W-Q-P-S), (D-W-S-S-W-V -Y-R-D-P-Q-T) and (H-Y-I-D-F-R-W) were previously screened from a phage display random peptide library using recombinant MgPa (rMgPa) as a target molecule. In this study, three polypeptides were artificially synthesized and investigated as to whether they are potential receptors of MgPa. We found that rMgPa specifically bound to three synthesized polypeptides as determined via an indirect enzyme-linked immunosorbent assay (ELISA). Moreover, three polypeptides were further identified by indirect immunofluorescence microscopy (IFM). We confirmed that rMgPa and M. genitalium can adhere to SV-HUC-1 cells in vitro and that anti-rMgPa antibody and three synthesized polypeptides can partially inhibit the adherence of rMgPa and M. genitalium to SV-HUC-1 cells. In summary, these three polypeptides may be the essential receptor peptides of MgPa, and may aid in enhancing the understanding of biological function of MgPa and the possible pathogenic mechanism of M. genitalium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of Aerobic Priming on the Response of Echinochloa crus-pavonis to Anaerobic Stress (Protein Synthesis and Phosphorylation).

    PubMed Central

    Zhang, F.; Lin, J. J.; Fox, T. C.; Mujer, C. V.; Rumpho, M. E.; Kennedy, R. A.

    1994-01-01

    Echinochloa species differ in their ability to germinate and grow in the absence of oxygen. Seeds of Echinochloa crus-pavonis (H.B.K.) Schult do not germinate under anoxia but remain viable for extended periods (at least 30 d) when incubated in an anaerobic environment. E. crus-pavonis can be induced to germinate and grow in an anaerobic environment if the seeds are first subjected to a short (1-18 h) exposure to aerobic conditions (aerobic priming). Changes in polypeptide patterns (constitutive and de novo synthesized) and protein phosphorylation induced by aerobic priming were investigated. In the absence of aerobic priming protein degradation was not evident under anaerobic conditions, although synthesis of a 20-kD polypeptide was induced. During aerobic priming, however, synthesis of 37- and 55-kD polypeptides was induced and persisted upon return of the seeds to anoxia. Furthermore, phosphorylation of two 18-kD polypeptides was observed only in those seeds that were labeled with 32PO4 during the aerobic priming period. Subsequent chasing in an anaerobic environment resulted in a decrease in phosphorylation of these polypeptides. Likewise, phosphorylation of the 18-kD polypeptides was not observed if the seeds were labeled in an anaerobic atmosphere. These results suggest that the regulated induction of the 20-, 37-, and 55- kD polypeptides may be important for anaerobic germination and growth of E. crus-pavonis and that the specific phosphorylation of the 18-kD polypeptides may be a factor in regulating this induction. PMID:12232272

  18. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  19. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    PubMed

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9 extends further than previously suggested, with the boundary of the N-terminal membrane-embedded stem lying at residue 34. The possibility is raised that the observed suppression of the 2422 mutant phenotype in class III revertants is manifested through an accommodating change in a nuclear-encoded subunit of the ATPase complex.

  20. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various oligopeptides and polypeptides including 58 dipeptides and 31 pentapeptides with angiotensin converting enzyme (ACE) inhibition by multiple linear regression (MLR) method. In order to explain the ability to characterize molecular structure of polypeptides, a molecular modeling investigation on QSAR was performed for functional prediction of polypeptide sequences with antigenic activity and heptapeptide sequences with tachykinin activity through quantitative sequence-activity models (QSAMs) by the molecular electronegativity edge-distance vector (VMED). The results showed that VMED exhibited both excellent structural selectivity and good activity prediction. Moreover, the results showed that VMED behaved quite well for both QSAR and QSAM of poly-and oligopeptides, which exhibited both good estimation ability and prediction power, equal to or better than those reported in the previous references. Finally, a preliminary conclusion was drawn: both classical and modified MED vectors were very useful structural descriptors. Some suggestions were proposed for further studies on QSAR/QSAM of proteins in various fields.

  1. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanecak, R.; Semler, B.L.; Anderson, C.W.

    1982-07-01

    Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH/sub 2/-coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins inmore » vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X.« less

  2. Specific roles for the Ccr4-Not complex subunits in expression of the genome

    PubMed Central

    Azzouz, Nowel; Panasenko, Olesya O.; Deluen, Cécile; Hsieh, Julien; Theiler, Grégory; Collart, Martine A.

    2009-01-01

    In this work we used micro-array experiments to determine the role of each nonessential subunit of the conserved Ccr4-Not complex in the control of gene expression in the yeast Saccharomyces cerevisiae. The study was performed with cells growing exponentially in high glucose and with cells grown to glucose depletion. Specific patterns of gene deregulation were observed upon deletion of any given subunit, revealing the specificity of each subunit's function. Consistently, the purification of the Ccr4-Not complex through Caf40p by tandem affinity purification from wild-type cells or cells lacking individual subunits of the Ccr4-Not complex revealed that each subunit had a particular impact on complex integrity. Furthermore, the micro-arrays revealed that the role of each subunit was specific to the growth conditions. From the study of only two different growth conditions, revealing an impact of the Ccr4-Not complex on more than 85% of all studied genes, we can infer that the Ccr4-Not complex is important for expression of most of the yeast genome. PMID:19155328

  3. Effect of alternative glycosylation on insulin receptor processing.

    PubMed

    Hwang, J B; Frost, S C

    1999-08-06

    The mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This "intermediate" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation.

  4. Asymmetry in the function and dynamics of the cytosolic group II chaperonin CCT/TRiC

    PubMed Central

    Yamamoto, Yohei Y.; Uno, Yuko; Sha, Eiryo; Ikegami, Kentaro; Ishii, Noriyuki; Dohmae, Naoshi; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2017-01-01

    The eukaryotic group II chaperonin, the chaperonin-containing t-complex polypeptide 1 (CCT), plays an important role in cytosolic proteostasis. It has been estimated that as much as 10% of cytosolic proteins interact with CCT during their folding process. CCT is composed of 8 different paralogous subunits. Due to its complicated structure, molecular and biochemical investigations of CCT have been difficult. In this study, we constructed an expression system for CCT from a thermophilic fungus, Chaetomium thermophilum (CtCCT), by using E. coli as a host. As expected, we obtained recombinant CtCCT with a relatively high yield, and it exhibited fairly high thermal stability. We showed the advantages of the overproduction system by characterizing CtCCT variants containing ATPase-deficient subunits. For diffracted X-ray tracking experiment, we removed all surface exposed cysteine residues, and added cysteine residues at the tip of helical protrusions of selected two subunits. Gold nanocrystals were attached onto CtCCTs via gold-thiol bonds and applied for the analysis by diffracted X-ray tracking. Irrespective of the locations of cysteines, it was shown that ATP binding induces tilting motion followed by rotational motion in the CtCCT molecule, like the archaeal group II chaperonins. When gold nanocrystals were attached onto two subunits in the high ATPase activity hemisphere, the CtCCT complex exhibited a fairly rapid response to the motion. In contrast, the response of CtCCT, which had gold nanocrystals attached to the low-activity hemisphere, was slow. These results clearly support the possibility that ATP-dependent conformational change starts with the high-affinity hemisphere and progresses to the low-affinity hemisphere. PMID:28463997

  5. Asymmetry in the function and dynamics of the cytosolic group II chaperonin CCT/TRiC.

    PubMed

    Yamamoto, Yohei Y; Uno, Yuko; Sha, Eiryo; Ikegami, Kentaro; Ishii, Noriyuki; Dohmae, Naoshi; Sekiguchi, Hiroshi; Sasaki, Yuji C; Yohda, Masafumi

    2017-01-01

    The eukaryotic group II chaperonin, the chaperonin-containing t-complex polypeptide 1 (CCT), plays an important role in cytosolic proteostasis. It has been estimated that as much as 10% of cytosolic proteins interact with CCT during their folding process. CCT is composed of 8 different paralogous subunits. Due to its complicated structure, molecular and biochemical investigations of CCT have been difficult. In this study, we constructed an expression system for CCT from a thermophilic fungus, Chaetomium thermophilum (CtCCT), by using E. coli as a host. As expected, we obtained recombinant CtCCT with a relatively high yield, and it exhibited fairly high thermal stability. We showed the advantages of the overproduction system by characterizing CtCCT variants containing ATPase-deficient subunits. For diffracted X-ray tracking experiment, we removed all surface exposed cysteine residues, and added cysteine residues at the tip of helical protrusions of selected two subunits. Gold nanocrystals were attached onto CtCCTs via gold-thiol bonds and applied for the analysis by diffracted X-ray tracking. Irrespective of the locations of cysteines, it was shown that ATP binding induces tilting motion followed by rotational motion in the CtCCT molecule, like the archaeal group II chaperonins. When gold nanocrystals were attached onto two subunits in the high ATPase activity hemisphere, the CtCCT complex exhibited a fairly rapid response to the motion. In contrast, the response of CtCCT, which had gold nanocrystals attached to the low-activity hemisphere, was slow. These results clearly support the possibility that ATP-dependent conformational change starts with the high-affinity hemisphere and progresses to the low-affinity hemisphere.

  6. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus

    PubMed Central

    2018-01-01

    The bovine tick Rhipicephalus (Boophilus) microplus is found in several tropical and subtropical regions of the world. This parasite transmits pathogens that cause disease, such as babesiosis (Babesia bovis and B. bigemina) and anaplasmosis (Anaplasma marginale). Tick infestations cause enormous livestock losses, and controlling tick infestations and the transmission of tick-borne diseases remains a challenge for the livestock industry. Because the currently available commercial vaccines offer only partial protection against R. (B.) microplus, there is a need for more efficient vaccines. Several recombinant antigens have been evaluated using different immunization strategies, and they show great promise. This work describes the construction and immunological characterization of a multi-antigen chimera composed of two R. (B.) microplus antigens (RmLTI and BmCG) and one Escherichia coli antigen (B subunit, LTB). The immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in E. coli. For all of the experiments, two groups (treated and control) of four Angus heifers (3–6 months old) were used. The inoculation was performed via intramuscular injection with 200 μg of purified recombinant chimeric protein and adjuvated. The chimeric protein was recognized by specific antibodies against each subunit and by sera from cattle inoculated with the chimera. Immunization of RmLTI-BmCG-LTB cattle reduced the number of adult female ticks by 6.29% and vaccination of cattle with the chimeric antigen provided 55.6% efficacy against R. (B.) microplus infestation. The results of this study indicate that the novel chimeric protein is a potential candidate for the future development of a more effective vaccine against R. (B.) microplus. PMID:29415034

  7. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus.

    PubMed

    Csordas, Bárbara Guimarães; Cunha, Rodrigo Casquero; Garcia, Marcos Valério; da Silva, Sérgio Silva; Leite, Fábio Leivas; Andreotti, Renato

    2018-01-01

    The bovine tick Rhipicephalus (Boophilus) microplus is found in several tropical and subtropical regions of the world. This parasite transmits pathogens that cause disease, such as babesiosis (Babesia bovis and B. bigemina) and anaplasmosis (Anaplasma marginale). Tick infestations cause enormous livestock losses, and controlling tick infestations and the transmission of tick-borne diseases remains a challenge for the livestock industry. Because the currently available commercial vaccines offer only partial protection against R. (B.) microplus, there is a need for more efficient vaccines. Several recombinant antigens have been evaluated using different immunization strategies, and they show great promise. This work describes the construction and immunological characterization of a multi-antigen chimera composed of two R. (B.) microplus antigens (RmLTI and BmCG) and one Escherichia coli antigen (B subunit, LTB). The immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in E. coli. For all of the experiments, two groups (treated and control) of four Angus heifers (3-6 months old) were used. The inoculation was performed via intramuscular injection with 200 μg of purified recombinant chimeric protein and adjuvated. The chimeric protein was recognized by specific antibodies against each subunit and by sera from cattle inoculated with the chimera. Immunization of RmLTI-BmCG-LTB cattle reduced the number of adult female ticks by 6.29% and vaccination of cattle with the chimeric antigen provided 55.6% efficacy against R. (B.) microplus infestation. The results of this study indicate that the novel chimeric protein is a potential candidate for the future development of a more effective vaccine against R. (B.) microplus.

  8. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans

    PubMed Central

    Lange, Karen I.; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin

    2013-01-01

    Summary Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B′, B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo. PMID:23336080

  9. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans.

    PubMed

    Lange, Karen I; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin

    2013-01-15

    Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B', B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.

  10. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy

    PubMed Central

    Vonck, Janet; Parcej, David N.; Mills, Deryck J.

    2016-01-01

    The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes. PMID:27458710

  11. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD.

    PubMed

    Tian, Guoling; Huang, Melissa C; Parvari, Ruti; Diaz, George A; Cowan, Nicholas J

    2006-09-05

    Microtubules are indispensable dynamic structures that contribute to many essential biological functions. Assembly of the native alpha/beta tubulin heterodimer, the subunit that polymerizes to form microtubules, requires the participation of several molecular chaperones, namely prefoldin, the cytosolic chaperonin CCT, and a series of five tubulin-specific chaperones termed cofactors A-E (TBCA-E). Among these, TBCC, TBCD, and TBCE are essential in higher eukaryotes; they function together as a multimolecular machine that assembles quasinative CCT-generated alpha- and beta-tubulin polypeptides into new heterodimers. Deletion and truncation mutations in the gene encoding TBCE have been shown to cause the rare autosomal recessive syndrome known as HRD, a devastating disorder characterized by congenital hypoparathyroidism, mental retardation, facial dysmorphism, and extreme growth failure. Here we identify cryptic translational initiation at each of three out-of-frame AUG codons upstream of the genetic lesion as a unique mechanism that rescues a mutant HRD allele by producing a functional TBCE protein. Our data explain how afflicted individuals, who would otherwise lack the capacity to make functional TBCE, can survive and point to a limiting capacity to fold tubulin heterodimers de novo as a contributing factor to disease pathogenesis.

  12. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD

    PubMed Central

    Tian, Guoling; Huang, Melissa C.; Parvari, Ruti; Diaz, George A.; Cowan, Nicholas J.

    2006-01-01

    Microtubules are indispensable dynamic structures that contribute to many essential biological functions. Assembly of the native α/β tubulin heterodimer, the subunit that polymerizes to form microtubules, requires the participation of several molecular chaperones, namely prefoldin, the cytosolic chaperonin CCT, and a series of five tubulin-specific chaperones termed cofactors A–E (TBCA–E). Among these, TBCC, TBCD, and TBCE are essential in higher eukaryotes; they function together as a multimolecular machine that assembles quasinative CCT-generated α- and β-tubulin polypeptides into new heterodimers. Deletion and truncation mutations in the gene encoding TBCE have been shown to cause the rare autosomal recessive syndrome known as HRD, a devastating disorder characterized by congenital hypoparathyroidism, mental retardation, facial dysmorphism, and extreme growth failure. Here we identify cryptic translational initiation at each of three out-of-frame AUG codons upstream of the genetic lesion as a unique mechanism that rescues a mutant HRD allele by producing a functional TBCE protein. Our data explain how afflicted individuals, who would otherwise lack the capacity to make functional TBCE, can survive and point to a limiting capacity to fold tubulin heterodimers de novo as a contributing factor to disease pathogenesis. PMID:16938882

  13. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism.

    PubMed

    Miallau, Linda; Hunter, William N; McSweeney, Sean M; Leonard, Gordon A

    2007-07-06

    High resolution structures of Staphylococcus aureus d-tagatose-6-phosphate kinase (LacC) in two crystal forms are herein reported. The structures define LacC in apoform, in binary complexes with ADP or the co-factor analogue AMP-PNP, and in a ternary complex with AMP-PNP and D-tagatose-6-phosphate. The tertiary structure of the LacC monomer, which is closely related to other members of the pfkB subfamily of carbohydrate kinases, is composed of a large alpha/beta core domain and a smaller, largely beta "lid." Four extended polypeptide segments connect these two domains. Dimerization of LacC occurs via interactions between lid domains, which come together to form a beta-clasp structure. Residues from both subunits contribute to substrate binding. LacC adopts a closed structure required for phosphoryl transfer only when both substrate and co-factor are bound. A reaction mechanism similar to that used by other phosphoryl transferases is proposed, although unusually, when both substrate and co-factor are bound to the enzyme two Mg(2+) ions are observed in the active site. A new motif of amino acid sequence conservation common to the pfkB subfamily of carbohydrate kinases is identified.

  14. Somatic Host Cell Alterations in HPV Carcinogenesis

    PubMed Central

    Litwin, Tamara R.; Clarke, Megan A.; Dean, Michael; Wentzensen, Nicolas

    2017-01-01

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions. PMID:28771191

  15. Somatic Host Cell Alterations in HPV Carcinogenesis.

    PubMed

    Litwin, Tamara R; Clarke, Megan A; Dean, Michael; Wentzensen, Nicolas

    2017-08-03

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) and phosphatase and tensin homolog ( PTEN ), human leukocyte antigen A and B ( HLA-A and HLA-B ) -A/B , and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 ( TP53 ) and RB transcriptional corepressor 1 ( RB1 ) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  16. Studies on the "Aerobic" Acetyl-Coenzyme A Synthetase of Saccharomyces Cerevisiae: Purification, Crystallization, and Physical Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Klein, Harold P.

    1976-01-01

    A procedure for the purification of a stable acetyl-coenzyme A synthetase (ACS) from aerobic cells of Saccharomyces cerevisiae is presented. The steps include differential centrifugation, solubilization of the bound enzyme from the crude mitochondrial fraction, ammonium sulfate fractionation, crystallization to constant specific activity from ammonium sulfate solutions followed by Bio-Gel A-1.5 m column chromatography. The resulting enzyme preparation is homogeneous as judged by chromatography on Bio-Gel columns, QAE-Sephadex A-50 anion exchange columns, analytical ultracentrifugal studies, and polyacrylamide gel electrophoresis. Sedimentation velocity runs revealed a single symmetric peak with an s(sub (20,w)) value of 10.6. The molecular weight of the native enzyme, as determined by gel filtration and analytical ultracentrifugation, is 250,000 +/- 500. In polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the molecular weight of the single polypeptide chain is 83,000 +/- 500. The purified enzyme is inhibited by palmityl-coenzyme A with a Hill interaction coefficient, n, of 2.88. These studies indicate that the ACS of aerobic Saccharomyces cerevisiae is composed of three subunits of identical or nearly identical size.

  17. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Isolation of a hemidesmosome-rich fraction from a human squamous cell carcinoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirako, Yoshiaki, E-mail: s47526a@cc.nagoya-u.ac.jp; Yonemoto, Yuki; Yamauchi, Tomoe

    2014-06-10

    Hemidesmosomes are cell-to-matrix adhesion complexes anchoring keratinocytes to basement membranes. For the first time, we present a method to prepare a fraction from human cultured cells that are highly enriched in hemidesmosomal proteins. Using DJM-1 cells derived from human squamous cell carcinoma, accumulation of hemidesmosomes was observed when these cells were cultured for more than 10 days in a commercial serum-free medium without supplemental calcium. Electron microscopy demonstrated that numerous electron-dense adhesion structures were present along the basal cell membranes of DJM-1 cells cultured under the aforementioned conditions. After removing cellular materials using an ammonia solution, hemidesmosomal proteins and depositedmore » extracellular matrix were collected and separated by electrophoresis. There were eight major polypeptides, which were determined to be plectin, BP230, BP180, integrin α6 and β4 subunits, and laminin-332 by immunoblotting and mass spectrometry. Therefore, we designated this preparation as a hemidesmosome-rich fraction. This fraction contained laminin-332 exclusively in its unprocessed form, which may account for the promotion of laminin deposition, and minimal amounts of Lutheran blood group protein, a nonhemidesmosomal transmembrane protein. This hemidesmosome-rich fraction would be useful not only for biological research on hemidesmosomes but also for developing a serum test for patients with blistering skin diseases. - Highlights: • A defined condition promoted accumulation of hemidesmosomes in human cultured cells. • A fraction isolated from the cells contained eight major polypeptides. • The polypeptides were the five major hemidesmosome proteins and laminin-332. • The cultured cells deposited laminin-332 in its unprocessed form under the condition. • We report a method to prepare a fraction highly enriched in hemidesmosome proteins.« less

  19. The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution.

    PubMed

    Bergmann, Sandra; Lieb, Bernhard; Ruth, Peter; Markl, Jürgen

    2006-03-01

    By electron microscopic and immunobiochemical analyses we have confirmed earlier evidence that Nautilus pompilius hemocyanin (NpH) is a ring-like decamer (M(r) = approximately 3.5 million), assembled from 10 identical copies of an approximately 350-kDa polypeptide. This subunit in turn is substructured into seven sequential covalently linked functional units of approximately 50 kDa each (FUs a-g). We have cloned and sequenced the cDNA encoding the complete polypeptide; it comprises 9198 bp and is subdivided into a 5' UTR of 58 bp, a 3' UTR of 365 bp, and an open reading frame for a signal peptide of 21 amino acids plus a polypeptide of 2903 amino acids (M(r) = 335,881). According to sequence alignments, the seven FUs of Nautilus hemocyanin directly correspond to the seven FU types of the previously sequenced hemocyanin "OdH" from the cephalopod Octopus dofleini. Thirteen potential N-glycosylation sites are distributed among the seven Nautilus hemocyanin FUs; the structural consequences of putatively attached glycans are discussed on the basis of the published X-ray structure for an Octopus dofleini and a Rapana thomasiana FU. Moreover, the complete gene structure of Nautilus hemocyanin was analyzed; it resembles that of Octopus hemocyanin with respect to linker introns but shows two internal introns that differ in position from the three internal introns of the Octopus hemocyanin gene. Multiple sequence alignments allowed calculation of a rather robust phylogenetic tree and a statistically firm molecular clock. This reveals that the last common ancestor of Nautilus and Octopus lived 415 +/- 24 million years ago, in close agreement with fossil records from the early Devonian.

  20. Specific Roles of NMDA Receptor Subunits in Mental Disorders.

    PubMed

    Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.

  1. Interplay between Alternative Splicing and Alternative Polyadenylation Defines the Expression Outcome of the Plant Unique OXIDATIVE TOLERANT-6 Gene.

    PubMed

    Li, Qingshun Q; Liu, Zhaoyang; Lu, Wenjia; Liu, Man

    2017-05-17

    Pre-mRNA alternative splicing and alternative polyadenylation have been implicated to play important roles during eukaryotic gene expression. However, much remains unknown regarding the regulatory mechanisms and the interactions of these two processes in plants. Here we focus on an Arabidopsis gene OXT6 (Oxidative Tolerant-6) that has been demonstrated to encode two proteins through alternative splicing and alternative polyadenylation. Specifically, alternative polyadenylation at Intron-2 of OXT6 produces a transcript coding for AtCPSF30, an Arabidopsis ortholog of 30 kDa subunit of the Cleavage and Polyadenylation Specificity Factor. On the other hand, alternative splicing of Intron-2 generates a longer transcript encoding a protein named AtC30Y, a polypeptide including most part of AtCPSF30 and a YT521B domain. To investigate the expression outcome of OXT6 in plants, a set of mutations were constructed to alter the splicing and polyadenylation patterns of OXT6. Analysis of transgenic plants bearing these mutations by quantitative RT-PCR revealed a competition relationship between these two processes. Moreover, when both splice sites and poly(A) signals were mutated, polyadenylation became the preferred mode of OXT6 processing. These results demonstrate the interplay between alternative splicing and alternative polyadenylation, and it is their concerted actions that define a gene's expression outcome.

  2. Mapping of the antigenic determinants of Pseudomonas aeruginosa PAK polar pili.

    PubMed Central

    Watts, T H; Sastry, P A; Hodges, R S; Paranchych, W

    1983-01-01

    The polar pili of Pseudomonas aeruginosa are flexible filaments 5.2 nm in diameter and 2.5 microns in average length. They consist of a single subunit, pilin, which is a 144-residue polypeptide containing a hydrophobic N-terminal region (residues 1 to 30) and eight hydrophilic regions distributed throughout the remainder of the molecule. To delineate the antigenic regions of pilin, we cleaved the protein at Arg30, Arg53, and Arg120 to produce peptides TCI (residues 1 to 30), TCII (31 to 53), TCIII (54 to 120), and TCIV (121 to 144). TCIII and TCIV were further cleaved into several subfragments. The purified peptides were coupled to bovine serum albumin by using the N-hydroxysuccinimide ester of 4-azidobenzoic acid and were then subjected to immunological analysis, using the enzyme-linked immunosorbent assay and immunoblot procedures with polyclonal antiserum. Four antigenic regions were identified; one in TCI was found to be common to both PAK and PAO pilin. The remaining three were found to be specific to PAK pilin. Two of these were subfragments of TCIII, whereas the third was located close to the C-terminus of the molecule, most likely between Cys129 and Cys142. Modification of these cysteines by reduction and carboxymethylation of the disulfide linkage did not abolish the antigenicity of the C-terminal type-specific antigenic determinant. Images PMID:6194112

  3. BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.

    PubMed Central

    Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A

    1997-01-01

    Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150

  4. The diageotropica mutant of tomato lacks high specific activity auxin binding sites

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Lomax, T. L.

    1989-01-01

    Tomato plants homozygous for the diageotropica (dgt) mutation exhibit morphological and physiological abnormalities which suggest that they are unable to respond to the plant growth hormone auxin (indole-3-acetic acid). The photoaffinity auxin analog [3H]5N3-IAA specifically labels a polypeptide doublet of 40 and 42 kilodaltons in membrane preparations from stems of the parental variety, VFN8, but not from stems of plants containing the dgt mutation. In roots of the mutant plants, however, labeling is indistinguishable from that in VFN8. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system, which is altered in a tissue-specific manner in the mutant.

  5. Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milius, R.P.

    1985-01-01

    Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less

  6. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    PubMed

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with myelinated fibres). Double labelling with other neuronal markers showed that 71%, 43% and 36% of the cholera toxin B subunit-immunoreactive cells were calcitonin gene-related peptide-, isolectin B4-binding- and substance P-positive, respectively. A few cholera toxin B subunit cells showed galanin-immunoreactivity, but none were somatostatin-, vasoactive intestinal polypeptide-, or neuropeptide Y-immunoreactive or contained fluoride-resistant acid phosphatase. The results show that cholera toxin B subunit-horseradish peroxidase is a more effective retrograde and transganglionic tracer for pelvic primary afferents from the urinary bladder than wheat germ agglutinin-horseradish peroxidase and isolectin B4-horseradish peroxidase, but in contrast to somatic nerves, it is transported mainly by unmyelinated fibres in the visceral afferents.

  7. Characterization of subunit-specific interactions in a double-stranded RNA virus: Raman difference spectroscopy of the phi6 procapsid.

    PubMed

    Benevides, James M; Juuti, Jarmo T; Tuma, Roman; Bamford, Dennis H; Thomas, George J

    2002-10-08

    The icosahedral core of a double-stranded (ds) RNA virus hosts RNA-dependent polymerase activity and provides the molecular machinery for RNA packaging. The stringent requirements of dsRNA metabolism may explain the similarities observed in core architecture among a broad spectrum of dsRNA viruses, from the mammalian rotaviruses to the Pseudomonas bacteriophage phi6. Although the structure of the assembled core has been described in atomic detail for Reoviridae (blue tongue virus and reovirus), the molecular mechanism of assembly has not been characterized in terms of conformational changes and key interactions of protein constituents. In the present study, we address such questions through the application of Raman spectroscopy to an in vitro core assembly system--the procapsid of phi6. The phi6 procapsid, which comprises multiple copies of viral proteins P1 (copy number 120), P2 (12), P4 (72), and P7 (60), represents a precursor of the core that is devoid of RNA. Raman signatures of the procapsid, its purified recombinant core protein components, and purified sub-assemblies lacking either one or two of the protein components have been obtained and interpreted. The major procapsid protein (P1), which forms the skeletal frame of the core, is an elongated and monomeric molecule of high alpha-helical content. The fold of the core RNA polymerase (P2) is also mostly alpha-helical. On the other hand, the folds of both the procapsid accessory protein (P7) and RNA-packaging ATPase (P4) are of the alpha/beta type. Raman difference spectra show that conformational changes occur upon interaction of P1 with either P4 or P7 in the procapsid. These changes involve substantial ordering of the polypeptide backbone. Conversely, conformations of procapsid subunits are not significantly affected by interactions with P2. An assembly model is proposed in which P1 induces alpha-helix in P4 during formation of the nucleation complex. Subsequently, the partially disordered P7 subunit is folded within the context of the procapsid shell.

  8. Identification of functional domains within the alpha and beta subunits of beta-hexosaminidase A through the expression of alpha-beta fusion proteins.

    PubMed

    Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J

    1996-08-20

    There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.

  9. Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA.

    PubMed

    Douglas, M G; Butow, R A

    1976-04-01

    Products of mitochondrial protein synthesis in yeast have been labeled in vivo with 35SO42-. More than 20 polypeptide species fulfilling the criteria of mitochondrial translation products have been detected by analysis on sodium dodecyl sulfate-exponential polyacrylamide slab gels. A comparison of mitochondrial translation products in two wild-type strains has revealed variant forms of some polypeptide species which show genetic behavior consistent with the location of their structural genes on mtDNA. Our results demonstrate the feasibility of performing genetic analysis on putative gene products of mtDNA in wild-type yeast by direct examination of the segregation and recombination behavior of specific polypeptide species.

  10. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans

    PubMed Central

    Wojtyniak, Martin; Brear, Andrea G.; O'Halloran, Damien M.; Sengupta, Piali

    2013-01-01

    Summary Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions. PMID:23886944

  11. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans.

    PubMed

    Wojtyniak, Martin; Brear, Andrea G; O'Halloran, Damien M; Sengupta, Piali

    2013-10-01

    Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.

  12. β-Subunits of the SnRK1 Complexes Share a Common Ancestral Function Together with Expression and Function Specificities; Physical Interaction with Nitrate Reductase Specifically Occurs via AKINβ1-Subunit1[C][OA

    PubMed Central

    Polge, Cécile; Jossier, Mathieu; Crozet, Pierre; Gissot, Lionel; Thomas, Martine

    2008-01-01

    The SNF1/AMPK/SnRK1 kinases are evolutionary conserved kinases involved in yeast, mammals, and plants in the control of energy balance. These heterotrimeric enzymes are composed of one α-type catalytic subunit and two γ- and β-type regulatory subunits. In yeast it has been proposed that the β-type subunits regulate both the localization of the kinase complexes within the cell and the interaction of the kinases with their targets. In this work, we demonstrate that the three β-type subunits of Arabidopsis (Arabidopsis thaliana; AKINβ1, AKINβ2, and AKINβ3) restore the growth phenotype of the yeast sip1Δsip2Δgal83Δ triple mutant, thus suggesting the conservation of an ancestral function. Expression analyses, using AKINβ promoter∷β-glucuronidase transgenic lines, reveal different and specific patterns of expression for each subunit according to organs, developmental stages, and environmental conditions. Finally, our results show that the β-type subunits are involved in the specificity of interaction of the kinase with the cytosolic nitrate reductase. Together with previous cell-free phosphorylation data, they strongly support the proposal that nitrate reductase is a real target of SnRK1 in the physiological context. Altogether our data suggest the conservation of ancestral basic function(s) together with specialized functions for each β-type subunit in plants. PMID:18768910

  13. Differences in antigen presentation to MHC class I-and class II- restricted influenza virus-specific cytolytic T lymphocyte clones

    PubMed Central

    1986-01-01

    We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently lysed histocompatible target cells pulsed with inactivated virus preparations. The isolated influenza hemagglutinin (HA) polypeptide also could sensitize target cells for recognition by class II-restricted, HA-specific CTL, but not by class I-restricted, HA- specific CTL. Inhibition of nascent viral protein synthesis abrogated the ability of target cells to present viral antigen relevant for class I-restricted CTL recognition. Significantly, presentation for class II- restricted recognition was unaffected in target cells exposed to preparations of either inactivated or infectious virus. This differential sensitivity suggested that these H-2I region-restricted CTL recognized viral polypeptides derived from the exogenously introduced virions, rather than viral polypeptides newly synthesized in the infected cell. In support of this contention, treatment of the target cells with the lysosomotropic agent chloroquine abolished recognition of infected target cells by class II-restricted CTL without diminishing class I-restricted recognition of infected target cells. Furthermore, when the influenza HA gene was introduced into target cells without exogenous HA polypeptide, the target cells that expressed the newly synthesized protein product of the HA gene were recognized only by H-2K/D-restricted CTL. These observations suggest that important differences may exist in requirements for antigen presentation between H-2K/D and H-2I region-restricted CTL. These differences may reflect the nature of the antigenic epitopes recognized by these two CTL subsets. PMID:3485173

  14. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  15. The Chloroplast atpA Gene Cluster in Chlamydomonas reinhardtii1

    PubMed Central

    Drapier, Dominique; Suzuki, Hideki; Levy, Haim; Rimbault, Blandine; Kindle, Karen L.; Stern, David B.; Wollman, Francis-André

    1998-01-01

    Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter. PMID:9625716

  16. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  17. Functional domains of the T lymphocyte plasma membrane: characterization of the polypeptide composition.

    PubMed

    Szamel, M; Kaever, V; Resch, K

    1987-01-01

    Highly purified plasma membranes from calf thymocytes were fractionated by affinity chromatography on Concanavalin A-Sepharose into two subfractions, one eluting freely from the affinity column (MF1) and a second being specifically retained (MF2). SDS-polyacrylamide-gel-electrophoresis revealed different polypeptide patterns of the two plasma membrane subfractions. Polypeptides of apparent molecular weights of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2. In contrast, several proteins in the 55-65 kDa range were preferentially recovered in the non-adherent fraction. Five Five of the six polypeptides, preferentially recovered in MF2 proved to be glycoproteins, the 39 kDa peptide was non-glycosilated. The differences in the amounts of the polypeptides specifically enriched in the adherent fraction MF2 became even more clear-cut when plasma membranes solubilized with non-ionic detergents (lysolecithin, ET-18-2H, Triton-X-100) were separated by affinity chromatography on Concanavalin A-Sepharose. The non-glycosilated peptide of apparent molecular weight of 39 kDa was recovered together with several glycoproteins in the adherent fraction, MF2, suggesting that not single glycoproteins, but plasma membrane domains were separated by Concanavalin A-Sepharose. Although the glycoproteins of the non-adherent fraction MF1 bound significant amounts of Concanavalin A, the major Concanavalin A binding glycoproteins were recovered in the adherent fraction, MF2. The plasma membrane subfractions showed also different functional properties, the specific activities [Na+ + K+]AT-Pase, Ca2+ ATPase and lysolecithin acyltransferase were several-fold enriched in the adherent fraction, MF2, as compared to MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of thymocytes consisting of a different set of proteins, among others the major Concanavalin A binding glycoproteins with some membrane bound enzymes, probably implicated in the initiation of lymphocyte activation.

  18. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  19. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase.

    PubMed

    Ezaki, J; Takeda-Ezaki, M; Kominami, E

    2000-09-01

    The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.

  20. Analysis of the recE locus of Escherichia coli K-12 by use of polyclonal antibodies to exonuclease VIII.

    PubMed Central

    Luisi-DeLuca, C; Clark, A J; Kolodner, R D

    1988-01-01

    Exonuclease VIII (exoVIII) of Escherichia coli has been purified from a strain carrying a plasmid-encoded recE gene by using a new procedure. This procedure yielded 30 times more protein per gram of cells, and the protein had a twofold higher specific activity than the enzyme purified by the previously published procedure (J. W. Joseph and R. Kolodner, J. Biol. Chem. 258:10411-10417, 1983). The sequence of the 12 N-terminal amino acids was also obtained and found to correspond to one of the open reading frames predicted from the nucleic acid sequence of the recE region of Rac (C. Chu, A. Templin, and A. J. Clark, manuscript in preparation). Polyclonal antibodies directed against purified exoVIII were also prepared. Cell-free extracts prepared from strains containing a wide range of chromosomal- or plasmid-encoded point, insertion, and deletion mutations which result in expression of exoVIII were examined by Western blot (immunoblot) analysis. This analysis showed that two point sbcA mutations (sbcA5 and sbcA23) and the sbc insertion mutations led to the synthesis of the 140-kilodalton (kDa) polypeptide of wild-type exoVIII. Plasmid-encoded partial deletion mutations of recE reduced the size of the cross-reacting protein(s) in direct proportion to the size of the deletion, even though exonuclease activity was still present. The analysis suggests that 39 kDa of the 140-kDa exoVIII subunit is all that is essential for exonuclease activity. One of the truncated but functional exonucleases (the pRAC3 exonuclease) has been purified and confirmed to be a 41-kDa polypeptide. The first 18 amino acids from the N terminus of the 41-kDa pRAC3 exonuclease were sequenced and fond to correspond to one of the translational start signals predicted from the nucleotide sequence of radC (Chu et al., in preparation). Images PMID:3056915

  1. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila.

    PubMed

    Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G

    2017-03-23

    In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.

  2. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  3. Immunogenic Antigen Selective Cancer Immunotherapy | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Institute on Aging working on cancer immunotherapy and detection report the use of SPANX-B polypeptides in the treatment and identification of cancer. Specific human malignancies targeted for the treatments disclosed include melanoma and lung, colon, renal, ovarian and breast carcinomas. The NIA seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize SPANX-B polypeptides in the treatment and identification of cancer.

  4. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice.

    PubMed

    Tao, Wei; Zheng, Hai-Qun; Fu, Ting; He, Zhuo-Jing; Hong, Yan

    2017-08-03

    Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4 + CD8 - T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.

  5. High-yield recombinant expression and purification of marginally soluble, short elastin-like polypeptides.

    PubMed

    Bahniuk, Markian S; Alshememry, Abdullah K; Unsworth, Larry D

    2016-12-01

    The protocol described here is designed as an extension of existing techniques for creating elastin-like polypeptides. It allows for the expression and purification of elastin-like polypeptide (ELP) constructs that are poorly expressed or have very low transition temperatures. DNA concatemerization has been modified to reduce issues caused by methylation sensitivity and inefficient cloning. Linearization of the modified expression vector has been altered to greatly increase cleavage efficiency. The purification regimen is based upon using denaturing metal affinity chromatography to fully solubilize and, if necessary, pre-concentrate the target peptide before purification by inverse temperature cycling (ITC). This protocol has been used to express multiple leucine-containing elastin-like polypeptides, with final yields of 250-660 mg per liter of cells, depending on the specific construct. This was considerably greater than previously reported yields for similar ELPs. Due to the relative hydrophobicity of the tested constructs, even compared with commonly employed ELPs, conventional methods would not have been able to be purify these peptides.

  6. Nuclear Involvement in the Appearance of a Chloroplast-Encoded 32,000 Dalton Thylakoid Membrane Polypeptide Integral to the Photosystem II Complex 1

    PubMed Central

    Leto, Kenneth J.; Keresztes, Aron; Arntzen, Charles J.

    1982-01-01

    The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts. Images PMID:16662421

  7. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system.

    PubMed

    Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R

    2008-01-01

    The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.

  8. O-linked oligosaccharides on insulin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, E.; Gorden, P.

    1991-02-01

    The insulin receptor, an integral membrane glycoprotein, is synthesized as a single-chain precursor that is cleaved to produce two mature subunits, both of which contain N-linked oligosaccharide chains and covalently linked fatty acids. We report that the beta-subunit also contains O-linked oligosaccharides. The proreceptor, alpha-subunit, and beta-subunit were labeled with (3H)mannose and (3H)galactose in the presence or absence of an inhibitor of O-linked glycosylation. Tryptic peptides from each component were separated by reverse-phase high-performance liquid chromatography. N- and O-linked oligosaccharide chains were identified on these peptides by specific enzymatic digestions. The proreceptor and alpha-subunit contained only N-linked oligosaccharides, whereas themore » beta-subunit contained both N- and O-linked oligosaccharides. The O-linked oligosaccharide chains were attached to a single tryptic fraction of the beta-subunit, which also contained N-linked chains. This fraction was further localized to the NH2-terminal tryptic peptide of the beta-subunit by specific immunoprecipitation with an anti-peptide antibody with specificity for this region. Binding of insulin and autophosphorylation of the beta-subunit were not dependent on O-linked glycosylation, because cells grown in the presence of the inhibitor exhibited a normal dose response to insulin. Therefore, the insulin receptor contains O-linked oligosaccharides on the NH2-terminal tryptic peptide of the beta-subunit, and these O-linked oligosaccharides are not necessary to the binding or autophosphorylation function of the receptor.« less

  9. Multiple polypeptides immunologically related to beta-poly(L-malate) hydrolase (polymalatase) in the plasmodium of the slime mold Physarum polycephalum.

    PubMed

    Karl, M; Holler, E

    1998-01-15

    Plasmodia of Physarum polycephalum contain large amounts of the cell-type-specific polyanion beta-poly(L-malate) and of a corresponding specific hydrolase (polymalatase), both expressed in the plasmodial form of the organism. We have partially purified polymalatase, the preparation consisting of several polypeptides, which could not be separated without destroying the hydrolase activity. Polypeptides of 68 kDa and 97 kDa were identified as polymalatases. Both were glycosylated, the 68-kDa form giving rise to a 54-kDa form when deglycosylated, and the 97-kDa form giving rise to an 88-kDa polypeptide that was indistinguishable from an 88-kDa inactive species also contained in the enzyme preparation. Antisera against each of these proteins were used to detect the intracellular distribution of the proteins. We found that the antisera crossreacted with the three proteins and, furthermore, with a multiplicity of polypeptides ubiquitously distributed over the plasmodium. Results of a two-dimensional non-denaturing in the first dimension and SDS-denaturing polyacrylamide gel electrophoresis in the second dimension suggested that the proteins were derived from a 200-kDa 'precursor' protein by proteolytic fragmentation. Polymalatase activity could be generated from a high molecular-mass precursor. According to several pieces of evidence, the proteolytic nicking occurred within plasmodia. The fragments were sticky and gave rise to preferred sizes of nicked macromolecules. The observed multiplicity varied as a function of the age of the cultures. The cellular distribution and the intracellular pH value were not compatible with an in situ polymalatase activity and suggested other, presently unknown, function(s) such as in the transportation of beta-poly(L-malate) from the nucleus to the culture medium.

  10. Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier.

    PubMed

    Massodi, Iqbal; Moktan, Shama; Rawat, Aruna; Bidwell, Gene L; Raucher, Drazen

    2010-01-15

    Current treatment of solid tumors is limited by normal tissue tolerance, resulting in a narrow therapeutic index. To increase drug specificity and efficacy and to reduce toxicity in normal tissues, we have developed a polypeptide carrier for a cell cycle inhibitory peptide, which has the potential to be thermally targeted to the tumor site. The design of this polypeptide is based on elastin-like polypeptide (ELP). The coding sequence of ELP was modified by the addition of the cell penetrating peptide Bac-7 at the N-terminus and a 23 amino acid peptide derived from p21 at the C-terminus (Bac-ELP1-p21). Bac-ELP1-p21 is soluble in aqueous solutions below physiological temperature (37 degrees C) but aggregates when the temperature is raised above 39 degrees C, making it a promising thermally responsive therapeutic carrier that may be actively targeted to solid tumors by application of focused hyperthermia. While Bac-ELP1-p21 at 37 degrees C did not have any effect on SKOV-3 cell proliferation, the use of hyperthermia increased the antiproliferative effect of Bac-ELP1-p21 compared with a thermally unresponsive control polypeptide. Bac-ELP1-p21 displayed both a cytoplasmic and nuclear distribution in the SKOV-3 cells, with nuclear-localized polypeptide enriched in the heated cells, as revealed by confocal microscopy. Using Western blotting, we show that Bac-ELP1-p21 caused a decrease in Rb phosphorylation levels in cells treated at 42 degrees C. The polypeptide also induced caspase activation, PARP cleavage, and cell cycle arrest in S-phase and G2/M-phase. These studies indicate that ELP is a promising macromolecular carrier for the delivery of cell cycle inhibitory peptides to solid tumors.

  11. Protein Arms in the Kinetochore-Microtubule Interface of the Yeast DASH Complex

    PubMed Central

    Miranda, JJ L.; King, David S.

    2007-01-01

    The yeast DASH complex is a heterodecameric component of the kinetochore necessary for accurate chromosome segregation. DASH forms closed rings around microtubules with a large gap between the DASH ring and the microtubule cylinder. We characterized the microtubule-binding properties of limited proteolysis products and subcomplexes of DASH, thus identifying candidate polypeptide extensions involved in establishing the DASH-microtubule interface. The acidic C-terminal extensions of tubulin subunits are not essential for DASH binding. We also measured the molecular mass of DASH rings on microtubules with scanning transmission electron microscopy and found that approximately 25 DASH heterodecamers assemble to form each ring. Dynamic association and relocation of multiple flexible appendages of DASH may allow the kinetochore to translate along the microtubule surface. PMID:17460120

  12. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L.) Bran Is a New Member of the Cupin Superfamily.

    PubMed

    Sreedhar, Roopesh; Kaul Tiku, Purnima

    2016-01-01

    Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60 °C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease.

  13. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L.) Bran Is a New Member of the Cupin Superfamily

    PubMed Central

    Sreedhar, Roopesh; Kaul Tiku, Purnima

    2016-01-01

    Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60°C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease. PMID:27064905

  14. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  15. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Petersen, D.J.; Bennett, G.N.

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defectmore » in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.« less

  16. Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket.

    PubMed

    Acosta-Maspons, Alexis; Sepúlveda-García, Edgar; Sánchez-Baldoquín, Laura; Marrero-Gutiérrez, Junier; Pons, Tirso; Rocha-Sosa, Mario; González, Lien

    2014-01-01

    Metacaspases are cysteine proteases present in plants, fungi, prokaryotes, and early branching eukaryotes, although a detailed description of their cellular function remains unclear. Currently, three-dimensional (3D) structures are only available for two metacaspases: Trypanosoma brucei (MCA2) and Saccharomyces cerevisiae (Yca1). Furthermore, metacaspases diverged from animal caspases of known structure, which limits straightforward homology-based interpretation of functional data. We report for the first time the identification and initial characterization of a metacaspase of Nicotiana tabacum L., NtMC1. By combining domain search, multiple sequence alignment (MSA), and protein fold-recognition studies, we provide compelling evidences that NtMC1 is a plant metacaspase type II, and predict its 3D structure using the crystal structure of two type I metacaspases (MCA2 and Yca1) and Gsu0716 protein from Geobacter sulfurreducens as template. Analysis of the predicted 3D structure allows us to propose Asp353, at the putative p10 subunit, as a new member of the aspartic acid triad that coordinates the P1 arginine/lysine residue of the substrate. Nevertheless, site-directed mutagenesis and expression analysis in bacteria and Nicotiana benthamiana indicate the functionality of both Asp348 and Asp353. Through the co-expression of mutant and wild-type proteins by transient expression in N. benthamiana leaves we found that polypeptide processing seems to be intramolecular. Our results provide the first evidence in plant metacaspases concerning the functionality of the putative p10 subunit.

  17. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  18. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    PubMed

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.

  19. Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.

    PubMed

    Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J

    1990-06-01

    The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.

  20. Changes in the pattern of protein synthesis during zoospore germination in Blastocladiella emersonii.

    PubMed Central

    Silva, A M; Maia, J C; Juliani, M H

    1987-01-01

    Using two-dimensional gel electrophoresis, we analyzed the pattern of proteins synthesized during Blastocladiella emersonii zoospore germination in an inorganic solution, in both the presence and absence of actinomycin D. During the transition from zoospore to round cells (the first 25 min), essentially no qualitative differences were noticeable, indicating that the earliest stages of germination are entirely preprogrammed with stored RNA. Later in germination (after 25 min), however, changes in the pattern of protein synthesis were found. Some of these proteins (a total of 6 polypeptides) correspond possibly to a selective translation of stored messages, whereas the majority of the changed proteins (22 polypeptides) corresponds to newly synthesized mRNA. Thus, multiple levels of protein synthesis regulation seem to occur during zoospore germination, involving both transcriptional and translational controls. We also analyzed the pattern of protein synthesis during germination in a nutrient medium; synthesis of specific polypeptides occurred during late germination. During early germination posttranslational control was also observed, several labeled proteins from zoospores being specifically degraded or charge modified. Images PMID:3571161

  1. Identification of helper T cell epitopes of dengue virus E-protein.

    PubMed

    Leclerc, C; Dériaud, E; Megret, F; Briand, J P; Van Regenmortel, M H; Deubel, V

    1993-05-01

    The T cell proliferative response to dengue 2 (Jamaica) E-glycoprotein (495 amino acids) was analyzed in vitro using either killed virus or E-protein fragments or synthetic peptides. Inactivated dengue virus stimulated dengue-specific lymph node (LN) CD4+T cell proliferation in BALB/c (H-2d), C3H (H-2k) and DBA/1 (H-2q) but not in C57BL/6 (H-2b) mice. Moreover, LN cells from dengue-virus primed BALB/c mice proliferated in vitro in response to three purified non-overlapping E-protein fragments expressed in E. coli as polypeptides fused to trpE (f22-205, f267-354, f366-424). To further determine T cell epitopes in the E-protein, synthetic peptides were selected using prediction algorithms for T cell epitopes. Highest proliferative responses were obtained after in vitro exposure of virus-primed LN cells to peptides p135-157, p270-298, p295-307 and p337-359. Peptide p59-78 was able to induce specific B and T cell responses in peptide-primed mice of H-2d, H-2q and H-2k haplotypes. Two peptides p59-78 corresponding to two dengue (Jamaica and Sri Lanka) isolates and differing only at position 71 cross-reacted at the B but not at the T cell level in H-2b mice. This analysis of murine T helper cell response to dengue E-protein may be of use in dengue subunit vaccine design.

  2. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes

    PubMed Central

    Li, Yongchao; Wang, Yang; Jiang, Haobo; Deng, Junpeng

    2009-01-01

    Arthropod phenoloxidase (PO) generates quinones and other toxic compounds to sequester and kill pathogens during innate immune responses. It is also involved in wound healing and other physiological processes. Insect PO is activated from its inactive precursor, prophenoloxidase (PPO), by specific proteolysis via a serine protease cascade. Here, we report the crystal structure of PPO from a lepidopteran insect at a resolution of 1.97 Å, which is the initial structure for a PPO from the type 3 copper protein family. Manduca sexta PPO is a heterodimer consisting of 2 homologous polypeptide chains, PPO1 and PPO2. The active site of each subunit contains a canonical type 3 di-nuclear copper center, with each copper ion coordinated with 3 structurally conserved histidines. The acidic residue Glu-395 located at the active site of PPO2 may serve as a general base for deprotonation of monophenolic substrates, which is key to the ortho-hydroxylase activity of PO. The structure provides unique insights into the mechanism by which type 3 copper proteins differ in their enzymatic activities, albeit sharing a common active center. A drastic change in electrostatic surface induced on cleavage at Arg-51 allows us to propose a model for localized PPO activation in insects. PMID:19805072

  3. The immunogenicity of Echinococcus granulosus antigen 5 is determined by its post-translational modifications.

    PubMed

    Lorenzo, C; Last, J A; González-Sapienza, G G

    2005-11-01

    Since its early introduction as a marker for the immunodiagnosis of hydatid disease, antigen 5 (Ag5) has been regarded as one of the more relevant antigens of Echinococcus granulosus, and it is still widely used in different confirmation techniques. In this work we prepared 2 recombinant forms of the antigen, namely, rAg5 (corresponding to the unprocessed polypeptide chain of the antigen) and rAg5-38s (corresponding to its 38 kDa subunit). Their antigenicities were compared to that of the native antigen using a human serum collection. There was a major drop in the reactivity of the sera, particularly against rAg5-38s, which was confirmed by analysis of the cross-reactivity of 2 panels of monoclonal antibodies specific for rAg5-38s and the native antigen. Using the chemically deglycosylated native antigen, we demonstrated that the reduced antigenicity of the recombinants is due to the loss of the sugar determinants, and not to their misfolding. Inhibition experiments using phosphorylcholine confirmed that this moiety also contributes to the reactivity of the antigen, but to a much lesser extent. The presence of immunodominant highly cross-reactive glycan moieties in the Ag5 molecule may involve a parasite evasion mechanism.

  4. The heterodimeric assembly of the CD94-NKG2 receptor family and implications for human leukocyte antigen-E recognition.

    PubMed

    Sullivan, Lucy C; Clements, Craig S; Beddoe, Travis; Johnson, Darryl; Hoare, Hilary L; Lin, Jie; Huyton, Trevor; Hopkins, Emma J; Reid, Hugh H; Wilce, Matthew C J; Kabat, Juraj; Borrego, Francisco; Coligan, John E; Rossjohn, Jamie; Brooks, Andrew G

    2007-12-01

    The CD94-NKG2 receptor family that regulates NK and T cells is unique among the lectin-like receptors encoded within the natural killer cell complex. The function of the CD94-NKG2 receptors is dictated by the pairing of the invariant CD94 polypeptide with specific NKG2 isoforms to form a family of functionally distinct heterodimeric receptors. However, the structural basis for this selective pairing and how they interact with their ligand, HLA-E, is unknown. We describe the 2.5 A resolution crystal structure of CD94-NKG2A in which the mode of dimerization contrasts with that of other homodimeric NK receptors. Despite structural homology between the CD94 and NKG2A subunits, the dimer interface is asymmetric, thereby providing a structural basis for the preferred heterodimeric assembly. Structure-based sequence comparisons of other CD94-NKG2 family members, combined with extensive mutagenesis studies on HLA-E and CD94-NKG2A, allows a model of the interaction between CD94-NKG2A and HLA-E to be established, in which the invariant CD94 chain plays a more dominant role in interacting with HLA-E in comparison to the variable NKG2 chain.

  5. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos*

    PubMed Central

    Cui, Jingqiu; Chen, Wei; Sun, Jinhong; Guo, Huan; Madley, Rachel; Xiong, Yi; Pan, Xingyi; Wang, Hongliang; Tai, Andrew W.; Weiss, Michael A.; Arvan, Peter; Liu, Ming

    2015-01-01

    Upon translocation across the endoplasmic reticulum (ER) membrane, secretory proteins are proteolytically processed to remove their signal peptide by signal peptidase (SPase). This process is critical for subsequent folding, intracellular trafficking, and maturation of secretory proteins. Prokaryotic SPase has been shown to be a promising antibiotic target. In contrast, to date, no eukaryotic SPase inhibitors have been reported. Here we report that introducing a proline immediately following the natural signal peptide cleavage site not only blocks preprotein cleavage but also, in trans, impairs the processing and maturation of co-expressed preproteins in the ER. Specifically, we find that a variant preproinsulin, pPI-F25P, is translocated across the ER membrane, where it binds to the catalytic SPase subunit SEC11A, inhibiting SPase activity in a dose-dependent manner. Similar findings were obtained with an analogous variant of preproparathyroid hormone, demonstrating that inhibition of the SPase does not depend strictly on the sequence or structure of the downstream mature protein. We further show that inhibiting SPase in the ER impairs intracellular processing of viral polypeptides and their subsequent maturation. These observations suggest that eukaryotic SPases (including the human ortholog) are, in principle, suitable therapeutic targets for antiviral drug design. PMID:26446786

  6. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    PubMed Central

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  7. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    PubMed

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  8. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    PubMed Central

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  9. Reflections on protein splicing: structures, functions and mechanisms

    PubMed Central

    Anraku, Yasuhiro; Satow, Yoshinori

    2009-01-01

    Twenty years ago, evidence that one gene produces two enzymes via protein splicing emerged from structural and expression studies of the VMA1 gene in Saccharomyces cerevisiae. VMA1 consists of a single open reading frame and contains two independent genetic information for Vma1p (a catalytic 70-kDa subunit of the vacuolar H+-ATPase) and VDE (a 50-kDa DNA endonuclease) as an in-frame spliced insert in the gene. Protein splicing is a posttranslational cellular process, in which an intervening polypeptide termed as the VMA1 intein is self-catalytically excised out from a nascent 120-kDa VMA1 precursor and two flanking polypeptides of the N- and C-exteins are ligated to produce the mature Vma1p. Subsequent studies have demonstrated that protein splicing is not unique to the VMA1 precursor and there are many operons in nature, which implement genetic information editing at protein level. To elucidate its structure-directed chemical mechanisms, a series of biochemical and crystal structural studies has been carried out with the use of various VMA1 recombinants. This article summarizes a VDE-mediated self-catalytic mechanism for protein splicing that is triggered and terminated solely via thiazolidine intermediates with tetrahedral configurations formed within the splicing sites where proton ingress and egress are driven by balanced protonation and deprotonation. PMID:19907126

  10. Protein methylation in pea chloroplasts. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. Onemore » methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.« less

  11. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreitzer, Robert J.

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesismore » is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.« less

  13. Preclinical Vaccine Study of Plasmodium vivax Circumsporozoite Protein Derived-Synthetic Polypeptides Formulated in Montanide ISA 720 and Montanide ISA 51 Adjuvants

    PubMed Central

    Arévalo-Herrera, Myriam; Vera, Omaira; Castellanos, Angélica; Céspedes, Nora; Soto, Liliana; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate previously assessed in animals and humans. Here, combinations of three synthetic polypeptides corresponding to amino (N), central repeat (R), and carboxyl (C) regions of the CS protein formulated in Montanide ISA 720 or Montanide ISA 51 adjuvants were assessed for immunogenicity in rodents and primates. BALB/c mice and Aotus monkeys were divided into test and control groups and were immunized three times with doses of 50 and 100 μg of vaccine or placebo. Antigen-specific antimalarial antibodies were determined by enzyme-linked immunosorbent assay, immunofluorescent antibody test, and IFN-γ responses by enzyme-linked immunosorbent spot (ELIspot). Both vaccine formulations were highly immunogenic in both species. Mice developed better antibody responses against C and R polypeptides, whereas the N polypeptide was more immunogenic in monkeys. Anti-peptide antibodies remained detectable for several months and recognized native proteins on sporozoites. Differences between Montanide ISA 720 and Montanide ISA 51 formulations were not significant. PMID:21292874

  14. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increasesmore » in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.« less

  15. Evaluation of ovostatin and ovostatin assay

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1993-01-01

    Ovostatin is a 780,000 MW protein, originally isolated from chicken egg white, which is active as a protease inhibitor. Structural studies indicate that the protein is a tetramer of identical subunits of 165,000 MW which can be separated upon reduction with beta- mercaptoethanol. Chicken ovostatin is an inhibitor of metalloproteases such as collagenase and thermolysin, and of acid proteases such as pepsin and rennin. Ovostatin isolated from duck eggs and from crocodile eggs appears to be similar to chicken egg ovostatin, but with significant differences in structure and function. Duck ovostatin contains a reactive thiol ester which is not found in the chicken protein, and duck and crocodile ovostatin inhibit serine protease such as trypsin and chymotrypsin, while chicken ovostatin does not. Electron microscopy of ovostatin indicates that two subunits associated near the middle of each polypeptide to form a dimer with four arms. Two of these dimers then associate to produce a tetramer with eight arms, with the protease binding site near the center of the molecule. Upon binding of the protease, a conformational change causes all eight arms to curl toward the center of the molecule, effectively trapping the protease and sterically hindering access of the substrates to its active site. The structural organization and mechanism of action proposed for ovostatin are nearly identical to that proposed for alpha(sub 2)- macroglobulin, a serum protease inhibitor which may play an important role in regulation of proteases in animal tissues. Although the general arrangement of subunits appears to be the same for all ovostatins studied, some differences have been observed, with chicken ovostatin more closely resembling reptilian ovostatin than the duck protein. This is a surprising result, given the evolutionary relatedness of chickens and ducks. It is possible that the differences in structures may be due to deformed subunit arrangements which occur during the processing and fixing necessary for electron microscopy. Examination of the native structure of these proteins using X-ray crystallography would help clarify these discrepancies.

  16. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation.

    PubMed

    Sasaki, Daisuke; Fujihashi, Masahiro; Okuyama, Naomi; Kobayashi, Yukiko; Noike, Motoyoshi; Koyama, Tanetoshi; Miki, Kunio

    2011-02-04

    Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.

  17. Identification of a major polypeptide of the nuclear pore complex

    PubMed Central

    1982-01-01

    The nuclear pore complex is a prominent structural component of the nuclear envelope that appears to regulate nucleoplasmic molecular movement. Up to now, none of its polypeptides have been defined. To identify possible pore complex proteins, we fractionated rat liver nuclear envelopes and microsomal membranes with strong protein perturbants into peripheral and intrinsic membrane proteins, and compared these fractions on SDS gels. From this analysis, we identified a prominent 190-kilodalton intrinsic membrane polypeptide that occurs specifically in nuclear envelopes. Lectin binding studies indicate that this polypeptide (gp 190) is the major nuclear envelope glycoprotein. Upon treatment of nuclear envelopes with Triton X-100, gp 190 remains associated with a protein substructure of the nuclear envelope consisting of pore complexes and nuclear lamina. We prepared monospecific antibodies to gp 190 for immunocytochemical localization. Immunofluorescence staining of tissue culture cells suggests that gp 190 occurs exclusively in the nucleus during interphase. This polypeptide becomes dispersed throughout the cell in mitotic prophase when the nuclear envelope is disassembled, and subsequently returns to the nuclear surfaces during telophase when the nuclear envelope is reconstructed. Immunoferritin labeling of Triton-treated rat liver nuclei demonstrates that gp 190 occurs exclusively in the nuclear pore complex, in the regions of the cytoplasmic (and possibly nucleoplasmic) pore complex annuli. A polypeptide that cross-reacts with gp 190 is present in diverse vertebrate species, as shown by antibody labeling of nitrocellulose SDS gel transfers. On the basis of its biochemical characteristics, we suggest that gp 190 may be involved in anchoring the pore complex to nuclear envelope membranes. PMID:7153248

  18. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  19. Cellobiohydrolase I enzymes

    DOEpatents

    Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina

    2014-01-28

    Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.

  20. Adhesion inhibition of Mycoplasma iowae to chicken lymphoma DT40 cells by monoclonal antibodies reacting with a 65-kD polypeptide.

    PubMed

    Fiorentin, L; Panangala, V S; Zhang, Y; Toivio-Kinnucan, M

    1998-01-01

    Tissue- and cell-specific attachment of mycoplasmas is a key aspect of the host-parasite relationship. In this study, monoclonal antibodies (MAbs) recognizing surface membrane polypeptides with molecular masses of 46 kD (p46) and 65 kD (p65), respectively, were examined in a microtiter cell attachment (agglutination) inhibition assay. MAbs MI3, MI6, and MI12 reacting with p65 polypeptide of Mycoplasma iowae inhibited attachment of the organisms to chicken lymphoma (DT 40) cells. One MAb (MI2) that reacted with p65 in immunoblots did not inhibit cell attachment, possibly because of the intrinsic native conformation of the epitope(s) in intact mycoplasmas as opposed to the linear state (sodium dodecyl sulfate denatured) in immunoblots. More pronounced M. iowae adherence inhibition was demonstrated by polyclonal turkey and mouse anti-M. iowae antisera compared with MAbs. Immunogold labelling followed by electron microscopy allowed us to localize the MAb-recognized epitopes on the membrane surface of M. iowae. On the basis of the cell attachment inhibition of M. iowae by specific MAbs (MI3, MI6, and MI12), we propose that the p65 polypeptide plays a role in cytadherence. The ability of polyclonal antisera to inhibit attachment of M. iowae more efficiently than the MAbs suggests that additional epitopes within p65 and/or other proteins are involved in cell attachment.

  1. Specific Binding of Protoporphyrin IX to a Membrane-Bound 63 Kilodalton Polypeptide in Cucumber Cotyledons Treated with Diphenyl Ether-Type Herbicides.

    PubMed

    Sato, R; Oshio, H; Koike, H; Inoue, Y; Yoshida, S; Takahashi, N

    1991-06-01

    Porphyrin accumulation in excised cucumber cotyledons (Cucumis sativus L.) treated with a N-phenylimide S-23142 (N-[4-chloro-2-fluoro-5-propargyloxyphenyl]-3,4,5,6- tetrahydrophthalimide) and a diphenylether acifluorfen-ethyl (ethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitro benzoic acid) was studied. Most of the accumulated porphyrins were found in the membrane fractions of 6,000g and 30,000g pellets, forming a complex with a membrane polypeptide. The complex was solubilized with 1% n-dodecyl beta-d-maltoside and its molecular mass was estimated to be 63,000 and 66,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation high performance liquid chromatography (HPLC), respectively. The polypeptide also existed in untreated cotyledons but had little protoporphyrin IX. The complex was also formed in vitro by mixing the 30,000g pellets from untreated cotyledons and authentic protoporphyrin IX. However, protoporphyrin IX formed the complex specifically with the 63,000 dalton polypeptide and not with the other proteins both in vivo and in vitro. At least four fluorescent porphyrins, including protoporphyrin IX, were found in the acetone extract of the cotyledons by HPLC using a reversed phase column. Protoporphyrin IX was one of the two porphyrins that formed the complex. These results suggest that S-23142 and acifluorfenethyl enhance the accumulation of protoporphyrin IX, which forms the complex with the membrane protein.

  2. AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA

    PubMed Central

    Götz, Frank; Roske, Yvette; Schulz, Maike Svenja; Autenrieth, Karolin; Bertinetti, Daniela; Faelber, Katja; Zühlke, Kerstin; Kreuchwig, Annika; Kennedy, Eileen J.; Krause, Gerd; Daumke, Oliver; Herberg, Friedrich W.; Heinemann, Udo; Klussmann, Enno

    2016-01-01

    A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions. PMID:27102985

  3. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    PubMed Central

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  4. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  5. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  6. Isolation and Characterization of the PKAr Gene From a Plant Pathogen, Curvularia lunata.

    PubMed

    Liu, T; Ma, B C; Hou, J M; Zuo, Y H

    2014-09-01

    By using EST database from a full-length cDNA library of Curvularia lunata, we have isolated a 2.9 kb cDNA, termed PKAr. An ORF of 1,383 bp encoding a polypeptide of 460 amino acids with molecular weight 50.1 kDa, (GeneBank Acc. No. KF675744) was cloned. The deduced amino acid sequence of the PKAr shows 90 and 88 % identity with cAMP-dependent protein kinase A regulatory subunit from Alternaria alternate and Pyrenophora tritici-repentis Pt-1C-BFP, respectively. Database analysis revealed that the deduced amino acid sequence of PKAr shares considerable similarity with that of PKA regulatory subunits in other organisms, particularly in the conserved regions. No introns were identified within the 1,383 bp of ORF compared with PKAr genomic DNA sequence. Southern blot indicated that PKAr existed as a single copy per genome. The mRNA expression level of PKAr in different development stages were demonstrated using real-time quantitative PCR. The results showed that the level of PKAr expression was highest in vegetative growth mycelium, which indicated it might play an important role in the vegetative growth of C. lunata. These results provided a fundamental supporting research on the function of PKAr in plant pathogen, C. lunata.

  7. Fusion of Escherichia coli heat-stable enterotoxin and heat-labile enterotoxin B subunit.

    PubMed

    Guzman-Verduzco, L M; Kupersztoch, Y M

    1987-11-01

    The 3' terminus of the DNA coding for the extracellular Escherichia coli heat-stable enterotoxin (ST) devoid of transcription and translation stop signals was fused to the 5' terminus of the DNA coding for the periplasmic B subunit of the heat-labile enterotoxin (LTB) deleted of ribosomal binding sites and leader peptide. By RNA-DNA hybridization analysis, it was shown that the fused DNA was transcribed in vivo into an RNA species in close agreement with the expected molecular weight inferred from the nucleotide sequence. The translation products of the fused DNA resulted in a hybrid molecule recognized in Western blots (immunoblots) with antibodies directed against the heat-labile moiety. Anti-LTB antibodies coupled to a solid support bound ST and LTB simultaneously when incubated with ST-LTB cellular extracts. By [35S]cysteine pulse-chase experiments, it was shown that the fused ST-LTB polypeptide was converted from a precursor with an equivalent electrophoretic mobility of 20,800 daltons to an approximately 18,500-dalton species, which accumulated within the cell. The data suggest that wild-type ST undergoes at least two processing steps during its export to the culture supernatant. Blocking the natural carboxy terminus of ST inhibited the second proteolytic step and extracellular delivery of the hybrid molecule.

  8. Photoaffinity labeling of protoporphyrinogen oxidase, the molecular target of diphenylether-type herbicides.

    PubMed

    Camadro, J M; Matringe, M; Thome, F; Brouillet, N; Mornet, R; Labbe, P

    1995-05-01

    Diphenylether-type herbicides are extremely potent inhibitors of protoporphyrinogen oxidase, a membrane-bound enzyme involved in the heme and chlorophyll biosynthesis pathways. Tritiated acifluorfen and a diazoketone derivative of tritiated acifluorfen were specifically bound to a single class of high-affinity binding sites on yeast mitochondrial membranes with apparent dissociation constants of 7 nM and 12.5 nM, respectively. The maximum density of specific binding sites, determined by Scatchard analysis, was 3 pmol.mg-1 protein. Protoporphyrinogen oxidase specific activity was estimated to be 2500 nmol protoporphyrinogen oxidized h-1.mol-1 enzyme. The diazoketone derivative of tritiated acifluorfen was used to specifically photolabel yeast protoporphyrinogen oxidase. The specifically labeled polypeptide in wild-type mitochondrial membranes had an apparent molecular mass of 55 kDa, identical to the molecular mass of the purified enzyme. This photolabeled polypeptide was not detected in a protoporphyrinogen-oxidase-deficient yeast strain, but the membranes contained an equivalent amount of inactive immunoreactive protoporphyrinogen oxidase protein.

  9. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like. This invention was made with Government support under Grant Contract No. AI-24695, awarded by the Department of health and Human Services, and under Grant Contract No. N 00014-87-K-0256, awarded by the Office of Naval Research. The Government has certain rights in this invention.

  10. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    PubMed

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  11. Role of Monomer Sequence, Hydrogen Bonding and Mesoscale Architecture in Marine Antifouling Coatings

    NASA Astrophysics Data System (ADS)

    Segalman, Rachel

    Polypeptoids are non-natural, sequence specific polymers that offer the opportunity to probe the effect of monomer sequence, chirality, and chain shape on self-assembly and surface properties. Additionally, polypeptoid synthesis is more scaleable than traditional polypeptides suggesting their utility in large area applications. We have designed efficient marine anti-fouling coatings by using triblock copolymer scaffolds to which polypeptoids are tethered in order to tune both the modulus and surface energies with great precision. Surprisingly, when short sequences are tethered to a polymer backbone, polypeptoids consistently outperform analogous polypeptides in antifouling properties. We hypothesize that the hydrogen bonding inherent to the polypeptide backbone drives the observed differences in performance. We also find that the polymer scaffold housing the polypeptoids also plays a crucial role in directing surface presentation and therefore the overall coating properties.

  12. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  13. Characterization of Hybrid Toluate and Benzoate Dioxygenases

    PubMed Central

    Ge, Yong; Eltis, Lindsay D.

    2003-01-01

    Toluate dioxygenase of Pseudomonas putida mt-2 (TADOmt2) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADOADP1) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hybrid oxygenases consisting of the α subunit of one enzyme and the β subunit of the other were prepared, and their respective specificities were compared to those of the parent enzymes. Reconstituted BADOADP1 utilized four of the seven tested benzoates in the following order of apparent specificity: benzoate > 3-methylbenzoate > 3-chlorobenzoate > 2-methylbenzoate. This is a significantly narrower apparent specificity than for TADOmt2 (3-methylbenzoate > benzoate ∼ 3-chlorobenzoate > 4-methylbenzoate ∼ 4-chlorobenzoate ≫ 2-methylbenzoate ∼ 2-chlorobenzoate [Y. Ge, F. H. Vaillancourt, N. Y. Agar, and L. D. Eltis, J. Bacteriol. 184:4096-4103, 2002]). The apparent substrate specificity of the αBβT hybrid oxygenase for these benzoates corresponded to that of BADOADP1, the parent from which the α subunit originated. In contrast, the apparent substrate specificity of the αTβB hybrid oxygenase differed slightly from that of TADOmt2 (3-chlorobenzoate > 3-methylbenzoate > benzoate ∼ 4-methylbenzoate > 4-chlorobenzoate > 2-methylbenzoate > 2-chlorobenzoate). Moreover, the αTβB hybrid catalyzed the 1,6-dihydroxylation of 2-methylbenzoate, not the 1,2-dihydroxylation catalyzed by the TADOmt2 parent. Finally, the turnover of this ortho-substituted benzoate was much better coupled to O2 utilization in the hybrid than in the parent. Overall, these results support the notion that the α subunit harbors the principal determinants of specificity in ring-hydroxylating dioxygenases. However, they also demonstrate that the β subunit contributes significantly to the enzyme's function. PMID:12949084

  14. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis

    PubMed Central

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.

    2016-01-01

    Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443

  15. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    PubMed

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.

  16. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  17. Immunochemical analysis of Micrococcus lysodeikticus (luteus) F1-ATPase and its subunits.

    PubMed

    Urban, C; Salton, M R

    1983-08-31

    The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.

  18. Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions.

    PubMed

    Grohe, Bernd; Taller, Adam; Vincent, Peter L; Tieu, Long D; Rogers, Kem A; Heiss, Alexander; Sørensen, Esben S; Mittler, Silvia; Goldberg, Harvey A; Hunter, Graeme K

    2009-10-06

    To gain more insight into protein structure-function relationships that govern ectopic biomineralization processes in kidney stone formation, we have studied the ability of urinary proteins (Tamm-Horsfall protein, osteopontin (OPN), prothrombin fragment 1 (PTF1), bikunin, lysozyme, albumin, fetuin-A), and model compounds (a bikunin fragment, recombinant-, milk-, bone osteopontin, poly-L-aspartic acid (poly asp), poly-L-glutamic acid (poly glu)) in modulating precipitation reactions of kidney stone-related calcium oxalate mono- and dihydrates (COM, COD). Combining scanning confocal microscopy and fluorescence imaging, we determined the crystal faces of COM with which these polypeptides interact; using scanning electron microscopy, we characterized their effects on crystal habits and precipitated volumes. Our findings demonstrate that polypeptide adsorption to COM crystals is dictated first by the polypeptide's affinity for the crystal followed by its preference for a crystal face: basic and relatively hydrophobic macromolecules show no adsorption, while acidic and more hydrophilic polypeptides adsorb either nonspecifically to all faces of COM or preferentially to {100}/{121} edges and {100} faces. However, investigating calcium oxalates grown in the presence of these polypeptides showed that some acidic proteins that adsorb to crystals do not affect crystallization, even if present in excess of physiological concentrations. These proteins (albumin, bikunin, PTF1, recombinant OPN) have estimated total hydrophilicities from 200 to 850 kJ/mol and net negative charges from -9 to -35, perhaps representing a "window" in which proteins adsorb and coat urinary crystals (support of excretion) without affecting crystallization. Strongest effects on crystallization were observed for polypeptides that are either highly hydrophilic (>950 kJ/mol) and highly carboxylated (poly asp, poly glu), or else highly hydrophilic and highly phosphorylated (native OPN isoforms), suggesting that highly hydrophilic proteins strongly affect precipitation processes in the urinary tract. Therefore, the level of hydrophilicity and net charge is a critical factor in the ability of polypeptides to affect crystallization and to regulate biomineralization processes.

  19. SRD5A1 genotype frequency differences in women with mild versus severe premenstrual symptoms.

    PubMed

    Adams, Marlene; McCrone, Susan

    2012-02-01

    The aims of this small pilot study were to explore the association between premenstrual symptom severity and two genes from the gamma-aminobutyric acid (GABA) pathway: steroid-5-alpha-reductase, alpha polypeptide 1 (SRD5A1) and gamma-aminobutyric acid receptor subunit alpha-4 (GABRA4). Saliva samples were obtained from a convenience sample of 19 Caucasian females ages 18-25 years, ten cases and nine controls. Deoxyribonucleic acid (DNA) was isolated, and genotyping performed on ten single nucleotide polymorphisms (SNPs). Ten percent of cases and 44% of controls had the cytosine/cytosine (C/C) genotype for the SRD5A1 SNP, rs501999 indicating that this genotype may protect women against severe premenstrual symptoms. Replication of this study using an adequately powered sample size is warranted.

  20. Functional metabolomics as a tool to analyze Mediator function and structure in plants.

    PubMed

    Davoine, Celine; Abreu, Ilka N; Khajeh, Khalil; Blomberg, Jeanette; Kidd, Brendan N; Kazan, Kemal; Schenk, Peer M; Gerber, Lorenz; Nilsson, Ove; Moritz, Thomas; Björklund, Stefan

    2017-01-01

    Mediator is a multiprotein transcriptional co-regulator complex composed of four modules; Head, Middle, Tail, and Kinase. It conveys signals from promoter-bound transcriptional regulators to RNA polymerase II and thus plays an essential role in eukaryotic gene regulation. We describe subunit localization and activities of Mediator in Arabidopsis through metabolome and transcriptome analyses from a set of Mediator mutants. Functional metabolomic analysis based on the metabolite profiles of Mediator mutants using multivariate statistical analysis and heat-map visualization shows that different subunit mutants display distinct metabolite profiles, which cluster according to the reported localization of the corresponding subunits in yeast. Based on these results, we suggest localization of previously unassigned plant Mediator subunits to specific modules. We also describe novel roles for individual subunits in development, and demonstrate changes in gene expression patterns and specific metabolite levels in med18 and med25, which can explain their phenotypes. We find that med18 displays levels of phytoalexins normally found in wild type plants only after exposure to pathogens. Our results indicate that different Mediator subunits are involved in specific signaling pathways that control developmental processes and tolerance to pathogen infections.

  1. Evidence against vasoactive intestinal polypeptide (VIP) as a dilator and in favour of substance P as a constrictor in airway neurogenic responses.

    PubMed

    Karlsson, J A; Persson, C G

    1983-07-01

    Propranolol-resistant neurogenic relaxation persisted in (carbachol-contracted) guinea-pig tracheae already relaxed by supramaximal concentrations of vasoactive intestinal polypeptide (VIP). Also, VIP relaxed preparations that were under neurogenic inhibition. In hilus bronchi, about 60% of a neurogenic contraction was atropine-resistant. (Arg5, D-Trp7.9) SP 5-11 specifically antagonized this contraction and those produced by exogenous substance P. Substance P, but not VIP, seems to be involved in nerve-mediated effects on guinea-pig airway tone.

  2. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule.

    PubMed Central

    Barrett, A J; Brown, M A; Sayers, C A

    1979-01-01

    alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not show the proteinase-binding activity characteristic of the intact alpha 2M. F-alpha 2M was less easily dissociated than was S-alpha 2M. S-alpha 2M was readily dissociated to the quarter-subunits by mild reduction, with the formation of 3-4 new thiol groups per subunit. Inact reactive alpha 2M could then be regenerated in high yield by reoxidation of the subunits. F-alpha 2M formed by reaction with a proteinase or ammonium salts was not dissociated under the same conditions, although the interchain disulphide bonds were reduced. If the thiol groups of the quarter-subunits of S-alpha 2M were blocked by carboxymethylation, oxidative reassociation did not occur. Nevertheless treatment of these subunits with methylammonium salts or a proteinase caused the reassembly of half-molecules and intact (F-) tetramers. It is emphasized that F-alpha 2M does not have the properties of a denatured form of the protein... Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:91367

  3. Molecular Properties of neurotoxin receptors sites associated with sodium channels from mammalian brain.

    PubMed

    Catterall, W A; Hartshorne, R P; Beneski, D A

    1982-01-01

    Neurotoxins that act at specific receptor sites on voltage-sensitive sodium channels have been used as molecular probes to identify and purify protein components of sodium channels from mammalian brain. Photoreactive derivatives of scorpion toxin have been prepared and used to covalently label sodium channels in intact synaptosomes. Two polypeptides, alpha with Mr approximately 270,000 and beta with Mr approximately 38,000, are specifically labeled indicating that they are components of the scorpion toxin receptor site on the sodium channel. The sodium channel can be solubilized with retention of specific binding of [3H] saxitoxin using nonionic detergents such as Triton X-100. The solubilized saxitoxin receptor has molecular weight of 316,000 +/- 63,000 and binds 0.9 g of Triton X-100 and phospholipid per g of protein. The solubilized receptor can be purified 750-fold by ion exchange chromatography, wheat germ lectin/Sepharose chromatography and sucrose gradient sedimentation to a final specific activity of 1488 pmol/mg. Analysis of the polypeptide chain composition of the most highly purified fractions indicates that alpha and beta comprise 65% of the protein of these fractions and are only the polypeptides whose presence correlates with saxitoxin binding activity. These studies lead to a working hypothesis of sodium channel structure in which the intact channel is comprised of a complex with Mr of approximately 316,000 containing one mole of alpha (Mr approximately 270,000) and one to three moles of beta (Mr approximately 38,000).

  4. Statistical thermodynamics of protein folding: Comparison of a mean-field theory with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hao, Ming-Hong; Scheraga, Harold A.

    1995-01-01

    A comparative study of protein folding with an analytical theory and computer simulations, respectively, is reported. The theory is based on an improved mean-field formalism which, in addition to the usual mean-field approximations, takes into account the distributions of energies in the subsets of conformational states. Sequence-specific properties of proteins are parametrized in the theory by two sets of variables, one for the energetics of mean-field interactions and one for the distribution of energies. Simulations are carried out on model polypeptides with different sequences, with different chain lengths, and with different interaction potentials, ranging from strong biases towards certain local chain states (bond angles and torsional angles) to complete absence of local conformational preferences. Theoretical analysis of the simulation results for the model polypeptides reveals three different types of behavior in the folding transition from the statistical coiled state to the compact globular state; these include a cooperative two-state transition, a continuous folding, and a glasslike transition. It is found that, with the fitted theoretical parameters which are specific for each polypeptide under a different potential, the mean-field theory can describe the thermodynamic properties and folding behavior of the different polypeptides accurately. By comparing the theoretical descriptions with simulation results, we verify the basic assumptions of the theory and, thereby, obtain new insights about the folding transitions of proteins. It is found that the cooperativity of the first-order folding transition of the model polypeptides is determined mainly by long-range interactions, in particular the dipolar orientation; the local interactions (e.g., bond-angle and torsion-angle potentials) have only marginal effect on the cooperative characteristic of the folding, but have a large impact on the difference in energy between the folded lowest-energy structure and the unfolded conformations of a protein.

  5. Passive immunization against highly pathogenic Avian Influenza Virus (AIV) strain H7N3 with antiserum generated from viral polypeptides protect poultry birds from lethal viral infection

    PubMed Central

    Shahzad, Mirza Imran; Naeem, Khalid; Mukhtar, Muhammad; Khanum, Azra

    2008-01-01

    Our studies were aimed at developing a vaccination strategy that could provide protection against highly pathogenic avian influenza virus (AIV), H7N3 or its variants outbreaks. A purified viral stock of highly pathogenic H7N3 isolate was lysed to isolate viral proteins by electrophresing on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by their elution from gel through trituration in phosphate buffered saline (PBS). Overall, five isolated viral polypeptides/proteins upon characterization were used to prepare hyperimmune monovalent serum against respective polypeptides independently and a mixture of all five in poultry birds, and specificity confirmation of each antiserum through dot blot and Western blotting. Antiserum generated from various group birds was pooled and evaluated in 2-week old broiler chicken, for its protection against viral challenge. To evaluate in-vivo protection of each antiserum against viral challenges, six groups of 2-week old broiler chicken were injected with antiserum and a seventh control group received normal saline. Each group was exposed to purified highly pathogenic AIV H7N3 strain at a dose 105 embryo lethal dose (ELD50). We observed that nucleoprotein (NP) antiserum significantly protected birds from viral infection induced morbidity, mortality and lowered viral shedding compared with antiserum from individual viral proteins or mixed polypeptides/proteins inclusive of NP component. The capability of individual viral polypeptide specific antisera to protect against viral challenges in decreasing order was nucleoprotein (NP) > hemagglutinin (HA) > neuraminidase (NA) > viral proteins mix > viral polymerase (PM) > non-structural proteins (NS). Our data provide proof of concept for potential utilization of passive immunization in protecting poultry industry during infection outbreaks. Furthermore conserved nature of avian NP makes it an ideal candidate to produce antiserum protective against viral infection. PMID:19040734

  6. Polypeptide Synthesis in Simian Virus 5-Infected Cells

    PubMed Central

    Peluso, Richard W.; Lamb, Robert A.; Choppin, Purnell W.

    1977-01-01

    Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F0) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F1 and F2. No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus replication is discussed. Images PMID:196101

  7. Evolution of specificity in cartilaginous fish glycoprotein hormones and receptors.

    PubMed

    Buechi, Hanna B; Bridgham, Jamie T

    2017-05-15

    Glycoprotein hormones (GpH) interact very specifically with their receptors to mediate hypothalamic-pituitary-peripheral gland endocrine signaling. Vertebrates typically have three functionally distinct GpH endocrine signaling complexes: follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone, and their receptors. Each hormone consists of a common α subunit bound to one of three different β subunits. Individual hormone subunits and receptors are present in genomes of early metazoans, and a subset of hormone subunits and receptors has been recently characterized in sea lamprey. However, it remains unclear when the full complement of hormone and receptor protein families first appeared, and when specificity of interactions between GpH hormones and receptors first evolved. Here we present phylogenetic analyses showing that the elephant shark (Callorhinchus milii) genome contains sequences representing the current diversity of all hormone subunits and receptors in these co-evolving protein families. We examined specificity of hormone and receptor interactions using functional assays testing reporter gene activation by elephant shark follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone receptors. We show highly specific, dose-responsive hormone interactions for all three complexes. Our results suggest that co-evolution of specificity between proteins in these endocrine signaling complexes occurred prior to the divergence of Chondrichthyes from the chordate lineage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Rotation of Subunits During Catalysis by Escherichia coli F_1-ATPase

    NASA Astrophysics Data System (ADS)

    Duncan, Thomas M.; Bulygin, Vladimir V.; Zhou, Yuantai; Hutcheon, Marcus L.; Cross, Richard L.

    1995-11-01

    During oxidative and photo-phosphorylation, F_0F_1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F_0F_1. Guided by a recent, high-resolution structure for bovine F_1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central γ subunit relative to the three catalytic β subunits in soluble F_1 from Escherichia coli. In the bovine F_1 structure, a specific point of contact between the γ subunit and one of the three catalytic β subunits includes positioning of the homolog of E. coli γ-subunit C87 (γC87) close to the β-subunit 380DELSEED386 sequence. A βD380C mutation allowed us to induce formation of a specific disulfide bond between β and γC87 in soluble E. coli F_1. Formation of the crosslink inactivated βD380C-F_1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked βD380C-F_1, we incorporated radiolabeled β subunits into the two noncrosslinked β-subunit positions of F_1. After reduction of the initial nonradio-active β-γ crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled β subunits with γC87 upon reoxidation. The results demonstrate that γ subunit rotates relative to the β subunits during catalysis.

  9. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    PubMed Central

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the conformational properties of unfolded states in water and in influencing chain expansion upon denaturation. PMID:25664638

  10. Therapeutic potential of Mediator complex subunits in metabolic diseases.

    PubMed

    Ranjan, Amol; Ansari, Suraiya A

    2018-01-01

    The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles

    PubMed Central

    Zhang, Wei; Song, Yunmei; Eldi, Preethi; Guo, Xiuli; Hayball, John D; Garg, Sanjay; Albrecht, Hugo

    2018-01-01

    Prostate cancer cells frequently overexpress the gastrin-releasing peptide receptor, and various strategies have been applied in preclinical settings to target this receptor for the specific delivery of anticancer compounds. Recently, elastin-like polypeptide (ELP)-based self-assembling micelles with tethered GRP on the surface have been suggested to actively target prostate cancer cells. Poorly soluble chemotherapeutics such as docetaxel (DTX) can be loaded into the hydrophobic cores of ELP micelles, but only limited drug retention times have been achieved. Herein, we report the generation of hybrid ELP/liposome nanoparticles which self-assembled rapidly in response to temperature change, encapsulated DTX at high concentrations with slow release, displayed the GRP ligand on the surface, and specifically bound to GRP receptor expressing PC-3 cells as demonstrated by flow cytometry. This novel type of drug nanocarrier was successfully used to reduce cell viability of prostate cancer cells in vitro through the specific delivery of DTX. PMID:29391790

  12. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes.

    PubMed Central

    Milhausen, M; Gill, P R; Parker, G; Agabian, N

    1982-01-01

    Immunoprecipitation of Caulobacter crescentus polyribosomes with antiflagellin antibody provided RNA for the synthesis of cDNA probes that were used to identify three specific EcoRI restriction fragments (6.8, 10, and 22 kilobases) in genomic digests of Caulobacter DNA. The RNA was present only in polyribosomes isolated from a time interval in the Caulobacter cell cycle that was coincident with flagellin polypeptide synthesis. The structural gene for Mr 27,500 flagellin polypeptide was assigned to a region of the 10-kilobase EcoRI restriction fragment by DNA sequence analysis. Analysis of mutants defective in motility further established a correlation between the Mr 27,500 flagellin gene and the flaE gene locus [Johnson, R. C. & Ely, B. (1979) J. Bacteriol. 137, 627-634]. The other EcoRI fragments that hybridize with the immunoprecipitated polyribosome-derived cDNA probe are also temporally regulated and have features that suggest they encode other polypeptides associated with the flagellum. Modifications were required to adapt the procedure of immunoprecipitation of polyribosomes for use with Caulobacter and should be applicable to the production of specific structural gene probes from other prokaryotic systems. Images PMID:6294658

  13. Diversity in genomic organisation, developmental regulation and distribution of the murine PR72/B" subunits of protein phosphatase 2A

    PubMed Central

    Zwaenepoel, Karen; Louis, Justin V; Goris, Jozef; Janssens, Veerle

    2008-01-01

    Background Protein phosphatase 2A (PP2A) is a serine/threonine-specific phosphatase displaying vital functions in growth and development through its role in various signalling pathways. PP2A holoenzymes comprise a core dimer composed of a catalytic C and a structural A subunit, which can associate with a variable B-type subunit. The importance of the B-type subunits for PP2A regulation cannot be overestimated as they determine holoenzyme localisation, activity and substrate specificity. Three B-type subunit families have been identified: PR55/B, PR61/B' and PR72/B", of which the latter is currently the least characterised. Results We deduced the sequences and genomic organisation of the different murine PR72/B" isoforms: three genes encode nine isoforms, five of which are abundantly expressed and give rise to genuine PP2A subunits. Thereby, one novel subunit was identified. Using Northern blotting, we examined the tissue-specific and developmental expression of these subunits. All subunits are highly expressed in heart, suggesting an important cardiac function. Immunohistochemical analysis revealed a striated expression pattern of PR72 and PR130 in heart and skeletal muscle, but not in bladder smooth muscle. The subcellular localisation and cell cycle regulatory ability of several PR72/B" isoforms were determined, demonstrating differences as well as similarities. Conclusion In contrast to PR55/B and PR61/B', the PR72/B" family seems evolutionary more divergent, as only two of the murine genes have a human orthologue. We have integrated these results in a more consistent nomenclature of both human and murine PR72/B" genes and their transcripts/proteins. Our results provide a platform for the future generation of PR72/B" knockout mice. PMID:18715506

  14. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    PubMed

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120*

    PubMed Central

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.

    2009-01-01

    The crystal structure of the cyanobacterial cytochrome b6f complex has previously been solved to 3.0-Å resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b6f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b6f complex. Purified b6f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b6f complex, determined to a resolution of 3.0Å (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme bp that is rotated 180° about the α- and γ-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b6f complex from other sources. PMID:19189962

  16. GM2 gangliosidoses in Spain: analysis of the HEXA and HEXB genes in 34 Tay-Sachs and 14 Sandhoff patients.

    PubMed

    Gort, Laura; de Olano, Natalia; Macías-Vidal, Judit; Coll, M A Josep

    2012-09-10

    The GM2 gangliosidoses are autosomal recessive lysosomal storage diseases caused by a deficiency of the β-hexosaminidase A enzyme. This enzyme is composed of two polypeptide chains designated the α- and β- subunits and it interacts with the GM2 activator protein. The HEXA and HEXB genes encode the α-subunit and the β-subunit, respectively. Mutations in these genes are causative of Tay-Sachs disease (HEXA) and Sandhoff disease (HEXB). We analyzed the complete HEXA gene in 34 Spanish patients with Tay-Sachs disease and the HEXB gene in 14 Spanish patients with Sandhoff disease. We identified 27 different mutations, 14 of which were novel, in the HEXA gene and 14 different mutations, 8 of which unreported until now, in the HEXB gene, and we attempted to correlate these mutations with the clinical presentation of the patients. We found a high frequency of c.459+5G>A (IVS4+5G>A) mutation in HEXA affected patients, 22 of 68 alleles, which represent the 32.4%. This is the highest percentage found of this mutation in a population. All patients homozygous for mutation c.459+5G>A presented with the infantile form of the disease and, as previously reported, patients carrying mutation p.R178H in at least one of the alleles presented with a milder form. In HEXB affected patients, the novel deletion c.171delG accounts for 21.4% of the mutant alleles (6/28). All patients with this deletion showed the infantile form of the disease. The Spanish GM2 gangliosidoses affected patients show a great mutational heterogeneity as seen in other inherited lisosomal diseases in this country. Copyright © 2012. Published by Elsevier B.V.

  17. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    PubMed

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  18. Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons 1

    PubMed Central

    Hara-Nishimura, Ikuko; Nishimura, Mikio; Akazawa, Takashi

    1985-01-01

    In vitro studies to explore the biosynthesis of 11S globulin developing cotyledons of pumpkin (Cucurbita sp.) demonstrated that 11S globulin is synthesized on membrane-bound polysomes. Mr of the translation products (preproglobulin) synthesized by the poly(A)+-RNA isolated from developing cotyledons were determined to be 64,000 and 59,000, which are larger than those of the mature globulin subunit (62,000 and 57,000). Preproglobulin is then cotranslationally processed by cleavage of the signal peptide to produce proglobulin. In vivo pulse-chase experiments showed the sequential transformation of the single-chain proglobulin to mature globulin subunit (disulfide-linked doublet polypeptides) indicating posttranslational modification of the proglobulin. Subcellular fractionation of the pulse-chased intact cotyledons showed that the [35S]methionine label is detectable in proglobulin in rough endoplasmic reticulum shortly after the pulse label. With time, the labeled proteins move into other cellular fractions: proglobulin in the density = 1.24 grams per cubic centimeter fractions after 30 minutes and mature globulin subunit associated with protein bodies after 1 to 2 hours. The distribution of proglobulin in sucrose density gradients did not correspond with those of catalase (microbody marker) or fumarase (mitochondria marker). An accumulation of proglobulin occurred in the density = 1.24 grams per cubic centimeter fractions, whereas the mature globulin was scarcely detectable in this fraction. In contrast, proglobulin was not detected by immunochemical blotting analysis in the protein bodies prepared under the mild conditions from cotyledon protoplasts. The results suggest that the d = 1.24 grams per cubic centimeter fractions are engaged in the translocation of proglobulin into the protein bodies. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16664128

  19. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b[subscript 6]f Complex from Nostoc sp. PCC 7120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.

    2009-06-08

    The crystal structure of the cyanobacterial cytochrome b{sub 6}f complex has previously been solved to 3.0-{angstrom} resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b{sub 6}f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical tomore » those in the M. laminosus b{sub 6}f complex. Purified b{sub 6}f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b{sub 6}f complex, determined to a resolution of 3.0{angstrom} (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme b{sub p} that is rotated 180 deg. about the {alpha}- and {gamma}-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b{sub 6}f complex from other sources.« less

  20. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.

    PubMed

    Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O

    1994-05-26

    Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.

  1. Spermine stimulation of a nuclear NII kinase from pea plumules and its role in the phosphorylation of a nuclear polypeptide

    NASA Technical Reports Server (NTRS)

    Datta, N.; Schell, M. B.; Roux, S. J.

    1987-01-01

    We have previously demonstrated that spermine stimulates the phosphorylation of a 47 kilodalton nuclear polypeptide from pea plumules (N Datta, LK Hardison, SJ Roux 1986 Plant Physiol 82: 681-684). In this paper we report that spermine stimulates the activity of a cyclic AMP independent casein kinase, partially purified from a chromatin fraction of pea plumule nuclei. This effect of spermine was substrate specific; i.e. with casein as substrate, spermine stimulated the kinase activity, and with phosvitin as substrate, spermine completely inhibited the activity. The stimulation by spermine of the casein kinase was, in part, due to the lowering of the Mg2+ requirement of the kinase. Heparin could partially inhibit this casein kinase activity and spermine completely overcame this inhibition. By further purification of the casein kinase extract on high performance liquid chromatography, we fractionated it into an NI and an NII kinase. Spermine stimulated the NII kinase by 5- to 6-fold but had no effect on the NI kinase. Using [gamma-32P]GTP, we have shown that spermine promotes the phosphorylation of the 47 kilodalton polypeptide(s) in isolated nuclei, at least in part by stimulating an NII kinase.

  2. Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors.

    PubMed

    Choi, Min-Koo; Shin, Ho Jung; Choi, Young-Lim; Deng, Jian-Wei; Shin, Jae-Gook; Song, Im-Sook

    2011-01-01

    The purpose of this study was to investigate the effect of genetic variations in organic anion-transporting polypeptide 1B1 (OATP1B1) and Na(+)/taurocholate co-transporting polypeptide (NTCP) on the uptake of various statins having different affinities for these transporters. The functional activities and simultaneous expression of NTCP and OATP1B1 were confirmed by the uptake of taurocholate and estrone-3-sulphate as representative substrates for NTCP and OATP1B1, respectively, and by an immunofluorescence analysis. The substrate specificities of NTCP and OATP1B1 for statins and the effects of genetic variations on the uptake of rosuvastatin, pitavastatin, and atorvastatin were measured. Based on the K(m) values and intrinsic clearances of the three statins, pitavastatin was taken up more efficiently than rosuvastatin and atorvastatin by OATP1B1. Consequently, the cellular accumulation of pitavastatin was modulated according to the genetic variation of OATP1B1 (OATP1B1*15), rather than NTCP*2. In contrast, NTCP*2 displayed greater transport of atorvastatin and rosuvastatin, compared with NTCP wild type. Thus, the measurements of decreased rosuvastatin and atorvastatin transport by OATP1B1*15 were confounded by the presence of NTCP and its genetic variant, NTCP*2. In conclusion, the functional consequences of genetic variants of NTCP and OATP1B1 may be different for various statins, depending on the substrate specificity of the OATP1B1 and NTCP transporters.

  3. Localization of nuclear subunits of cyclic AMP-dependent protein kinase by the immunocolloidal gold method

    PubMed Central

    1985-01-01

    An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318

  4. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.; Weintraub, B.D.

    1985-04-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/supmore » 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.« less

  5. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    PubMed Central

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Pikaard, Craig S.

    2015-01-01

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers. PMID:25813043

  6. Multiple Metabolic Roles for the Nonphotosynthetic Plastid of the Green Alga Prototheca wickerhamii†

    PubMed Central

    Borza, Tudor; Popescu, Cristina E.; Lee, Robert W.

    2005-01-01

    The presence of plastids in diverse eukaryotic lineages that have lost the capacity for photosynthesis is well documented. The metabolic functions of such organelles, however, are poorly understood except in the case of the apicoplast in the Apicomplexa, a group of intracellular parasites including Plasmodium falciparum, and the plastid of the green alga Helicosporidium sp., a parasite for which the only host-free stage identified in nature so far is represented by cysts. As a first step in the reconstruction of plastid functions in a nonphotosynthetic, predominantly free-living organism, we searched for expressed sequence tags (ESTs) that correspond to nucleus-encoded plastid-targeted polypeptides in the green alga Prototheca wickerhamii. From 3,856 ESTs, we found that 71 unique sequences (235 ESTs) correspond to different nucleus-encoded putatively plastid-targeted polypeptides. The identified proteins predict that carbohydrate, amino acid, lipid, tetrapyrrole, and isoprenoid metabolism as well as de novo purine biosynthesis and oxidoreductive processes take place in the plastid of P. wickerhamii. Mg-protoporphyrin accumulation and, therefore, plastid-to-nucleus signaling might also occur in this nonphotosynthetic organism, as we identified a transcript which encodes subunit I of Mg-chelatase, the enzyme which catalyzes the first committed step in chlorophyll synthesis. Our data indicate a far more complex metabolism in P. wickerhamii's plastid compared with the metabolic pathways predicted to be located in the apicoplast of P. falciparum and the plastid of Helicosporidium sp. PMID:15701787

  7. Conjugation of Specifically Developed Antibodies for High- and Low-Molecular-Weight Glutenins with Fluorescent Quantum Dots as a Tool for Their Detection in Wheat Flour Dough.

    PubMed

    Bonilla, Jose C; Ryan, Valerie; Yazar, Gamze; Kokini, Jozef L; Bhunia, Arun K

    2018-04-25

    The importance of gluten proteins, gliadins and glutenins, is well-known in the quality of wheat products. To gain more specific information about the role of glutenins in wheat dough, the two major subunits of glutenin, high- and low-molecular-weight (HMW and LMW) glutenins, were extracted, isolated, and identified by mass spectrometry. Antibodies for HMW and LMW glutenins were developed using the proteomic information on the characterized glutenin subunits. The antibodies were found to be specific to each subunit by western immunoblots and were then conjugated to quantum dots (QDs) using site-click conjugation, a new method to keep antibody integrity. A fluorescence-link immunosorbent assay tested the successful QD conjugation. The QD-conjugated antibodies were applied to dough samples, where they recognized glutenin subunits and were visualized using a confocal laser scanning microscope.

  8. Resolution and some properties of enzymes involved in enantioselective transformation of 1,3-dichloro-2-propanol to (R)-3-chloro-1,2-propanediol by Corynebacterium sp. strain N-1074.

    PubMed Central

    Nakamura, T; Nagasawa, T; Yu, F; Watanabe, I; Yamada, H

    1992-01-01

    During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074. Images PMID:1447132

  9. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea.

    PubMed Central

    Brown, D P; Idler, K B; Katz, L

    1990-01-01

    The 18.1-kilobase plasmid pSE211 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site. Restriction analysis of the integrated plasmid, pSE211int, and adjacent chromosomal sequences allowed identification of attP, the plasmid attachment site. Nucleotide sequencing of attP, attB, attL, and attR revealed a 57-base-pair sequence common to all sites with no duplications of adjacent plasmid or chromosomal sequences in the integrated state, indicating that integration takes place through conservative, reciprocal strand exchange. An analysis of the sequences indicated the presence of a putative gene for Phe-tRNA at attB which is preserved at attL after integration has occurred. A comparison of the attB site for a number of actinomycete plasmids is presented. Integration at attB was also observed when a 2.4-kilobase segment of pSE211 containing attP and the adjacent plasmid sequence was used to transform a pSE211- host. Nucleotide sequencing of this segment revealed the presence of two complete open reading frames (ORFs) and a segment of a third ORF. The ORF adjacent to attP encodes a putative polypeptide 437 amino acids in length that shows similarity, at its C-terminal domain, to sequences of site-specific recombinases of the integrase family. The adjacent ORF encodes a putative 98-amino-acid basic polypeptide that contains a helix-turn-helix motif at its N terminus which corresponds to domains in the Xis proteins of a number of bacteriophages. A proposal for the function of this polypeptide is presented. The deduced amino acid sequence of the third ORF did not reveal similarities to polypeptide sequences in the current data banks. Images FIG. 2 FIG. 3 PMID:2180909

  10. Targeted polypeptide degradation

    DOEpatents

    Church, George M [Brookline, MA; Janse, Daniel M [Brookline, MA

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  11. Evidence against vasoactive intestinal polypeptide (VIP) as a dilator and in favour of substance P as a constrictor in airway neurogenic responses.

    PubMed Central

    Karlsson, J. A.; Persson, C. G.

    1983-01-01

    Propranolol-resistant neurogenic relaxation persisted in (carbachol-contracted) guinea-pig tracheae already relaxed by supramaximal concentrations of vasoactive intestinal polypeptide (VIP). Also, VIP relaxed preparations that were under neurogenic inhibition. In hilus bronchi, about 60% of a neurogenic contraction was atropine-resistant. (Arg5, D-Trp7.9) SP 5-11 specifically antagonized this contraction and those produced by exogenous substance P. Substance P, but not VIP, seems to be involved in nerve-mediated effects on guinea-pig airway tone. PMID:6197124

  12. Convergent synthesis of proteins by kinetically controlled ligation

    DOEpatents

    Kent, Stephen; Pentelute, Brad; Bang, Duhee; Johnson, Erik; Durek, Thomas

    2010-03-09

    The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.

  13. A multiscale model to evaluate the efficacy of anticancer therapies based on chimeric polypeptide nanoparticles

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Martins, M. L.

    2011-01-01

    A multiscale model for tumor growth and its chemotherapy using conjugate nanoparticles is presented, and the corresponding therapeutic outcomes are evaluated. It is found that doxorubicin assembled into chimeric polypeptide nanoparticles cannot eradicate either vascularized primary tumors or avascular micrometastasis even administrated at loads close to their maximum tolerated doses. Furthermore, an effective and safety treatment demands for conjugate nanoparticles targeted to the malignant cells with much higher specificity and affinity than those currently observed in order to leave most of the normal tissues unaffected and to ensure a fast intracellular drug accumulation.

  14. Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA.

    PubMed Central

    Mariottini, P; Chomyn, A; Riley, M; Cottrell, B; Doolittle, R F; Attardi, G

    1986-01-01

    In previous work, antibodies prepared against chemically synthesized peptides predicted from the DNA sequence were used to identify the polypeptides encoded in three of the eight unassigned reading frames (URFs) of human mitochondrial DNA (mtDNA). In the present study, this approach has been extended to other human mtDNA URFs. In particular, antibodies directed against the NH2-terminal octapeptide of the putative URF2 product specifically precipitated component 11 of the HeLa cell mitochondrial translation products, the reaction being inhibited by the specific peptide. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative URF4 product reacted specifically with components 4 and 5, and antibodies against a COOH-terminal heptapeptide of the presumptive URF4L product reacted specifically with component 26. Antibodies against the NH2-terminal heptapeptide of the putative product of URF5 reacted with component 1, but only to a marginal extent; however, the results of a trypsin fingerprinting analysis of component 1 point strongly to this component as being the authentic product of URF5. The polypeptide assignments to the mtDNA URFs analyzed here are supported by the relative electrophoretic mobilities of proteins 11, 4-5, 26, and 1, which are those expected for the molecular weights predicted from the DNA sequence for the products of URF2, URF4, URF4L, and URF5, respectively. With the present assignment, seven of the eight human mtDNA URFs have been shown to be expressed in HeLa cells. Images PMID:3456601

  15. Subunit-Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases.

    PubMed

    Crowe, Sean O; Pham, Grace H; Ziegler, Jacob C; Deol, Kirandeep K; Guenette, Robert G; Ge, Ying; Strieter, Eric R

    2016-08-17

    Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Unique Biosynthetic Route from Lupinus β-Conglutin Gene to Blad

    PubMed Central

    Monteiro, Sara; Freitas, Regina; Rajasekhar, Baru T.; Teixeira, Artur R.; Ferreira, Ricardo B.

    2010-01-01

    Background During seed germination, β-conglutin undergoes a major cycle of limited proteolysis in which many of its constituent subunits are processed into a 20 kDa polypeptide termed blad. Blad is the main component of a glycooligomer, accumulating exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Principal Findings The sequence of the gene encoding β-conglutin precursor (1791 nucleotides) is reported. This gene, which shares 44 to 57% similarity and 20 to 37% identity with other vicilin-like protein genes, includes several features in common with these globulins, but also specific hallmarks. Most notable is the presence of an ubiquitin interacting motif (UIM), which possibly links the unique catabolic route of β-conglutin to the ubiquitin/proteasome proteolytic pathway. Significance Blad forms through a unique route from and is a stable intermediary product of its precursor, β-conglutin, the major Lupinus seed storage protein. It is composed of 173 amino acid residues, is encoded by an intron-containing, internal fragment of the gene that codes for β-conglutin precursor (nucleotides 394 to 913) and exhibits an isoelectric point of 9.6 and a molecular mass of 20,404.85 Da. Consistent with its role as a storage protein, blad contains an extremely high proportion of the nitrogen-rich amino acids. PMID:20066045

  17. A Novel Amidotransferase Required for Lipoic Acid Cofactor Assembly in Bacillus subtilis

    PubMed Central

    Christensen, Quin H.; Martin, Natalia; Mansilla, Maria C.; de Mendoza, Diego; Cronan, John E.

    2011-01-01

    SUMMARY In the companion paper (Martin et al., 2011) we reported that Bacillus subtilis requires three proteins for lipoic acid metabolism, all of which are members of the lipoate protein ligase family. Two of the proteins, LipM and LplJ, have been shown to be an octanoyltransferase and a lipoate:protein ligase, respectively. The third protein, LipL, is essential for lipoic acid synthesis, but had no detectable octanoyltransferase or ligase activity either in vitro or in vivo. We report that LipM specifically modifies the glycine cleavage system protein, GcvH, and therefore another mechanism must exist for modification of other lipoic acid requiring enzymes (e.g., pyruvate dehydrogenase). We show that this function is provided by LipL which catalyzes the amidotransfer (transamidation) of the octanoyl moiety from octanoyl-GcvH to the E2 subunit of pyruvate dehydrogenase. LipL activity was demonstrated in vitro with purified components and proceeds via a thioester-linked acyl-enzyme intermediate. As predicted, ΔgcvH strains are lipoate auxotrophs. LipL represents a new enzyme activity. It is a GcvH:[lipoyl domain] amidotransferase that probably employs a Cys-Lys catalytic dyad. Although the active site cysteine residues of LipL and LipB are located in different positions within the polypeptide chains, alignment of their structures show these residues occupy similar positions. Thus, these two homologous enzymes have convergent architectures. PMID:21338421

  18. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    PubMed Central

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  19. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    PubMed

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.

  20. Gene and genon concept: coding versus regulation

    PubMed Central

    2007-01-01

    We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon. PMID:18087760

  1. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics.

    PubMed

    Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.

  2. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics

    PubMed Central

    Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  3. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and comparedmore » mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.« less

  4. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon.

    PubMed

    Takahara, Kentaro; Akashi, Kinya; Yokota, Akiho

    2005-10-01

    Citrulline is an efficient hydroxyl radical scavenger that can accumulate at concentrations of up to 30 mm in the leaves of wild watermelon during drought in the presence of strong light; however, the mechanism of this accumulation remains unclear. In this study, we characterized wild watermelon glutamate N-acetyltransferase (CLGAT) that catalyses the transacetylation reaction between acetylornithine and glutamate to form acetylglutamate and ornithine, thereby functioning in the first and fifth steps in citrulline biosynthesis. CLGAT enzyme purified 7000-fold from leaves was composed of two subunits with different N-terminal amino acid sequences. Analysis of the corresponding cDNA revealed that these two subunits have molecular masses of 21.3 and 23.5 kDa and are derived from a single precursor polypeptide, suggesting that the CLGAT precursor is cleaved autocatalytically at the conserved ATML motif, as in other glutamate N-acetyltransferases of microorganisms. A green fluorescence protein assay revealed that the first 26-amino acid sequence at the N-terminus of the precursor functions as a chloroplast transit peptide. The CLGAT exhibited thermostability up to 70 degrees C, suggesting an increase in enzyme activity under high leaf temperature conditions during drought/strong-light stresses. Moreover, CLGAT was not inhibited by citrulline or arginine at physiologically relevant high concentrations. These findings suggest that CLGAT can effectively participate in the biosynthesis of citrulline in wild watermelon leaves during drought/strong-light stress.

  5. Occurrence of two different forms of protocatechuate 3,4-dioxygenase in a Moraxella sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterjiades, R.; Pelmont, J.

    1989-02-01

    Two alternative forms of protocatechuate 3,4-dioxygenase (PCase) have been purified from Moraxella sp. strain GU2, a bacterium that is able to grow on guaiacol or various other phenolic compounds as the sole source of carbon and energy. One of these forms (PCase-P) was induced by protocatechuate and had an apparent molecular weight of 220,000. The second form (PCase-G) was induced by guaiacol or other phenolic compounds, such as 2-ethoxyphenol or 4-hydroxybenzoate. It appeared to be smaller (M{sub r} 158,000), and its turnover number was about double that of the former enzyme. Both dioxygenases had similar properties and were built frommore » the association of equal amounts of nonidentical subunits, {alpha} and {beta}, which were estimated to have molecular weights of 29,500 and 25,500, respectively. The ({alpha}{beta}){sub 3} and ({alpha}{beta}){sub 4} structures were suggested for PCases G and P, respectively. On the basis of two-dimensional gel electrophoresis, the {alpha} and {beta} polypeptides of PCase-G differed from those of PCase-P. Amino acid analysis supported this conclusion. Both PCases, however, had several other properties in common. It is proposed that both isoenzymes were generated from different sets of {alpha} and {beta} subunits, and the significance of these data is discussed.« less

  6. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the RLK FERONIA and RALF1 in salinity response.

    PubMed

    Yu, Yunqing; Assmann, Sarah M

    2018-06-15

    Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor-like kinases (RLKs) have been implicated as functioning with G proteins, and may serve as plant G-protein-coupled-receptors (GPCRs). The RLK FERONIA (FER), in the Catharantus roseus RLK1-like subfamily, is activated by a family of polypeptides called Rapid Alkalinization Factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt-induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na + accumulation and decreasing K + accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1-independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal vs. salinity responses. This article is protected by copyright. All rights reserved.

  7. Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits

    PubMed Central

    Dembowski, Jill A.; Kuo, Benjamin; Woolford, John L.

    2013-01-01

    Ribosome biogenesis requires ∼200 assembly factors in Saccharomyces cerevisiae. The pre-ribosomal RNA (rRNA) processing defects associated with depletion of most of these factors have been characterized. However, how assembly factors drive the construction of ribonucleoprotein neighborhoods and how structural rearrangements are coupled to pre-rRNA processing are not understood. Here, we reveal ATP-independent and ATP-dependent roles of the Has1 DEAD-box RNA helicase in consecutive pre-rRNA processing and maturation steps for construction of 60S ribosomal subunits. Has1 associates with pre-60S ribosomes in an ATP-independent manner. Has1 binding triggers exonucleolytic trimming of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and drives incorporation of ribosomal protein L17 with domain I of 5.8S/25S rRNA. ATP-dependent activity of Has1 promotes stable association of additional domain I ribosomal proteins that surround the polypeptide exit tunnel, which are required for downstream processing of 27SB pre-rRNA. Furthermore, in the absence of Has1, aberrant 27S pre-rRNAs are targeted for irreversible turnover. Thus, our data support a model in which Has1 helps to establish domain I architecture to prevent pre-rRNA turnover and couples domain I folding with consecutive pre-rRNA processing steps. PMID:23788678

  8. Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA.

    PubMed Central

    Clary, D O; Wolstenholme, D R

    1983-01-01

    Genes for URF2, tRNAtrp, tRNAcys, tRNAtyr and cytochrome c oxidase subunit I (COI) have been identified within a sequenced segment of the Drosophila yakuba mtDNA molecule. The five genes are arranged in the order given. Transcription of the tRNAcys and tRNAtyr genes is in the same direction as replication, while transcription of the URF2, tRNAtrp and COI genes is in the opposite direction. A similar arrangement of these genes is found in mammalian mtDNA except that in the latter, the tRNAala and tRNAasn genes are located between the tRNAtrp and tRNAcys genes. Also, a sequence found between the tRNAasn and tRNAcys genes in mammalian mtDNA, which is associated with the initiation of second strand DNA synthesis, is not found in this region of the D. yakuba mtDNA molecule. As the D. yakuba COI gene lacks a standard translation initiation codon, we consider the possibility that the quadruplet ATAA may serve this function. As in other D. yakuba mitochondrial polypeptide genes, AGA codons in the URF2 and COI genes do not correspond in position to arginine-specifying codons in the equivalent genes of mouse and yeast mtDNAs, but do most frequently correspond to serine-specifying codons. PMID:6314262

  9. Development and use of domain-specific antibodies in a characterization of the large subunits of soybean photosystem 1

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Takemoto, L. J.; Murphy, J.; Gallegos, G. L.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The molecular architecture of the soybean photosystem 1 reaction center complex was examined using a combination of surface labeling and immunological methodology on isolated thylakoid membranes. Synthetic peptides (12 to 14 amino acids in length) were prepared which correspond to the N-terminal regions of the 83 and 82.4 kDa subunits of photosystem 1 (the PsaA and PsaB proteins, respectively). Similarly, a synthetic peptide was prepared corresponding to the C-terminal region of the PsaB subunit. These peptides were conjugated to a carrier protein, and were used for the production of polyclonal antibodies in rabbits. The resulting sera could distinguish between the PsaA and PsaB photosystem 1 subunits by Western blot analysis, and could identify appropriate size classes of cyanogen bromide cleavage fragments as predicted from the primary sequences of these two subunits. When soybean thylakoid membranes were surface-labeled with N-hydroxysuccinimidobiotin, several subunits of the complete photosystem 1 lipid/protein complex incorporated label. These included the light harvesting chlorophyll proteins of photosystem 1, and peptides thought to aid in the docking of ferredoxin to the complex during photosynthetic electron transport. However, the PsaA and PsaB subunits showed very little biotinylation. When these subunits were examined for the domains to which biotin did attach, most of the observed label was associated with the N-terminal domain of the PsaA subunit, as identified using a domain-specific polyclonal antisera.

  10. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    PubMed

    Beck, P; Nicholas, H

    1975-03-01

    1. A technique for indirectly labelling antibodies to polypeptide hormones, by combining them with radioactively labelled anti-(immunoglobulin G) is described. (a) 125I-labelled anti-(rabbit immunoglobulin G) and anti-(guinea-pig immunoglobulin G) antibodies with high specific radioactivity were prepared after purification of the antibodies on immunoadsorbents containing the respective antigens. (b) Rabbit immunoglobulin G antibodies to human growth hormone, porcine glucagon and guinea-pig immunoglobulin G antibodies to bovine insulin and bovine parathyroid hormone were combined with immunoadsorbents containing the respective polypeptide hormone antigen. (c) The immunoglobulin G antibodies to the polypeptide hormones were reacted with 125-I-labelled anti-(immunoglobulin G) antibodies directed against the appropriate species of immunoglobulin G,and the anti-hormone antibodies were combined with the hormone-containing immunoadsorbent. (d) 125I-labelled anti-(immunoglobulin G) antibodies and anti-hormone antibodies were simultaneously eluted from the hormone-containing immunoadsorbent by dilute HCl, pH 2.0. After elution the anti-(immunoglobulin G) antibodies and antihormone antibodies were allowed to recombine at pH 8.0 and 4 degrees C. 2. The resultant immunoglobulin G-anti-immunoglobulin G complex was used in immunoradiometric (labelled antibody) and two-site assays of the respective polypeptide hormone. 3. By using these immunoassays, concentrations down to 90pg of human growth hormone/ml, 100 pg of bovine insulin/ml, 80 pg of bovine parathyroid hormone/ml and 150 pg of glucagon/ml were readily detected. Assays of human plasma for growth hormone and insulin by these methods showed good agreement with results obtained by using a directly 125I-labelled anti-hormone antibody in an immunoradiometric assay of human growth hormone or by radioimmunoassay of human insulin. 4. The method described allows immunoradiometric or two-site assays to be performed starting with as little as 450 ng of polypeptide hormone-antibody protein. An additional advantage of the method is that a single iodination of the readily available antibodies to immunoglobulin G allows the establishemnt of several polypeptide hormone assays

  12. The Role of ARX in Human Pancreatic Endocrine Specification

    PubMed Central

    Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894

  13. The Role of ARX in Human Pancreatic Endocrine Specification.

    PubMed

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  14. Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation.

    PubMed

    Baldwin, S A; Baldwin, J M; Lienhard, G E

    1982-08-03

    The human erythrocyte monosaccharide transporter has been purified through the use of the dialyzable detergent octyl glucoside. It was found that the transporter denatures in the detergent and that the rate of this process could be reduced by increasing the ratio of phospholipid to detergent. The transporter was obtained in higher yield and with a higher specific activity for cytochalasin B binding than has been previously reported. Scatchard plot analysis of cytochalasin B binding to the reconstituted preparations gave a dissociation constant of 1.5 X 10(-7) M, and there were found to be 15.3 nmol of sites/mg of protein. On the basis of a value of 46 000 for the molecular weight of the polypeptide, this specific activity corresponds to 0.70 site/polypeptide chain; and there are reasons to believe that the value of the stoichiometry may be one site per functional transporter polypeptide. The complete amino acid composition and the N- and C-terminal residues of the transporter have been determined. Both the intact transporter and transporter that had been partially depleted of carbohydrate by treatment with endo-beta-galactosidase were found to migrate anomalously upon sodium dodecyl sulfate--polyacrylamide gel electrophoresis, relative to the behavior of standard proteins.

  15. Characterization of violaxanthin de-epoxidase purified in the presence of Tween 20: effects of dithiothreitol and pepstatin A.

    PubMed

    Kuwabara, T; Hasegawa, M; Kawano, M; Takaichi, S

    1999-11-01

    Violaxanthin de-epoxidase (VDE) was purified from thylakoid membranes of spinach by conventional column chromatography in the presence of Tween 20. The neutral detergent was necessary to prevent non-specific interaction of VDE with column resins. In anion-exchange chromatography on Mono Q, VDE appeared in two peaks. Both peaks exhibited a polypeptide of 41 kDa when fully reduced with 5 mM dithiothreitol. Re-chromatography of either peak gave rise to both peaks, suggesting that the two forms of VDE are interconvertible. VDE characteristically changed its electrophoretic mobility depending on the concentration of dithiothreitol with which the protein was treated. When non-reduced, it showed two polypeptides of 43 and 42 kDa. These polypeptides moved down to the position of 40 kDa, and then up to the position of 41 kDa, along with the increase in the dithiothreitol concentration from 0 to 2 mM. These findings suggest that VDE has more than one disulfide bond and takes multiple forms depending on the extent of the reduction. Studies with various types of protein-modifying reagent revealed that VDE is sensitive to pepstatin A, a specific inhibitor of aspartic protease. This finding suggests that the reaction center of VDE contains a reactive aspartic acid residue(s).

  16. Islet amyloid polypeptide (IAPP):cDNA cloning and identification of an amyloidogenic region associated with the species-specific occurrence of age-related diabetes mellitus.

    PubMed

    Betsholtz, C; Svensson, V; Rorsman, F; Engström, U; Westermark, G T; Wilander, E; Johnson, K; Westermark, P

    1989-08-01

    We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease.

  17. Chemical and immunochemical characterization of caseins and the major whey proteins of rabbit milk.

    PubMed Central

    Dayal, R; Hurlimann, J; Suard, Y M; Kraehenbuhl, J P

    1982-01-01

    Caseins were separated from whey proteins by acid precipitation of skimmed rabbit milk. Whole casein was resolved by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis into three major bands with apparent relative molecular masses (Mr of 31 000, 29 000 and 25 000. On agarose/urea-gel electrophoresis whole casein gave three bands with electrophoretic mobilities alpha, beta and gamma. The three components were purified by DEAE-cellulose chromatography under denaturing and reducing conditions. Each was shown to have a different amino acid, hexose and phosphorus content, as well as non-identical peptide fragments after proteinase digestion. The 31 000 Da (dalton) protein, of alpha-electrophoretic mobility, had a high phosphorus content (4.38%, w/w); the 29 000 Da peptide, of gamma-mobility, had the highest hexose content (2.2%, w/w), contained 0.8 cysteine residue per 100 amino acid residues and was susceptible to chymosin digestion corresponding thus to kappa-casein; the 25 000 Da protein migrated to the beta-position. The rabbit casein complex is composed of at least three caseins, two of which (alpha- and kappa-caseins) are analogous to the caseins from ruminants. Although caseins are poor immunogens, specific antibodies were raised against total and purified polypeptides. The antiserum directed against whole casein recognized each polypeptide, each casein corresponding to a distinct precipitation line. The antisera directed against each casein polypeptide reacted exclusively with the corresponding casein and no antiserum cross-reaction occurred between the three polypeptides. From whey, several proteins were isolated, characterized and used as antigens to raise specific antibodies. An iron-binding protein with an apparent Mr of 80 000 was shown to be immunologically and structurally identical with serum transferrin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6177316

  18. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding

    PubMed Central

    Carter, Charles W; Wills, Peter R

    2018-01-01

    Abstract Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma’s emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene–replicase–translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today. PMID:29077934

  19. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities.

    PubMed

    Zhang, Y; LeRoy, G; Seelig, H P; Lane, W S; Reinberg, D

    1998-10-16

    Histone acetylation and deacetylation were found to be catalyzed by structurally distinct, multisubunit complexes that mediate, respectively, activation and repression of transcription. ATP-dependent nucleosome remodeling, mediated by different multisubunit complexes, was thought to be involved only in transcription activation. Here we report the isolation of a protein complex that contains both histone deacetylation and ATP-dependent nucleosome remodeling activities. The complex contains the histone deacetylases HDAC1/2, histone-binding proteins, the dermatomyositis-specific autoantigen Mi2beta, a polypeptide related to the metastasis-associated protein 1, and a novel polypeptide of 32 kDa. Patients with dermatomyositis have a high rate of malignancy. The finding that Mi2beta exists in a complex containing histone deacetylase and nucleosome remodeling activities suggests a role for chromatin reorganization in cancer metastasis.

  20. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    DOE PAGES

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; ...

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less

  1. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less

  2. Rates of processing of the high mannose oligosaccharide units at the three glycosylation sites of mouse thyrotropin and the two sites of free alpha-subunits.

    PubMed

    Miura, Y; Perkel, V S; Magner, J A

    1988-09-01

    We have determined the structures of high mannose (Man) oligosaccharide units at individual glycosylation sites of mouse TSH. Mouse thyrotropic tumor tissue was incubated with D-[2-3H]Man with or without [14C]tyrosine ([14C] Tyr) for 2, 3, or 6 h, and for a 3-h pulse followed by a 2-h chase. TSH heterodimers or free alpha-subunits were obtained from homogenates using specific antisera. After reduction and alkylation, subunits were treated with trypsin. The tryptic fragments were then loaded on a reverse phase HPLC column to separate tryptic fragments bearing labeled oligosaccharides. The N-linked oligosaccharides were released with endoglycosidase-H and analyzed by paper chromatography. Man9GlcNac2 and Man8GlcNac2 units predominated at each time point and at each specific glycosylation site, but the processing of high Man oligosaccharides differed at each glycosylation site. The processing at Asn23 of TSH beta-subunits was slower than that at Asn56 or Asn82 of alpha-subunits. The processing at Asn82 was slightly faster than that at Asn56 for both alpha-subunits of TSH heterodimers and free alpha-subunits. The present study demonstrates that the early processing of oligosaccharides differs at the individual glycosylation sites of TSH and free alpha-subunits, perhaps because of local conformational differences.

  3. Primary light-harvesting system: phycobilisomes and associated membranes. Progress report, January 1, 1981-December 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantt, E.

    1981-01-01

    Phycobilisomes, serving as primary light harvesting complexes in cyanobacteria and red algae, were investigated. Structurally the phycobilisomes of both groups have the same fundamental phycobiliprotein arrangement. Allophycocyanin is in the center near the thylakoid. Stacked rods composed of phycocyanin, or phycocyanin-phycoerythrin radiate peripherally from the allophycocyanin core. Phycobilisomes of Nostoc sp. and Fremyella diplosiphon, after separation into separate allophycocyanin and phycoerythrin-phycocyanin fractions have been associated in vitro. Hybrid phycobilisomes, derived from mixtures of phycobiliprotein from these species were also obtained. The interaction is specific since reassociation was not obtained with phycobiliprotein complexes of some other algae. Phycobilisomes, whether native, ormore » associated in vitro, were similar in their sedimentation, absorption, fluorescence excitation, fluorescence emission, and by electron microscopy. Furthermore, many of the colorless polypeptides were also highly similar between Nostoc and Fremyella. The similarity formed may reflect an evolutionary relationship between the two species. The polypeptide composition of Porphyridium cruentum phycobilisomes is the most complex of any thus far examined. The phycobiliprotein containing polypeptides comprised 84% of the total stainable protein, while the remaining were colorless. Most of the colorless polypeptides occurred in a pelletable fraction, which was enriched in allophycocyanin and phycocyanin, it is probable that some are involved in the linking of these phycobiliproteins.« less

  4. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces.

    PubMed

    Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-04-22

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion.

  5. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively,more » of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.« less

  6. Peripheral stator of the yeast V-ATPase: stoichiometry and specificity of interaction between the EG complex and subunits C and H.

    PubMed

    Féthière, James; Venzke, David; Madden, Dean R; Böttcher, Bettina

    2005-12-06

    V-ATPases are multisubunit membrane protein complexes that use the energy provided by ATP hydrolysis to generate a proton gradient across various intracellular and plasma membranes. In doing so, they maintain an acidic pH in the lumen of intracellular organelles and acidify extracellular milieu to support specific cellular functions. V-ATPases are structurally similar to the F1F0-ATP synthase, with an intrinsic membrane domain (V0) and an extrinsic peripheral domain (V1) joined by several connecting elements. To gain a clear functional understanding of the catalytic mechanism, and of the stability requirements for regulatory processes in the enzyme, a clear topology of the enzyme has to be established. In particular, the composition and arrangement of the peripheral stator subunits must be firmly settled, as these play specific roles in catalysis and regulation. We have designed a strategy allowing us to coexpress different combinations of these subunits to delineate specific interactions. In this study, we report the interaction between the peripheral stator EG complex and subunits C and H of the V-ATPase from the yeast Saccharomyces cerevisae. A combination of analytical gel filtration, native gel electrophoresis, and ultracentrifugation analysis allowed us to ascertain the homogeneity and molar mass of the purified EGC complex as well as of the EG complex, supporting the formation of 1:1(:1) stoichiometric complexes. The EGC complex can be formed in vitro by combining equimolar amounts of subunit C and the EG subcomplex and results most likely from the initial interaction between subunits E and C.

  7. Diagnostic potential of low molecular weight excretory secretory proteins of Paramphistomum epiclitum for caprine amphistomosis.

    PubMed

    Jaiswal, Amit Kumar; Shanker, Daya; Sudan, Vikrant; Singh, Amit

    2018-06-15

    In the present study, the 75% alcoholic fractionation of excretory-secretory (ES) antigen isolated from 200 to 300 live P. epiclitum was assessed for its diagnostic potential for the detection of caprine amphistomosis by using antibody detection enzyme immunoassay. Prior to enzyme immunoassay, 75% alcoholic fractionation of excretory-secretory (ES) antigen was subjected to SDS- PAGE and western blot analysis for the presence of immunoreactive polypeptides. SDS-PAGE analysis of ES antigen resolved a total 7 polypeptides bands of size 56, 27, 25, 22.5, 12, 11 and 10 kDa. Western blot analysis revealed only two immunoreactive polypeptides (11 kDa and 12 kDa) when polypeptides resolved in SDS-PAGE were probed with known positive pooled serum. None of the polypeptides showed reactions with pooled known negative serum. The working dilutions of antigen, sera and conjugates were determined by checkerboard titration for employing ELISA and cut-off O.D. was calculated 0.616 by using the mean absorbance value of 11 negative kid sera. The sensitivity and specificity of ELISA was found to be 100% and 86.76%, respectively. As per kappa value estimation, the strength of agreement was found to be good. Antibodies to 75% alcoholic fractionation of ES antigen was detected in 20% goats (n = 160) of either sex, although faecal examination detected 10.6% goats to be infected with amphistomosis. The study confirmed that 75% alcoholic fractionation of ES antigen of P. epiclitum based ELISA had good value for serodiagnosis of caprine amphistomosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Structural changes of homodimers in the PDB.

    PubMed

    Koike, Ryotaro; Amemiya, Takayuki; Horii, Tatsuya; Ota, Motonori

    2018-04-01

    Protein complexes are involved in various biological phenomena. These complexes are intrinsically flexible, and structural changes are essential to their functions. To perform a large-scale automated analysis of the structural changes of complexes, we combined two original methods. An application, SCPC, compares two structures of protein complexes and decides the match of binding mode. Another application, Motion Tree, identifies rigid-body motions in various sizes and magnitude from the two structural complexes with the same binding mode. This approach was applied to all available homodimers in the Protein Data Bank (PDB). We defined two complex-specific motions: interface motion and subunit-spanning motion. In the former, each subunit of a complex constitutes a rigid body, and the relative movement between subunits occurs at the interface. In the latter, structural parts from distinct subunits constitute a rigid body, providing the relative movement spanning subunits. All structural changes were classified and examined. It was revealed that the complex-specific motions were common in the homodimers, detected in around 40% of families. The dimeric interfaces were likely to be small and flat for interface motion, while large and rugged for subunit-spanning motion. Interface motion was accompanied by a drastic change in contacts at the interface, while the change in the subunit-spanning motion was moderate. These results indicate that the interface properties of homodimers correlated with the type of complex-specific motion. The study demonstrates that the pipeline of SCPC and Motion Tree is useful for the massive analysis of structural change of protein complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Rat lung glutathione S-transferases. Evidence for two distinct types of 22000-Mr subunits.

    PubMed Central

    Singh, S V; Partridge, C A; Awasthi, Y C

    1984-01-01

    Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya' is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa') of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya' subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively. Images Fig. 1. Fig. 5. PMID:6433888

  10. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    PubMed

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  11. Increased urinary levels of tissue polypeptide specific antigen (TPS) in alcoholics.

    PubMed

    Barros, Paula; Gonzalez-Quintela, Arturo; Mella, Carmen; Perez, Luis-Fernando

    2006-01-01

    Urinary levels of tissue polypeptide specific antigen (TPS, cytokeratin-18) have been proposed as a marker of urothelial malignancies. Previous studies have shown that serum TPS levels are elevated in alcoholics. This study was designed to determine whether alcoholics had elevated urinary TPS levels as well. Serum and urinary TPS levels were determined in 24 alcoholics and 15 healthy controls by means of a commercial chemiluminiscent immunoassay. Serum TPS levels were higher in alcoholics than in controls (median 332 U/L, range 51-21241 U/L versus median 17 U/L, range 15-65 U/L, respectively, p<0.001). Urinary TPS levels were also higher in alcoholics than in controls (median 244 U/L, range 22-1267 U/L versus median 66.5 U/L, range 15-600 U/L, respectively, p=0.001). Urinary TPS levels were correlated with serum TPS levels in alcoholics. Urinary TPS levels are elevated in alcoholics. Consequently, the specificity of urinary TPS as a tumor marker may be limited in alcoholics.

  12. Immunochemical characterization of rhesus proteins with antibodies raised against synthetic peptides.

    PubMed

    Hermand, P; Mouro, I; Huet, M; Bloy, C; Suyama, K; Goldstein, J; Cartron, J P; Bailly, P

    1993-07-15

    Rabbit polyclonal antibodies were raised against synthetic peptides corresponding to hydrophilic regions of the human Rhesus (Rh) IX cDNA-encoded polypeptide predicted to be extracellularly or intracellularly exposed in the topologic model of the Rh blood group protein. Four antibodies encompassing residues 33-45 (MPC1), 224-233 (MPC4), 390-404 (MPC6), and 408-416 (MPC8) were characterized and compared with a polyclonal anti-Rh protein obtained by immunization with purified Rh proteins. All antibodies had specificity for authentic Rh polypeptides and reacted on Western blot with Rh proteins immunoprecipitated with human monoclonal anti-RhD, -c, and -E. MPC1, but not the other antibodies, agglutinated all human erythrocytes except Rhnull and Rhmod cells, which either lack totally or are severely deficient in Rh proteins, respectively. Immunoblotting analysis with membrane proteins from common and rare variants showed that MPC1 and MPC8 reacted in Western blot with 32-Kd Rh polypeptides from all common red blood cells except those from Rhnull and Rhmod, indicating that peptide regions 33-45 and 408-416 may be common to several if not all Rh proteins, whatever the Rh blood group specificity. MPC4 reacted only with membrane preparations from cells carrying the E antigen, whereas MPC6 recognized preferentially the Rh proteins from E and Ee preparations, suggesting that the protein encoded by the RhIXb cDNA carries the E and/or e antigen(s). Immunoadsorption experiments using inside-out or right-side-out sealed vesicules from DccEE red blood cells as competing antigen showed that the MPC6 and MPC8 antibodies bound only to the cytoplasmic side of the erythrocyte membrane, thus providing evidence for the intracellular orientation of the C-terminal 27 residues of the Rh polypeptides. Attempts to transiently or stably express the Rh polypeptides. Attempts to transiently or stably express the Rh cDNA in eukaryotic cells were largely unsuccessful, suggesting that Rh antigen expression at the cell surface requires correct transport and/or folding of the Rh proteins, possibly as a complex with one-membrane proteins of the Rh cluster that are lacking in Rhnull cells.

  13. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    PubMed

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.

  14. [Tonoplast transport and salt tolerance in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiz, L.

    1993-01-01

    We have showed that the tonoplast V-ATPase could be specifically inhibited by antisense DNA to the catalytic (A) subunit; that cell expansion was inhibited in carrot transformants deficient in the enzyme and have provided evidence for at least two different isoforms of the A subunit which are Golgi- and tonoplast-specific. These findings prompted a search for sequences of the isoforms of the A subunit in carrot. We have cloned and sequenced 1.0--1.5 kb fragments of three different genes for the catalytic subunit, the fragments differ greatly in their introns, but have nearly identical exons. We are using PCR to amplifymore » and subclone carrot seedling cDNA. Thus far two bands have been amplified and are currently being subcloned for sequencing.« less

  15. [Tonoplast transport and salt tolerance in plants]. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiz, L.

    1993-04-01

    We have showed that the tonoplast V-ATPase could be specifically inhibited by antisense DNA to the catalytic (A) subunit; that cell expansion was inhibited in carrot transformants deficient in the enzyme and have provided evidence for at least two different isoforms of the A subunit which are Golgi- and tonoplast-specific. These findings prompted a search for sequences of the isoforms of the A subunit in carrot. We have cloned and sequenced 1.0--1.5 kb fragments of three different genes for the catalytic subunit, the fragments differ greatly in their introns, but have nearly identical exons. We are using PCR to amplifymore » and subclone carrot seedling cDNA. Thus far two bands have been amplified and are currently being subcloned for sequencing.« less

  16. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins

    PubMed Central

    Jung, Huihun; Pena-Francesch, Abdon; Saadat, Alham; Sebastian, Aswathy; Kim, Dong Hwan; Hamilton, Reginald F.; Albert, Istvan; Allen, Benjamin D.; Demirel, Melik C.

    2016-01-01

    Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility. PMID:27222581

  17. Knock Down of Heat Shock Protein 27 (HspB1) Induces Degradation of Several Putative Client Proteins

    PubMed Central

    Gibert, Benjamin; Eckel, Bénédicte; Fasquelle, Lydie; Moulin, Maryline; Bouhallier, Frantz; Gonin, Vincent; Mellier, Gregory; Simon, Stéphanie; Kretz-Remy, Carole; Arrigo, André-Patrick; Diaz-Latoud, Chantal

    2012-01-01

    Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions. PMID:22238643

  18. Peptide Beacons: A New Design for Polypeptide-Based Optical Biosensors

    PubMed Central

    Oh, Kenneth J.; Cash, Kevin J.; Hugenberg, Verena; Plaxco, Kevin W.

    2008-01-01

    Phage display and other in vitro selection techniques produce short polypeptides that tightly and specifically bind to any of a wide range of macromolecular targets. Here we demonstrate a potentially general means of converting such polypeptides into optical biosensors. The sensing architecture we have developed, termed peptide beacons, is based on the observation that, whereas short peptides are almost invariably unfolded and highly dynamic, they become rigid when complexed to their target. Using this effect to segregate a long-lived fluorophore from an electron transfer-based contact quencher, both covalently attached to the peptide, we have produced a robust optical sensor for anti-HIV antibodies. The binding-induced segregation of the fluorophore-quencher pair produces a six-fold increase in sensor emission, thus allowing us to readily detect as low as ∼250 pM of the target antibody. Because the sensor is based on binding-induced folding and a visible-light fluorophore, it is sufficiently selective to work directly in complex, contaminant-ridden samples such as saliva and blood. PMID:17461545

  19. Building a pseudo-atomic model of the anaphase-promoting complex.

    PubMed

    Kulkarni, Kiran; Zhang, Ziguo; Chang, Leifu; Yang, Jing; da Fonseca, Paula C A; Barford, David

    2013-11-01

    The anaphase-promoting complex (APC/C) is a large E3 ubiquitin ligase that regulates progression through specific stages of the cell cycle by coordinating the ubiquitin-dependent degradation of cell-cycle regulatory proteins. Depending on the species, the active form of the APC/C consists of 14-15 different proteins that assemble into a 20-subunit complex with a mass of approximately 1.3 MDa. A hybrid approach of single-particle electron microscopy and protein crystallography of individual APC/C subunits has been applied to generate pseudo-atomic models of various functional states of the complex. Three approaches for assigning regions of the EM-derived APC/C density map to specific APC/C subunits are described. This information was used to dock atomic models of APC/C subunits, determined either by protein crystallography or homology modelling, to specific regions of the APC/C EM map, allowing the generation of a pseudo-atomic model corresponding to 80% of the entire complex.

  20. α5 nAChR modulation of the prefrontal cortex makes attention resilient.

    PubMed

    Howe, William M; Brooks, Julie L; Tierney, Patrick L; Pang, Jincheng; Rossi, Amie; Young, Damon; Dlugolenski, Keith; Guillmette, Ed; Roy, Marc; Hales, Katherine; Kozak, Rouba

    2018-03-01

    A loss-of-function polymorphism in the α5 nicotinic acetylcholine receptor (nAChR) subunit gene has been linked to both drug abuse and schizophrenia. The α5 nAChR subunit is strategically positioned in the prefrontal cortex (PFC), where a loss-of-function in this subunit may contribute to cognitive disruptions in both disorders. However, the specific contribution of α5 to PFC-dependent cognitive functions has yet to be illustrated. In the present studies, we used RNA interference to knockdown the α5 nAChR subunit in the PFC of adult rats. We provide evidence that through its contribution to cholinergic modulation of cholinergic modulation of neurons in the PFC, the α5 nAChR plays a specific role in the recovery of attention task performance following distraction. Our combined data reveal the potent ability of this subunit to modulate the PFC and cognitive functions controlled by this brain region that are impaired in disease.

  1. Molecular architecture of the TRAPPII complex and implications for vesicle tethering.

    PubMed

    Yip, Calvin K; Berscheminski, Julia; Walz, Thomas

    2010-11-01

    Multisubunit tethering complexes participate in the process of vesicle tethering--the initial interaction between transport vesicles and their acceptor compartments. TRAPPII (named for transport protein particle II) is a highly conserved tethering complex that functions in the late Golgi apparatus and consists of all of the subunits of TRAPPI and three additional, specific subunits. We have purified native yeast TRAPPII and characterized its structure and subunit organization by single-particle EM. Our data show that the nine TRAPPII components form a core complex that dimerizes into a three-layered, diamond-shaped structure. The TRAPPI subunits assemble into TRAPPI complexes that form the outer layers. The three TRAPPII-specific subunits cap the ends of TRAPPI and form the middle layer, which is responsible for dimerization. TRAPPII binds the Ypt1 GTPase and probably uses the TRAPPI catalytic core to promote guanine nucleotide exchange. We discuss the implications of the structure of TRAPPII for coat interaction and TRAPPII-associated human pathologies.

  2. Method to determine transcriptional regulation pathways in organisms

    DOEpatents

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  3. Free energy landscapes of short peptide chains using adaptively biased molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2009-03-01

    We present the results of a computational study of the free energy landscapes of short polypeptide chains, as a function of several reaction coordinates meant to distinguish between several known types of helices. The free energy landscapes were calculated using the recently developed adaptively biased molecular dynamics method followed up with equilibrium ``umbrella correction'' runs. Specific polypeptides investigated include small chains of pure and mixed alanine, glutamate, leucine, lysine and methionine (all amino acids with strong helix-forming propensities), as well as glycine, proline(having a low helix forming propensities), tyrosine, serine and arginine. Our results are consistent with the existing experimental and other theoretical evidence.

  4. Elastomeric Polypeptides

    PubMed Central

    van Eldijk, Mark B.; McGann, Christopher L.

    2013-01-01

    Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606

  5. Ferritin light-chain subunits: key elements for the electron transfer across the protein cage.

    PubMed

    Carmona, Unai; Li, Le; Zhang, Lianbing; Knez, Mato

    2014-12-18

    The first specific functionality of the light-chain (L-chain) subunit of the universal iron storage protein ferritin was identified. The electrons released during iron-oxidation were transported across the ferritin cage specifically through the L-chains and the inverted electron transport through the L-chains also accelerated the demineralization of ferritin.

  6. Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und Rückfaltung aus Fragmenten

    NASA Astrophysics Data System (ADS)

    Küster, Frank

    2002-11-01

    Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quartärstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminosäuresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabhängige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschränkt und bilden eine gemeinsame strukturelle Domäne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der natürliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests für Erbsenlektin durchgeführt und seine Faltung, Stabilität und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung für Stabilität und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilität gegenüber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten können und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichtsübergang, und es ist nicht möglich, die thermodynamische Stabilität zu bestimmen. Die Stabilität und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind für beide Proteine gleich. Darüber hinaus konnte gezeigt werden, dass auch unter nicht-denaturierenden Bedingungen die Untereinheiten zwischen den Dimeren ausgetauscht werden. Die Renaturierung der unprozessierten Variante ist unter stark nativen Bedingungen zu 100 % möglich. Das prozessierte Protein dagegen renaturiert nur zu etwa 50 %, und durch die Prozessierung ist die Faltung stark verlangsamt, der Faltungsprozess ist erst nach mehreren Tagen abgeschlossen. Im Laufe der Renaturierung wird ein Intermediat populiert, in dem die längere der beiden Polypeptidketten ein Homodimer mit nativähnlicher Untereinheitenkontaktfläche bildet. Der geschwindigkeitsbestimmende Schritt der Renaturierung ist die Assoziation der entfalteten kürzeren Kette mit diesem Dimer. The lectin from Pisum sativum (garden pea) is a member of the family of legume lectins. These proteins share a high sequence homology, and the structure of their monomers, an all-ß-motif, is highly conserved. Their quaternary structures, however, show a great diversity which has been subject to cristallographic and theoretical studies. Pea lectin is a dimeric legume lectin with a special structural feature: After folding is completed in the cell, a short amino acid sequence is cut out of a loop, resulting in two independent polypeptide chains in each subunit. Both chains are closely intertwined and form one contiguous structural domain. Like all lectins, pea lectin binds to complex oligosaccharides, but its physiological role and its natural ligand are unknown. In this study, experiments to establish a functional assay for pea lectin have been conducted, and its folding, stability and monomer-dimer-equilibrium have been characterized. To investigate the specific role of the processing for stability and folding, an unprocessed construct was expressed in E. coli and compared to the processed form. Both proteins have the same kinetic stability against chemical denaturant. They denature extremely slowly, because only the isolated subunits can unfold, and the monomer-dimer-equilibrium favors the dimer at moderate concentrations of denaturant. Due to the slow unfolding, both proteins exhibit an apparent hysteresis in the denaturation transition. Therefore it has not been possible to determine their thermodynamic stability. For both proteins, the stability and the rates of association and dissociation into processed or unprocessed subunits, respectively, are equal. Furthermore it could be shown that even under non-denaturing conditions the subunits are exchanged between dimers. Renaturation of the unprocessed variants is possible under strongly native conditions with 100 % yield. The processed protein, however, can be renatured with yields of about 50 %, and its refolding is strongly decelerated. The folding process is finished only after several days. During renaturation, an intermediate is populated, in which the longer of the two polypeptide chains forms a homodimer with a native-like subunit interface. The rate limiting step of renaturation is the association of the unfolded short chain with this dimer.

  7. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    DOEpatents

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  8. Palmitoylation of the β4-Subunit Regulates Surface Expression of Large Conductance Calcium-activated Potassium Channel Splice Variants*

    PubMed Central

    Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J.

    2013-01-01

    Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels. PMID:23504458

  9. HNF-1B specifically regulates the transcription of the {gamma}a-subunit of the Na{sup +}/K{sup +}-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferre, Silvia; Veenstra, Gert Jan C.; Bouwmeester, Rianne

    2011-01-07

    Research highlights: {yields} Defects in HNF-1B transcription factor affect Mg{sup 2+} handling in the distal kidney. {yields} {gamma}a- and {gamma}b- subunits of the Na{sup +}/K{sup +}-ATPase colocalize in the distal convoluted tubule of the nephron. {yields} HNF-1B specifically activates {gamma}a expression. {yields} HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. {yields} Defective transcription of {gamma}a may promote renal Mg{sup 2+} wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified inmore » patients with hypomagnesemia due to renal Mg{sup 2+} wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the {gamma}-subunit of the Na{sup +}/K{sup +}-ATPase. The {gamma}-subunit has been described as one of the molecular players in the renal Mg{sup 2+} reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely {gamma}a and {gamma}b. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the {gamma}a-subunit, whereas the {gamma}b-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of {gamma}a-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the {gamma}a- and {gamma}b-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of {gamma}a and {gamma}b, thus affecting the transcellular Mg{sup 2+} reabsorption in the DCT.« less

  10. Characterization of plasma membrane domains of mouse EL4 lymphoma cells obtained by affinity chromatography on concanavalin A-Sepharose.

    PubMed

    Szamel, M; Goppelt, M; Resch, K

    1985-12-19

    Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.

  11. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  12. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  13. The nucleotide binding properties of human MSH2/MSH3 are lesion-dependent and distinct from those of human MSH2/MSH6

    PubMed Central

    Owen, Barbara A. L.; Lang, Walter; McMurray, Cynthia T.

    2010-01-01

    Summary Here, we report that MSH2/MSH3 maintains lesion specificity for small loops by a distinctly different mechanism than does MHSH2/MSH6 for single base mismatches. ADP and ATP have no preference for the subunits of hMSH2/MSH3. Upon lesion binding, however, hMSH2/MSH3 adopts a single “nucleotide signature” in which one ADP binds within the hMSH2 subunit and the hMSH3 subunit is empty. On the lesion, ADP-hMSH2/MSH3-empty binds and hydrolyzes ATP in the empty hMSH3 subunit, which reduces ADP affinity and increases ATP affinity for the hMSH2 subunit. ADP/ATP exchange converts (CA)4-loop-bound ADP-MSH2/MSH3-ATP into an ATP-hMSH2/MSH3-ADP intermediate in which ATP hydrolysis is inhibited in the hMSH2 subunit. We propose a model in which lesion binding converts hMSH2/MSH3 into a distinct nucleotide-bound form, and poises it to be a molecular sensor for lesion specificity. PMID:19377479

  14. Polypeptides having catalase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Conversion of human choriogonadotropin into a follitropin by protein engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, R.K.; Dean-Emig, D.M.; Moyle, W.R.

    1991-02-01

    Human reproduction is dependent upon the action of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the {alpha} subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their {beta} subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG {beta}-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLH{beta} and hFSH{beta} in receptor recognition and activation. Since the {beta} subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region,more » the authors postulated that these residues might contribute to hormone specificity. To test this hypothesis the authors constructed chimeric hCG/hFSH {beta} subunits, coexpressed them with the human {alpha} subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSH{beta} residues 33-52 for hCG{beta} residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSH{beta} residues 88-108 in place of the carboxyl terminus of hCG{beta} (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCG{beta} residues 108-145 or substitution of residues in the determinant loop located between hCD{beta} residues 93 and 100.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreitzer, Robert Joseph

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO 2 fixation in photosynthesis. However, it is a slow enzyme, and O 2 competes with CO 2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO 2. If carboxylation could be increased or oxygenation decreased, an increase in net CO 2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants,more » and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO 2/O 2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a possible structural pathway between the small-subunit βA-βB loop and alpha-helix 8 of the large-subunit α/β-barrel active site. Hybrid enzymes were also created comprised of plant small subunits and Chlamydomonas large subunits, and these enzymes have increases in CO 2/O 2 specificity, further indicating that small subunits may be the key for ultimately engineering an improved Rubisco enzyme.« less

  17. Subunit- and pathway-specific localization of NMDA receptors and scaffolding proteins at ganglion cell synapses in rat retina

    PubMed Central

    Zhang, Jun; Diamond, Jeffrey S.

    2014-01-01

    Retinal ganglion cells (RGCs) receive excitatory glutamatergic input from ON and OFF bipolar cells in distinct sublaminae of the inner plexiform layer (IPL). AMPA and NMDA receptors (AMPARs and NMDARs) mediate excitatory inputs in both synaptic layers, but specific roles for NMDARs at RGC synapses remain unclear. NMDARs comprise NR1 and NR2 subunits and are anchored by membrane associated guanylate kinases (MAGUKs), but it is unknown whether particular NR2 subunits associate preferentially with particular NR1 splice variants and MAGUKs. Here, we used postembedding immunogold electron microscopy (EM) techniques to examine the subsynaptic localization of NMDAR subunits and MAGUKs at ON and OFF synapses onto rat RGCs. We found that the NR2A subunit, the NR1C2‘ splice variant and MAGUKs PSD-95 and PSD-93 are localized to the postsynaptic density (PSD), preferentially at OFF synapses, whereas the NR2B subunit, the NR1C2 splice variant and the MAGUK SAP102 are localized perisynaptically, with NR2B exhibiting a preference for ON synapses. Consistent with these anatomical data, spontaneous EPSCs (sEPSCs) recorded from OFF cells exhibited an NMDAR component that was insensitive to the NR2B antagonist Ro 25-6981. In ON cells, sEPSCs expressed an NMDAR component, partially sensitive to Ro 25-6981, only when glutamate transport was inhibited, indicating perisynaptic expression of NR2B NMDARs. These results provide the first evidence for preferential association of particular NR1 splice variants, NR2 subunits and MAGUKs at central synapses and suggest that different NMDAR subtypes may play specific roles at functionally distinct synapses in the retinal circuitry. PMID:19339621

  18. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidart, J.M.; Troalen, F.; Salesse, R.

    1987-06-25

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptidesmore » spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex.« less

  19. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    PubMed

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells.

    PubMed

    Pinske, Constanze; Sargent, Frank; Sawers, R Gary

    2015-04-01

    Fermentatively growing Escherichia coli cells have three active [NiFe]-hydrogenases (Hyd), two of which, Hyd-1 and Hyd-2, contribute to H2 oxidation while Hyd-3 couples formate oxidation to H2 evolution. Biosynthesis of all Hyd involves the insertion of a Fe(CN)2CO group and a subsequent insertion of nickel ions through the HypA/HybF, HypB and SlyD proteins. With high nickel concentrations the presence of none of these proteins is required, but under normal growth conditions and during late stationary growth SlyD is important for hydrogenase activities. The slyD mutation reduced H2 production during exponential phase growth by about 50%. Assaying stationary phase grown cells for the coupling of Hyd activity to the respiratory chain or formate-dependent H2 evolution showed that SlyD is essential for both H2 evolution and H2 oxidation. Although introduction of plasmid-coded slyD resulted in an overall decrease of Hyd-2 polypeptides in slyD and hypA slyD mutants, processing and dye-reducing activity of the Hyd-2 enzyme was nevertheless restored. Similarly, introduction of the slyD plasmid restored only some H2 evolution in the slyD mutant while Hyd-3 polypeptides and dye-reducing activity were fully restored. Taken together, these results indicate an essential role for SlyD in the generation of the fully cofactor-equipped hydrogenase large subunits in the stationary phase where the level of each Hyd enzyme is finely tuned by SlyD for optimal enzyme activity.

Top